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Abstract: Using assembly theory of strings of any natural radix b we find some of their salient regularities. In

particular, we show that the upper bound of the assembly index depends quantitatively on the radix b and

the longest length N of a string that has the assembly index of N − k is given by N(N−1) = b2 + b + 1 and by

N(N−k) = b2 + b + 2k for 2 ≤ k ≤ 9. We also provide particular forms of such strings. Knowing the latter

bound, we conjecture that the maximum assembly index of a string of length N(N−2) ≤ N ≤ Nmax is given by

a(N,b)
max = ⌊N/2⌋+ b(b + 1)/2, where Nmax = 4b4 if b is even and Nmax = 4(b4 + 1) otherwise. For k = 1 such odd

length strings are nearly balanced and there are four such different strings if b = 2 and seventy-two if b = 3. We

also show that each k copies of an n-plet contained in a string decrease its assembly index at least by k(n − 1)− a,

where a is the assembly index of this n-plet. Finally, we show that the assembly depth of a minimum assembly

index string is equal to the assembly index of this string, the assembly depth of a maximum assembly index string

satisfies d(N,b)
amax ≥ ⌈log2(N)⌉. Since these results are, in general, also valid for b = 1, assembly theory subsumes

information theory.

Keywords: assembly theory; information theory; complexity measures; information entropy; mathematical

physics

1. Introduction

Assembly theory (AT), formulated in 2017, introduced the concept of an initial pool [1].

Definition 1. We call a set P(b)
0 := {0, 1, . . . , b − 1} that contains b ∈ N different basic symbols c, the initial

assembly pool.

The reader will find numerous results on AT in refs. [1–10], for example. Here, we extend the
results of our previous study [9] concerning bitstrings to strings of any natural radix b. We consider the
formation of strings C(N,b)

k of length N containing symbols from the initial assembly pool P(b)
0 within

the AT framework in consecutive assembly steps from basic symbols c and strings (doublets, triplets,
n-plets) assembled in previous steps. The ancient Greek verb symbállein means putting only two things
(“symbols”) together [11].

In fact, any embodiment of AT, with basic symbols representing LEGO® blocks, chemical bonds,
graphs, monomers, etc. assembled in any n-dimensional space (n ∈ C) [12] corresponds to the string
AT version. This is because in AT an assembly step always consists in joining two parts only, which can
be thought of as the left and right fragments of the newly formed string. Put simply, AT explains and
quantifies selection and evolution [7] but it is through the word (aka string or message), in particular a
nucleotide sequence in the case of b = 4, all AT things come into existence [13].

Definition 2. We call a set P(b)
s that contains basic symbols and strings assembled in previous steps {1, 2, . . . , s−

1} the working assembly pool.
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An assembly step s may consist of

c1 ◦ c2 = C(2,b)
k , C(Nl ,b)

l ◦ c2 = C(Nl+1,b)
k , c1 ◦ C(Nm ,b)

m = C(1+Nm ,b)
k , C(Nl ,b)

l ◦ C(Nm ,b)
m = C(Nl+Nm ,b)

k ,
(1)

where c1, c2 ∈ P(b)
0 , C(Nl ,b)

l , C(Nm ,b)
m ∈ P(b)

s−1, and Ck ∈ P(b)
s . Using Definitions 1 and 2, the assembly

index (ASI) of a string is the minimal achievable value of a difference between the cardinalities of
the working and initial assembly pools (ASPs) leading to this string, since at each assembly step the
cardinality of the working ASP increases by one. Therefore, the working ASP 2 cannot be identified
with the initial ASP 1; the initial ASP 1 must not contain strings of basic symbols (see Appendix G).

2. Results

Theorems 1 and 2 were already stated in our previous study [9] for b = 2. We restate them here
∀b for clarity.

Theorem 1. A quadruplet is the shortest string that allows for more than one ASI for all b.

Proof. N = 2 provides b2 available doublets with unit ASI. N = 3 provides b3 available triplets with
ASI equal to two. Only N = 4 provides b4 quadruplets that include b2 quadruplets with ASI equal to
two, that is b quadruplets C(4,b)

k,min = [∗ ∗ ∗∗] and b(b − 1) quadruplets C(4,b)
l,min = [∗ ⋆ ∗⋆], while the ASI

of the remaining b4 − b2 quadruplets is three.

