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Abstract: Amphibians, which are essential components of ecosystems, are susceptible to pharmaceutical 

contamination, a phenomenon of increasing concern owing to the widespread consumption and detection of 

pharmaceutical compounds in environmental matrices. This review investigates oxidative stress (OS) as the 

primary mechanism of drug toxicity in these organisms. The evidence gathered reveals that various 

pharmaceuticals, from antibiotics to anesthetics, induce OS by altering biomarkers of oxidative damage and 

antioxidant defense. These findings underscore the deleterious effects of pharmaceuticals on amphibian health 

and development and emphasize the necessity of incorporating OS biomarkers into ecotoxicological risk 

assessments. Although further studies on diverse amphibian species, drug mixtures, and field studies are 

required, OS biomarkers offer valuable tools for identifying sublethal risks. Furthermore, the development of 

more refined OS biomarkers will facilitate early detection of adverse effects, which are crucial for protecting 

amphibians and their ecosystems. Ultimately, this review calls for continued research and mitigation strategies 

to safeguard biodiversity from pharmaceutical contamination. 
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1. Introduction 

1.1. Amphibians 

The taxonomic category Amphibia comprises 72 families and 562 genera, encompass over 8350 

species. Approximately 3% of the total are caecilians, 9% are caudates, and 88% are frogs [1]. Most 

amphibians exhibit a biphasic life cycle characterized by the presence of both aquatic and terrestrial 

stages. The larval phase, which is typically aquatic, transitions to the adult phase, which can reside 

in either water or land environments. During their development into adults, larvae experience 

metamorphosis, which involves the transition from using gills to breathing air. Amphibians typically 

rely on moist skin as a secondary respiratory surface [1]. 

The Gymnophiona, Caudata, and Anura clades contain all the amphibian species [2]. Caecilians 

are legless burrowing amphibians belonging to the order Gymnophiona, which inhabit humid 

tropical areas in the Americas, Asia, and Africa. Most caecilians are less than 50 cm in length and are 

markedly similar to earthworms. They have small, highly ossified heads with annular grooves along 

the body, and degenerated eyes [3]. Caecilians are a diverse group of organisms, with approximately 

200 different species identified to date. Despite their elusive nature, much of their biology remains 

unclear [4,5]. 

Salamanders belong to the order Caudata, which consists of over 700 species and is categorized 

into three groups: sirens (eel-like amphibians), basal salamanders (including hellbenders), and 

derived salamanders (mudpuppies, amphiumas, axolotls, newts, and various terrestrial species) 

[3,6]. Although it is widely believed that salamanders begin their lives as larvae in water and 

eventually transform into adult forms that live on land, this notion is not accurate for most 
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salamander species [7]. Specifically, two-thirds of salamander species belong to the lungless 

salamander family (Plethodontidae), and these animals hatch directly from their eggs into terrestrial 

forms. Moreover, certain species, such as Necturus maculosus (commonly known as mudpuppy) and 

Ambystoma mexicanum (axolotl), exhibit neoteny, the retention of juvenile characteristics into 

adulthood. In these species, individuals can reach sexual maturity while still in their larval form and 

may never undergo metamorphosis [2].  

The order Anura, which comprises toads and frogs, is the amphibian order with the greatest 

number of extant species, totaling 7708 [8]. These animals are distinguished by their small, tail-free 

bodies, damp and porous skin, large eyes, and long and powerful hind legs, which enable them to 

jump effectively. In most cases, their life cycle includes an aquatic larval stage with gills that 

transforms into a terrestrial adult with lungs. Anurans are found in a diverse range of ecosystems, 

encompassing tropical forests and deserts, and fulfill a vital function as both predators and prey for 

other species [3,4]. The significance of this order as an essential subject of study arises from its 

taxonomic and functional diversity, which enables researchers to understand the evolution and 

adaptation of vertebrates to various ecosystems. The order Anura comprises 55 families that are 

currently recognized and can be categorized into 11 superfamilies: Hyloidea, Dendrobatoidea, 

Microhyloidea, Ranoidea, Pelobatoidea, Pipoidea, Rhinophrynoidea, Scaphiopodoidea, 

Discoglossoidea, Pelodytoidea, and Leiopelmatoidea [8–10]. The ongoing classification of 

amphibians is subject to change as new phylogenetic research emerges, and additional species are 

uncovered. 

1.2. Emerging Contaminants  

The origin of Emerging Contaminants (EC) can be traced back to the Industrial Revolution, 

which introduced a plethora of new chemicals into the environment. Although the concept of these 

substances as potential environmental contaminants has recently gained traction, it was not a major 

concern during the earlier periods. Throughout the Industrial Revolution, until the late 20th century, 

conventional pollutants were the primary focus, with the recognition and comprehension of ECs 

undergoing substantial development in the latter half of the 20th century. The evolution of analytical 

techniques in the early 21st century has played a crucial role in the detection of low concentrations of 

new chemicals, leading to a significant shift in the perception of EC [11].  

