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Abstract. Stock price prediction is of great significance but faces numerous challenges. In this study, 

a hybrid CNN-LSTM model was utilized. The stock data were processed and feature engineering 

was conducted. The model architecture and training strategies were expounded. Experimental 

results demonstrated that this model outperformed traditional methods and benchmark models on 

the test set, featuring strong capabilities in feature extraction and handling long-term dependencies. 

Key roles of data preprocessing, hyperparameter adjustment, and model fusion were also 

summarized, providing valuable references for stock price prediction. 
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1. Introduction 

1.1. Research Background and Significance 

The stock market, as a cornerstone of modern financial systems, plays a crucial role in resource 

allocation, corporate financing, and economic development. Fluctuations in stock prices not only 

reflect a company’s operational status and market expectations but are also influenced by a complex 

interplay of factors such as macroeconomic conditions, regulatory policies, and industry competition. 

Accurate forecasting of stock price movements is essential for investors to formulate rational 

investment strategies, mitigate risks, and achieve asset appreciation. For financial institutions, precise 

stock price predictions can help optimize asset allocation, manage risk, and provide more valuable 

financial services. 

However, predicting stock prices is an extremely challenging task due to the inherent 

complexity, uncertainty, and nonlinearity of stock markets. Traditional forecasting methods often fall 

short of delivering satisfactory results because of these characteristics. Fundamental analysis relies 

on financial statements and economic data, which may lack timeliness and fail to capture market 

sentiment effectively. Technical analysis primarily focuses on pattern recognition based on historical 

prices and trading volumes, which can be obscured by market noise and random fluctuations. 

Moreover, stock markets are influenced by numerous unpredictable factors such as unexpected 

events and sudden shifts in investor sentiment, further complicating the forecasting process [1]. 

1.2. Research Objectives and Issues 

The primary objective of this research is to construct an efficient and accurate stock price 

prediction model to enhance the predictive capabilities of stock price trends, thereby providing more 

valuable decision support for investors and financial institutions. Current stock price prediction 

methods face several notable issues: 
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 Limited adaptability: Many traditional models perform well under specific market conditions 

or for particular stocks, but their predictive accuracy drops significantly when market 

environments change or when applied to different stocks. 

 Insufficient capture of nonlinear relationships: Changes in stock prices often exhibit complex 

nonlinear relationships that linear models struggle to fully capture. 

 Limitations in feature extraction: Existing methods may not sufficiently mine potential valuable 

information during data processing and feature engineering, leading to incomplete and 

ineffective features input into the prediction models. 

This study aims to address the following key issues: leveraging deep learning technologies, 

particularly by combining the strengths of convolutional neural networks (CNNs) and long short-

term memory (LSTM) networks, to better capture the nonlinearities and long-term dependencies 

present in stock price data; and through innovative feature engineering methods, extracting richer 

and more representative features from raw stock data to improve the quality of inputs for the 

prediction models. 

1.3. Research Methods 

The following data, techniques, and algorithms were employed in this study: 

 Data: A large dataset of historical trading data covering multiple periods and industries was 

collected, including detailed information such as opening prices, closing prices, highest and 

lowest prices, and trading volumes. 

 Techniques: A combination of convolutional neural networks (CNNs) and long short-term 

memory (LSTM) networks was utilized, taking advantage of the strengths of CNNs in feature 

extraction and the capability of LSTMs to handle long-term dependencies in time series data. 

 Algorithms: Adaptive optimization algorithms, such as the Adam optimizer, were adopted to 

adjust the parameters of the model and minimize prediction errors. 

2. Related Work 

2.1. Traditional Stock Price Prediction Methods 

Fundamental analysis evaluates a stock’s intrinsic value and predicts its price trend by analyzing 

the company’s financial condition, performance, and industry prospects. This approach is grounded 

in value investing theory, positing that stock prices eventually reflect the true worth of a company. 

However, fundamental analysis has limitations. Firstly, obtaining accurate and comprehensive 

financial information is challenging, and the information may not be timely. Secondly, valuing a 

company involves many complex factors and assumptions, introducing subjectivity and uncertainty. 

Additionally, changes in the macroeconomic environment and industry competition are difficult to 

predict accurately, potentially impacting the company’s performance unexpectedly. 

Technical analysis focuses on studying historical stock price and volume data through charts 

and various technical indicators to identify patterns and trends, thereby predicting future prices. 

Common tools include moving averages, the relative strength index (RSI), and Bollinger Bands [2]. 

The rationale behind technical analysis is the assumption that market behavior encompasses all 

known information, implying that stock price movements already reflect all available information. 

