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Article

Closed Form Solution to the Hubble Tension Based on
Rh = ct Cosmology for Generalized Cosmological
Redshift Scaling of the Form: z = (Rh/Rt)x − 1 Tested
against the full Distance Ladder of Observed SN
Ia Redshift

Espen Gaarder Haug
Norwegian University of Life Sciences, Christian Magnus Falsensvei 18, Aas, Norway, Ås, Norway ; espenhaug@mac.com

Abstract: Haug and Tatum have recently outlined a possible path to solving the Hubble tension within Rh = ct
cosmology models using a trial-and-error algorithm for redshift scaling, specifically z = (Rh/Rt) − 1 and

z = (Rh/Rt)
1
2 − 1. Their algorithm demonstrates that one can start with the measured CMB temperature and a

rough estimate of H0. Based on this approach, they nearly perfectly match the entire distance ladder of observed

supernovae by identifying a single value for H0. However, their solution is based on a simple numerical search

procedure, which, although it can be completed in a fraction of a second on a standard computer, is not a formal

mathematical proof for resolving the Hubble tension. Here, we will demonstrate that the trial-and-error numerical

method is not necessary and that the Hubble tension can be resolved using the same Haug and Tatum type

Rh = ct model through a closed-form mathematical solution. Furthermore, we will prove that this solution is

valid for a much more general case of any cosmological redshift scaling consistent with: z = (Rh/Rt)
x − 1. Haug

and Tatum have only considered the most common assumptions of x = 1 and x = 1
2 . Our solution involves

simply solving an equation to determine the correct value of H0. This is possible because an exact mathematical

relation between H0 and the CMB temperature has recently been established, in combination with the linearity in

an Rh = ct model. We also demonstrate that a thermodynamic form of the Friedmann equation is consistent with

a wide range of redshift scalings, namely: z = (Rh/Rt)
x − 1.

Keywords: hubble tension close dorm; hubble constant; cosmological redshift; z; CMB temperatur

1. Rh = ct Type Cosmological Models

The Haug and Tatum [1,2] cosmological model that we will discuss is unique in that it provides an
exact mathematical relation between the CMB temperature, the Hubble constant and the cosmological
red-shift. The Haug-Tatum cosmological model has developed over time in multiple stages. It is
consistent with the Rh = ct principle, which describes a universe expanding at the speed of light
without accelerated expansion. There are several Rh = ct-type cosmological models, and these
models are still actively discussed in recent literature, see for example [3–6]. Melia [7] has recently
demonstrated that Rh = ct cosmology seems more in line with recent observations from the James
Webb Space Telescope than the Λ-CDM model. The question of which cosmological model best fits
different observed properties of the universe will undoubtedly be an ongoing discussion in the years to
come. This paper offers additional evidence in favor of Rh = ct cosmology, as it seems that we with a
closed-form mathematical solution can resolve the Hubble tension within such a cosmological model.

Standard cosmology is not able to predict the current CMB temperature, T0, despite it being one of
the best-determined cosmological parameters, measured with extremely high precision. This limitation,
for example, has been clearly pointed out in the review article by Narlikar and Padmanabhan [8]: “The
present theory is, however, unable to predict the value of T at t = t0. It is therefore a free parameter in SC
(Standard Cosmology).” Furthermore, they suggest that if one could link T0 to other physical processes
in the universe, this would: “clearly mark an improvement over the standard interpretation.”

In recent years, we have developed a new model based on Einstein’s general relativity theory that
not only predicts T0 with remarkable precision but also mathematically links T0 to parameters such as
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H0. This advancement even appears to resolve the Hubble tension, a result we will demonstrate both
mathematically and experimentally in this paper.

