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Abstract: Microscopic image segmentation (MIS) plays a pivotal role in various fields such as medical imaging
and biology. With the advent of deep learning (DL), numerous methods have emerged for automating and
improving the accuracy of this crucial image analysis task. This systematic literature review (SLR) aims to
provide an exhaustive overview of the state-of-the-art DL methods employed for the segmentation of
microscopic images. In this review, we analyze a diverse array of studies published in the last five years,
highlighting their contributions, methodologies, datasets, and performance evaluations. We explore the
evolution of DL techniques and their adaptation to specific segmentation challenges, from cell and nucleus
segmentation to tissue analysis. This paper, through the integration of existing knowledge, provides valuable
perspectives for researchers involved in the field of microscopic image segmentation.
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tissue analysis; biology

1. Introduction

MICROSCOPIC imaging serves as a fundamental tool in both research and diagnosis, particularly
within fields like medical science and biology. It offers unparalleled insights into the intricate
structures and processes at the cellular and subcellular levels [1]. Segmentation involves categorizing
the image pixels based on their respective classes. The primary objective of image segmentation is to
group all the pixels within an image [2]. Accurate segmentation of microscopic images is an essential
component in the analysis of these images, enabling quantification, classification, and a deeper
understanding of the underlying biological components [2]. Additionally, microscopic image
segmentation (MIS) not only serves as a fundamental tool in scientific research but also plays a pivotal
role in clinical diagnostics. It allows researchers and medical professionals to uncover the intricate
world of cells, tissues, and subcellular structures, aiding in the diagnosis of diseases and the
advancement of scientific knowledge [3].

Numerous manual segmentation techniques have been proposed, including methods involving
feature extraction and region growing [4]. However, relying on manual segmentation, although
traditional, presents significant challenges. This method is not only labor-intensive but also
susceptible to human bias and inconsistencies. The process is time-consuming, and the precision of
outcomes is heavily reliant on the proficiency of the annotators [4]. The infusion of artificial
intelligence (AI) holds the potential to mitigate these challenges while augmenting the consistency of
segmentation tasks.

Machine learning (ML) has instigated rapid advancements, particularly within the biomedical
domain, primarily in the field of image segmentation. Deep learning (DL), a subset of ML with a
primary focus on artificial neural networks (ANNSs), acts as a driving force behind the increasing
expansion of research in imaging sciences and computational pathology [5]. With the rise of DL,
particularly the utilization of convolutional neural networks (CNNs), the realm of image
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segmentation has undergone a profound and transformative evolution. DL algorithms have
showcased exceptional capabilities in automating this process, often surpassing traditional methods
in terms of precision and efficiency. These progressions have the potential not only to speed up the
analysis of microscopic images but also to make the results more accurate [5].

In the field of MIS, significant strides have been made through the evolution of DL architectures.
The inception of Fully Convolutional Networks (FCNs) marked a crucial evolution in the field, as it
introduced a paradigm shift towards end-to-end pixel-wise segmentation. Its predominant
applications were in the segmentation of mitochondria [6] and microvasculature [7]. Building upon
this foundation, the subsequent evolution of segmentation methodologies witnessed the emergence
and widespread adoption of U-Net architecture [8]. U-Net, characterized by its unique encoder-
decoder structure, has demonstrated superior performance in preserving fine-grained details crucial
for microscopic imagery. Beginning with U-Net, numerous variants and networks were created for
MIS, accompanied by the development of various tools and software tailored for achieving the
overarching objective. To the best of our knowledge, current surveys focus on specific domains such
as cells, nuclei, or tissues, or they provide summaries of existing tools [3].

Inspired by these premises, in this paper, we present a systematic literature review (SLR)
providing a comprehensive survey of the state-of-the-art in DL methods for MIS. In this review, we
delve into the evolution of DL techniques tailored to specific segmentation challenges, including cell
and nucleus segmentation and tissue analysis. Our objective is to consolidate the knowledge
accumulated over the last five years, categorizing contributions, methodologies, datasets, and
performance evaluations.

To construct this review, we examined a total of 72 recent research articles published between
2018 and 2023, gathered from a diverse array of four article repositories, i.e. SpringerLink, IEEE
Xplore, Science Direct and PubMed. The subsequent sections provide comprehensive insights into
the methodologies employed and their applications through a SLR approach.

The subsequent sections of this article are structured as follows: Section II provides a
background on prominent approaches proposed for image segmentation. Section III delineates the
applied research methodology employed for synthesizing studies. Section IV presents an exposition
of the reviewed works addressing the topic of MIS and ultimately, Section V delves into the
discussion.

2. Background

Image segmentation involves partitioning an image into distinct regions based on specific
properties of interest. Traditional segmentation techniques encompass approaches like edge
detection, threshold processing, region growing, texture analysis, watershed algorithms, and others.

Nonetheless, each of these techniques comes with its own limitations. DL has emerged as a
widely adopted approach for image segmentation across various domains. Image segmentation can
be categorized into two main types: semantic-level segmentation and instance-level segmentation.
Semantic segmentation classifies each pixel in an image into the foreground and background [3].
Instance-level segmentation is built upon target detection, a process that involves identifying and
outlining individual objects within an image, providing unique labels for each instance [3].

In the dynamic field of DL for MIS, several architectural paradigms have emerged as powerful
tools. This section spotlights three influential architectures: U-Net, Region-based Convolutional
Neural Networks (R-CNN), and Generative Adversarial Networks (GANSs).

2.1. U-net

U-Net, introduced by Ronneberger et al. in 2015 [8], stands as a seminal architecture in semantic
segmentation, particularly in biomedical image analysis. Its U-shaped design, with skip connections,
facilitates detailed feature extraction, making it well-suited for tasks like cell segmentation in
microscopic images. Studies employing U-Net have significantly contributed to the precision and
efficiency of segmentation outcomes.
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The U-Net architecture consists of a U-shaped channel incorporating skip connections. The
encoder comprises four submodules, each housing two convolutional layers, and after each
submodule, downsampling is achieved through max pooling. The decoder, with four submodules,
progressively increases resolution through upsampling, ultimately providing pixel-wise predictions.
Mlustrated in Figure 1, the network takes a 572 x 572 input and produces a 388 x 388 output. A
distinctive feature is the utilization of skip connections, linking the output of a submodule in the
encoder with the input of the corresponding submodule in the decoder, promoting seamless
information transfer across network layers. In extending the capabilities of U-Net for more complex
tasks, variations such as 3D U-Net and V-Net have emerged, showcasing adaptability to three-
dimensional image data.
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Figure 1. The structure of U-net [8].

2.2. R-CNN

Introduced by Girshick et al. in 2014 [9], Region-based Convolutional Neural Networks (R-
CNN) have revolutionized the field of object detection and segmentation. Through a two-step process
involving region proposal generation and subsequent CNN-based feature extraction, R-CNN and its
variants demonstrate exceptional accuracy in localizing objects. Their applications extend to MIS,
showcasing their effectiveness.

The R-CNN architecture, as presented in [9], employs a region proposal network to generate
bounding boxes using a selective search process. These region proposals undergo warping to
standard squares and are then fed into a CNN to produce a feature vector map as the output. The
output dense layer comprises features extracted from the image, subsequently utilized by a
classification algorithm to classify objects within the region proposal network. Additionally, the
algorithm predicts offset values to enhance the precision of the region proposal or bounding box. The
sequential processes performed in the R-CNN architecture are visually depicted in Figure 2. Three
major variations of the R-CNN model, including Fast R-CNN, Faster R-CNN, and Mask R-CNN, have
been introduced in the literature. This progression signifies a refinement in object detection and
segmentation methodologies.
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Figure 2. The structure of R-CNN [9].

2.3. GAN

Introduced by Goodfellow et al. in 2014 [10], Generative Adversarial Networks (GANs) have
revolutionized the field of image synthesis and generation. Although originally designed for broader
applications, GANs have found utility in the augmentation of microscopic image datasets, generating
synthetic images for training segmentation models. This unconventional method of data
augmentation has attracted interest due to potential to enhance the robustness of segmentation
models.

The GAN structure, as illustrated in Figure 3, involves two integral components: the generator,
responsible for creating images from random noise (Z), and the discriminator, designed to
distinguish between real and synthetic images. Through a competitive training process, the generator
aims to produce synthetic data that is virtually indistinguishable from real data, as determined by

the discriminator (D).
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Figure 3. The structure of GAN [11].

3. Methodology

To restrict this article, we apply the SLR methodology as conducted by Brereton et al. [12]. The
primary objective of this approach is to analyze data extracted from the selected studies in the article.
The SLR for MIS unfolds through a three-step process:

1. Planning the Review: This step involves specifying the requirements for the review process and
forming the questions necessary for the study.

2. Conducting the Review: This step includes finding relevant works and assessing the quality of
the research.

3. Documenting the Review: This step involves reporting the selected studies in a paper.

Planning the Review

The research planning phase includes defining research questions. Our SLR aims to address the
following research questions:

RQ1: What are the state-of-the-art deep learning techniques for microscopic image segmentation
and their primary applications?

