
Article Not peer-reviewed version

Physics-Informed Neural Network for

solving a 1-Dimensional Solid

Mechanics Problem

Vishal Singh , Rajnish Mallick * , Sahaj Saxena , Sharanjeet Dhawan , Manoj Sahni ,

Dineshkumar Harursampath

Posted Date: 24 September 2024

doi: 10.20944/preprints202409.1861.v1

Keywords: Physics-informed Neural Network; Deep Neural Network; Artificial Neural Network;

Computational Solid Mechanics; Partial Differential Equation

Preprints.org is a free multidiscipline platform providing preprint service that

is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any

medium, provided the original work is properly cited.

https://sciprofiles.com/profile/3828232
https://sciprofiles.com/profile/3407795
https://sciprofiles.com/profile/394359
https://sciprofiles.com/profile/1841617
https://sciprofiles.com/profile/2504883

Physics-Informed Neural Network for solving a
1-Dimensional Solid Mechanics Problem

Vishal Singh
Department of
Mechanical
Engineering

Thapar Institute of
Engineering and

Technology
Patiala, Punjab,
India-147004

Dineshkumar
Harursampath
Department of
Aerospace
Engineering

Indian Institute of
Science

Bengaluru,
India-560012

S Dhawan
Department of
Mathematics

CCS HAU COAB
Haryana,India-

123501

Manoj Sahni
Department of
Mathematics

Pandit Deendayal
Energy University
Gandhinagar,

Gujarat,
India-382007

Sahaj Saxena
Department of

Electrical
Engineering

Thapar Institute of
Engineering and

Technology
Patiala, Punjab,
India-147004

1

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 September 2024 doi:10.20944/preprints202409.1861.v1

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202409.1861.v1
http://creativecommons.org/licenses/by/4.0/

Rajnish Mallick*
Department of

Mechanical
Engineering

Thapar Institute of
Engineering and

Technology
Patiala, Punjab,

India-147004

Abstract

Our objective in this work is to demonstrate how Physics-Informed Neural Networks,
a type of deep learning technology, can be utilized to examine the mechanical proper-
ties of a helicopter blade. The blade is regarded as a prismatic cantilever beam that is
exposed to triangular loading, and comprehending its mechanical behavior is of utmost
importance in the aerospace field. PINNs utilize the physical information, including differ-
ential equations and boundary conditions, within the loss function of the neural network
to approximate the solution. Our approach determines the overall loss by aggregating
the losses from the differential equation, boundary conditions, and data. We employed a
Physics-Informed Neural Network (PINN) and an Artificial Neural Network (ANN) with
equivalent hyperparameters to solve a fourth-order differential equation. By comparing
the performance of the PINN model against the analytical solution of the equation and
the results obtained from the ANN model, we have conclusively shown that the PINN
model exhibits superior accuracy, robustness, and computational efficiency when address-
ing high-order differential equations that govern physics-based problems. In conclusion,
the study demonstrates that PINN offers a superior alternative for addressing solid me-
chanics problems with applications in the aerospace industry.

Keywords:Physics-informed Neural Network, Deep Neural Network, Artificial Neural Net-
work, Computational Solid Mechanics, Partial Differential Equation.

1 Introduction

Solid mechanics can be described as a field within applied mechanics concerned with analyzing
how solid objects respond to different types of forces. It explores how materials behave under
various loading conditions, offering insights into their structural integrity and performance[1].
Mechanical problems are represented using a variety of differential equations, which take dif-
ferent forms depending on the nature of the problem.

In recent years, computational solid mechanics has emerged as a discipline that uses numerical
techniques to solve complex differential equations[2]. Solving these problems analytically is chal-
lenging and time-consuming because of the intricate equations and irregular problem domains.
Over the years, various numerical techniques have been developed, such as the finite element
method (FEM)[3], finite difference method (FDM)[4], element-free Galerkin method[5], and
mesh-free methods[6]. Among these methods, FEM is the most widely used numerical method
to solve problems in the area of solid mechanics. In numerous cases, the problem to be solved
is extensive, resulting in simulation time ranging from hours to days or even weeks. This incurs
a high computational cost. If there is a requirement to change the parameter, the complete
analysis must be done again from scratch, which is quite time-consuming[7][8].

Over the past few years, Artificial neural networks (ANNs) have demonstrated remarkable

2

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 September 2024 doi:10.20944/preprints202409.1861.v1

https://doi.org/10.20944/preprints202409.1861.v1

performance in various fields such as image classification[9], time series forecasting[10], predic-
tive analytics[11], genomics[12] and natural language processing[13], owing to their capacity to
grasp intricate patterns and relationships from data. Artificial neural networks (ANNs) can
incorporate multiple hidden layers containing neurons, granting them robust learning capa-
bilities. This feature enables ANNs to offer an alternative method for addressing mechanics
problems, diverging from conventional numerical solvers. Artificial neural networks (ANNs)
have proven effective in addressing a range of challenges in fluid mechanics[14][15], fracture
mechanics[16], and solid mechanics[17]. Nonetheless, their performance tends to be strongest
when abundant data is available. In mechanics problems, data can be scarce, and ANNs do
not incorporate the underlying physical laws of the engineering problem, resulting in reduced
prediction accuracy[8][18]. So, the challenges associated with artificial neural networks (ANNs)
motivate us to explore new ideas and methods.