Nonetheless, its limitations are evident. Technical analysis heavily relies on the repetition of historical 

data patterns, yet markets are dynamic, and past patterns may not recur. Furthermore, technical 

indicators tend to lag, often generating misleading signals. Moreover, technical analysis is insensitive 

to market disruptions and significant changes in fundamentals. 

2.2. Application of Machine Learning in Stock Forecasting 

Decision tree algorithms construct a tree-like structure to make decisions based on different 

feature values, classifying or regressing stock prices. In stock forecasting, decision trees can 

determine whether stock prices will rise or fall based on multiple features in historical data. They are 
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advantageous for their interpretability, but they are prone to overfitting and have limited predictive 

power for complex stock market data with a single decision tree model. 

SVM finds an optimal hyperplane to classify or regress data [3]. In stock forecasting, it maps 

stock data to high-dimensional space and identifies the optimal classification boundary to predict 

price movements. SVM excels in handling small sample sizes and high-dimensional data, but it is 

computationally intensive and sensitive to kernel function selection. 

However, the effectiveness of these machine learning algorithms in stock forecasting is 

constrained by various factors. The nonlinearity and nonstationarity of stock markets limit the 

expressive power of linear models, and market noise and outliers can interfere with model learning 

and prediction. 

2.3. Advances in Deep Learning for Financial Applications 

CNNs demonstrate powerful feature extraction capabilities in stock forecasting. They can 

automatically extract local patterns and features from time series stock price data, such as short-term 

price fluctuation patterns. Some studies applying CNNs to stock price prediction have achieved 

better results than traditional methods [4]. However, CNNs are relatively weak at capturing long-

term dependencies. 

RNNs and their variant, LSTM networks, are adept at handling long-term dependencies in 

sequence data, making them suitable for predicting stock prices, which are time series data. LSTM 

introduces gating mechanisms to effectively address the vanishing and exploding gradient problems 

in RNNs [5], enabling better retention of long-term historical information. Studies show that LSTM-

based models can capture long-term trends and cyclical changes in stock forecasting, improving 

predictive accuracy. 

Despite significant progress in stock forecasting using deep learning, challenges remain. For 

example, training models requires substantial data and computational resources, and the models’ 

interpretability is poor, making it difficult to understand the decision-making process and predictive 

basis [6]. Additionally, deep learning models are sensitive to hyperparameter selection, requiring 

careful tuning. 

3. Data Preparation and Preprocessing 

3.1. Data Description 

The stock data selected for this study encompass multiple industries and companies of varying 

sizes to ensure broad representativeness and applicability of the findings. The utilized stock data 

contain rich feature information, with key features including: 

 Opening Price (Open): Reflecting the initial trading price at the start of the day, it represents 

market participants’ initial assessment of the stock’s value. 

 Closing Price (Close): Representing the final trading price at the end of the day, it is considered 

one of the most important price indicators and significantly influences investors’ decision-

making. 

 Highest Price (High): Recording the highest price reached during the day’s trading session, it 

indicates the market’s upward potential and resistance levels. 

 Lowest Price (Low): Displaying the lowest price traded during the day, it reflects the market’s 

downside support and risk level. 

 Trading Volume (Volume): Indicating the quantity of stocks traded during the day, it reflects 

the market’s trading activity and investor participation enthusiasm. 

3.2. Data Cleaning and Handling Missing Values 

During the data cleaning process, we identified and processed outliers. Outlier detection was 

based on statistical methods, such as the three-sigma rule. A data point deviating more than three 

standard deviations from the mean was classified as an outlier. These outliers were removed to avoid 
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adverse effects on model training and predictions. This is because outliers may arise due to erroneous 

data recording or extreme market events and do not represent normal market behavior. 

For missing values in the dataset, we adopted a strategy of mean imputation. The rationale 

behind this method lies in the inherent continuity and stability of stock data, where adjacent data 

points exhibit some degree of correlation. By calculating the mean of the column containing the 

missing value and filling it into the missing position, we maintained the integrity and continuity of 

the data while minimizing the introduction of additional bias. Although mean imputation can 

smooth out real fluctuations in the data, our comprehensive consideration and experimental 

validation demonstrated that it struck a good balance between preserving data characteristics and 

maintaining model performance. 

3.3. Feature Engineering 

To extract meaningful information from raw data, we conducted several feature engineering 

operations. Among these, we calculated moving averages, including 10-day, 50-day, and 100-day 

moving averages. Moving averages are computed by averaging closing prices over a specified 

number of days. They smooth price fluctuations and reflect the long-term trend of stock prices, aiding 

investors in identifying primary directions and support/resistance levels. 