For example, to assemble the quadruplet C(4,4)
k,min = [0202], we need to assemble the doublet [02]

and reuse it from the first step ASP P1, while there is nothing available to reuse, in the case of the
quadruplet C(4,4)

l = [0123].
Where the symbol value can be arbitrary, we write ∗ assuming that it is the same within the string.

If we allow for the 2nd possibility different from ∗, we write ⋆. Thus, C(2,b)
k = [∗∗], for example, is a

placeholder for all b strings, while C(2,b)
l = [∗⋆] a placeholder for all b(b − 1) strings. Furthermore, we

consider the degenerate case of just one basic symbol (b = 1).

Theorem 2. The minimum ASI a(N)(Cmin) as a function of N corresponds to the shortest addition chain for N
(OEIS A003313) for all b.

Proof. Strings Cmin for which a(N)(Cmin) = min
k

(
{a(N,b)(Ck)}

)
, ∀k ∈ {1, 2, . . . , bN} can be formed in

subsequent steps s by joining the longest string assembled so far with itself until N = 2s is reached.
Therefore, if N = 2s, then min

k

(
{a(2

s)(Ck)}
)
= s = log2(N). Only b2 strings have such ASI if N = 2s,

including respectively b and b(b − 1) strings

C(2s ,b)
k = [∗ ∗ . . . ], C(2s ,b)

l = [∗ ⋆ ∗ ⋆ . . . ], (2)

and the assembly pathway of each of the strings (2) is unique. At each assembly step, its length
doubles.

An addition chain for N ∈ N having the shortest length s ∈ N (commonly denoted as l(N))
is defined as a sequence 1 = a0 < a1 < · · · < as = N of integers such that ∀ j ≥ 1, aj = ak + al
for k ≤ l < j. Thus, an addition chain starts with one, not zero, as zero is the neutral element of
addition. For the same reason, two is considered the smallest prime, as one is the neutral element of
multiplication. Hence, j = 1 =⇒ k = l = 0 and the first step in creating an addition chain for N is
always a1 = 1 + 1 = 2; the ASI of any doublet is one. The second step in creating an addition chain
can be a2 = 1 + 1 = 2, a2 = 1 + 2 = 3, or a2 = 2 + 2 = 4. The 1st case does not represent the shortest
addition chain, the 2nd one corresponds to assembling a triplet based on the previously assembled
doublet, and the 3rd one corresponds to assembling a quadruplet from this doublet. Therefore, four is
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the smallest number achievable in two ways since a2 = 2 + 2 = 4 and a3 = 3 + 1 = 4, where the latter
case corresponds to assembling a quadruplet by joining a basic symbol to a triplet, which is not the
shortest way for assembling a quadruplet having a minimum ASI.

Thus, finding the shortest addition chain for N corresponds to finding the ASI of a string contain-
ing basic symbols and/or doublets and/or triplets containing these doublets for N ̸= 2s since due to
Theorem 1 only they provide the same assembly indices {0, 1, 2}.

The assembly pathways of strings a(N)
min of length N ̸= 2s are not unique. For example, a string

C(5,b)
min = [01010] can be assembled in three steps from three working ASPs P(2)

3 = {0, 1, 01, 0101},

P(2)
3 = {0, 1, 10, 1010}, and P(2)

3 = {0, 1, 01, 010}.

Theorem 3. The strings C(2s ,b)
min can contain at most two symbols if b > 1. Other minimum ASI strings of

length N ̸= 2s can contain at most three symbols if b > 2.

Proof. Minimum ASI strings of length N = 2s are formed by joining the newly assembled string to
itself, where a clear or mixed doublet is created in the first step. Minimum ASI strings of other lengths
admit a doublet and a triplet containing this doublet and an additional basic symbol.

To formally prove the first part, we can also use mathematical induction on the assembly step
s. If s = 1, then the minimum ASI strings C(2,b)

min are doublets of the form [c1c2], where c1, c2 ∈ P(b)
0 . If

c1 = c2, the string contains one distinct symbol, and if c1 ̸= c2, the string contains two distinct symbols.
In both cases, the number of distinct symbols does not exceed two. Now assume that for some k ∈ N,

all minimum ASI strings C(2k ,b)
min contain at most two distinct symbols. We must show that C(2k+1,b)

min

also contains at most two distinct symbols. Consider constructing C(2k+1,b)
min by joining two identical

minimum ASI strings C(2k ,b)
min

C(2k ,b)
min ◦ C(2k ,b)

min = C(2k+1,b)
min , (3)

with each other. By the inductive hypothesis, each C(2k ,b)
min contains at most two distinct symbols.