One such approach widely accepted in the scientific community is a deep learning-based method
known as Physics-Informed Neural Networks (PINNs) introduced by Raissi et al.[19]. PINNs
represent a highly effective method for addressing problems governed by partial differential
equations (PDEs). These networks are designed to directly integrate physical laws or con-
straints into their structure, enabling them to simulate and accurately model complex systems.
The foundational component of the Physics-Informed Neural Network (PINN) framework is a
Multi-Layer Artificial Neural Network that is enhanced with a physics-informed loss function.
This innovative loss function integrates governing differential equations, boundary conditions,
initial conditions, and any available data to determine the total loss accurately. The sole
distinction between an Artificial Neural Network (ANN) and a Physics-Informed Neural Net-
work (PINN) lies in how the loss function is implemented and calculated[20]. Artificial neural
networks (ANNs) rely solely on data for learning, whereas Physics-Informed Neural Networks
(PINNs) incorporate the governing equations as pre-existing knowledge[21]. PINNs can be ef-
fective in scenarios where labeled data is sparse because they utilize both the existing data as
well as the inherent physical principles described in equations. Compared to ANNs, PINNs
require less data. PINNs differ from traditional numerical methods like the Finite Difference
method and finite element because they are not mesh-based. Instead, they are a mesh-free
method, which allows them to handle irregular and complex geometries[19][22].

In their seminal work, Raissi et al. [19] tackled two distinct problem sets: data-driven solu-
tion and data-driven discovery within the realm of partial differential equations. Under the
data-driven solution framework, they addressed the Schrodinger Equation and the Allen-Cahn
equation. Meanwhile, within the data-driven discovery approach, they delved into the Navier-
Stokes Equation and the Korteweg–de Vries equation. After their introduction, PINNs are used
in solving various other PDEs[23][24][25]. PINNs can be used for solving supervised learning
problems[26] as well as unsupervised learning tasks[27]. They can also be employed for both
forward and inverse problems[28]. Due to their ability to incorporate the governing equations
of the problems, PINNs are used in various fields such as fluid mechanics[29], heat transfer[30],
healthcare[31], finance[32] and solid mechanics[33]. Several research studies have been carried
out on implementing PINNs so far. In one of the studies, Haghighat et al.(2021) [33] created
a PINN structure to anticipate the field variables (such as displacement and stress) associated
with linear elastic and non-linear problems. In their study, Rao et al.(2021)[34] applied enforced
initial and boundary conditions to simulate static and dynamic problems using a PINN model,
which gives mixed-variable output. One of the works done by J.Bai et al.(2022)[35] proposed

3

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 September 2024 doi:10.20944/preprints202409.1861.v1

https://doi.org/10.20944/preprints202409.1861.v1

the LSWR loss function for PINNs, which uses the Least Squares Weighted Residual (LSWR)
method, solved 2D and 3D solid mechanics problem and showed that the performance of PINN
based on LSWR loss function is much effective and accurate compared to PINNs utilizing either
Collocation or energy-based loss functions. In the study by J.bai et al.(2023), [36], the focus was
on programming methods in executing governing equations. They solved the 1, 2, and 3 dimen-
sions problems by employing collocation-based and energy-based loss functions, demonstrating
the effectiveness of PINN-based Computational Solid Mechanics. Abueidda et al.(2022) [37]
applied PINNs to solve 3-dimensional Hyperelastic problems. The work by Kapoor et al.(2023)
[38] used PINNs to simulate complex beam systems, solving both forward and inverse prob-
lems. Also, Verma et al. (2024) [39] use PINNs to simulate the behavior of a cantilever beam
subjected to a uniform loading. There is a resonable amount of work that shows PINNs are
effective in solving PDEs.

In our study, we analyze the mechanical characteristics(such as deflection, etc.) of a helicopter
blade treated as a prismatic(constant EI) cantilever beam subjected to triangular loading.
When a lateral force is applied over a beam, the beam’s longitudinal axis undergoes deforma-
tion, resulting in a curvature known as the deflection curve[1]. Understanding these mechanical
behaviors is essential in designing helicopter blades, ensuring optimal flight performance and
safety. This research is dedicated to investigating the capabilities of Physics-Informed Neural
Networks (PINNs) within beam mechanics, emphasizing their applicability and significance in
aerospace design and analysis.

The paper is organized as follows: Section 2 thoroughly explains the theory and architecture of
ANNs and PINNs. Section 3 gives a brief overview of the problem to be solved and defines the
governing equation, boundary conditions, and the formulation of the loss function for PINN.
Section 4 presents a detailed exploration of the training process and a brief overview of the
results obtained. Ultimately, the study is concluded in Section 5.

2 Physics-informed Neural Network

This section provides a detailed exploration of artificial neural networks (ANNs) and physics-
informed neural networks (PINNs), focusing on their theoretical frameworks and methodologies
and how they are used to address challenges in computational solid mechanics.

2.1 Artificial Neural Network

Inspired by the biological neurons present in the human brain[40], the artificial neural network
is a computational model that aims to replicate the functions of neurons, allowing them to
learn patterns and relationships from the data inputs and make a decision or prediction based
on the acquired knowledge[41].