RQ2: How does microscopic image segmentation contribute to the analysis of cells, nuclei, and
tissues in biomedical research and medical diagnosis?

RQ3: Are there software tools available for the automated segmentation microscopic images?

o Conducting the Review

We selected articles from a variety of sources based on criteria including study titles, relevant
keywords, abstracts, and conclusions. To ensure a full coverage of pertinent literature, we conducted
an extensive search across multiple prominent publication databases. These databases include:

o  IEEEXplore--(https://ieeexplore.ieee.org/)
e  Science Direct--(https://www.sciencedirect.com/)
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e  Springer Link--(https://link.springer.com/)
e  PubMed--(https://www.ncbi.nlm.nih.gov/pubmed/)

This approach ensured that we grouped a diverse and comprehensive selection of articles for
our research review. This involved searching through multiple articles by incorporating specific
keywords. The searches were conducted across four databases, utilizing the keywords "microscopic
image," "segmentation,” and "deep learning." We focused on articles published in English between
2018 and 2023 to ensure the inclusion of recent research findings.

Due to the extensive number of articles retrieved from our searches, we focused our evaluation
on the first 72 articles presented in the search results. These articles were sorted by relevance to the
research topic, ensuring that the most pertinent sources were considered for our systematic literature
review. This comprehensive search strategy aimed to guarantee a diverse and extensive selection of

"non

articles, enabling us to conduct a rigorous and insightful analysis in our research review.

In addition, to extend the search and find more relevant literature, we also performed a hand-
searching process where we combinate several keywords related to the underlying research.

To establish inclusion and exclusion criteria, we adhered to the Preferred Reporting Items for
Systematic Reviews and Meta-Analyses (PRISMA) procedures as outlined by Moher et al. in 2009
[13]. This approach ensured that we gathered a diverse and comprehensive selection of articles for
our research review. Figure 4. illustrates the structured PRISMA framework that guided our process
for selecting studies.
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Figure 4. PRISMA - Papers Selection Process Summary.

The criteria are integrated to ensure that the selected studies align with the specific boundaries
and objectives of the research topic. All articles were included based on their relevance to the field of
MIS, with a particular focus on DL methods. The selection criteria should be thoughtfully designed
to effectively address the research questions, ensuring that they can be clearly interpreted and
accurately categorize the pertinent studies.

In accordance with Figure 4, an initial total of 1069 articles were gathered from the chosen
databases. Subsequently, we conducted a thorough search, which involved excluding articles
published prior to 2018, leading to the removal of 63 articles. Moreover, 839 more articles were
excluded due to various reasons, including duplication, lack of relevance to the research scope,
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content outside the medical domain, utilization of techniques other than DL, and issues related to
their quality. Additionally, we have added 15 papers by hand searching. In this phase, the methods
and conclusions sections of these articles were examined, leading to the exclusion of 110 articles.

Following this process, the remaining texts were subjected to an in-depth reading to achieve a
more comprehensive understanding. In this final stage, a careful analysis was performed to validate
the relevance of each study, ultimately leading to the examination of 72 articles.

As depicted in Figure 4, our research process involved a rigorous and exhaustive screening of
available literature, followed by a meticulous analysis of each article. Through this diligent process,
we identified a total of 72 articles that unequivocally met our predefined criteria, and these were
consequently chosen for inclusion in this study. These selected articles, carefully curated to ensure
their relevance and quality, serve as the foundation upon which our research findings are built.

In Section IV, we go a step further about documenting the review to address responses to our

research questions.

4. Analysis of the Papers

In this section, we provide an analysis of the papers included in the review. Section IV.A will
focus on papers that address RQ1 and RQ?2, Section IV.B will cover papers addressing RQ3.
Table 1 contains a list of abbreviations used in this section.

Table 1. List of the abbreviations used in section IV.

Abbreviation Meaning Abbreviation Meaning
ACC Accuracy H&E Hematoxylin and Eosin
AJl Aggregated Jaccard Index IoU Intersection over union
AS-UNet U-Net with atrous dep.thw1se separable I Jaccard index
convolution
ASPPU-Net Atrous spatial pyramid pooling U-Net MAE Mean absolute error
ASW-Net Attention-enhanced Simplified W-Net McbUnet Mixed convolution blocks
Multiscale connected segmentation
BAWGNet  Boundary aware wavelet guided network MDC-Net network with distance map and
contour information
Conditional generative adversarial . . .
cGAN MoNuSeg Multi-Organ Nuclei Segmentation
network
CIA-Net Contour-aware Informative Aggregation PCI Phase contrast Image
Network
C-LSTM Convolutional Long Short-Term Memory = Res-UNet-H Residual U-net for human sample
CPN Contour Proposal Network Res-UNet-R Residual U-net for rat sample
Residual I tion-Ch 1 attention-
CS-Net Cellular Segmentation Network RIC-Unet esicualincep K{?ﬂgt annet atention
DCNN Deep convolutional neural network RINGS Rapid Identification of Glandural
Structures
DCNNs Deep convolutional neural network SAU-Net Self-Attention-Unet
DDeep3M Docker-powered deep learning SAM Segment any model
Sali d Ball driven U-
DeLTA Deep Learning for Time-lapse Analysis SBU-net @ 1enc3;}?;1pe daNZ’finSorl?ven
ingle-ch 1 whole cell
DOLG Deep orthogonal fusion of local and global SCWCSA Single-c anhel who'e €@
segmentation algorithm
ER-Net Edge-reinforced neural network SSD Single-shot detector
FCRN Fully Convolutional Regression Network TCGA Cancer genome atlas
Ti ific F Distillati
FRE-Net Full-region enhanced network TSFD-Net issue Specific Feature Distillation

Network



https://doi.org/10.20944/preprints202409.2030.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 September 2024

7
FPN Feature Pyramid Network W-Net Cascaded U-Net
GAN Generative Adversarial Networks WSI Multiresolution whole slide images
GRU Gated Recurrent Unit
4.1. RQ1 & RQ2

In this section, we address two key research questions to comprehensively explore the landscape
of MIS in the context of DL techniques and their applications in biology research.

RQ1: What are the state-of-the-art deep learning techniques for microscopic image segmentation
and their primary applications?

RQ2: How does microscopic image segmentation contribute to the analysis of cells, nuclei, and
tissues in biology research?

In the context of MIS, there are three distinctive levels of analysis, each tailored to address
specific research and diagnosis needs. The first level is cell segmentation, which involves the precise
delineation and categorization of individual cells within an image. This allows researchers to study
cell morphology, spatial distribution, and behavior under various conditions.

Moving deeper, nucleus segmentation represents the second level. Here, the focus is on
accurately identifying and segmenting cell nucleus within each cell. This level of segmentation is
pivotal in understanding genetic and cellular processes, as the nucleus houses the cell's genetic
material.

The third level, tissue segmentation, extends the analysis to a broader scale. It entails the
partitioning of an image into different tissue types or regions, providing insights into the composition
and structure of the tissue sample. Tissue segmentation is vital in applications like disease diagnosis,
histology, and pathology, enabling the identification of various tissue components, such as epithelial
and connective tissues, blood vessels, and tumors.

These three levels of MIS, cell, nucleus, and tissue segmentation, collectively contribute to a
comprehensive understanding of biological structures and processes, catering to diverse research
objectives in fields such as biology, and pathology.

To cover these three levels, we provide an overview of various research findings specific to each
level, as outlined in tables 2, 3, and 4 for cell segmentation, nucleus segmentation, and tissue
segmentation, respectively.

4.1.1. Cell Segmentation

Table 2 provides an overview of selected studies focused on cell segmentation, reflecting the
diversity of methodologies and applications in this domain. As depicted in the table, distinct studies
present diverse approaches tailored for specific tasks, primarily emphasizing either semantic or
instance segmentation, with some studies adopting a hybrid approach incorporating both techniques.

In this section, we will investigate into an examination of various studies, categorizing them
based on their approaches to semantic and instance segmentation.

Starting with a focus on semantic segmentation, in their publication [14], the authors introduced
a method derived from the GAN approach. One notable strong point of this method is its avoidance
of the need for formulating a loss function during the optimization process. This approach
demonstrates promising segmentation results on real fluorescent microscopy data called H1299
dataset [15]. The code for this work is openly accessible at:
https://github.com/arbellea/DeepCellSeg.git.

Additionally, in [16], the authors introduced a workflow employing DNN for cell segmentation
specifically applied to PCIL. The proposed pipeline involves three stages: the first stage focuses on
formulating PCI, the second stage utilizes DNN for image restoration, and the third stage highlights
the advantages of artifact-free images for segmentation. The evaluation was conducted on an adapted
dataset of phase-contrast microscopy image sequences. The results demonstrated favorable outcomes
compared to some SOTA approaches in terms of ACC, achieving a value of 0.908, IoU with a score of
0.4698, and Dice coefficient, attaining a value of 0.6859.
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In [17], the authors introduced an improved U-net algorithm named McbUnet, which
incorporates mixed convolution blocks, combining the advantages of U-Net and residual learning.
The effectiveness of this proposed approach was validated using the 2018 Data Science Bowl.
McbUnet demonstrated outstanding performance compared to standard U-net, MultiResUNet [18]
and CE-NET [19]. Notably, the method achieved notable results in terms of ACC with a value of 0.956
and IoU with a value of 0.816.