Emerging contaminants, which are substances that possess characteristics such as biotoxicity, 

environmental persistence, and bioaccumulation, are released into the environment and pose risks to 

both the ecological environment and human health. Despite these risks, their regulations and 

management have not been comprehensively addressed or effectively implemented [12]. 

Depending on their chemical characteristics, use, and origin, CE can be classified into several 

categories: I) pharmaceuticals and personal care products (PPCPs). This group of substances, 

intended to enhance health, hygiene, and aesthetics, is of increasing concern because of their 

environmental presence. It includes various compounds, such as prescription and over-the-counter 

medications, as well as personal care and grooming products, such as lotions, cosmetics, and 

fragrances [11].  II) Endocrine-disrupting chemicals (EDCs). Endocrine-disrupting compounds 

(EDCs) can impair the normal function of glands and hormones by blocking, mimicking, or 

disrupting their natural actions. Consequently, EDCs may adversely affect vital functions such as 

growth, development, and reproduction. [13]. III) Polyfluoroalkyl substances (PFAS). These 

compounds possess numerous carbon-fluorine bonds, imparting unique properties, such as 

resistance to heat, water, and oil. Their chemical and thermal stabilities have facilitated their use in 

diverse products, including firefighting foams, waterproof coatings, nonstick cookware, and various 

manufacturing processes [14]. IV) Microplastics (MPs). These tiny plastic fragments, less than 5 mm 

in length, include primary PMs, originally manufactured at this size, and secondary PMs, which 

result from the degradation of larger macroplastics (> 5 mm) under various environmental 

conditions. The widespread presence of microplastics in the air, soil, water, and organisms 

significantly threatens human health and ecosystem balance [15]. V) Nanomaterials. Materials sized 

between 1-100 nm exhibit unique physical, chemical, and biological properties owing to their 
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nanometer scale. This category comprises carbon nanotubes, graphene, quantum dots, metal 

nanoparticles, and ceramic nanofibers. Nonetheless, their small size and high surface-to-volume ratio 

raise concerns about their potential adverse effects on human health and the environment [11]. VI) 

Industrial chemicals and by-products (ICBs). This category encompasses manufacturing chemicals 

and persistent environmental toxins such as dioxins. Additionally, heavy metals, such as lead and 

mercury, can contaminate soil and water, harming ecosystems and human health. Improper disposal 

of organic solvents and pesticides can disrupt natural cycles and the food chain [16,17].  

1.3. Pharmaceuticals in the Environment  

Pharmaceutically active compounds (PhACs), natural or synthetic chemical compounds with 

specific biological activities, are mainly used to prevent, diagnose, treat, or alleviate disease 

symptoms [18]. The traditional definition of "drug" suggests that most of these compounds act in a 

similar way in any biological system, depending on their mechanism of action. However, it is 

important to recognize that amplified or unexpected effects may arise in certain species owing to 

physiological variations, including differences in the manner in which the drug is metabolized and 

interacts with the organism [19]. 

PhACs enter the environment primarily through two pathways, both through their use in 

humans and animals and their subsequent metabolic excretion in urine and feces (including 

unmetabolized parent drugs, drug conjugates, and bioactive metabolites), and improper disposal of 

leftover or expired medications in the sewage system [20]. PhACs that undergo incomplete 

degradation in wastewater treatment plants (WTPs) are released into treated effluents, causing the 

detection of these compounds in surface water, seawater, groundwater, and even drinking water at 

concentrations ranging from ngL-1 to gL-1 [21–31]. In addition, irrigation with treated effluents or 

the application of sludge from WTPs (biosolids) in crop fields is a common pathway for soil 

contamination with PhACs [32–34]. 

PhACs are present at low concentrations in the environment, typically ranging from ngL-1 to 

µgL-1, but their pervasiveness poses a potential threat to organisms in both aquatic and terrestrial 

ecosystems [35–37]. The persistent nature of several PhACs increases the possibility of 

bioaccumulation in different organisms, which can lead to serious physiological disorders [38–40]. 

Although some other PhACs do not present this persistence characteristic, their continuous release 

and constant presence in the environment confers them a "pseudopersistent" behavior, representing 

a risk to living organisms [41,42].  

Wildlife can play a key role in assessing environmental contamination by PhACs, acting as 

sentinels, monitoring bioaccumulation, and serving as a bioindicator of potential adverse effects 

depending on the environmental fate and mechanism of action of each PhAC. In addition, we must 

recognize the importance of the interconnection between human, animal, and environmental health, 

highlighting the need to further investigate the impact of PhACs on wildlife, especially considering 

their role in complex food webs involving humans [18]. 

1.4. Oxidative Stress 

Oxidative stress (OS) is characterized by an imbalance between oxidative and antioxidant 

species, favoring the former. This imbalance disturbs signaling and redox control and can lead to 

damage at the molecular level [43]. A healthy redox system is based on the balance between oxidation 

and reduction, which implies a net-zero electron flow at the end of the biological pathways. 