4

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 September 2024 doi:10.20944/preprints202409.1861.v1

https://doi.org/10.20944/preprints202409.1861.v1

Figure 1: Artificial Neural Network architecture

The artificial neural network (ANN) architecture, illustrated in Fig. 1, comprises several
network layers, including an input layer, hidden layer(s), and an output layer. Depending on
the requirements of the problem, each neural network layer can contain multiple neurons or
nodes. Data or information is inputted into the neural network via the input layer and then
moves forward through the network, passing through the adjacent layers, which are connected
to each other via weights, biases, and activation functions[21]. Typically, an L-layer artificial
neural network can be mathematically expressed as[42][36]:

ϕ(0) = x, (1)

ϕ(l) = w(l) · ϕ(l−1) + b(l), for l = 1, 2, . . . , L− 1, (2)

ϕ(l+1) = α(ϕ(l)), (3)

v = ϕ(L) = w(L−1) · ϕ(L−1) + b(L−1). (4)

where x is the input vector which is fed into the input layer ϕ(0) = x, adjacent layers in the
neural network are denoted as ϕ(l) and ϕ(l+1). The activation function is represented by α, and
the final output of the artificial neural network (ANN) is denoted by v.
A neural network tries to establish a relationship between the input data (x) and output data (y)
by learning an underlying function (f). This relationship is defined by a function v = f(x, θ),
where θ refers to the learnable parameters of the network[43]. The network works to optimize
these parameters by reducing a loss function:

LNN =
1

N

N∑
i=1

|v − v∗|2 (5)

5

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 September 2024 doi:10.20944/preprints202409.1861.v1

https://doi.org/10.20944/preprints202409.1861.v1

where N is the number of data points; it measures the difference between the network’s predic-
tions v and the actual values v∗. The neural network can effectively model the desired function
by adjusting its parameters during the training process. Finally, the prediction or result is
delivered through the output layer.

2.2 Physics-Informed Neural Networks(PINNs)

Physics-Informed Neural Networks (PINNs), as proposed by Raissi et al.[19], offer a novel ap-
proach to solving problems governed by Partial Differential Equations (PDEs). This technique
seamlessly integrates the core principles and equations of physics into the training process of
artificial neural networks (ANNs).
The general representation of a governing equation for a physical process is given by[8]:

∂u

∂t
= D(u) + P(u), (6)

Here, D denotes the nonlinear differential operator, P represents the linear differential operator,
and u stands for the unknown solution being analyzed, which satisfies the differential equation.
The differential equation loss, LDE is as follows:

LDE =
1

NDE

NDE∑
i=1

∣∣∣∣∂u(xn, tn)

∂t
−Du(xn, tn)− Pu(xn, tn)

∣∣∣∣2 , (7)

where (xn, tn) denotes the collocation points where differential equation loss is calculated and
NDE gives the total number of these collocation points. Also, the boundary and initial condition
loss is given as:

LBC =
1

NBC

NBC∑
i=1

|B(u(xb, tb))|2 (8)

Lin =
1

Nin

Nin∑
i=1

|(u(xi, 0)− ui(xi, 0))|2 (9)

where (xb, tb) are the boundary points, NBC are the total number of boundary points, B is
the boundary operator corresponding to Dritchlet, Robin, periodic or Neumann boundary
conditions[44]. Also, (xi, 0) are the initial points where initial loss is calculated, N are the
total number of initial points, and ui is the defined initial condition for the problem. Also, the
data loss is defined as:

Ldata =
1

Ndata

Ndata∑
i=1

|u(xd, td)− ues(xd, td)|2 (10)

where (xd, td) are the data points for training the ANN, Ndata are the total number of these
data point, ues is the exact solution of the problem.

In the PINN approach, the aim is to effectively approximate the solution u of a given problem
using a neural network. To achieve this, the network optimizes its parameters, which include
weights and biases, by minimizing a defined loss function. This loss function is designed to

6

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 September 2024 doi:10.20944/preprints202409.1861.v1

https://doi.org/10.20944/preprints202409.1861.v1

ensure that the network accurately represents the underlying physics of the problem while also
fitting the available data. In this study, our focus is solely on the differential equation loss (LDE),
boundary loss (LBC), and data loss (Ldata). Therefore, the total loss is defined as follows:

Ltotal = LDE + LBC + LData, (11)

Figure 2: Physics-infromed Neural Network architecture

The architecture utilized in this study, as illustrated in Fig. 2, centers around the Artificial
Neural Network (ANN) as its primary component. This ANN comprises interconnected lay-
ers of artificial neurons, responsible for processing input data denoted as x and propagating
information throughout the network to generate an output prediction, denoted as u. Subse-
quently, the output u is employed to compute derivative terms, which are obtained analytically
through automatic differentiation methods [45]. These derivatives are then utilized to calculate
the boundary and differential equation loss. The data loss is also directly computed based
on the output u. Finally, the total loss, which requires minimization for practical training, is
determined by considering all these factors.

3 PINN for 1D Solid Mechanics Problem

In this section, we will discuss the problem that Physics-Informed Neural Networks (PINNs)
aim to solve. We will explain the differential and exact equations, as well as the boundary
conditions that govern the problem. Furthermore, we elaborate on the formulation of the loss
function integrated into PINNs for addressing this particular problem.

3.1 Problem Definition

In this demonstration, we present the implementation of a Physics-informed Neural Network
designed for solving a beam mechanics problem. We considered the helicopter blade as a
cantilever beam which is fixed at point A and B is the free end, subjected to triangular loading,
as illustrated in Fig. 3.
The load intensity along the beam’s length L is defined by the equation:

q =
qo(L− x)

L
, (12)

7

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 September 2024 doi:10.20944/preprints202409.1861.v1

https://doi.org/10.20944/preprints202409.1861.v1

Figure 3: Cantilever Beam with Triangular Loading

Here, qo represents the maximum load applied at the fixed end, L denotes the length of the
beam, and x signifies the position along the beam’s length.