In [20], DLOG-NeXt was introduced in the context of cell contour segmentation. DLOG-NeXt
incorporates SE-Net-driven ConvNeXt architecture, coupled with multi-scale feature aggregation
through the DOLG module. This is followed by the inclusion of a channel attention mechanism,
aiming to capture high-level feature representations that preserve both spatial and channel
information. DLOG-NeXt demonstrated superior performance compared to other SOTA
architectures, including U-Net and Transformer-based variants, across four benchmark public
datasets representing electron microscopy, colonoscopy, fluorescence, and retinal modalities. On the
ISBI 2012 [21], CVC-ClinicDB 2018 [22], 2018 Data Science Bowl [23], and DRIVE datasets, DLOG-
NeXt achieved remarkable dice scores of 0.958, 0.951, 0.947, 0.848, along with mean IoU scores of
0.901, 0.918, 0.889, and 0.735, respectively.

In [24], a different application, which centers on semantic cell segmentation, is introduced as
GRUU-Net. This framework integrates the iterative refinement of feature maps through GRU with
multi-scale feature aggregation using a U-net. For more enhancement of training robustness and
segmentation performance, the authors introduced a novel normalized focal loss designed for a
momentum-based optimizer. Despite being characterized by a reduced number of parameters, the
proposed network achieved superior or competitive results across the majority of the used datasets.
Notably, the authors trained the network using only a few example images and did not employ hand-
crafted weighting of the cross-entropy loss. For instance, in the case of glioblastoma dataset [25].
GRUU-Net demonstrated a favorable Dice score of 0.933, surpassing the performance of both U-net
and ASPP-Net [26].

In [27], the authors presented SBU-net, aiming to improve segmentation performance by
incorporating perceptual features such as saliency and ballness. This innovative approach yields
superior results when applied to bright-field microscopic images. In-depth insights into its
effectiveness were gained through a comprehensive evaluation, comparing SBU-net with established
models including U-net, U-net++ [28], Link-net [29], and Attention U-net. Experimental results
highlight the exceptional performance of SBU-net, demonstrated by significant enhancements in both
IoU and Dice metrics compared to SOTA models. It attained a mean IoU of 0.804 and 0.829, along
with mean Dice scores of 0.891 and 0.906, respectively, on two publicly available bright-field datasets
of T cells and pancreatic cancer cells. To evaluate the model's ability to generalize across different
microscopy types, the authors conducted tests on a fluorescence dataset.

Additionally, the incorporation of pretrained networks proves advantageous in the case of
semantic cell segmentation. In their work [30], the authors proposed Aura-net, which integrates a pre-
trained ResNet-18 with an Attention U-net and undergoes training utilizing an AC loss. The authors
conducted experiments on three publicly available PC microscopy image datasets. The results
showcased that Aura-net outperformed SOTA approaches such as the standard U-net, CE-net,
Attention-net [31]. The proposed method achieved Dice scores of 0.846 for the first database, 0.877 for
the second database and 0.818 for the third database. The source code for this proposed approach is
available for public access: https://github.com/uhlmanngroup/AURA-Net.

As presented in Table 2, some studies have suggested various approaches for cell (nuclei)
segmentation, indicating the segmentation process for both entire cells and their respective nuclei. In
this context, starting with the study outlined in [32], the authors introduced AS-UNet tailored for this
segmentation task. This framework consists of three parts: encoder module, decoder module and
atrous convolution module. Their experimentation focused on two datasets, namely the MOD dataset
[33] and the BNS dataset [34]. Comparative analyses were conducted, pitting the AS-UNet method
against other published SOTA models, such as PSPNET [35], ENET [36], SegNET [37], and Link-net.
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The outcomes underscored the superiority of the AS-UNet algorithm, particularly excelling in
scenarios involving multi-cell adhesions and small-sized cells. Particularly on the MOD, it achieved
an ACC of 0.928. Moreover, when assessed on the BNS dataset, the AS-UNet algorithm achieved an
ACC of 0.968.

In the same context, a feedback attention network called FANet [38] was proposed. it utilizes
information from each training epoch to refine the prediction maps in subsequent epochs, allowing
the architecture to self-rectify predicted masks. This self-correction mechanism contributes to
accurate and consistent segmentation results across diverse datasets. The performance of FANet is
comprehensively evaluated against SOTA DL methods on seven publicly available biomedical
imaging  datasets. =~ The source code for FANet is openly accessible at:
https://github.com/nikhilroxtomar/FANet.

In the cited reference [39], the authors introduced UNet++, an algorithm presenting a deeply-
supervised encoder-decoder network architecture tailored for medical image segmentation. This
architecture establishes connections between the encoder and decoder sub-networks through nested,
dense skip pathways, aimed at minimizing the semantic gap in their feature maps. The performance
of UNet++ was assessed in contrast to U-Net and wide U-Net architectures across various medical
image segmentation tasks. These tasks encompassed nodule segmentation in low-dose CT scans of
the chest, nuclei segmentation in microscopy images, liver segmentation in abdominal CT scans, and
polyp segmentation in colonoscopy videos. The paper extensively compared the performance of
UNet++ with U-Net and wide U-Net, highlighting the superior segmentation results achieved by
UNet++. The code is available: https://github.com/Nested-UNet.

Now, with regard to instance segmentation. In [40], authors proposed GeneSegNet. It employs
a recursive training strategy to handle noisy training labels. In this study, GeneSegNet's performance
was systematically assessed by benchmarking it against five alternative methods: the Watershed
algorithm, Cellpose [41], JSTA [42], Baysor [43] and Baysor(prior) [43]. The comparative analysis
revealed that GeneSegNet outperforms existing methods in cell segmentation by effectively
leveraging gene expression information and optimizing the use of imaging data. GeneSegNet
produces more accurate cell boundaries, encompassing a greater number of RNA reads within cells,
while  mitigating the issue of oversegmentation. The code is  available:
https://github.com/BoomStarcuc/GeneSegNet.

In [44], a robust framework for cell instance segmentation was introduced. This framework, built
upon Mask R-CNN, is designed to generate cell segmentation without the need for additional post-
processing steps. To enhance the model's capability in learning segmentation boundaries, the authors
incorporated the use of Shape-Aware Loss, a distance-based pixelwise weighted cross-entropy loss.
The proposed framework exhibits strong performance, surpassing other models mentioned in the
paper, achieving IoU values of 0.919 and 0.949 for the DICC2DH-HeLa and PhCC2DH-U373 datasets,
respectively available at: http://celltrackingchallenge.net/2d-datasets.

In [45], an approach integrates convolutional LSTM with the U-Net architecture used for
instance cell segmentation and tracking in time-lapse microscopy. The integration of spatio-temporal
considerations in this method enhances its capability to accurately delineate and track individual
cells over consecutive frames in time-lapse microscopy sequences. The method's performance was
evaluated using the Cell Tracking Challenge, resulting in SOTA outcomes. It achieved the top
position for the Fluo-N2DH-SIM+ dataset and the second position for the DIC-C2DLHeLa datasets.
The code for this work is freely accessible at: https://github.com/arbellea/LSTM-UNet.git.

Authors in [46] proposed a method, attentive instance segmentation, that combines a single shot
multi-box detector (SSD) and a U-Net. It employs attention mechanisms in both the detection and
segmentation modules to focus on useful features. Quantitative and qualitative results show that the
proposed approach achieves higher ACC and faster speed compared to the SOTA methods. The code
of this work is available at: https://github.com/yijingru/ANCIS-Pytorch.

The study outlined in [47] introduces Cell T-Net. The efficacy of this approach was assessed
using the liveCELL and Sartorius datasets. To demonstrate the prowess of Cell T-Net, the authors
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replicated several SOTA object detection and segmentation models using the Detectron framework.
Specifically, they recreated four one-stage models—SSD [48], RefineDet [49], RetinaNet [50], and
CornerNet [51]—as well as three two-stage models, including Faster RCNN, Mask-RCNN, and
Cascade Mask-RCNN [52]. The results indicate that Cell T-Net surpasses SOTA models, particularly
in addressing challenges inherent in the characteristics of cell datasets.

In the study [53], a DL model, leveraging cGANSs, was introduced for instance cell segmentation.
This approach involves creating synthetic masks through a GAN, specifically StyleGAN2-ada, and
generating corresponding synthetic microscopy images using image-to-image translation (pix2pix).
This method explicitly generates labeled masks, providing versatility for use in various tasks beyond
instance segmentation.

Authors in [54] introduced an algorithm that integrates DL with thresholding and watershed-
based segmentation. This strategy resulted in an 86% similarity to the ground truth segmentation in
the identification and separation of cells and a good average ACC (0.84). However, the algorithm
exhibited varying performance levels across different datasets, especially in cases where lower
segmentation quality was observed due to increased variability in cell shape and appearance.