Therefore, their concatenation also contains at most two distinct symbols. By induction, for all s ∈ N,
the minimum ASI string C(2s ,b)

min contains at most two distinct symbols.
We will now show that other minimum ASI strings of length N ̸= 2s can contain at most three

distinct symbols if b > 2. We provide the construction of minimum ASI strings with three symbols. In
the first step s = 1, we create a doublet [c1c2] where c1, c2 ∈ P(b)

0 and c1 ̸= c2. Next, we combine the

existing doublet [c1c2] with a new symbol c3 ∈ P(b)
0 where c3 /∈ {c1, c2}. This forms a triplet [c1c2c3],

introducing a third distinct symbol and further increasing the ASI by 1. We continue assembling by
joining the longest string formed so far with itself or with previously formed strings, maintaining the
minimal increase in ASI.

Assume a contrario that there exists a minimum ASI string C(N,b)
min of length N ̸= 2s that contains

four or more distinct symbols. To incorporate a fourth symbol, at least one additional assembly step is
required beyond what is needed for the three symbols. This additional step implies an increase in ASI,
which contradicts the minimality of C(N,b)

min . Thus, Theorem 3 is proven.

The strings having non-minimum ASI can contain all symbols. For example, the string [14]

Ck = [01234012340123401234], (4)

has ASI a(20,5)(Ck) = 6 = a(20)
min + 1 and contains all five basic symbols P(5)

0 := {0, 1, 2, 3, 4}.

Theorem 4. A string containing the same three doublets has the same ASI as a string containing two pairs of
the same doublets, provided that both strings have the same distributions of other repetitions and have the same
lengths.
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Proof. Without loss of generality (w.l.o.g.), consider the following two strings of the same length N + 8
with ∗⋆ ̸= 01 and the same distributions of other repetitions (if there are any other repetitions)

Ck = [. . . 01 . . . 01 . . . 01 · · · ∗ ⋆ . . . ], Cl = [. . . 01 . . . 01 . . . 22 . . . 22 . . . ], (5)

where ∗⋆ ̸= 01. Creating a doublet takes one assembly step. Each appending of a doublet to an
assembled string counts as another assembly step. Hence, in a general case (i.e., for strings Ck, Cl
containing also other symbols), the string Ck requires six additional assembly steps, the same as the
string Cl , which completes the proof.

Theorem 5. A string containing the same three doublets has the same ASI as a string containing the same two
triplets, provided that both strings have the same distributions of other repetitions.

Proof. W.l.o.g. consider the following two strings of the same length N + 6 with the same distributions
of other repetitions

Ck = [. . . 01 . . . 01 . . . 01 . . . ], Cl = [. . . 010 . . . 010 . . . ]. (6)

Creating a triplet takes two assembly steps. Hence, in the general case, the string Ck requires four
additional assembly steps, the same as the string Cl , which completes the proof.

Theorem 6. A string containing the same two triplets has the same ASI as a string containing two pairs of
the same doublets, provided that both strings have the same distributions of other repetitions and have the same
lengths.

Proof. The proof stems from Theorems 4 and 5.

Theorem 7. A string containing the same two quadruplets of the minimum ASI has the same ASI as a string
containing the same three triplets, provided that both strings have the same distributions of other repetitions and
have the same lengths.

Proof. W.l.o.g. consider the following two strings of the same length N + 9 with the same distributions
of other repetitions

Ck = [. . . 0101 . . . 0101 · · · ⋆ . . . ], Cl = [. . . 010 . . . 010 . . . 010 . . . ]. (7)

Creating such a quadruplet takes two assembly steps. Hence, in a general case, the string Ck requires
five additional assembly steps, the same as the string Cl , which completes the proof.

Theorem 8. A string containing the same two quadruplets of the maximum ASI has the same ASI as a string
containing a doublet and the same two triplets based on this doublet, provided that both strings have the same
distributions of other repetitions.

Proof. W.l.o.g. consider the following two strings of the same length N + 8 with the same distributions
of other repetitions

Ck = [. . . 0001 . . . 0001 . . . ], Cl = [. . . 110 . . . 10 . . . 110 . . . ]. (8)

Creating such a quadruplet takes three assembly steps. Hence, in a general case, the string Ck requires
five additional assembly steps, the same as the string Cl , which completes the proof.
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Theorem 9. A string containing the same two doublets and the same two triplets not based on this doublet has
the same ASI as a string containing a doublet and the same two triplets based on this doublet, provided that both
strings have the same distributions of other repetitions and have the same lengths.