Alterations in this redox steady state trigger molecular changes that, depending on their magnitude, 

can result in damage at the molecular, cellular, and/or tissue levels. Both endogenous and exogenous 

sources lead to constant OS exposure [44]. 

Various environmental pollutants, including pharmaceuticals, can increase ROS production in 

amphibians and other aquatic organisms, inducing oxidative stress. Xenobiotics can elevate 

intracellular levels of ROS through various mechanisms, such as increased basal metabolism with 

consequent intensification of mitochondrial activity, alteration of the redox cycle, increased 

generation of ROS as by-products of reactions mediated by cytochrome P450 enzymes (CYPs), or 
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increased Fenton and Haber-Weiss reactions due to excess copper and iron ions. Oxidative stress 

biomarkers, which are first-line responses in animals and are highly sensitive to pollutants even at 

low concentrations, are useful for the early detection of environmental contamination [45]. 

1.4.1. Oxidative Stress Biomarkers 

1.4.1.1. Oxidative Damage  

Excessive ROS can damage various biomolecules including DNA, lipids, proteins, and 

carbohydrates (Figure 1). This damage can be detected using OS-specific biomarkers, which identify 

the molecular fingerprints left by ROS [46].  

Lipids: When the concentration of ROS inside the cell increases lipid peroxidation (LPO) is 

triggered. This process is initiated by the attack of a free radical on the methylene group of the fatty 

acid to extract a hydrogen atom. Consequently, a carbon-centered lipid radical (L•) is formed, which 

generates a lipid peroxide radical (LOO•) upon reaction with molecular oxygen. Subsequently, lipid 

peroxide undergoes a cyclization reaction to form an endoperoxide, which eventually decomposes 

into toxic end products such as malondialdehyde (MDA), 4-oxy-2-nonenal (ONE) and 4-hydroxyl 

nonenal (4-HNE) [44]. These end products are detrimental to the cell as they can cause damage to 

proteins and DNA. In addition, lipid peroxidation compromises the functionality of the cell 

membrane, decreasing its fluidity and inactivating cell membrane-anchored receptors and enzymes 

[47].  

Proteins: Protein oxidation involves the participation of various ROS and propagating radicals. 

These reactions lead to oxidative modifications in amino acid side chains, ROS-mediated peptide 

fragmentation, reactions between peptides and lipids or carbohydrate oxidation products, and 

formation of carbonyl derivatives of proteins [44]. Carbonylation of protein residues has been 

established as a key biomarker to assess protein damage caused by ROS, affecting specific amino acid 

residues, such as lysine, threonine, proline, and arginine [48,49].  

DNA and RNA: Free radicals and ROS can induce specific modifications and hydroxylation in 

the purine and pyrimidine bases of DNA, damage the deoxyribose-phosphate backbone, and disrupt 

protein-DNA cross-linkage formation [47]. Mitochondrial DNA is more vulnerable to this type of 

damage than nuclear DNA due to its closer proximity to the site of ROS generation. In addition, there 

is scientific evidence that RNA is more susceptible to oxidative damage than DNA, due to factors 

such as its proximity to mitochondria (the main source of ROS), its single-stranded structure, the lack 

of an active repair mechanism for oxidative damage, and lower protection by proteins compared to 

DNA [44]. One of the most investigated biomarkers of damage is 7,8-dihydro-8-deoxyguanosine (8-

oxoG) [50,51].  

1.4.1.2 Antioxidant Defenses 

Constant exposure to oxidizing factors, both internal and external, has led aerobic organisms to 

develop complex antioxidant mechanisms, including enzymes and other molecules, to maintain the 

redox balance. The study of these antioxidant enzymes has made it possible to assess an organism's 

ability to cope with OS and, therefore, can be used as a biomarker [52].  

The enzymes superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) 

constitute the first line of cellular antioxidant defense. These enzymes are functionally interrelated 

because hydrogen peroxide (H2O2), the product of the reaction catalyzed by SOD, is the substrate for 

both CAT and GPx [53]. 

SOD is a crucial metalloenzyme involved in cellular defence against ROS. It acts as the first line 

of detoxification and is the most potent antioxidant within cells [54].Its main function is to catalyze 

the conversion of two highly reactive superoxide anions (•O2-) into hydrogen peroxide (H2O2) and 

molecular oxygen (O2), thus reducing its damaging potential. SOD activity depends on the presence 

of a specific metal cofactor, resulting in different enzyme forms depending on the type of metal ion 

required [55].  
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CAT, which is widely distributed in living tissues that utilize oxygen, uses iron or manganese 

as a cofactor. Its main function is to catalyze the decomposition of hydrogen peroxide (H2O2) into 

water and O2, thus completing the detoxification process initiated by SOD [56]. 