3.2 Governing Equations

For a prismatic cantilever beam, the governing fourth-order differential equation according to
Euler-Bernoulli theory is given by [1]:

EI
d4v

dx4
= −q, (13)

EI
d4v

dx4
= −qo(L− x)

L
, (14)

Here, E represents Young’s Modulus, I denotes the Moment of Inertia of the beam, and q
stands for the load intensity.
Upon integrating Eq. (14) once, we obtain the expression for shear force (V) within the beam:

V = EI
d3v

dx3
=

qo(L− x)2

2L
+ C1, (15)

and as we know, at the free end of the beam, i.e., at point B where x = L shear force is zero,
so from this condition we have the following boundary condition

d3v

dx3

∣∣∣∣
x=L

= 0,

By using this condition and using Eq. (15), we get C1 = 0. Therefore, the shear force is given
by,

V = EI
d3v

dx3
=

qo(L− x)2

2L
, (16)

8

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 September 2024 doi:10.20944/preprints202409.1861.v1

https://doi.org/10.20944/preprints202409.1861.v1

Integrating Eq. (14) twice yields the subsequent equation for the bending moment, M of the
beam:

EI
d2v

dx2
=

−qo(L− x)3

6L
+ C2, (17)

At the free end, located at x=L, the bending moment is zero. This condition translates into
the boundary condition:

d2v

dx2

∣∣∣∣
x=L

= 0, (18)

By using the above boundary condition and the Eq. (17), we get C2 = 0, therefore the bending
moment, M is

M = EI
d2v

dx2
=

−qo(L− x)3

6L
, (19)

Continuing with the integration of Eq. (14) for the third time, we derive the equation repre-
senting the slope.

EI
dv

dx
=

qo(L− x)4

24L
+ C3, (20)

and at the fixed support slope is zero, so

dv

dx

∣∣∣∣
x=0

= 0, (21)

which gives us

C3 =
−qoL

3

24
, (22)

After substituting the value of C3 into Eq. (20) and simplifying, we obtain the equation defining
the slope as follows:

dv

dx
= − qox

24LEI
(4L3 − 6L2x+ 4Lx2 − x3), (23)

Integrating Eq. (14) four times yields the equation for deflection, which can be expressed as
follows:

EIv =
−qo(L− x)5

120L
+ C3x+ C4, (24)

Here, we know the value of C3. Also, at the fixed support deflection of the beam is zero, which
gives the following boundary condition:

v|x=0 = 0, (25)

By using the above boundary condition, we get the value of,

C4 =
qoL

4

120
, (26)

Upon substituting the values of C3 and C4 and performing some simplifications, we obtain the
exact equation that describes the deflection of the beam.

v = − qox
2

120LEI
(10L3 − 10L2x+ 5Lx2 − x3), (27)

9

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 September 2024 doi:10.20944/preprints202409.1861.v1

https://doi.org/10.20944/preprints202409.1861.v1

3.3 Loss-Defined

In the preceding section, we derived the governing differential equation and the boundary
conditions, laying the foundation for constructing the loss function for the Physics-informed
Neural Network. The governing differential equation and boundary conditions are as follows:

EI
d4v

dx4
= −qo(L− x)

L
, (28)

v(0) = 0, (29)

v′(0) = 0, (30)

v′′(L) = 0, (31)

v′′′(L) = 0, (32)

PINN is trained to approximate the solution to the differential equation over the boundary and
collocation points, denoted as:

vPINN ≈ v, (33)

Using these equations(Eq. (28) to Eq. (32)), we formulate our boundary loss and physics-based
loss, which enable learning of the neural network parameters by minimizing the total loss defined
as[20]:

Ltotal = LDE + LBC + LData, (34)

where, LDE represents the differential equation loss:

LDE =
1

NDE

NDE∑
i=1

|EI
d4vPINN(xn)

dx4
+

qo(L− x)

L
|2, (35)

In this expression, xn denotes collocation points along the length of the beam for which LDE is
calculated, and NDE represents the total number of collocation points.
As for the Boundary loss LBC it can be expressed as:

LBC =
1

NBC

NBC∑
i=1

, (LB1 + LB2 + LB3 + LB4), (36)

LB1 = |vPINN(xb = 0)− 0|2, (37)

LB2 = |v′PINN(xb = 0)− 0|2, (38)

LB3 = |v′′PINN(xb = L)− 0|2, (39)

LB4 = |v′′′PINN(xb = L)− 0|2, (40)

here xb denotes the boundary points and NBC denotes the number of boundary points for
the beam. LB1,LB2,LB3 and LB4 correspond to the boundary conditions defined in equations
Eq. (30) to Eq. (32), with L representing the length of the beam.
The data loss, LData, measures the deviation or difference between predicted values from the
exact values and is defined as:

LData =
1

NData

NData∑
i=1

|vPINN(xn)− v∗(xn)|2, (41)

10

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 September 2024 doi:10.20944/preprints202409.1861.v1

https://doi.org/10.20944/preprints202409.1861.v1

here NData is the total number of collocation points on the beam used for calculating data loss,
xn denotes the collocation points along the length of the beam, and vPINN is the predicted or
approximated solution and v∗ is the exact solution.
So, to train the PINN model and learn the neural network parameters, the total loss(Ltotal) is
minimized as much as possible. By minimizing this total loss, we fine-tune the model to make
more accurate predictions, essentially improving its performance.

4 Results and Discussion

We considered a 1D cantilever beam of length, L=1m, subjected to a maximum load at point
A, q0 = 1.0 N as shown in Fig. 3. For the simplification of the problem, we assume the value
of Young’s modulus, E = 1.0 Pa, and Moment of Inertia, I = 1.0 Kgm2.