The paper referenced [55] introduces a box-based cell instance segmentation method that
integrates keypoint detection with individual cell segmentation. The framework consists of two main
branches: a keypoints detection branch and an individual cell segmentation branch, employing a
ResNet-50 Conv1-4 as the backbone network. The method identifies five pre-defined points of a cell
through keypoints detection, and these points are then organized using a keypoint graph to derive
the bounding box for each cell. Within these bounding boxes, cell segmentation is executed on the
feature maps. The effectiveness of the proposed method is validated on two cell datasets exhibiting
distinct object shapes, showcasing its superior performance compared to other instance segmentation
techniques. Qualitative results further affirm the efficacy of the proposed method. The code is
available at: https: //github.com/yijingru/KG_Instance_Segmentation.

Next, we will introduce the selected studies that have proposed various architectures for both
semantic and instance segmentation. Furthermore, the study explored various U-Net architectures
[56], including Attention and Residual Attention U-Net, to identify the most suitable architecture for
living cell segmentation. The dataset used in this research comprises bright-field transmitted light
microscopy images of HeLa cells acquired from different time-lapse experiments. The Residual
Attention U-Net demonstrated the best performance, achieving a (mean-IoU) of 0.953 and a mean
Dice coefficient (mean-Dice) of 0.975.

In [57], the authors introduced the 3D CellSeg framework designed for both semantic and
instance cell segmentation. Experiments on cell segmentation were conducted across four distinct cell
datasets. The results demonstrate that 3D CellSeg surpasses the baseline models on the ATAS [58],
HMS, and LRP [59] datasets, achieving overall accuracies of 95.6%, 76.4%, and 74.7%, respectively.
Additionally, the framework achieves ACC comparable to baselines on the Ovules dataset [60],
achieving an overall ACC of 82.2%. the code is available: n
https://github.com/AntonotnaWang/3DCellSeg.

Additionally, the CS-Net network [61] was applied. Comparative results with leading
lightweight models reveal that the proposed model achieves a more favorable balance between
segmentation performance and computational complexity. The code is available at:
https://github.com/luozhengrong/CS-Net.

Moreover, it is crucial to underscore pertinent research studies that have employed
segmentation techniques for cell counting. Cell counting, defined as the process of determining the
number of cells within an image or a designated region of interest, plays a pivotal role in various
scientific investigations. For instance, the work in [62], the authors introduced MSCA-U-Net, a cell
segmentation method specifically tailored for the application of automatic cell counting, utilizing
density regression. To demonstrate the effectiveness of their algorithm, the authors conducted a
thorough comparison with SOTA methods. The evaluation encompassed three datasets: VGG CELL
[63], MBM CELL [64], and ADI CELL [65]. In preparing their inputs for the fully convolutional
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network, the authors employed preprocessing techniques, including resizing and patch division.
These measures were crucial when dealing with input images of varying dimensions and cell
densities, especially in the context of extremely high-resolution images featuring high cell densities.
Data augmentation was additionally applied to enhance the model's robustness to different cell
orientations. For the evaluation, MAE was employed as a metric for cell tracking. Notably, the
proposed network demonstrated the lowest MAE values (2.4, 8.0, 11.5) for the VGG, MBM, and ADI
datasets, respectively. In terms of cell detection, the proposed method achieved commendable
Precision, Recall, and F1-Score values.

[66] introduces SAU-Net as an innovative approach for cell counting, specifically designed for
application in both 2D and 3D Microscopy Images. The network extends the U-Net architecture by
incorporating a Self-Attention module and integrating Batch Normalization after every convolution
and deconvolution layer in U-Net. SAU-Net's versatility in handling both 2D and 3D images is a
notable enhancement. The evaluation of SAU-Net encompassed five public datasets: VGG, MBM,
ADI, DCC, and MBC. The proposed method demonstrated impressive precision values (99.94, 88.76,
88.57,99.52, and 92.52) for VGG, MBM, ADI, DCC, and MBC datasets, respectively. The source code
for this work is accessible at: https://github.com/mzlr/sau-net.

Table 2. Summary of Cell Segmentation Studies in the Literature.

Reference Publication Method Task Dataset Instance/Semantic/Bot (.?odfe .
year h availability
[14] 2018 GAN Cell . H1299 data set Semantic v
segmentation
Phase contrast
Cell microscopy image
[16] 2023 DNN . sequence “mouse Semantic x
segmentation .
muscle progenitor
cells”
11 2018 D i
[17] 2020 McbUnet Cell 018 Data Science Semantic x
segmentation Bowl dataset
DRIVE
Cell contour CVC-ClinicDB
[20] 2023 DOLG-NeXt .u 2018 Data Science Semantic X
segmentation
Bowl
ISBI 2012
DIC-C2DH-HeLa
Fluo-C2DL-MSC
Cell Fluo-N2DH-GOWT1 .
[24] 2019 GRUU-Net segmentation ~ Fluo-N2DH-HeLa Semantic 8
PhC-C2DH-U373
PhC-C2DL-PSC
Mouse CD4 + T cells
Pancreatic cancer
Cell cells .
(271 2023 SBU-net segmentation =~ MCF10DCIS.com Semantic )
cells labeled with
Sir-DNA
Cell Microscopy image
[30] 2021 Aura-net . datasets from the Semantic v
segmentation

Boston University
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Biomedical Image

Library
32] 2019 AS-UNet el (nuclei) MOD dataset Semantic
segmentation BNS dataset
Kvasir-SEG
CVC-ClinicDB
Dataset:
2018 Data Science
11 lei
38] 2022 FANet sfem(;‘tl;t:’;)n Bowl Semantic
& ISIC 2018 Dataset
DRIVE Dataset
CHASE-DB1 Dataset
EM Dataset
Microscopy images
[39] 2018 UNett Cell (nucl?l) Co%ono.scopy videos Semantic
segmentation  Liver in CT scans
Lung nodule
Real dataset of
human non-small-
cell lung cancer
11 L
[40] 2023 GeneSegNet Cell - (NSCLC) Instance
segmentation Real dataset of
mouse hippocampal
Area CA1l
(hippocampus)
[44] 2021 and Shape- segmentation =~ PhC-C2DH-U373 Instance
Aware Loss
dataset
) Fluo-N2DH-SIM
[45] 2019 C'tI;liTUMN":tth w miiltlaﬁon DIC-C2DH-HeLa Instance
8 PhC-C2DH-U373x
. 644 neural cell
Attentive .
neural cell images from a
11 llection of
[46] 2019 instance Ce . CO, ection o Instance
. segmentation timelapse
segmentation . L
nethod microscopic videos
of rat CNS stem cells
11 LiveCELL
[47] 2023 CellT-Net cell | veC Instance
segmentation Sartorius datasets
Deep learning Salivary gland
Cell tumor
[53] 2023 based on seementation Fallobian tub Instance
«CANs egmentatio allopian tube
biopsy
Dataset containing
Cell images of five
[54] 2018 SCWCSA . ) Instance
segmentation cellular assays in 96-
well microplates
[55] 2019 Box-based Cell . 644 images sampled Instance
method segmentation from time-lapse
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microscopic videos
of rat CNS stem cells

Residual Cell and tissue Bright-field
[56] 2023 Attention U- . transmitted light Both
segmentation . i
Net microscopy images
ATAS
[57] 2022 SDCellSeg Cell HMS Both
pipeline segmentation LRP
Ovules
Cell EPFL dataset
[61] 2021 CS-Net segmentation Kasthuri++ dataset Both
CPM-17
Synthetic bacterial
MSCA-UNet Modified bone
[62] 2023 based on ) counting narrow .
density Human
regression subcutaneous
adipose tissue
Synthetic
fluorescence
microscopy
Modified Bone
Marrow
[66] 2022 SAU-Net Cell counting Human -
subcutaneous
adipose tissue
Dublin Cell
Counting
3D mouse blastocyst
Synthetic bacterial
Concatenated cells
fully Bone marrow cells
[67] 2021 convolutional  Cell counting Colorectal cancer -
regression cells
network Human embryonic

stem cells

In [67], an application of cell counting was explored via concatenated fully convolutional
regression network. Experimental studies conducted on four datasets, including Synthetic bacterial
cells [68], Bone marrow cells [63], Colorectal cancer cells [69], and Human embryonic stem cells [65],
highlight the superior performance of the proposed method.

To sum up, this section delved into various studies on cell segmentation, which can broadly be
categorized into semantic and instance cell segmentation. In the context of semantic segmentation,
AS-UNet stands out, excelling in scenarios with multi-cell adhesions and small-sized cells, achieving
ACCs of 0.968 and 0.928 on BNS and MOD datasets, respectively. GAN-inspired methods presented
anovel approach, avoiding the need for a formulated loss function during optimization. MSCA-UNet
specifically targeted automatic cell counting, demonstrating effectiveness across various datasets. A
DNN workflow applied to Phase Contrast Imaging showcased favorable outcomes in ACC, IoU, and
Dice coefficient. SAU-Net introduced an innovative approach for cell counting in both 2D and 3D
Microscopy Images, exhibiting versatility across different datasets.