GPx is an important intracellular enzyme that breaks down H2O2 into water and lipid peroxides 

into their corresponding alcohols, mainly in the mitochondria and occasionally in the cytosol. In most 

cases, its activity depends on selenium (Se) as a cofactor. Therefore, GPx is often referred to as 

selenocysteine peroxidase. This enzyme plays a crucial role in inhibiting the lipid peroxidation 

process, thus protecting OS cells [54,57].  

 

Figure 1. Mechanism and Main Consequences of Oxidative Stress at the Cellular Level. 

Amphibians, owing to their sensitivity to chemical contaminants during their life cycles in water, 

are considered excellent bioindicators of environmental pollution. The decline in their populations in 

recent decades has been attributed to the combined effects of pollution, changes in human activity, 

and climate [58,59]. Despite their importance as indicators of environmental health, toxicological 

research on amphibians has been limited compared to that on other vertebrates [60,61]. The current 

study seeks to provide a comprehensive and critical analysis of the scientific literature to evaluate the 

existing evidence on the use of oxidative stress biomarkers as indicators of toxicity caused by various 

pharmaceutical compounds in different species of amphibians. This review aims to be exhaustive in 

its scope and provide a critical examination of the available evidence on this topic. The objective of 

analyzing these biomarkers is to identify response patterns, assess the sensitivity of various species, 

and determine the relevance of these biomarkers in conducting ecotoxicological risk assessments.  

2. Methodology 

An exhaustive bibliographic search was carried out in the electronic databases Web of Science, 

PubMed, and Scopus, covering the period 2000 to 2024. Combinations of the following search terms 

were used: oxidative stress, amphibians, drugs, pharmaceuticals, biomarkers, oxidative damage, 

SOD, CAT and GPx. 

The inclusion criteria were as follows: 

• Experimental investigations analyzing the impact of drug exposure on oxidative stress 

biomarkers in amphibians. 
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• Articles published in peer-reviewed scientific journals in English. 

• Studies providing data on at least one oxidative stress biomarker and drug-specific class. 

• Research that clearly identifies the amphibian species used in this study. 

Excluded: 

• Studies using plant extracts or natural compounds instead of synthetic drugs. 

• Studies that did not provide quantitative data on biomarkers of oxidative stress. 

• Studies that focus exclusively on drug bioaccumulation without evaluating biomarkers of 

oxidative stress. 

• Studies that do not provide sufficient information on experimental conditions. 

Data extraction was performed systematically, documenting the following information for each 

study: authors, year of publication, amphibian species used, type of drug, concentration used, 

exposure time, main results, and conclusions. 

3. Results 

This review identified several studies that have investigated the effects of various 

pharmaceuticals on biomarkers of oxidative stress in amphibians. The results revealed complex and 

varied responses depending on both the type of drug and amphibian species studied (Table 1). It is 

important to note that all studies to date have focused on frog and toad species, such as Rhinella 

arenarum, Xenopus laevis, and Lithobates catesbeianus. However, amphibian groups of salamanders and 

caecilians remain largely unexplored in this context, representing a substantial gap in our 

understanding of the impact of pharmaceuticals on amphibian biodiversity. 

Table 1. Effect of pharmaceutical products on biomarkers of oxidative stress in amphibians. 

Specie Pharmaceutical Concentration 
Time of 

exposure 
Main findings References 

Limnodynastes 

peronii 

Diclofenac 

Naproxen 

Atenolol 

Gemfibrozil 

0.1, 1, 10 and 100 

gL-1 
30 days 

A significant 

increase in 

peroxidase 

activity was 

observed at the 

highest 

concentration of 

the drug mixture. 

[62] 

Pelophylax 

ridibundus 
Nifedipine 10 M 14 days 

Increased ROS 

production, 

elevated SOD 

activity, and 

higher GSH and 

GSSG levels. 

[63] 

Pelophylax 

ridibundus 

Ibuprofen 

Estrone  

250 

100 ngL-1 
14 days 

Exposure can 

induce oxidative 

stress, although 

the magnitude of 

this effect varies 

depending on the 

compound. 

[64] 

Rhinella arenarum 
Enrofloxacin 

Ciprofloxacin 

1, 10, 100 and 

1000 gL-1 
96 h 

An increase in 

LPO, decrease in 

CAT activity, and 

increase in GST 

activity was 

[65] 
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observed, 

particularly at the 

highest exposure 

concentrations. 

Trachycephalus 

typhonius 

Physalaemus 

albonotatus 

Diclofenac  

125 to 4000 gL-1 

 

125 to 2000 gL-1 

96 h 

 

 

 

22 and 20 

days 

 

 

An imbalance 

between ROS 

production and 

antioxidant 

systems was 

observed in both 

species, whereas 

GST activity 

exhibited 

interspecies 

variation. 

[66] 

Rhinella arenarum Dexamethasone 1-1000gL-1 22 days 

GST activity 

significantly 

increased in 

larvae exposed to 

the drug. 