In this study, we analyzed 51 collocation points spaced at intervals of 0.02 meters along the
length of the beam as shown in Fig. 4. At the boundary points, we selected two positions: one
at the fixed end (x = 0) and another at the free end (x = L) as shown in Fig. 4. Thus, we have
NDe = Ndata = 51 and NBC = 2, with collocation points xn ranging from 0 to 1 with increments
of 0.02 and the boundary points xb ϵ [0.00, 1.00].

Figure 4: Points over the length of beam

We trained the PINN model for 300 epochs at a learning rate of α = 0.001, employing
ADAM[46] as the optimizer. The model consists of an architecture with 1 input layer, 5 hidden
layers, and 1 output layer, each hidden layer containing 50 neurons. For the activation function,
we implemented the tanh function[47] as shown in Eq. (42).

Tanh(x) =
ex − e−x

ex + e−x
, (42)

We also trained an Artificial Neural Network (ANN) with an identical network architecture for
comparison purposes. This includes the same number of epochs, learning rate, optimizer and

11

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 September 2024 doi:10.20944/preprints202409.1861.v1

https://doi.org/10.20944/preprints202409.1861.v1

the tanh activation function, allowing for a direct comparison between the PINN model and
the ANN. Both the models were developed from scratch using PyTorch[48] version 2.2.1. We
have summarized all the details of our models in Table 1.

Epochs 300
Learning Rate 0.001
Optimizer Adam
Input Layer 1
Hidden Layers 5
Output Layer 1
Number of Neurons 50
Activation Function Tanh

Table 1: Neural Network Configuration

The ANN model underwent training using the configuration outlined in Table 1. Upon com-
pletion of 300 epochs of training, a loss curve for the model was generated, visually represented
in Figure 1. This curve serves as a valuable tool for assessing the model’s convergence and
performance throughout the training process.

Figure 5: Loss curve for the ANN Model

Also, after training the PINN model for 300 epochs, we acquired the loss curve, depicted
in Fig. 6. This graph illustrates the convergence of various components, including PDE loss,
Boundary loss, data loss, and the overall Total Loss.

12

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 September 2024 doi:10.20944/preprints202409.1861.v1

https://doi.org/10.20944/preprints202409.1861.v1

Figure 6: Loss Curve for the PINN model

Upon completing its training, the PINN model can accurately predict/approximate the
deflection, slope, bending moment, and shear force along the length of a beam as shown in
Figures 7, and 8. This detailed analysis enables a precise evaluation of the beam’s mechanical
response.

Also, we have calculated the Mean Squared Error (MSE) values between the predicted and the
exact solution for both the models as shown in the Table 2. It is calculated as the average
of the squared as errors as shown in equation Eq. (43). It serves as a metric to evaluate the
precision of a predictive model.

MSE =
1

n

n∑
i=1

(ŷi − yi)
2 (43)

where n is the number of data points, ŷi is the predicted value and yi is the actual/exact
solution. A lower MSE value signifies enhanced performance, denoting that the predictions
generated by the model are in closer approximation to the exact values.

ANN PINN

Deflection 3.070e-07 3.060e-09
Slope 4.500e-05 2.935e-08
Bending Moment 0.002 5.517e-08
Shear Force 0.049 1.127e-07

Table 2: Comparison of MSE values between the exact and predicted solution for ANN and
PINN model

13

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 September 2024 doi:10.20944/preprints202409.1861.v1

https://doi.org/10.20944/preprints202409.1861.v1

As observed from Table 2, it is evident that the PINN model exhibits superior performance
in approximating the solution of the differential equation when compared to the ANN model.
Now, we delve into the outcomes achieved, presenting a comparative analysis of the results
derived from PINN and ANN. This comparison is visually represented in Figures 7, and 8.

Figure 7: Comparing the solutions from PINN and ANN for predicting deflection.

As illustrated in Fig. 7, the deflection curve predicted by the PINN overlaps with the exact
deflection curve(obtained from the exact deflection equation, Eq. (27)), demonstrating a high
degree of accuracy. Conversely, the deflection curve derived from the ANN exhibits a noticeable
deviation from the exact solution. In our method, we are giving the data points (i.e., collocation
points generated along the length of the beam) as input to the neural network in both models,
which tries to map a function between the data points and the deflection over the beam, but
the difference arises in the implementation of the loss function. In PINNs, we include scientific
or physical principles with the fitting of available data within the loss function framework,
thereby ensuring a more holistic model. Conversely, in ANN, the loss function’s formulation
is exclusively based on empirical data without integrating physical laws or constraints. The
differential equation for deflection(Eq. (14)) of the cantilever beam is of the fourth order, which
we are approximating through PINNs and ANN. Additionally, the loss curve for both models,
as depicted in Fig. 5 and Fig. 6, demonstrates good convergence. However, the complex nature
of the governing equation, with its high order and non-linearity, poses challenges for the ANN
model in accurately approximating the solution. As a result, the model exhibits a deviation
from the exact deflection curve.

14

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 September 2024 doi:10.20944/preprints202409.1861.v1

https://doi.org/10.20944/preprints202409.1861.v1

(a)

(b)

(c)

Figure 8: Comparing the solutions from PINN and ANN for predicting slope (a), bending
moment (b), and shear force (c).