On the other hand, in the context of instance cell segmentation, a Mask R-CNN-based framework
proved robust, achieving high IoU values on diverse datasets. LSTM-UNet integrated convolutional
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LSTM with U-Net, achieving SOTA results on the Cell Tracking Challenge. GAN-based methods for
instance cell segmentation utilized regular and conditional GAN, effectively simulating distribution,
shape, and appearance of objects.

4.1.2. Nucleus Segmentation

Table 3 offers a summary of the selected studies focused on nucleus segmentation, showcasing
the range of methodologies and applications for this investigation.

In this section, we will investigate into an examination of various studies, categorizing them
based on their approaches to semantic and instance segmentation.

Starting with semantic segmentation, in [70], NucleiSegNet, a semantic architecture specifically
designed for nucleus segmentation in H&E stained liver cancer histopathology images, was
introduced. This DL architecture exhibited superior performance, as indicated by higher F1-score and
JI scores, in comparison to some recent SOTA models. The source code for the proposed model is
accessible at https://github.com/shyamfec/NucleiSegNet.

In [71], a recent network called SAC-Net was introduced for semantic nucleus segmentation on
histopathology image datasets, utilizing point annotations. The network exhibited highly
competitive performance in cell nuclei segmentation across three public datasets. The source code for
SAC-Net is available at: https://github.com/RuoyuGuo/MaskGA_Net.

In [72], the authors introduced GSN-HVNET, a model designed for semantic segmentation and
classification. Experimental results showcased the superiority of the proposed model over other
SOTA models such as Hover-Net [73], Micro-Net [74], DIST [75], and Mask-RCNN. GSN-HVNET
demonstrated improvements in both segmentation and classification ACC while also maintaining
high computational efficiency.

An effective method for semantic nucleus segmentation, FRE-NET, was introduced in [76]. The
proposed approach demonstrated outstanding performance across all four datasets, with Dice
coefficients reaching 0.8563, 0.8183, 0.9222, and 0.9220 on the TNBC, MoNuSeg, KMC, and Glas
datasets, respectively. Notably, the method exhibited superior boundary ACC and reduced instances
of sticking compared to other end-to-end segmentation methods. These results underscore the
capability of FRE-NET method to outperform other SOTA segmentation methods. The code is
available at: https:// github.com/hxp2396/FRE-Net.

In [77], the authors introduced Kidney-SegNet for semantic nucleus segmentation in histology
images. The experiments showed that Kidney-SegNet exhibited very efficient computational
complexity and memory requirements compared to existing SOTA DL methods. The source code of
the proposed network is available at https://github.com/Aaatresh/Kidney-SegNet.

In [78], the authors introduced AlexSegNet for instance nucleus segmentation. AlexSegNet is
constructed upon the AlexNet model's Encoder-Decoder framework. In the Encoder section, it
combines feature maps along the channel dimension to accomplish feature fusion. The Decoder
section employs a skip structure to integrate low- and high-level features, ensuring effective nucleus
segmentation. The experimental findings demonstrated that AlexSegNet exhibited superior
performance, particularly in terms of Recall, precision, and F1-score. For the 2018 Data Science Bowl
dataset, it achieved values of 0.931, 0.923, and 0.916, respectively. In the case of the TNBC dataset, it
attained values of 0.542, 0.886, and 0.6688, respectively

Additionally, various methodologies have been suggested in the context of instance
segmentation.

In [79], the authors introduced ASW-Net for nucleus segmentation. The experiments were
conducted using a Benchmark dataset, specifically the BBBC039 dataset [80], along with a
ganglioneuroblastoma image set [81]. To assess the prediction performance of this method, ASW-
Net, comparisons were made against CellProfiler [82], U-Net, and SW-Net (ASW-Net without
attention gates), using ground truth as a baseline. The experimental results indicated that ASW-Net
achieved satisfactory ACC in classification, even when confronted with an insufficient number of
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labeled training samples. The pre-trained model and accompanying resources are available at:
https://github.com/Liuzhe30/ASW-Net.

In [83], a pipeline called FPN with U-net was introduced. It underwent evaluation and
demonstrated superior performance compared to SOTA methods on two datasets, namely 2018 Data
Science Bowl and MonuSeg. The source code for the proposed method will be made available at:
https://github.com/QUAPNH/Nucleiseg.

In [84], a benchmark for instance nucleus segmentation was introduced. The authors conducted
a comparative analysis of the segmentation effectiveness of five DL architectures and two
conventional algorithms for segmenting nuclear images of immunofluorescence-stained samples.
The DL architectures were categorized into two groups: U-Net architectures (U-Net, U-Net with a
ResNet34 backbone (U-Net ResNet), U-Net based on transformed image representation (Cellpose)),
and instance-aware segmentation architectures (Mask R-CNN, KG instance segmentation). The code
is available: https://github.com/perlfloccri/NuclearSegmentationPipeline.

In [85], the authors introduced VRegNet, a Fully Convolutional Regression Network designed
for nucleus detection in a cardiac embryonic dataset. This approach presented a combination of nuclei
segmentation and centroid-regression networks, aiming to enhance the detection of nuclei in large
3D fluorescence datasets. it demonstrated high ACC in detecting centroids in both intact quail
embryonic hearts and the mouse brain stem. Notably, this success was achieved even in tissues with
clustered nuclei of diverse shapes, sizes, and fluorescent intensity. The performance of VRegNet was
compared with different methods. The architecture demonstrated a good performance of 0.950, 0.935,
0.942 in terms of precision, recall, F1-score.

In [86], the authors introduced RIC-Unet, a network designed for instance nucleus segmentation.
RIC-Unet was compared with two traditional segmentation methods, CP and Fiji, as well as two
original CNN methods, CNN2 and CNN3. Additionally, a comparison with the original U-Net was
conducted using The TCGA dataset.

In [87], the authors introduced TSFD, a network designed for instance nucleus segmentation.
This proposed network demonstrated superior performance compared to SOTA networks, including
StarDist, Micro-Net, Mask-RCNN, Hover-Net, and CPP-Net, on the PanNuke dataset. The PanNuke
dataset comprises 19 different tissue types and 5 clinically important tumor classes. TSFD achieved
good mean and binary panoptic quality scores of 50.4% and 63.77%, respectively. The code for TSFD
is available at: https://github.com/MrTalhallyas/TSFD.

In [88], the authors introduced the NuClick network designed for interactive segmentation of
objects in histology images. The applicability of NuClick was demonstrated across various datasets,
including the Gland dataset, Nuclei dataset, and cell dataset. The code for NuClick is accessible at:
https://github.com/navidstuv/NuClick.

Additionally, in [89], was introduced for instance nucleus segmentation. Comprehensive
experiments conducted on three benchmark histopathology datasets (2018 Data Science Bowl,
MoNuSeg, and TNBC) showcased the exceptional segmentation performance of the proposed
method, achieving dice scores of 0.908, 0.857, and 0.785, respectively. The implementation of the
proposed architecture is available at: https://github.com/tamjidimtiaz/BAWGNet.

Additionally, [90] introduced ASPU-Net, a model designed for segmenting instance nuclei. This
architecture employs a modified U-Net with atrous spatial pyramid pooling. Experimental results
demonstrated that incorporating the ASPPU-Net model with a concave point detection approach
resulted in improved ACC for delineating both individual and interconnected nuclei in
histopathological images.

In [91], a region-based convolutional network was introduced to address nucleus detection and
segmentation challenges. The proposed approach incorporates a GA-RPN module that integrates
guided anchoring (GA) into the region proposal network (RPN) to generate candidate proposals
optimized for nuclei detection. Additionally, a new branch is introduced to regress the IoU between
the detection boxes and their corresponding ground truth, facilitating precise bounding box
localization. To address challenges related to undetected adhered and clustered nuclei, a fusioned


https://doi.org/10.20944/preprints202409.2030.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 September 2024

16

box score (FBS) is introduced and passed into soft non-maximum suppression (SoftNMS) to retain
true positive candidate boxes.

Table 3. Summary of Nucleus Segmentation Studies in the Literature.