[67] 

Rhinella arenarum 

Lamivudine 

Stavudine 

Zidovudine 

Nevirapine 

0.5, 1, 2 and 4 

gmL-1 
48 h 

Biochemical 

imbalance 

between ROS 

production and 

induction of 

antioxidant 

systems. 

[68] 

Physalaemus 

cuvieri 

Hydroxychloroquine 

Azithromycin 
12.5 gL-1 72 h 

Exposure to 

drugs did not 

elicit a significant 

oxidative stress 

response in 

tadpoles, 

potentially 

because of the 

activity of 

antioxidant 

enzymes. 

[69] 

Xenopus laevis Delorazepam 1, 5 and 10 gL-1 96 h 

Delorazepam 

alters redox 

equilibrium in 

embryos, 

potentially 

resulting in 

adverse effects on 

their 

development and 

viability. 

[70] 

Rhinella arenarum Oxytetracycline 
10, 30 and 60 

mgL-1 
96 h 

Exposure induced 

oxidative stress in 

both embryos and 

larvae, as 

[71] 
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evidenced by 

increased 

lipoperoxidation 

and altered 

antioxidant 

enzyme activities. 

Lithobates 

catesbeianus 

Sulfamethoxazole  

Oxytetracycline 

20, 90 and 460 

ngL-1 
16 days 

Drug exposure 

induced OS in 

tadpoles as 

evidenced by the 

inhibition of 

antioxidant 

enzymes and 

increased 

oxidative damage 

to proteins. 

[72] 

Hyla arborea  

Ethyl 3-

aminobenzoate 

methanesulfonate 

(MS-222) 

0.1, 1 and 5 gL-1 15 min 

MS-222 may 

potentially 

interfere with 

investigations of 

OS biomarkers, 

particularly those 

associated with 

GSH. 

[73] 

Xenopus laevis 

Favipiravir 

 

 

Oseltamivir 

32.9 to 250 mgL-1 

8.2 to 62.5 mgL-1 
96 h 

Biomarker 

responses 

indicate distinct 

detoxification and 

oxidative stress 

processes during 

organogenesis 

and the 

subsequent 

developmental 

stages. 

[74] 

Rhinella arenarum Ivermectin  
1.25, 10 and 100 

gL-1 
96 h 

Induced OS, even 

at low 

concentrations, 

and the 

commercial 

formulation may 

exhibit higher 

toxicity than the 

active ingredient 

alone. 

[75] 

Rhinella arenarum Monensin  
4, 12 and 120 

gL-1 
96 h 

A decrease in 

GST activity and 

GSH levels was 

observed, which 

was accompanied 

by an increase in 

TBARS levels. 

[76] 
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Aquarana 

catesbeianus  

Prednisone  

Prednisolone  

0.1, 1 and 10 gL-

1 
16 days 

Elevated SOD, 

CAT, GPx, and 

GST activities as 

well as increased 

MDA levels were 

observed in 

tadpoles exposed 

to prednisone. 

[77] 

3.1. Antibiotics 

Antibiotics are pharmaceutical agents extensively utilized in both human and veterinary 

medicine to combat infectious diseases. Furthermore, they are administered at subtherapeutic doses 

as feed additives in animal husbandry to promote growth [78]. The global consumption of antibiotics 

is estimated to range between 100,000 and 200,000 metric tons. Nevertheless, a substantial proportion, 

ranging from 70% to 90%, is not fully metabolized within an organism and is subsequently excreted 

in its original form or as active metabolites, thereby entering the environment [79]. Previous studies 

have provided information on the toxicity of antibiotics to algae [80,81], microcrustaceans [82–84], 

mollusk bivalves [85–87], and fish [88–91]. Nevertheless, research on the impact of antibiotics on 

amphibian populations remains limited. The lethal and sublethal effects of oxytetracycline (OTC) 

were evaluated in Rhinella arenarum embryos exposed to 10–115 mgL-1 for a period of 96 h. These 

findings indicated that OTC exposure significantly altered the activity of antioxidant enzymes, 

including decreased CAT, SOD, and GST activity. In addition, an increase in GSH levels was 

observed. Although no oxidative damage was evident, the authors suggested that continued 

exposure to OTC might have long-term negative effects [71]. In another study, da Luz et al. (2021) 

[69] utilized Physalaemus cuvieri tadpoles to assess the acute toxicity of azithromycin (AZT) and 

hydroxychloroquine (HCQ). Tadpoles were exposed to a concentration of 12.5 gL-1 of the drugs for 

72 h. This concentration was selected to simulate the potential increase in the environmental drug 

concentrations attributable to the COVID-19 pandemic. The study found no evidence of increased 

oxidative damage in tadpoles exposed to the drug, as assessed by biomarkers, such as nitrite, TBARS, 