In 2015, Tatum et al. [9] heuristically presented the following formula for the Cosmic Microwave
Background (CMB) temperature, which was later formally derived based on the Stefan-Boltzmann law
[10,11] by Haug and Wojnow [12,13]:

TCMB,0 =
h̄c3

kb8πG
√

Mcmp
=

h̄c
kb4π

√
RH2lp

(1)

where kb is the Boltzmann constant and mp =
√

h̄c
G is the Planck mass, lp =

√
Gh̄
c3 is the Planck length

[14,15], and Rh = c
H0

is the Hubble radius and Mc = c3

2GH0
is the mass (equivalent) of the critical

Friedmann [16] universe. The Stefan-Boltzmann law was developed basically for black bodies. The
CMB temperature has been described as an almost perfect black body , see for example; Muller et
al. [17] that states :

“Observations with the COBE satellite have demonstrated that the CMB corresponds to a nearly
perfect black body characterized by a temperature T0 at z = 0, which is measured with very high
accuracy, T0 = 2.72548 ± 0.00057k."

Equation (1) has also recently been derived using a geometric mean approach, see [18]. Addi-
tionally, Haug and Tatum [1] have demonstrated that to be consistent with the observed relation
Tt = T0(1 + z), see [19–21], the predicted redshift seems like it must be given by:

z =

√
Rh
Rt

− 1 (2)

However, they also show that one can have the more common z = Rh
Rt

− 1 scaling, but that this

leads to Tt = T0(1 + z)
1
2 , which does not seem to be supported by observational studies. However,

we have to be careful here, as even in observational studies, there are often assumptions or hidden
assumptions that one must carefully revisit before prematurely concluding one way or the other. In
this paper, we will demonstrate that in a more general model with cosmological redshift scaling of
the form:

z =

(
Rh
Rt

)x
− 1 (3)

where x is what we can call the scaling factor. The x is decided by assumption based on observations
and logic, for example if one decide the cosmological scaling should be z = Rh

Rt
− 1 (a scaling used in

multiple Rh = ct models such as the Melia model) one simply set x = 1 or if one want z =
√

Rh
Rt

− 1

scaling one set x = 1
2 , but one can also set x to any other value and still one will by solving an equation

we soon will look at get the one and the same value for H0 that seems to solves the Hubble tension.
Technically one could even make x time dependent x(t).

It is important to be aware we only claim to solve the Hubble tension inside a class of Rh = ct
cosmological models this way and not at all inside the Λ-CDM model.

For example in the Melia Rh = ct model has a cosmological redshift corresponding to x = 1
in our suggested general redshift scaling formula. Melia has however no equation for the relation
between the CMB temperature now and H0. Haug and Tatum model B in [1] given above correspond
then to x = 1

2 , the Haug and Tatum model A [1] that has the same redshift scaling as the Melia model
correspond to x = 1, but this model is still different than the Melia model as we in this have a tight
mathematical relation between CMB temperature and H0 that Melia not have in his model.
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For the general red-shift scaling equation (3) to be consistent with the CMB temperature formula
derived from the Stefan-Boltzmann law we get the following relation for the CMB temperature now
and in past cosmological epochs:

z =

(
Rh
Rt

)x
− 1

z =

(
T2

t
T2

0

)x

− 1

(z + 1)
1

2x =
Tt

T0

Tt = T0(1 + z)
1

2x (4)

Observations seems to favor a x ≈ 1
2 , even if the exact value of x not yet is experimentally fully

settled. We will not in this paper conclude on the optimal scaling factor x, but leave it up to further
research to find the optimal x. The important point in this paper is that the Hubble tension itself seems
to be solved for any scaling factor x in the closed form solution we soon will present.

Haug and Tatum demonstrate that the predicted redshift in one of their two models models
must satisfy:

zpre =

√
Rh
Rt

− 1 =

√√√√√ c
H0(

h̄c
T0(1+zobs,i)kb4π

)2 1
2lp

− 1. (5)

be aware they do similar for zpre =
Rh
Rt

− 1 red-shift scaling.
They then use a smart trial-and-error algorithm, such as the Newton-Raphson method or the

bisection method, to find the value of H0 that minimizes the sum of the prediction errors ∑n
i=1

zpre,i−zobs,i
zobs,i

.
They demonstrate that this approach leads to a single H0 value that perfectly matches the model with
the full observed distance ladder, something that seems to solve the Hubble tension.