Publicati Inst ti
Reference ublication Method Task Dataset nstance/Semanti (.ZOd? .
year c availability
[70] 2021 NucleiSegNet ~ucleus KMC liver Semantic v
segmentation Kumar dataset
Nucleus MoNuSeg .
[71] 2023 SAC-Net segmentation TNBC Semantic v
se I:I;Jeciiztsion CONSeP
[72] 2023 GSN-HVNET & and Kumar Semantic X
e CPM-17
classification
TNBC
Nucleus MoNuSeg .
[76] 2023 FRE-Net segmentation KMC Semantic v
Glas
Dataset of H&E
[77] 2021 Kidney-SegNet ~ ucleus images of kidney Semantic v
segmentation tissue
TNBC Breast dataset
Nucleus 2018 Data Science
[78] 2023 AlexSegNet seomnentation Bowl Semantic x
& © TNBC dataset.
Nucleus BBBC039 dataset
[79] 2022 ASW-Net . Ganglioneuroblastom Instance v
segmentation .
aimage set
Nucleus 2018 Data Science
[83] 2020 FPN with a U-net ueieus Bow Instance v
segmentation
MoNuSeg
Annotated

Benchmark of DL Nucl
[84] 2021 ene mar © ue eus_ fluorescence image Instance v
architectures segmentation

dataset
1 X -
[85] 2021 VRegNet Nucleus — Cardiac embryonic Instance x
detection dataset
Nudleus TCGA (The Cancer
[86] 2019 RIC-Unet vcet . Genomic Atlas) instance X
segmentation
dataset
[87] 2022 TSFD-Net Nucleus‘ PanNuke dataset Instance v
segmentation
Gland dataset
1 d cell
[88] 2020 NuClick Nucleus an . «© Nuclei dataset Instance N
segmentation
Cell dataset
2018 Data Science
Nucleus Bowl
[89] 2023 BAWGNet . Instance N
segmentation MoNuSeg
TNBC
[90] 2020 ASPPU-Net Nucleus TNBC dataset Tnstance «

segmentation TCGA
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Nucleus 2018 Data Science
[91] 2022 CNN detection and Bowl Instance
segmentation =~ MoNuSeg dataset
Annotations of 30
1000 x 1000 pathology
images from seven
[92] 2020 «GAN Nucleus‘ different organs Instance
segmentation (bladder, colon,
stomach, breast,
kidney, liver, and
prostate
[93] 2019 DL Strategies Nucleu§ Fluorescence Images Instance
segmentation
MoNuSeg dataset
[94] 2019 CIA-Net Nucleus with seven different Instance
organs
Bending loss
[95] 2020 regularized Nucleus MoNuSeg Instance
network
Instance-aware
Self-supervised MoNuSeg 2018
[96] 2020 Learning for Nucleus Dataset Instance
Nuclei
Segmentation
MoNuSeg
[97] 2020 Triple U-net Nucleus CoNSeP Instance
CPM-17
NCB - Neuronal Cell
Bodies
BBBC039 - Nuclei of
Contour Proposal Cell detection U20S cells
[98] 2022 Network Cell Instance
segmentation = BBBC041 - P. vivax

(malaria)

SYNTH - Synthetic
shapes.

The experiments were conducted on two challenging public datasets designed to evaluate an

algorithm's generalization across different varieties. The empirical results showcase that the

proposed method exhibits superior detection and segmentation capabilities compared to existing

SOTA methods. The source code is available at: https://github. com/QUAPNH/NucleiDetSeg.

Alternative DL strategies, such as ¢cGAN [92], have been put forward for instance nucleus
segmentation. Experimental findings indicate that employing a cGAN trained with a combination of
synthetic and real data can substantially enhance the ACC of nuclei segmentation in histopathology

images. The code of this work is available at: http://github.com/mahmoodlab/NucleiSegmentation.

Furthermore, a comprehensive evaluation framework was introduced in [93], aiming to measure
ACC, identify types of errors, and assess computational efficiency. This framework was employed to
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compare DL strategies for nucleus segmentation in Fluorescence images with classical approaches.
the code is available: https://github.com/carpenterlab/2019_caicedo_cytometryA.

In the referenced work [94], the authors introduced the CIA-Net, a deep neural network
designed for nuclei instance segmentation. The paper introduces an Information Aggregation
Module (IAM) that facilitates collaborative refinement of nuclei and contour details by leveraging
spatial and texture dependencies through bi-directional feature aggregation. Additionally, a novel
smooth truncated loss function is proposed to modulate the perturbation of outliers in loss
calculation, enhancing the network's focus on learning informative samples and improving
generalization capability. Experimental validation on the 2018 MICCAI challenge of Multi-Organ-
Nuclei-Segmentation demonstrates the effectiveness of CIA-Net, surpassing all other 35 competitive
teams by a significant margin. The CIA-Net achieves a noteworthy F1-score of 0.8485, outperforming
other architectures proposed in the literature, CNN3, and PA-Net.

In [95], an effective approach is presented, introducing a bending loss regularized network
tailored for nuclei segmentation in histopathology images. The bending loss is a key component,
imposing penalties based on the curvature of contour points. Notably, it assigns higher penalties to
points with large curvatures and smaller penalties to points with small curvature, mitigating the
generation of contours that span multiple nuclei. The proposed method is rigorously validated on
the MoNuSeg and showcases superior performance when compared to six SOTA approaches. The
comparison involves six recently published approaches, namely FCN8, U-Net, SegNet, DCAN, DIST,
and HoVer-net, using metrics such as AJl, Dice, RQ, SQ, and PQ scores. The proposed approach
attains the highest overall performance when benchmarked against these methods on a public
dataset. The efficacy of the proposed bending loss regularized network is evident in its accurate
segmentation and localization of overlapped or touching nuclei, as validated on the MoNuSeg
dataset.

In the referenced work [96], the authors introduced a novel instance-aware self-supervised
learning framework for nuclei segmentation, aiming to eliminate the need for manual annotations in
DCNN: . To assess the effectiveness of the proposed proxy task, the authors conducted experiments
using the publicly available MoNuSeg dataset. The experimental outcomes highlight the substantial
improvement achieved by the self-supervised learning approach in enhancing the ACC of nuclei
instance segmentation. Notably, the self-supervised ResUNet-101 achieved a new SOTA average
Aggravated JI of 0.706, showcasing the efficacy of the proposed method.

The paper cited as [97] introduces a Hematoxylin-aware CNN model designed for nuclei
segmentation, eliminating the need for color normalization. Structured as a Triple U-net, the model
comprises an RGB branch, a Hematoxylin branch, and a segmentation branch. The proposed method
is assessed on three nuclei segmentation datasets — MoNuSeg, CoNSeP, and CPM-17 dataset.
Ablation studies are carried out to assess the efficacy of the Hematoxylin-aware model and to
understand the impact of various loss configurations.

In the provided reference [98], the paper introduces the, a framework designed for object
instance segmentation utilizing fixed-size representations based on Fourier Descriptors. CPN is
flexible, incorporating various backbone networks and is trainable end-to-end. The CPN architecture
comprises five fundamental building blocks, involving the generation of dense feature maps, object
detection through a classifier head, and the creation of explicit contour representations via regression
heads. In experimental evaluations on diverse datasets, the CPN framework demonstrates superior
instance segmentation ACC compared to U-Net, Mask R-CNN, and StarDist. Particularly, CPN with
local refinement achieves the highest scores across all datasets. The local refinement additionally
enhances average Fl-scores, particularly for high thresholds, contributing to improved contour
quality. An implementation of the CPN model architecture in PyTorch is made available at:
https://github.com/FZ]-INM1-BDA/celldetection.

In the realm of nucleus segmentation, various methodologies have been explored, categorizing
into both semantic and instance segmentation. On the semantic segmentation front, NucleiSegNet is
tailored for nuclei segmentation in H&E stained liver cancer histopathology images, surpassing
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recent SOTA models. DenseRes-Unet presents a robust semantic nucleus segmentation model with
notable performance on the MoNuSeg dataset. Additionally, innovative strategies like CIA-Net
demonstrate excellence in nuclei instance segmentation, showcasing effectiveness in the 2018
MICCAI challenge. These advancements collectively contribute to pushing the boundaries of ACC
and efficiency in nucleus segmentation tasks, fostering progress in biomedical image analysis. For
instance segmentation, approaches like FPN with U-net and RIC-Unet demonstrate effective instance
nucleus segmentation, outperforming traditional methods and even competing CNN models.
Benchmarking instance nucleus segmentation involves a comparative analysis of DL architectures,
encompassing various U-Net variants and instance-aware segmentation architectures such as Mask
R-CNN. Furthermore, introduces TSFD, excelling on the PanNuke dataset with notable mean and
binary panoptic quality scores.

4.1.3. Tissue Segmentation

Table 4 presents a summary of some studies about tissue segmentation studies identified in the
literature. Our exploration begins with various approaches studied for semantic segmentation

In [99], the authors introduced a novel network that integrates image processing techniques,
including geometric augmentations and color augmentations, with a modified DL-based U-Net
approach. The purpose of this combined approach is for semantic blood vessel segmentation.

A novel image segmentation technique, named RINGS [100], was introduced for the
segmentation of prostate glands in histopathological images. Notably, the RINGS algorithm
represents the first fully automated method capable of maintaining high sensitivity even in the
presence of severe glandular degeneration. The proposed method aims to accurately detect prostate
glands, providing valuable assistance to pathologists in making precise diagnoses and treatment
decisions. The RINGS algorithm achieved a dice score of 0.9016.

In [101], the authors presented ER-Net, a method specifically designed for 3D vessel
segmentation. Notably, the ER-Net incorporates a feature selection module that adaptively selects
discriminative features from both an encoder and decoder simultaneously. This selective feature
process aims to enhance the importance of edge voxels, leading to a significant improvement in
segmentation performance. The effectiveness of the proposed method was thoroughly validated
across four improvement in segmentation performance. The effectiveness of the proposed method
was thoroughly validated across four publicly accessible datasets. The experimental results indicate
that ER-Net generally outperforms other SOTA algorithms across various metrics. The
implementation code for this method is available at: https://github.com/iMED-Lab/ERNet.