Yield was another critical feature extracted by calculating the percentage change between 

consecutive closing prices, reflecting the rate of growth or decline in stock prices. Yield captures 

short-term market fluctuations and changes in investor sentiment. 

In terms of feature selection, we considered the relevance, importance, and interpretability of 

features. Through correlation analysis, we eliminated features with weak correlations to the target 

variable (such as closing price) to reduce redundancy and noise in the data. Based on domain 

knowledge and preliminary experimental results, we determined the features that had a significant 

impact on stock price prediction. 

For dimensionality reduction, we employed methods such as principal component analysis 

(PCA). PCA projects high-dimensional data onto a lower-dimensional space while retaining the main 

variance information. Dimensionality reduction not only reduced computational load and improved 

model training efficiency but also mitigated the problem of overfitting and enhanced the model’s 

generalizability. 

4. Model Architecture and Methodology 

4.1. Model Selection and Principles 

Stock price time series data possess complex characteristics, encompassing both local short-term 

patterns and long-term dependencies. Convolutional neural networks (CNNs) [7] have excelled in 

image recognition and other domains, effectively capturing local features and patterns. When applied 

to stock price data, they can identify hidden patterns in short-term price movements, such as short-

term trends and volatility clustering. However, CNNs have limitations in handling long-term 

dependencies. 

Long short-term memory (LSTM) networks [8], on the other hand, are specifically designed to 

handle long-term dependencies in sequential data, capable of remembering historical information 

over longer periods. For stock prices, which are influenced by long-term factors, this characteristic is 

crucial. By combining CNN and LSTM models, we leverage their complementary strengths to capture 

both short-term patterns and long-term trends comprehensively, thereby enhancing the accuracy and 

reliability of predictions. 

CNNs consist of convolutional layers, pooling layers, and fully connected layers. Convolutional 

layers use multiple convolutional kernels to perform sliding convolutions across input data, 

extracting local features. Pooling layers reduce the dimensions of feature maps, decreasing the 

number of parameters and computations while preserving essential features. 

In the context of time series data, CNNs excel at automatically learning local spatiotemporal 

features from input data. For stock price data, they can capture short-term price fluctuation patterns, 
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such as upward or downward trends over a few consecutive days, without requiring manual feature 

design. 

LSTMs introduce gating mechanisms, including input gates, forget gates, and output gates, to 

control the flow and retention of information. Input gates determine how new information enters the 

cell state; forget gates decide what old information to discard; and output gates regulate the output 

of the cell state. 

When processing time series data, LSTMs efficiently manage long-term dependencies, 

circumventing issues like vanishing and exploding gradients encountered in traditional recurrent 

neural networks (RNNs) [9]. For stock price data, they can retain long-term historical price 

information, facilitating better future price predictions. 

4.2. Model Structure Design 

The hierarchical structure of the proposed model includes the following components: 

 Convolutional Layers: Two convolutional layers are employed. The first convolutional layer 

uses 32 kernels of size 3 with a stride of 1 and a ReLU activation function. The second 

convolutional layer employs 64 kernels of size 3 with a stride of 1 and a ReLU activation function. 

These convolutional layers extract local features from the input stock price data. 

 Pooling Layers: Following each convolutional layer, a max-pooling layer with a window size of 

2 and a stride of 2 is used. The purpose of the pooling layers is to reduce the dimensionality of 

the feature maps, decrease the computational load, and preserve important features. 

 LSTM Layers: Two bidirectional LSTM layers are set up, each containing 100 units. Bidirectional 

LSTMs consider both past and future information, enhancing the model’s understanding of time 

series data. 

 Fully Connected Layer: After the LSTM layers, a fully connected layer with 128 neurons and a 

ReLU activation function is connected, further integrating and transforming the features 

extracted by the LSTM layers. 

 Output Layer: Finally, an output layer with 1 neuron and a linear activation function is used to 

predict stock prices. 

The layers are sequentially connected. The convolutional and pooling layers first extract features 

and reduce dimensionality from the input data, then feed the extracted features into the LSTM layers 

for temporal sequence learning and memory. The fully connected layer integrates the outputs of the 

LSTM layers, and the final output layer produces the predicted stock prices. 

4.3. Training Strategy and Optimization Algorithm 

Stochastic gradient descent (SGD) [10] is adopted as the training algorithm, which iteratively 

updates the model parameters to minimize the loss function. In each iteration, a small batch of data 

(mini-batch) is randomly selected, and the gradients are computed based on this mini-batch to update 

the model parameters. To enhance the training process, a dynamic learning rate adjustment strategy 

is implemented, starting with a larger learning rate to speed up convergence and gradually 

decreasing it over time to avoid overshooting the optimal solution. Additionally, L2 regularization is 

employed to constrain the model parameters, thereby preventing overfitting by adding an L2 

regularization term to the loss function, which encourages the model parameters to take on smaller 

values and reduces the model’s complexity. Mean squared error (MSE) [11] serves as the loss 

function, calculating the average squared difference between the predicted and actual values, 

providing an effective measure of the deviation between the two. 