However, here we simply solve equation (5) for H0, which yields:

H0 = T2
0

k2
b32π2lp

h̄2c

(1 + zobs,i)
2

(1 + zpre,i)2 (6)

In the case where the predicted redshift zpre,i is exactly equal to the observed redshift zobs,i, we must

have (1+zobs,i)
2

(1+zpre,i)2 = 1. Substituting (1+zobs,i)
2

(1+zpre,i)2 = 1 back into Equation (9) gives:

H0 = T2
0

k2
b32π2lp

h̄2c
= T2

0
Ω

(7)

The last part, the Latin upsilon:
Ω

=
k2

b32π2lp

h̄2c
=

k2
b32π2

√
G

h̄3/2c5/2 , is a composite constant made up of
well-known constants (which we [22,26] have coined

Ω
). This is the same formula as given by [22],

but here we have just demonstrated that this formula is strictly valid only when the predicted redshift
exactly matches the observed redshift, or as we soon will see we can use Equation (9) to match the full
distance ladder of observed supernova redshifts by simply finding this one H0 value directly from the
current measured CMB temperature.

This means that we only need to know T0 and this constant to closely match all observed
cosmological redshifts. The reason we say “close to perfect" rather than "perfect" is due to small
measurement errors in both the measured CMB temperature and in G, and that is the only uncertainty
in this method. The Boltzmann constant, the speed of light, and the reduced Planck constant have no
uncertainty, as they have been exactly defined since the 2019 NIST CODATA standard.
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We can generalize this to any redshift scaling assumption zpre =
(

Rh
Rt

)x
− 1 inside Rh = ct

cosmology as long as we assume the equation (1) that has been derived from the Stefan-Boltzmann
law is correct, we then get:

zpre =

(
Rh
Rt

)x
− 1 =


c

H0(
h̄c

T0(1+zobs,i)
1

2x kb4π

)2
1

2lp


x

− 1. (8)

Solved for H0 we get:

H0 = T2
0

k2
b32π2lp

h̄2c

(1 + zobs,i)
1
x

(1 + zpre,i)
1
x

(9)

when we have (or want) perfect prediction of redshift we must have zpre,i = zobs,i and then we end up

with (1+zobs,i)
1
x

(1+zpre,i)
1
x
= 1 and therefore we must have:

H0 = T2
0

k2
b32π2lp

h̄2c
(10)

That is for any scaling factor x one get exactly the same H0 dependent on only the CMB temperature
measured now, the Boltzmann constant, the Planck length, the speed of light and the Planck constant.
The only variable is the CMB temperature that has been measured very precisely.

2. Distance, Hubble Constant and Redshift

If we solve the general redshift formula for Rt we get:

z =

(
RH
Rt

)x
− 1

Rt =
c

H0(1 + z)
1
x

. (11)

This means the predicted distance to the observed redshift must be:

RH − Rt = RH − c

H0(1 + z)
1
x

RH − Rt =
c

H0
− c

H0(1 + z)
1
x

RH − Rt =
c

H0

(
1 − 1

(1 + z)
1
x

)
(12)

further if we solve this for H0 we get:

H0 =
c
d

(
1 − 1

(1 + z)
1
x

)
(13)

Here d = RH − Rt will be the estimated distance to the object emitting the photons. For very low
redshift we have z ≪ 1 and we can use the first term of the Taylor expansion to get:

d ≈ cz
xH0

(14)
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and now solved for z we get:

z ≈ xdH0

c
(15)

In the case x = 1, this is identical to the standard Λ-CDM cosmological redshift prediction formula
approximation when used for z ≪ 1. Haug and Tatum examine both the special case of x = 1,
where one obtains the standard distance formula when z ≪ 1, and a model corresponding to x = 1

2 ,
which predicts twice the distance of Λ-CDM for low z. However, as we will soon demonstrate, any
value of x can be used in the redshift scaling and still resolve the Hubble tension. The choice of x
therefore depends on other observations beyond predictions of the Hubble constant versus redshift.
It is influenced by factors such as determining the optimal β in Tt = T0(1 + z)(1−β) = T0(1 + z)

1
2x in

comparison with observed data; see, for example, [23], which suggests that β should be close to 0.
However, it is crucial to carefully examine the assumptions and methods used in any observational
study to arrive at its results.