Table 4. SUMMARY OF NUCLEUS SEGMENTATION STUDIES IN THE LITERATURE.

Publicati
Reference ublication Method Task Dataset Instance/Semantic (.Iod.e ]
year availability
HAM10000 data
set

Vessel U-Net
[99] 2022 e8¢ ¢ Blood cell vessels NIH studies R43 Semantic x

model CA153927-01
CA101639-02A2

Dataset of 1500
Tissue (prostate) H&E (hematoxylin
[100] 2021 RINGS p . & eosin) Semantic X
segmentation . .
stained images of
prostate tissue
3D vessel Cerebrovascular
[101] 2022 ER-Net . datasets Semantic v
segmentation

Nerve datasets
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Tissue (nucleus)

[73] 2019 Hover-Net segmentation and CoNSeP dataset Instance
classification
Ti 1 DATA ORGA

[102] 2021 MDC-Net ~ Lissue (nucleus) ORGANS Semantic

segmentation DATA BREAST

In [102], the authors introduced MDC-Net, a technique designed for nucleus segmentation in
digital pathology images. This method employs a deep fully convolutional neural network and
integrates distance maps and contour information to effectively segment nuclei that may be touching.
The results of the investigated experiments conducted on different datasets demonstrate the
superiority of MDC-Net in terms of metrics such as AJI, F1-score, and Hausdorff distance.

In the context of instance segmentation, the work described in [73] introduces HoVer-Net, a
method designed for simultaneous nuclear segmentation and classification in histology images.
HoVer-Net capitalizes on the instance-rich details embedded in the vertical and horizontal distances
from nuclear pixels to their centers of mass. This approach proves beneficial in distinguishing
clustered nuclei and ensuring precise segmentation, particularly in regions with overlapping
instances. Authors were made code available at: https://github.com/vqdang/hover_net.

To sum up the analyzed studies about tissue segmentation, the pursuit of accurate and efficient
methods has resulted in significant advancements in both semantic and instance segmentation.

For semantic segmentation, the focus on semantic tissue segmentation is evident in the work of
ER-Net, a method specifically designed for 3D vessel segmentation. ER-Net incorporates a feature
selection module that adaptively selects discriminative features, leading to improved segmentation
performance.

In recent studies, two networks, Hover-Net and MDC-Net, were proposed for instance and
semantic nucleus segmentation, addressing simultaneous segmentation and classification of nuclei
in multi-tissue histology images. These works contribute to advancing the capabilities of both
instance and semantic segmentation in the challenging context of tissue analysis.

Notable contributions include the introduction of a network of vessel U-net, which integrates
image processing techniques with a modified U-Net for semantic blood vessel segmentation. An
additional innovative method, the RINGS algorithm, was introduced as the initial fully automated
technique for segmenting the prostate gland in histopathological images. It demonstrates notable
sensitivity, particularly when faced with significant glandular degeneration.

4.2.RQ3

In this section, we will examine multiple papers that discuss various tools proposed in the
literature for MIS and present a summarized overview of these studies in Table 5. The table includes
details for each software/tool, such as the corresponding reference, microscopy image type, website,
and associated task.

In [103], the paper introduces DeLTA 2.0, a Python-based workflow that employs DCNNs to
analyze images of individual cells on two-dimensional surfaces, facilitating the quantification of gene
expression and cell growth. Once trained, this workflow operates autonomously without requiring
human input and demonstrates accurate processing of two-dimensional movies, effectively capturing
spatial dynamics in a high-throughput manner. The algorithm leverages the U-Net neural network
architecture for both segmentation and tracking models. The tracking model utilizes a sigmoid
function as the final activation layer and employs a pixel-wise weighted binary cross-entropy loss
function to generate a single grayscale output image, where 1's represent tracked cells and 0's denote
the background and cells that did not track to the input cell.

The DeepCell application [104] serves as a web-based tool, offers a scalable and cost-effective
solution for conducting DL-powered cellular image analysis. This enables researchers to efficiently
analyze extensive imaging datasets. Addressing the challenges posed by DL in biological image
analysis, such as the requirement for extensive training data and substantial computational resources,
the DeepCell Kiosk provides a solution. It enables the efficient allocation of resources and scalability
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according to the demand for data analysis, thereby diminishing analysis time and managing costs
effectively.

Moving on, CellPose [41] is another pipeline that facilitates nuclear and cytoplasmic
segmentation, available as a web app or for local installation, complete with integrated annotation
tools for training. CellPose features a graphical user interface (GUI) with various preprocessing and
postprocessing configuration options; however, command line usage is necessary for tasks like
training or batch testing on user-specific data.

Another noteworthy tool is the Deeplmage] plug-in [105], providing a framework for testing
models on researchers' individual datasets. It offers an accessible solution designed for non-expert
users to execute standard image processing tasks in life-science research. This is achieved by utilizing
pre-trained DL models within the Image] platform like Biolmage Model Zoo, enhancing user-friendly
interactions. While it facilitates the user-friendly sharing of models, Deeplmage] currently only
grants access to pre-trained models such as the Biolmage Model Zoo, lacking a mechanism for users
to train their models using their data. This limitation may pose challenges if existing pre-trained
models prove insufficient.

CDeep3M [106] stands out as a cloud-based tool specifically designed for image semantic
segmentation tasks, offering pretrained models tailored for electron micrographs. DeepMIB [107], on
the other hand, is a deep-learning-based image segmentation plug-in designed for both two- and
three-dimensional datasets. It is integrated with the Microscopy Image Browser (MIB), an open-
source MATLAB-based image analysis application for light microscopy and electron microscopy.
DeepMIB allows users to load datasets, test pretrained models, or even train a model using a
graphical user interface (GUI).

HistomicsML2 [108] is an interactive segmentation tool designed specifically for Whole Slide
Images (WSIs), tailored to enhance the ACC of semantic segmentation. This tool is dedicated to
facilitating the segmentation process. HistomicsML2 is packaged as a Docker container, accessible
through a web browser with a GUIL In the web-based GUI of HistomicsML2, biologists can annotate
their data by dragging and dropping selected patches into corresponding classes. These annotations
serve as the training data for a DL model employed in image segmentation. This process forms an
active loop, wherein the DL model is trained using the initial annotations, applied to new data, and
refined iteratively based on the ongoing annotations. Following each training step, regions of high
uncertainty are displayed as a heatmap, enabling users to annotate these regions for further training
to improve segmentation ACC. HistomicsML2 allows users to export results as HDF5 files, which can
be further analyzed using other command line tools.

InstantDL [109] is a Python-based pipeline designed for segmentation and classification tasks.
On the other hand, NucleAlzer [110] specializes in nuclear segmentation across various types and
offers both web-based and local applications. Both tools utilize command line scripts for image
processing, allowing users to configure parameters and execute tasks. While CellPose [41] includes a
GUI with preprocessing and postprocessing configuration options, command line usage is necessary
for tasks like training or batch testing on data.

ZeroCostDL4Mic [111] is a compilation of readily available Google Colab notebooks designed
for various image analysis tasks. This resource offers a range of Colab notebooks that facilitate the
training of models across different tasks and image types.

Ilastik [112], an open-source toolkit for interactive ML, has introduced a beta version for image
segmentation using pre-trained deep learning models. Although the installation process for utilizing
neural networks with Ilastik is more intricate than typical usage, ongoing documentation efforts aim
to simplify this procedure. Furthermore, the Ilastik team is actively working on enhancing
capabilities for neural network training.

Scellseg [113] represents an adaptive pipeline tailored for cell segmentation algorithms. It
features a style-aware cell segmentation architecture that leverages attention mechanisms and
hierarchical information. This unique approach is crafted to optimize the extraction and utilization
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of style features. Scellseg has proven its state-of-the-art transferability, showcasing advancements
over previous tools within the field.

DeepSea [114] stands out as Annotation Software, a MATLAB-based tool crafted for the cropping
and labeling of cell and subcellular bodies in cell microscopy images. Specifically designed for
segmentation and tracking tasks, DeepSea serves as an effective resource for annotating and
processing microscopy data. Additionally, MIA [115] emerges as an open-source DL application
tailored for microscopic image analysis. It encompasses three primary applications: segmentation,
object detection, and classification.

The U-Net plugin [116] stands out as a DL software dedicated to cell counting, detection, and
morphometry. Additionally, 3DeeCellTracker [117] introduces a DL-based pipeline designed for
segmenting and tracking cells in 3D time-lapse images. Moreover, Stardist [118] demonstrates its
efficacy in localizing cell nuclei using star-convex polygons, providing a superior shape
representation compared to bounding boxes and eliminating the need for shape refinement.

Table 5. Tools for microscopy image segmentation.