ROS and H2O2. However, an increase in SOD and CAT activities was observed, suggesting an 

adaptive response to counteract potential oxidative stress. In addition, the toxicity of two veterinary 

antibiotics, enrofloxacin (ENR) and ciprofloxacin (CPX), was evaluated in R. arenarum larvae exposed 

to environmentally relevant concentrations of both drugs (1-1000 gL-1) for 96 hours under standard 

laboratory conditions. Concentrations higher than 10 gL-1 of both antibiotics induced detrimental 

effects on larvae, mainly on development, growth and antioxidant enzyme activity. Specifically, CPX 

at 1000 gL-1 induced a significant increase in GST activity and ENR at 1000 gL-1 inhibited both GST 

and CAT. These findings suggest that the tested antibiotics can trigger EO and affect antioxidant 

defense mechanisms in R. arenarum larvae [65]. The effects of two commonly used antibiotics, 

sulfamethoxazole (SMX) and oxytetracycline (OTC), were evaluated in tadpoles of Lithobates 

catesbeianus, which were exposed to 20, 90 and 460 ngL-1 of both antibiotics for 16 days. OTC, 

especially at the highest concentrations, led to a decrease in SOD, GPx and glucose 6-phosphate 

dehydrogenase (G6PDH) activities. In addition, increased levels of carbonylated proteins were 

observed in the liver of tadpoles exposed to the highest concentration of OTC. In contrast, SMX did 

not significantly affect the evaluated biomarkers [72]. Finally, one study evaluated the toxicity of a 

commercial formulation of monensin (CFM), a polyether antibiotic isolated from Streptomyces 

cinnamonensis, on embryos and larvae of R. arenarum exposed to 4, 12 and 20 gL-1 following acute 

exposure for 96 h. In embryos, a significant decrease in GST activity was observed at 12 and 20 gL-

1. In larvae, GST activity was significantly decreased at 20 gL-1. In addition, low GSH levels were 

observed in larvae exposed to 12 and 20 gL-1, and an increase in lipid peroxidation was observed at 

all concentrations tested [76].  

3.2. Nonsteroidal Anti-Inflammatory Drugs 
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Nonsteroidal anti-inflammatory drugs (NSAIDs) are a group of drugs with analgesic, anti-

inflammatory, and antipyretic properties. Their widespread use worldwide, with billions of 

prescriptions dispensed each year, makes them one of the most widely consumed types of drugs [92]. 

In addition, NSAIDs have been shown to be resistant to degradation, persistent, pharmacologically 

active and toxic to non-target organisms such as algae [93,94], molluscs [95,96] and fish [97–99]. As 

for the studies in amphibians, embryos and larvae of Trachycephalus typhonius and Physalaemus 

albonotatus were exposed to concentrations between 125 and 2000 gL-1 for 22 days. In T. typhonius, 

GST activity was inhibited at low concentrations (125gL-1) but induced at high concentrations (500, 

1000 and 2000 gL-1). In P. albonotatus, GST activity was inhibited at both low and high concentrations, 

exhibiting a hormesis-type response pattern, with maximal activity at intermediate concentrations. 

GST activity shows complex responses and varies by species, highlighting the importance of 

considering species-specific sensitivity when assessing the ecological risk of these compounds [66]. 

In another study, adult male Pelophylax ridibundus frogs were exposed to 250 ngL-1 ibuprofen for 14 

days. These findings indicate that ibuprofen exposure caused an increase in oxyradicals and 

glutathione levels (both reduced and oxidized); however, SOD activity was not affected. 

Additionally, the concentration of lipofuscin, a marker of oxidative damage, decreased with drug 

exposure 

3.3. Antivirals 

Antivirals (AV), drugs designed to combat viral infections by limiting or preventing viral 

replication, have increased in consumption. Consequently, an increase in the concentrations of these 

compounds and their active metabolites in the environment has been observed [100]. The presence 

of AV in ecosystems poses a potential risk, because they can interfere with the normal functions of 

biological systems [101]. Rhinella arenarum tadpoles were exposed to four antiretrovirals (lamivudine 

(3TC), stavudine (d4T), zidovudine (AZT), and nevirapine (NVP)) at concentrations ranging from 0.5 

to 4 mgL-1 for a period of 48 h to determine the acute toxicity of these compounds. Among the four 

compounds, 3TC showed the lowest bioaccumulation. A statistically significant increase in GST 

activity was observed only at the highest concentration tested. The bioaccumulation of d4T was 

slightly higher than that of 3TC was. In addition, the increase in GST activity was statistically 

significant at 1, 2 and 4 mgL-1. AZT showed low bioaccumulation in tadpoles. GST activity similarly 

increased at concentrations of 1, 2 and 4 mgL-1. Finally, NVP exhibited the highest bioaccumulation 

of all tested compounds, suggesting a high permeability to tadpoles. The increase in GST activity was 

statistically significant at all the four concentrations tested. The observed increase in GST activity 

indicates overproduction of ROS, which can cause oxidative damage in R. arenarum tadpoles [68]. A 

recent study evaluated the toxicity of two VA, favipiravir (32.9-250 mgL-1) and oseltamivir (8.2-62.5 

mgL-1), in Xenopus laevis embryos and tadpoles for a 96-h period. Favipiravir inhibits the activity of 

GR and CAT enzymes in embryos; however, it increases GST activity and decreases MDA levels. En 

embriones expuestos a oseltamivir no se observaron cambios significativos en la actividad de CAT ni 

en los niveles de MDA. In tadpoles, both GST and GR activities and MDA levels decreased. The 

results suggest that VA may affect antioxidant defense systems in X. laevis, and that the response 

varies depending on the developmental stage of the organism [74] 

3.4. Antihypertensive 

The recurrent detection of antihypertensive drugs in the environment reflects the accelerated 

growth of the pharmaceutical industry and the high consumption of these drugs globally [102]. 