15

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 September 2024 doi:10.20944/preprints202409.1861.v1

https://doi.org/10.20944/preprints202409.1861.v1

Additionally, we have also predicted the slope, bending moment, and shear force experi-
enced by the beam along its length under triangular loading. The comparative analysis among
the curves representing the exact solution, PINN solution, and the solution obtained through
ANN is illustrated in Fig. 8. As observed in Figure 8, the solution derived from the PINN
perfectly matches the exact solution. Conversely, the solution obtained through ANN exhibits
significant deviations. The calculation of slope, bending moment, and shear force is achieved
through the differentiation of the output provided by the neural network in both models.

The slope is calculated as the first derivative of the deflection equation (Eq. (27)). In Fig. 8a,
the PINN solution aligns with the exact solution, while the ANN solution does not achieve this
level of accuracy. We aim to establish a function that maps the data points to the deflection
of the curve using both PINN and ANN models. The output from the neural networks of both
models is differentiated for the first time to determine the slope of the cantilever beam. But
the result from the PINN model is significantly better than the ANN models.

The bending moment of the cantilever beam is determined by taking the second derivative of
the deflection equation (Eq. (27)). The comparison in Fig. 8b shows that the PINN solution
closely aligns with the exact solution, while the ANN solution does not. Here, the output from
the neural network of both models is differentiated two times to get the bending moment of
the cantilever beam under triangular loading. But, the PINN solution demonstrates superior
performance compared to the ANN solution.

By taking the third derivative of the bending equation (Eq. (27)), we can determine the shear
force in the cantilever beam under triangular loading. As shown in Fig. 8c, the PINN solution
closely matches the exact solution, while the predicted solution by the ANN does not. Here
also, the output from the neural network of both models is differentiated three times, which
gives us the shear force. Once again, the predicted solution from the PINN model outperforms
the ANN solution.

From the above results in predicting deflection, slope, bending moment and shear force it is
clear that the PINN apporoch performs much better as compared to the ANNs because PINNs
incorporate physical constraints into their loss function, giving them an advantage over con-
ventional ANNs. Unlike PINNs, ANNs depend exclusively on the dataset provided and thus
encounter challenges in accurately predicting the solution.

The predicted solution given by the ANN model, in comparison to the deflection curve(Fig. 7),
deviated less as compared to the slope curve, bending moment curve, and shear force curve(Fig. 8).
The deviation in the deflection curve is less because we are directly mapping a function between
the data points(as input) and deflection(i.e., exact solution) over the length of the beam(as out-
put) in ANN. However, there are still errors in predicting the deflection curve, and the ANN
model fails to accurately predict the deflection due to the complex and non-linear nature of
the equation. When differentiating the ANN’s output(i.e., predicted deflection) to calculate
the slope, bending moment, and shear force, any initial errors in the predicted deflection are
amplified. This amplification occurs because differentiation inherently magnifies errors with
increasing order of derivative. This means that as the order of the derivative increases, the
error also increases, posing a challenge for accurate prediction of slope(first order), bending
moment(second order), and shear force(third order), as illustrated in Table 2. Moreover, the
lack of physical information(such as boundary condition and differential equation) in the ANN’s
loss function adds to the compounded inaccuracies in these derived quantities. However, with

16

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 September 2024 doi:10.20944/preprints202409.1861.v1

https://doi.org/10.20944/preprints202409.1861.v1

PINN, such issues do not occur. The PINN model accurately predicts deflection, slope, bend-
ing moment, and shear force. Thus, PINNs provide a solid and effective framework for solving
computational mechanics problems governed by differential equations.

5 Conclusion

In this study, we have demonstrated the application of Physics-informed neural networks
(PINNs) to computational mechanics problem, particularly with application in aerospace sec-
tor. We considered the helicopter blade as a cantilever beam subjected to triangular loading.
We employ PINN to approximate or predict the deflection of the cantilever beam. Addition-
ally, we leverage PINNs to estimate the corresponding slope, bending moment, and shear force,
providing a comprehensive analysis of the beam’s mechanical behavior. We have successfully
trained a PINN model and, for comparison, have also trained an ANN model using identical
parameters.The outcomes derived from the PINN model demonstrate a high degree of accuracy,
as the predicted solution aligns precisely with the exact or analytical solution. Conversely, the
solution predicted by the ANN model exhibits a noticeable deviation from the exact solution.
The results obtained from PINNs achieved very low MSE values as compared to the ANN re-
sults. This comparative analysis highlights the improved effectiveness of the PINN framework
in capturing the fundamental physical principles that govern the differential equation, resulting
in more precise and dependable approximations.

It can be concluded that Physics-Informed Neural Networks (PINNs) offer an efficient and
precise approach for solving computational mechanics challenges, with significant applications
in the aerospace sector. In the field of aerospace engineering, the simulation of systems oper-
ating under complex conditions through conventional solvers incurs significant computational
expenses. As an alternative, Physics-Informed Neural Networks (PINNs) offer solutions that
are not only more accurate but also markedly more efficient and robust.

For future work, we plan to extend the application of PINNs to solve a broader range of com-
putational mechanics problems within the aerospace sector. This will include tackling more
complex geometries, and incorporating dynamic loading conditions. Overall, our findings un-
derscore the transformative potential of PINNs in aerospace applications, paving the way for
more efficient and accurate simulations that can significantly advance the field.

Acknowledgment

This work is supported by the Science and Engineering Research Board (SERB), DST, In-
dia, under MATRICS Scheme, File number: MTR/2022/001029. The authors extend their
appreciation to the AgAutomate Pvt. Ltd. and Deanship of Research and Development at
Thapar Institute of Engineering and Technology, India, for supporting this work through Con-
sultancy Grant under AgA/RT/CG/2022/0101 and Seed Research Grant under Grant Number
TIET/RF-68.