Proof. W.l.o.g. consider the following two strings of the same length N + 10 with the same distributions
of other repetitions

Ck = [. . . 110 . . . 00 . . . 110 . . . 00 . . . ], Cl = [. . . 110 . . . 10 . . . 110 · · · ∗ ⋆ . . . ], (9)

where ∗⋆ /∈ {11, 10}. In a general case, the string Ck requires seven additional assembly steps, the
same as the string Cl , which completes the proof.

In general, Theorems 1-9 show that

• k copies of a doublet in a string decrease the ASI of this string at least by k − 1;
• k copies of a triplet in a string decrease the ASI of this string at least by 2k − 2;
• k copies of a minimum ASI quadruplet in a string decrease the ASI of this string at least by 3k − 2;
• k copies of a maximum ASI quadruplet in a string decrease the ASI of this string at least by

3k − 3;

where, the phrase "at least" is meant to indicate that other repetitions, such as e.g. doublets forming
multiple quadruplets, etc. can further decrease the ASI of the string. This observation allows us to
state the following theorem.

Theorem 10. Each kr copies of an nr-plet C(nr ,b)
r contained in a string C(N,b)

m decrease its ASI at least by[
kr(nr − 1)− a(nr ,b)(Cr)

]
. That is

a(N,b)(Cm) ≤ N − 1 −
R

∑
r=1

[
kr(nr − 1)− a(nr ,b)(Cr)

]
, (10)

where R is the total number of repeated nr-plets.

Proof. W.l.o.g. consider the following string

C(N,b)
m = [. . . [c1c2 . . . cn] . . . [c1c2 . . . cn] . . . ], (11)

containing two copies of an n-plet C(n,b)
l = [c1c2 . . . cn]. The n-plet C(n,b)

l can be assembled in a(n,b)(Cl)

steps and appended to the assembled string Cm in one step. Consider that the ASI of the n-plet C(n,b)
l

is a(n,b)(Cl) = n − 1, i.e. the n-plet does not have any repetitions that can be reused. Then one copy
of this n-plet - as expected - does not decrease the ASI of the string C(N,b)

m , as 1(n − 1)− (n − 1) = 0,
while more copies k decrease it by (n − 1)(k − 1). On the other hand, if a(n,b)(Cl) < n − 1 then even a
single copy of this n-plet will decrease the ASI of Cm.

For example, due to the presence of three copies of a 5-plet [01001], each with a(5,6)([01001]) = 3,
in a string

C(24,6)
k = [12|01001|21|01001|235|01001|52], (12)

its ASI amounts to a(24,6)(Ck) = 24 − 1 − (3 · (5 − 1)− 3) = 14. The relation (10) provides the upper
bound on ASI as it does not describe a situation in which n-plet for n > 2 is assembled on a doublet
also present in one copy in the string. For example, the string a(14,9)([56101781014301]) = 10, while
14 − 1 − (2(3 − 1)− 2) = 11. We note that the maximum ASI decrease is provided by 2s-plets of the
minimum ASI and amounts to k(n − 1)− log2(n) = k(2s − 1)− s.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 8 November 2024 doi:10.20944/preprints202409.1581.v5

https://doi.org/10.20944/preprints202409.1581.v5


6 of 22

Another quantity quantifying the complexity of a string is the assembly depth (ASD) defined [15]
as

d(Nk ,b)
s (Ck) := max

(
d(Nl ,b)(Cl), d(Nm ,b)(Cm)

)
+ 1, (13)

where d(1,b)
0 (c) := 0, and d(Nl ,b)(Cl) and d(Nm ,b)(Cm) are the ASDs of two substrings Cl , Cm of the string

Ck that were joined in step s, where for N ≥ 4, and if there are more assembly pathways with different
depths wj leading to a string, which happens if at least two independent assembly steps are possible,
the minimum pathway depth is the ASD of this string. Hence, the ASD captures the notion of an
independent assembly step.

Theorem 11. If a working ASP contains strings having the same ASD they were assembled in independent
assembly steps.