Additionally, the presence of these drugs in the environment can have harmful effects on organisms, 

affecting their health and survival [103–105]. A study was conducted on adult male frogs of the 

species Pelophylax ridibundus to evaluate the toxicity of nifedipine at a concentration of 10 M for a 

period of 14 days. Drug exposure causes oxidative stress, as evidenced by a considerable increase in 

the rate of ROS generation and SOD, GSH, and GSSG levels [63]. 

3.5. Glucocorticoids 
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Glucocorticoids (GC) are widely used in the treatment of various diseases, such as rheumatoid 

arthritis, asthma, and Crohn's disease, owing to their potent anti-inflammatory properties [106]. Both 

natural and synthetic GCs exert their main action through the glucocorticoid receptor (GR), which 

modulates the expression of specific genes. In addition, they can act through non-genomic 

mechanisms, binding directly to the GR without affecting gene expression  [107]. The increase in the 

human population, together with its aging, has led to a greater dependence on GCs, as is the case 

with other drugs. This growing demand raises concerns regarding the potential environmental 

impacts of the consumption and presence of these drugs in the environment [108]. Among the studies 

that have evaluated the toxicity of glucocorticoids in amphibians, Cuzziol Boccioni et al. (2020) [67] 

evaluated the chronic toxicity of dexamethasone at concentrations of 1-1000 gL-1 in Rhinella arenarum 

larvae for an exposure period of 22 days. The results showed a significant increase in GST activity in 

the larvae exposed to dexamethasone, indicating a response to oxidative stress. In addition, the 

authors related the histological alterations observed in different tissues, such as intestinal dysplasia 

and epithelial cells, to oxidative damage induced by the drug. Rutkoski et al. (2024) [77] evaluated 

the toxicity of two glucocorticoids, prednisone (PD) and prednisolone (PL), on Aquarana catesbeianus 

tadpoles exposed to concentrations of 0.1, 1 and 10 μgL-1 for 16 days. PD exposure caused an increase 

in the MDA levels. In addition, both drugs caused an increase in CAT and GPx activities, while PD 

exposure also elevated SOD, GST, and G6PDH activities. These findings suggest that GCs induce 

oxidative stress in tadpoles of A. catesbeianus. 

3.6. Pharmaceutical Mixture  

Research has demonstrated that individual pharmaceutical compounds can influence diverse 

molecular and cellular pathways in various non-target organisms. Furthermore, the nature and 

intensity of the effects were directly correlated with the dosage and specific compound. However, it 

is crucial to consider that under real conditions, organisms are often exposed to low doses of multiple 

drugs simultaneously. This combined exposure can modulate the overall toxicity through different 

pathways; however, they often interact with each other, adding to the complexity of assessing the 

environmental impact of pharmaceuticals [109]. A study was conducted to evaluate the effect of a 

pharmaceutical mixture comprising diclofenac, naproxen, atenolol, and gemfibrozil on Limnodynastes 

peronii tadpoles. The subjects were exposed to various concentrations of the mixture (0.1, 1, 10, 100, 

and 1000 gL-1) for 30-day period. The results showed that peroxidase activity increased significantly 

in tadpoles exposed to 1000 gL-1 concentration, suggesting an increase in oxidative stress. However, 

no significant effects on SOD or RBC activity were observed at any of the tested concentrations [62].  

3.7. Anesthetic 

Tricaine methanesulfonate (MS-222) is the anesthetic of choice for amphibians and fish, with 

applications ranging from simple procedures requiring sedation, such as morphometric 

measurements, to its use as part of euthanasia protocols, either as a first step or as the sole agent 

[110,111]. A study conducted by Gavrilović et al. (2024) [73] investigated the potential impact of MS-

22 as an anesthetic/euthanizing agent on experimental outcomes in studies examining biomarkers of 

oxidative stress. Hyla arborea tadpoles were reared at two different temperatures (20°C and 25°C) to 

induce variations in their antioxidant capacities. Subsequently, the tadpoles were exposed to 0.1, 1 

and 5 gL-1 of MS-222 for 15 min. The results of this study indicated that MS-222 can significantly alter 

GSH levels and GSH/thiol-related parameters. Furthermore, specimens from different temperature 

groups exhibited varying responses to MS-222, suggesting a potential correlation with initial levels 

of antioxidant capacity. The biomarkers of oxidative damage and CAT activity were not significantly 

affected by MS-222 exposure.  