Nevertheless, this is not the primary focus of this paper. The main discussion, as we will see in
the next section, is that within the Rh = ct cosmology model presented here, any choice of x can be
used while still allowing us to match all observed SN Ia redshifts with a single H0 value. Most values
of x, and likely all except one, should be ruled out based on other types of observations, such as the
observed Tt = T0(1 + z)(1−β) scaling.

In the Λ-CDM model, at least three different distances are considered for a given cosmological
redshift: the comoving distance, the angular diameter distance, and the luminosity distance. These
three distances differ from each other in the Λ-CDM model, which is fully consistent within the model
and necessarily accounts for phenomena such as accelerated expansion. In Rh = ct cosmological
models, however, there is no accelerated expansion, and in the Haug-Tatum cosmological model
(x = 1

2 ), the comoving, luminosity, and angular diameter distances are identical, see [24] for in detailed
discussion on this point. We believe this is not a coincidence. Only the redshift scaling x = 1

2 is
consistent with Tt = T0(1 + z), and it is the only redshift scaling where the three distances—comoving,
luminosity distance, and angular diameter distance—are identical. For any other x, the three distances
are not the same.

Importantly, x = 1
2 is also consistent with the well-known Etherington equation [25], which is

based on purely geometrical principles linked to general relativity. Both the Λ-CDM model and the
Rh = ct model used here are consistent with the Etherington equation: DL = (1 + z)2DA, where DL is
the luminosity distance and DA is the angular diameter distance. In the next section, we will see how
our model can match one of the largest databases of supernovae of type SN Ia while simultaneously
predicting their distances. We suspect that the Λ-CDM model has become overly complex due to its
three different distances for each observed zi. In Rh = ct cosmology, things appear to be much simpler,
and we are even able to match all the SN Ia with a single H0 parameter value, as we will explore next.
The distance to cosmological redshifts is not the main topic of this article.

3. Predictions Relative to the Observations Using the Full Distance Ladder from the
PantheonPlus Compilation

Here, we will see if our model can match all the observed cosmological redshifts by simply deter-
mining the H0 constant from Equation (10). However to demonstrate the superiority of Equation (10),
we will first instead use the predicted value for H0 by for example Riess et al. [27] of H0 = 73.04 ± 1.04
km/s/Mpc. We plot the Riess et al. value, accounting for 2 standard deviations (STD), and from this,
we get Figure 1. The blue line represents the predicted redshift from H0 = 73.04 km/s/Mpc, while
the green lines represent the 2 STD confidence interval, i.e., ±2 × 1.04 km/s/Mpc. We can see that
even the 95% confidence interval falls outside the observations, meaning that any H0 value within this
interval does not come close to matching the observed redshifts in our cosmological model.
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Figure 1. This figure shows observed redshift values from 2287 type Ia supernovae from Pantheon-
PlusSH0ES, sorted by redshift (blue line). Based on the measured CMB temperature by Dhal et al.
(2023) of 2.725007K, the blue line represents our predictions based on H0 = 73.04 km/s/Mpc, and the
green lines represent the 2 STD confidence interval ±2 × 1.04 km/s/Mpc. We find that the Riess et al.
H0 value cannot match the observed redshifts in this Rh = ct model.

Figure 2 demonstrates the results we get when we instead calculate H0 based on Equation (7)
when using the Dhal et al [28] measured CMB value of T0 = 2.725007 ± 0.000024K. According to our
theory, this should provide a perfect match between the observed and predicted values, and as we
can see, the observed and predicted values lie on top of each other. The confidence interval is now so
narrow that even if we plotted it, it would appear to overlap with the observed values. The predicted
H0 = 66.8712 ± km/s/Mpc when using this measured CMB temperature.

Figure 2. This figure shows observed redshift values from 2287 type Ia supernovae, sorted by redshift
(blue line). Based upon the measured CMB temperature by Dhal et al (2023) of 2.725007K, the red line
represents our predictions based on H0 = 66.8712 km/s/Mpc, which we extracted from the data using
equation (7).
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Figure 3 demonstrate the results we get when we calculate H0 based on Equation (10) when the
measured CMB value of Fixsen [29]: T0 = 2.72548 ± 0.00057K, this lead to a basically perfect match
between predicted and observed SN Ia redshifts with a predicted H0 = 66.8943 ± 0.0287 km/s/Mpc

Figure 3. This figure shows observed redshift values from 2287 type Ia supernovae, sorted by redshift
(blue line). Based upon the measured CMB temperature by Fixen et al (2009) of 2.72548K, the red line
represents our predictions based on H0 = 66.8943 km/s/Mpc calculated from equation (7).