17

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 September 2024 doi:10.20944/preprints202409.1861.v1

https://doi.org/10.20944/preprints202409.1861.v1

References

[1] J. Gere and B. Goodno, Mechanics of Materials, Brief Edition. Cengage Learning, 2011.

[2] A. Curnier, Computational methods in solid mechanics, vol. 29. Springer Science & Busi-
ness Media, 2012.

[3] N. Bykiv, P. Yasniy, Y. Lapusta, and V. Iasnii, “Finite element analysis of reinforced-
concrete beam with shape memory alloy under the bending,” Procedia Structural Integrity,
vol. 36, pp. 386–393, 2022. 1st Virtual International Conference “In service Damage of
Materials: Diagnostics and Prediction.

[4] G. Ma, Q. Jiang, X. Zong, and J. Wang, “Identification of flexural rigidity for eu-
ler–bernoulli beam by an iterative algorithm based on least squares and finite difference
method,” Structures, vol. 55, pp. 138–146, 2023.

[5] M. Chehel Amirani, S. Khalili, and N. Nemati, “Free vibration analysis of sandwich beam
with fg core using the element free galerkin method,” Composite Structures, vol. 90, no. 3,
pp. 373–379, 2009.

[6] G. Liu, Meshfree Methods: Moving Beyond the Finite Element Method, Second Edition.
CRC Press, 2009.

[7] O. Kononenko and I. Kononenko, “Machine learning and finite element method for physical
systems modeling,” 2018.

[8] V. Kag and V. Gopinath, “Physics-informed neural network for modeling dynamic linear
elasticity,” 2024.

[9] S. Kaymak, A. Helwan, and D. Uzun, “Breast cancer image classification using artificial
neural networks,” Procedia Computer Science, vol. 120, pp. 126–131, 2017. 9th Interna-
tional Conference on Theory and Application of Soft Computing, Computing with Words
and Perception, ICSCCW 2017, 22-23 August 2017, Budapest, Hungary.

[10] K. Sako, B. N. Mpinda, and P. C. Rodrigues, “Neural networks for financial time series
forecasting,” Entropy, vol. 24, no. 5, 2022.

[11] D. Sinha, P. K. Sarangi, and S. Sinha, Efficacy of Artificial Neural Networks (ANN) as a
Tool for Predictive Analytics, pp. 123–138. Singapore: Springer Nature Singapore, 2023.

[12] T. Yue, Y. Wang, L. Zhang, C. Gu, H. Xue, W. Wang, Q. Lyu, and Y. Dun, “Deep learning
for genomics: From early neural nets to modern large language models,” International
Journal of Molecular Sciences, vol. 24, no. 21, 2023.

[13] D. W. Otter, J. R. Medina, and J. K. Kalita, “A survey of the usages of deep learning
for natural language processing,” IEEE Transactions on Neural Networks and Learning
Systems, vol. 32, no. 2, pp. 604–624, 2021.

18

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 September 2024 doi:10.20944/preprints202409.1861.v1

https://doi.org/10.20944/preprints202409.1861.v1

[14] M. F. McCracken, “Artificial neural networks in fluid dynamics: A novel approach to
the navier-stokes equations,” in Proceedings of the Practice and Experience on Advanced
Research Computing, PEARC ’18, (New York, NY, USA), Association for Computing
Machinery, 2018.

[15] M. Morimoto, K. Fukami, K. Zhang, and K. Fukagata, “Generalization techniques of
neural networks for fluid flow estimation,” Neural Computing and Applications, vol. 34,
p. 3647–3669, Nov. 2021.

[16] Y.-C. Hsu, C.-H. Yu, and M. J. Buehler, “Using deep learning to predict fracture patterns
in crystalline solids,” Matter, vol. 3, no. 1, pp. 197–211, 2020.

[17] J. R. Mianroodi, N. H. Siboni, and D. Raabe, “Teaching solid mechanics to artificial
intelligence: a fast solver for heterogeneous solids,” 2021.

[18] Y. Diao, J. Yang, Y. Zhang, D. Zhang, and Y. Du, “Solving multi-material problems in
solid mechanics using physics-informed neural networks based on domain decomposition
technology,” Computer Methods in Applied Mechanics and Engineering, vol. 413, p. 116120,
2023.

[19] M. Raissi, P. Perdikaris, and G. Karniadakis, “Physics-informed neural networks: A deep
learning framework for solving forward and inverse problems involving nonlinear partial
differential equations,” Journal of Computational Physics, vol. 378, pp. 686–707, 2019.

[20] S. Cuomo, V. S. di Cola, F. Giampaolo, G. Rozza, M. Raissi, and F. Piccialli, “Scientific
machine learning through physics-informed neural networks: Where we are and what’s
next,” 2022.

[21] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, pp. 436–44, 05
2015.

[22] L. Lu, X. Meng, Z. Mao, and G. E. Karniadakis, “Deepxde: A deep learning library for
solving differential equations,” SIAM Review, vol. 63, p. 208–228, Jan. 2021.

[23] T. Kadeethum, T. M. Jørgensen, and H. M. Nick, “Physics-informed neural networks for
solving nonlinear diffusivity and biot’s equations,” PLOS ONE, vol. 15, p. e0232683, May
2020.

[24] X. Meng, Z. Li, D. Zhang, and G. E. Karniadakis, “Ppinn: Parareal physics-informed
neural network for time-dependent pdes,” Computer Methods in Applied Mechanics and
Engineering, vol. 370, p. 113250, Oct. 2020.