3.8. Benzodiazepines 

Benzodiazepines (BDZ), which are psychotropic drugs widely prescribed worldwide, are used 

to treat mental disorders, including anxiety, panic disorder, and insomnia. Its therapeutic action is 
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due to its interaction with the -aminobutyric acid (GABA) receptor, which results in an increase in 

ionic conduction and the consequent manifestation of anxiolytic, hypnotic, and sedative effects 

[112,113]. The presence of BDZ in the environment poses a potential risk due to its ability to be 

absorbed by organisms. Several studies have demonstrated the ability of these compounds to 

bioaccumulate and cause adverse effects in various aquatic organisms [114–117]. In amphibians, 

limited research has been conducted on the effects of BDZ on these organisms. Fogliano et al. (2022) 

[70] exposed X. laevis embryos to 1, 5 and 10 μgL-1 of delorazepam (DLZ) from the 4-8 cell stage to 

stage 45-46, simulating early and prolonged exposure to the drug in a natural environment. DLZ 

exposure caused a significant increase in ROS production and lipid hydroperoxide levels, indicating 

oxidative damage at the cellular level. In response to stress, an increase in GPx and GR activity was 

detected, although this response was not sufficient to completely counteract the oxidative damage 

induced by the drug, especially at the highest concentration. 

3.9. Antiparasitic  

The increasing use of macrocyclic lactones for the control of parasitic infections has been 

accompanied by significant historical developments. The first macrocyclic lactones used to combat 

parasites (roundworms and arthropods) were avermectin and its chemical derivative ivermectin 

(IVM) (C.Campbell, 2012). IVM, owing to its broad-spectrum anthelmintic activities, is used in the 

treatment of various diseases caused by parasitic nematodes [119]. Previous studies have shown 

adverse effects of IVM on non-target organisms in both terrestrial and aquatic ecosystems [120–124]. 

Embryos and larvae of Rhinella arenarum were exposed to different concentrations of IVM, both the 

active ingredient and a commercial formulation, varying between 1.5, 5 and 10 gL-1 for 96 h. 

Exposure to IVM, both in its active ingredient form and in a commercial formulation, induced 

significant changes in oxidative stress biomarkers. CAT activity was increased in embryos exposed 

to the commercial formulation and in larvae exposed to both forms of IVM. GST activity increased in 

embryos and larvae exposed to the commercial formulation but was inhibited in embryos exposed to 

the active ingredient. In addition, GSH levels were decreased in embryos exposed to the active 

ingredient. Los niveles de TBARS aumentaron en embriones y larvas expuestos a la formulación 

comercial. This study highlighted that the commercial formulation of IVM is more toxic than the 

active ingredient, underscoring the importance of considering the effects of excipients in 

environmental risk assessments [75].  

4. Conclusions and Future Research 

This review provides a comprehensive analysis of the role of oxidative stress in the mechanism 

underlying drug-induced toxicity in amphibians. Research has demonstrated that a diverse array of 

pharmaceutical compounds, including antibiotics, nonsteroidal anti-inflammatory drugs, antivirals, 

antihypertensives, glucocorticoids, anesthetics, and benzodiazepines can elicit oxidative stress in 

these organisms. Alterations observed in the biomarkers of oxidative damage include increased ROS 

production, lipid peroxidation, and protein oxidation, along with changes in the activity of 

antioxidant enzymes, highlighting the detrimental effects of these compounds on amphibian health 

and development. The results of this review emphasize the significance of considering oxidative 

stress in the ecotoxicological risk assessments of pharmaceuticals. The use of oxidative stress 

biomarkers can provide valuable information regarding the sublethal effects of drug exposure and 

can facilitate the identification of potential risks to amphibian populations. 

However, research in this field is still limited and there is room for improvement. It is crucial to 

expand the species spectrum as no studies have been performed on salamanders (order Caudata) or 

caecilians (order Gymnophiona), which limits our understanding of the effects of drugs on amphibian 

diversity. This review identified only one study that evaluated the effects of a drug mixture. Most of 

the reviewed studies have focused on the short-term effects of individual drugs under laboratory 

conditions, which limits their extrapolation to real situations where amphibians are exposed to 

multiple contaminants and stressors. Further research is required to investigate the effects of 

pharmaceutical combinations and conduct field studies to adequately assess the impact of 
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pharmaceuticals on the natural environment. Additionally, the development of more sensitive and 

specific biomarkers is essential for early detection of adverse drug effects in amphibians. 

Finally, it is imperative to continue researching the effects of drugs on amphibians and other 

aquatic organisms as well as to develop effective strategies to mitigate their negative effects. Only 

through a comprehensive understanding of the risks associated with pharmaceutical pollution can 

we safeguard the health of ecosystems and ensure the preservation of the species inhabiting them. 
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