Evaluation metrics include variance, R-squared score, and maximum error. Variance measures 

the extent to which the model’s predictions can explain the variance of the actual values, reflecting 

the model’s explanatory power regarding data variability. An R-squared score close to 1 indicates a 

good fit of the model to the test data, suggesting a strong linear relationship between the predicted 

and actual values. Maximum error reveals the model’s predictive deviation under the worst-case 

scenario, providing insight into the model’s extreme prediction performance. 
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5. Experiments and Results Analysis 

5.1. Experimental Setup 

The obtained stock data were randomly divided into training, validation, and testing sets using 

a ratio of 7:2:1. The training set was utilized for model learning and parameter tuning, the validation 

set monitored the model’s performance during training and assisted in hyperparameter selection, 

and the testing set served to evaluate the model’s generalization capability. 

5.2. Results Evaluation and Comparison 

The model’s predictions on the test set indicated reasonable forecasts of stock price trends. 

Figure 1 illustrates the comparison between the predicted and actual price trends on the test set. 

 

Figure 1. Comparison of Predicted and Actual Price Trends on the Test Set. 

The variance on the test set was 0.933, indicating that the model’s predictions explained a 

significant portion of the variance in the actual values, demonstrating its strong explanatory power 

regarding data variability. The R-squared score of 0.933, close to 1, reflected a good fit of the model 

to the test data, implying a strong linear relationship between the predicted and actual values. The 

maximum error was 0.337, a relatively small value suggesting that the model’s predictive deviation 

under the worst-case scenario was within an acceptable range. Collectively, these evaluation metrics 

indicated excellent performance on the test set, with high accuracy and reliability. 

The proposed combination of CNN and LSTM models was compared with traditional linear 

regression, decision tree models, and standalone CNN or LSTM models. The results are summarized 

in Table 1. 

Table 1. Comparison of Model Performance. 

Model Variance R2 Score Max Error 

Linear Regression 0.712 0.705 0.521 

Decision Tree 0.785 0.776 0.483 

Random Forest 0.851 0.842 0.426 

Only CNN 0.887 0.879 0.388 

Only LSTM 0.895 0.888 0.372 

CNN and LSTM Combined Model 0.933 0.933 0.337 

The findings demonstrated a substantial improvement in performance. This enhancement 

primarily stemmed from the model’s superior ability to capture complex features and long-term 

dependencies in stock price data. Traditional methods had limited capacity to handle non-linearities 
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and long-term trends, while standalone CNN or LSTM models failed to simultaneously address local 

features and long-term memory. The combination model effectively addressed these limitations. 

6. Conclusion 

This study successfully employed a hybrid model based on Convolutional Neural Networks 

(CNNs) and Long Short-Term Memory networks (LSTMs) for stock price prediction. Through 

extensive training and validation on large datasets of historical stock prices, the model demonstrated 

exceptional performance and notable advantages. In terms of performance, the proposed model 

significantly outperformed traditional prediction methods and baseline models in terms of prediction 

accuracy. The model excelled in variance, R-squared scores, and other evaluation metrics, reflecting 

its strong explanatory power and ability to capture linear relationships in the data. The reduction in 

maximum error also highlighted the model’s stability in extreme scenarios. 

The CNN component of the model effectively extracts short-term features from time series data, 

such as short-term price patterns and volume changes, while the LSTM component captures long-

term dependencies and trends in stock prices, fully considering the impact of historical data on future 

prices. This synergistic effect of the hybrid architecture allows the model to consider both short-term 

local features and long-term trends, enabling more comprehensive and accurate stock price 

predictions. 

During the research process, several key findings emerged. Data preprocessing, including 

cleaning, handling missing values, and feature engineering operations on stock data, significantly 

improved the model’s training outcomes and prediction performance. Appropriate feature selection 

and extraction methods were crucial for the model to accurately capture the critical information in 

price trends. Additionally, careful adjustment and optimization of model hyperparameters, such as 

kernel size, number of layers, and learning rate, effectively enhanced model performance and 

identified optimal configurations. The integration of CNN and LSTM is not merely additive but 

rather synergistic through well-designed architecture and connectivity, achieving better prediction 

outcomes than either model alone. 

In summary, the stock price prediction model proposed in this study stands out in terms of 

performance and advantages, providing valuable insights and new directions for research in stock 

market prediction. 
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