[25] P. Sharma, L. Evans, M. Tindall, and P. Nithiarasu, “Stiff-pdes and physics-informed neu-
ral networks,” Archives of Computational Methods in Engineering, vol. 30, no. 5, pp. 2929–
2958, 2023.

[26] A. P. O. Muller, J. C. Costa, C. R. Bom, M. Klatt, E. L. Faria, M. P. de Albuquerque, and
M. P. de Albuquerque, “Deep pre-trained fwi: where supervised learning meets the physics-
informed neural networks,” Geophysical Journal International, vol. 235, p. 119–134, May
2023.

19

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 September 2024 doi:10.20944/preprints202409.1861.v1

https://doi.org/10.20944/preprints202409.1861.v1

[27] A. Rebai, L. Boukhris, R. Toujani, A. Gueddiche, F. A. Banna, F. Souissi, A. Lasram,
E. B. Rayana, and H. Zaag, “Unsupervised physics-informed neural network in reaction-
diffusion biology models (ulcerative colitis and crohn’s disease cases) a preliminary study,”
2023.

[28] T. Sahin, M. von Danwitz, and A. Popp, “Solving forward and inverse problems of contact
mechanics using physics-informed neural networks,” 2023.

[29] H. Eivazi, M. Tahani, P. Schlatter, and R. Vinuesa, “Physics-informed neural networks for
solving reynolds-averaged navier–stokes equations,” Physics of Fluids, vol. 34, no. 7, 2022.

[30] D. Jalili, S. Jang, M. Jadidi, G. Giustini, A. Keshmiri, and Y. Mahmoudi, “Physics-
informed neural networks for heat transfer prediction in two-phase flows,” International
Journal of Heat and Mass Transfer, vol. 221, p. 125089, 2024.

[31] O. Mukhmetov, Y. Zhao, A. Mashekova, V. Zarikas, E. Y. K. Ng, and N. Aidossov,
“Physics-informed neural network for fast prediction of temperature distributions in can-
cerous breasts as a potential efficient portable ai-based diagnostic tool,” Computer Methods
and Programs in Biomedicine, vol. 242, p. 107834, 2023.

[32] A. Dhiman and Y. Hu, “Physics informed neural network for option pricing,” 2023.

[33] E. Haghighat, M. Raissi, A. Moure, H. Gomez, and R. Juanes, “A physics-informed deep
learning framework for inversion and surrogate modeling in solid mechanics,” Computer
Methods in Applied Mechanics and Engineering, vol. 379, p. 113741, 2021.

[34] C. Rao, H. Sun, and Y. Liu, “Physics-informed deep learning for computational elas-
todynamics without labeled data,” Journal of Engineering Mechanics, vol. 147, no. 8,
p. 04021043, 2021.

[35] J. Bai, T. Rabczuk, A. Gupta, L. Alzubaidi, and Y. Gu, “A physics-informed neural
network technique based on a modified loss function for computational 2d and 3d solid
mechanics,” Comput. Mech., vol. 71, p. 543–562, nov 2022.

[36] J. Bai, H. Jeong, C. P. Batuwatta-Gamage, S. Xiao, Q. Wang, C. M. Rathnayaka,
L. Alzubaidi, G.-R. Liu, and Y. Gu, “An introduction to programming physics-informed
neural network-based computational solid mechanics,” International Journal of Computa-
tional Methods, vol. 20, no. 10, p. 2350013, 2023.

[37] D. W. Abueidda, S. Koric, E. Guleryuz, and N. A. Sobh, “Enhanced physics-informed
neural networks for hyperelasticity,” International Journal for Numerical Methods in En-
gineering, vol. 124, p. 1585–1601, Nov. 2022.

[38] T. Kapoor, H. Wang, A. Núñez, and R. Dollevoet, “Physics-informed neural networks for
solving forward and inverse problems in complex beam systems,” IEEE Transactions on
Neural Networks and Learning Systems, 2023.

[39] A. Verma, R. Mallick, D. Harursampath, P. Sahay, and K. K. Mishra, “Physics-informed
neural networks with application in computational structural mechanics,”

20

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 September 2024 doi:10.20944/preprints202409.1861.v1

https://doi.org/10.20944/preprints202409.1861.v1

[40] P. Dell’Aversana, “Artificial neural networks and deep learning. a simple overview,” 12
2019.

[41] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016. http:

//www.deeplearningbook.org.

[42] G. R. Liu, Machine Learning with Python. WORLD SCIENTIFIC, 2022.

[43] B. Liquet, S. Moka, and Y. Nazarathy, Mathematical Engineering of Deep Learning. CRC
Press, 2024.

[44] V. Schäfer, Generalization of physics-informed neural networks for various boundary and
initial conditions. PhD thesis, Technische Universität Kaiserslautern, 2022.

[45] A. G. Baydin, B. A. Pearlmutter, A. A. Radul, and J. M. Siskind, “Automatic differenti-
ation in machine learning: a survey,” 2018.

[46] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” 2017.

[47] S. R. Dubey, S. K. Singh, and B. B. Chaudhuri, “Activation functions in deep learning: A
comprehensive survey and benchmark,” 2022.

[48] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, A. Desmaison, A. Köpf, E. Yang, Z. DeVito, M. Raison, A. Te-
jani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala, “Pytorch: An impera-
tive style, high-performance deep learning library,” 2019.

21

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 September 2024 doi:10.20944/preprints202409.1861.v1

https://doi.org/10.20944/preprints202409.1861.v1