Microscopy

Reference Software/tool Website Tool structure Task
image type
https://gitlab.com/dunloplab/delt
Time lapse a Web-based Cell
[103] DeLTA20 . P . o segmentation
microscopy data. https://delta.readthedocs.io/en/lat application .
and tracking
est/
Web-based
https://deepcell.org/ a ¢ 1ic;tsizn Cell
[104] Deepcell Fluorescence https://github.com/vanvalenlab/k PP . segmentation
. Wrapper script .
iosk-console . and tracking
Docker Container
Fluorescence Web-based
[41] CellPose 1 https://www.cellpose.org/ application Cell and nucleus
brightfield
Jupyter notebook
. o . . Cell
[105] Deeplmage] PCI https://deepimagej.github.io/ Image] plug-in segmentation
Web-based
Light application
https: -
X-ray microCT | ftps://edeepSm Google Colab Cell
[106] CDeep3M viewer.crbs.ucsd.edu/cdeep3m_r . .
electron . Docker Container segmentation
. esult/view/6447
microscopy AWS cloud
Singularity
2D and 3D
electron and http://mib.helsinki.fi
[107] DeepMIB multicolor light https://github.com/Ajaxels/MIB2 Matlab GUI Cell
microscopy d
https://histomicsml2.readthedocs.
HistomicsML io/en/latest/index.html . Cell/ nucleus
[108] 2 WSl https://github.com/CancerDataSci Docker Container /Tissue
ence/HistomicsML2
[109] InstantDL Brightfeld  https://github.com/marrlab/Insta Docker Container Cell nucle.us
CT scans ntDL segmentation
[110] NucleAlzer Fluf)rescence www.nucleaizer.org Web'—bas'ed NUCIEUS,
Histology application segmentation
ZeroCostDL4 Pseudo- https://github.com/HenriquesLab Cell
111 le Col
[111] Mic fluorescence /ZeroCostDL4Mic Google Colab segmentation
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Brightfeld
[112] Ilastik Ijllectron https://github.com/ilastik Python Script Nucleus‘
miCroscopy segmentation
https://github. 11i 11 11/Ti
[113] Scellseg Phase-contrast ttps://github com/c.e mnet/sce GUI Cell/ issue
seg-publish segmentation
. MATLAB software Cell
[114] DeepSea Time-lapse https://deepseas.org/software tool segmentation
Image
classification,
[115] MIA Phas'e—contrast https://doi.org/10.5281/zenodo.79 Python script object detefztlon,
Histology 70965 semantic
segmentation
and tracking
Fluorescence
DIC
Phase contrast https://Imb.informatik.uni- Cell detection
. N . Caffe framework
[116] U-Net plugin  Brightfield freiburg.de/resources/opensource and
AWS cloud .
electron /unet/ segmentation
microscopy
3DeeCellTrak https://github.com/WenChentao/ Cell
[117] or 3D time lapse 3DecCell Tracker Python script segmentat'lon
and tracking
[118] Stardist Brightfield https://glthub.con}/mplcbg— Docker Container Cell/ nucle%us
Fluorescence csbd/stardist segmentation
. . Cell
[119] SAM Brightfield https.//glthub.C(.)m/cc?mputatlonal Python script segmentation
-cell-analytics/micro-sam .
and tracking
Livecell
segmentation
Biolmage Microsco Web-based Cell
[120] & . Py https://bioimage.io/#/ L segmentation
Model Zoo images application
Nucleus
segmentation

The paper cited in reference [119] introduces SAM (Segment Anything for Microscopy), a tool

derived from the vision foundation model known as Segment Anything for image segmentation.
SAM enhances the model's capabilities by developing dedicated models for microscopy data, thereby
enhancing segmentation ACC. Additionally, it incorporates annotation tools for interactive
segmentation and tracking, leading to accelerated data annotation compared to existing tools. The
entire software is encapsulated within a unified Python library, encompassing both training and
inference functionalities.

Lastly, The Biolmage Model Zoo [119] is a centralized repository containing a diverse collection
of pre-trained deep learning models specifically designed for bioimage analysis. This resource
simplifies access to SOTA models across various applications, from image segmentation to object
detection. Researchers benefit from the convenience of integrating these models into their projects,
eliminating the necessity for extensive training efforts. This centralized hub fosters collaboration and
accelerates progress in automated analysis techniques for intricate biological images.

5. Discussion and Conclusions
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The present SLR revealed a comprehensive landscape of methodologies and tools employed in
the domain of Medical Image Segmentation (MIS). Reviewing over 72 articles, the studies covered a
broad spectrum of applications, ranging from cell and nucleus segmentation to tissue segmentation,
each posing unique challenges and requiring specialized techniques.
e  Cell segmentation

A majority of the reviewed studies focused on cell segmentation, reflecting the critical role of
this task in various biological and medical applications. This choice is supported by their proven
ability to deliver unparalleled ACC and operational efficiency in intricate image segmentation tasks.
Remarkable strides are evidenced in specific methodologies such as the AS-UNet [32] algorithm,
showcasing its exceptional performance on the BNS dataset. Equally notable is the SAU-Net [66],
which extends the U-Net framework through the incorporation of self-attention modules, thereby
elevating its capability to handle both 2D and 3D microscopy images. These advancements
collectively contribute to the refinement of cell segmentation methodologies.
e Nucleus Segmentation

The literature revealed a growing emphasis on nucleus segmentation, considering its
significance in pathological analysis and understanding cellular behavior. Several studies introduced
novel architectures such as DLOG-NeXt [20], which outperformed SOTA U-Net and Transformer-
based variants across multiple datasets. Equally important, the integration of attention networks, as
exemplified in [79], showcased promising results in semantic nucleus segmentation, providing a
foundation for further research in this direction.
¢  Tissue Segmentation

The review also addressed tissue segmentation, crucial for pathology and histology studies. ER-
Net, proposed for 3D vessel segmentation, stood out for its adaptive feature selection module,
significantly enhancing segmentation performance [101]. Furthermore, RINGS demonstrated a
breakthrough in fully automated prostate gland segmentation [100].
e Integration of DL Tools

The integration of DL tools into existing platforms, as observed in Deeplmage] [105], offered
researchers flexibility and accessibility. Nevertheless, limitations, such as the absence of a mechanism
for user-specific model training, were identified. Additionally, tools like ZeroCostDL4Mic [111]
provided readily available Google Colab notebooks for diverse image analysis tasks, democratizing
access to DL capabilities. Moreover, a recent tool, SAM [119], showcases its efficacy in segmenting
various microscopy data.
e  Challenges and Future Directions

Even though microscopy image analysis has improved a lot, there are still challenges that show
we need more focused research in the future. One big problem is not having enough labeled datasets,
which slows down the progress of DL models in this area. In many cases, these datasets are also
highly imbalanced, leading to biased models that may not generalize well to unseen data. Leveraging
data augmentation techniques and synthetic data generation could help mitigating these issues. This
emphasizes the importance of generating larger, more diverse, and well-explained datasets.
Furthermore, the interpretability of increasingly complex models remains a crucial concern,
demanding research into methodologies that enhance the transparency and comprehension of the
decision-making processes within these models. Techniques such as explainable Al (XAI), which
includes methods like saliency maps or class activation mapping (gradients, etc.), could be used to
make these "black-box" models more understandable, helping researchers to see which features
influence decisions. It would also help in improving these models according to such study about
features extracted throughout the neural networks.

Additionally, addressing the challenge of achieving generalizability across diverse microscopy
images calls for the exploration of innovative techniques to adapt models to the inherent variations
in imaging conditions. Transfer learning, where a model trained on one type of data is fine-tuned for
the use on another one, and domain adaptation methods may provide promising avenues for
increasing the generalizability of DL models across various microscopy settings.
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Looking ahead, a forward-thinking approach in future research should prioritize the
establishment of standardized benchmarks, streamlining fair comparisons and systematic
evaluations to ultimately drive progress in the resilience and applicability of microscopy image
analysis techniques.

Our SLR has endeavored to provide a comprehensive synthesis of the available evidence on MIS.
However, it is crucial to acknowledge the potential influence of publication bias on the observed
results, as is inherent in the nature of SLRs. Specifically, studies with statistically significant results
are often more likely to be published, while studies with negative or non-significant findings may be
overlooked, which can skew the overall findings of this review. Addressing this bias in future
research will require more transparency in the publication process and greater recognition of studies
that report neutral or unexpected results. Similar to all SLRs, our findings could be susceptible to the
preferential publication of studies exhibiting positive or statistically significant outcomes, potentially
introducing a bias that may distort the overarching interpretation of the available evidence.

To sum up, this SLR provides a comprehensive analysis of the present status in the field of MIS,
emphasizing the efficacy of DL methodologies in addressing intricate challenges. The integration of
DL with classic image processing techniques could also offer hybrid approaches that combine the
strengths of both methods. Noteworthy achievements underscore the increasing reliance on DL for
precise and efficient segmentation tasks. Challenges identified underscore the need for ongoing
research. As the field moves forward, further development of user-friendly tools and open-source
software will be critical to democratizing access to advanced image analysis techniques for broader
scientific and medical communities.
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