It is important to understand that the results in this section is independent on the value selected

for the scaling factor x in z =
(

Rh
Rt

)x
− 1 in our Rh = ct cosmology.

4. The new Thermodynamic Friedmann Equation Consistent with the General Red-Shift Scaling of

the form z =
(

Rh
Rt

)x
− 1.

Haug and Tatum [30] have recently demonstrated that the critical Friedmann [16] equation:

H2
0 =

8πGρ

3
(16)

can be rewritten in thermodynamical form:

T4
0 =

h̄4c2Gρ

384k4
bπ3l2

p
=

h̄3c5ρ

384k4
bπ3

(17)

Keep in mind if doing the caculations that G =
l2
pc3

h̄ , something we get by simply solving the Planck

length formula lp =
√

Gh̄
c3 , see also [31].

Here we will generalize this to

T4
0 =

h̄3c5ρ

384k4
bπ3

(1 + zpre,i)
2
x

(1 + zobs,i)
2
x

(18)

and when zpre,i = zobs,i this will simply reduce to (17). We have simply replaced H0 with H0 =

T2
0

k2
b32π2lp

h̄2c
(1+zobs,i)

1
x

(1+zpre,i)
1
x

. However when zpre,i = zobs,i we end up getting equation (17) which demonstrate
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the thermodynamic form of the Haug and Tatum equation is very general and robust, it is valid for a
wide range of redshift scaling choices (the choice off x) inside Rh = ct cosmology.

From the sections above, it is clear that this thermodynamic Friedmann equation is valid and

identical x scaling factors in z =
(

Rh
Rt

)x
− 1, as they all lead to the exactly the same H0.

More importantly, the thermodynamic Friedmann equation, when carefully studied in relation
to our empirical and theoretical work, clearly seems to present a solution to the Hubble tension.
However, further discussions and testing by many other researchers are needed before a consensus
can be reached. We hope the research community is open-minded enough to carefully consider this
possibility and not simply ignore it due to biases based on the current consensus model, where the
Hubble tension has yet to be solved.

5. Conclusions

Haug and Tatum have outlined a way to solve the Hubble tension inside Rh = ct cosmology based
on new exact relations between the CMB temperature the Hubble constant and redshift, they however

use a numerical search algorithm to do so and have only considered z =
√

Rh
Rt

− 1 and z =
√

Rh
Rt

− 1
cosmological redshift scaling. Even if their method is intuitive and powerful we here demonstrate one
can simply solve one of their equations and further based on logic get to the one single H0 value that
make their model matching all observed SN Ia. In other words this leads to a closed form solution
of the Hubble tension inside Rh = ct cosmology. We get a H0 = 66.8712 ± 0.0019 km/s/Mpc when
relying on the very precise Dhal et al measured CMB value matching leading to matching all the
observed SN Ia redshifts across the full distance ladder in the PantheonPlusSH0ES compilation. This
is the same value Haug and Tatum got from their numerical search algorithm solution when solving
the Hubble tension. It is basically the same solution, one is using numerical search algorithm while the
later used closed form solution. The closed form solution is naturally more elegant as no numerical
search rutine with many calculations are needed to find the H0 that matches all the supernovas. Further

the solution in this paper is generalized for z =
(

Rh
Rt

)x
− 1 cosmological scaling, while Haug and

Tatum only have considered the case equivalent to x = 1 and x = 1
2 .

So it looks like we have a path to solving the Hubble tension in Rh = ct cosmology, but this
does not solve the Hubble tension inside Λ-CDM cosmology. Further investigation between Rh = ct
cosmology and Λ-CDM cosmology is therefore warranted.

Data Availability Statement: The supernova PantheonPlusSH0ES database that we have used can be found here:
https://github.com/PantheonPlusSH0ES/DataRelease/blob/main/Pantheon%2B_Data/1_DATA/all_redshifts_
PVs.csv
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