Proof. W.l.o.g. assume a contrario that two strings Cl , Cm in the working ASP have the same ASD, i.e.,
d(Nl ,b)(Cl) = d(Nm ,b)(Cm), but Cm was used in the assembly of Cl along with a basic symbol c. Then

d(Nl ,b)
s (Cl) = max

(
d(Nm ,b)(Cm), d(1,b)(c)

)
+ 1 = d(Nm ,b)(Cm) + 1 ̸= d(Nm ,b)(Cm), (14)

which contradicts our assumption and completes the proof.

In other words, if two strings Cl , Cm in the working ASP have the same ASD, their assembly
pathways are unrelated to each other; by the defining equation (13) neither of them could have been
used in the assembly pathway of the other.

Theorem 12. The ASD of any minimum ASI string C(N,b)
min is equal to the ASI of this string, d(N,b)

amin = a(N)
min .

Proof. We need to show that d(N,b)
amin = a(N)

min. While constructing the minimum ASI string, we start with
a doublet and follow the shortest addition chain for N, joining this doublet with itself or with a basic
symbol to form a triplet. At each assembly step, the ASD increases by one, as we join the assembled
string with a string or a basic symbol from the working ASP and we cannot perform independent
assembly steps. Since, by Theorem 2, the minimum ASI corresponds to the length of the shortest
addition chain l(N), we have

ds
(N,b)

(
C(N,b)

min

)
= l(N) = a(N)

min. (15)

This completes the proof (see Appendix F for additional comments).

Theorems 11 and 12 show that

• the working ASP of a minimum ASI string cannot contain strings assembled in independent
assembly steps,

• the working ASP of a non-minimum ASI string must contain at least two such strings, and
• the assembly pathway of a maximum ASI string will tend to maximize their number in the

working ASP, and hence to minimize the possible ASD, taking into account the saturation of the
working ASP, as the number of distinct n-plets in the working ASP cannot exceed bn.

Theorem 13. The ASD of any maximum ASI string C(N,b)
max satisfies

d(N,b)
amax = ⌈log2(N)⌉. (16)

Proof. Let d(N) := d(N,b)
amax . For N = 2 we have d(2) = 1, as we are joining basic symbols from the initial

ASP. This is the base case. In an assembly tree of ASD d(N), the maximum number of leaves that can be
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combined is 2d(N)
, because at each assembly step, we join two substrings. Therefore, the maximum

length Nmax of a Cmax string that can be assembled with ASD d(N) satisfies:

Nmax ≤ 2d(N)
. (17)

This implies that
d(N) ≥ log2(Nmax), (18)

and leads to the relation (16), since both d(N) and Nmax are natural numbers and the latter does not
have to be a power of two. We can also use mathematical induction. For N ≥ 2 and for N + 1 we have
respectively

d(N) = ⌈log2(N)⌉ =⇒ 2d(N)−1 < N ≤ 2d(N)
,

d(N+1) = ⌈log2(N + 1)⌉ =⇒ 2d(N+1)−1 − 1 < N ≤ 2d(N+1) − 1,

max
(

2d(N)−1, 2d(N+1)−1 − 1
)
<N ≤ min

(
2d(N)

, 2d(N+1) − 1
)

,

(19)

where d(N) ∈ N implies that either d(N+1) = d(N) or d(N+1) = d(N) + 1. Hence,

d(N+1) = d(N) =⇒ 2d(N)−1 < N ≤ 2d(N) − 1,

d(N+1) = d(N) + 1 =⇒ 2d(N) − 1 < N ≤ 2d(N)
,

(20)

which completes the proof.

Theorems 12 and 13 are somehow counterintuitive. For example, the string C(11,2)
max = [10100001110]

has the ASI a(11,2)
max = 8 and the ASD d(11,2)

amax = 4, while the string C(11,2)
min = [10101010101] has a smaller

ASI a(11)
min = 5 but a larger ASD d(11,2)

amin = 5.

For example, the ASD of a string C(7,2)
max = [0001110] is d(7,2)

amax = ⌈log2(7)⌉ = 3 as

00 d1 = 1, 00 w1 = 1, 00 w1 = 1, 00 w1 = 1,
01 d2 = 1, 01 w2 = 1, 01 w2 = 1, 000 w2 = 2,
11 d3 = 1, 11 w3 = 1, 0001 w3 = 2, 0001 w3 = 3,
110 d4 = 2, 0001 w4 = 2, 00011 w4 = 3, 00011 w4 = 4,
0001 d5 = 2, 000111 w5 = 3, 000111 w5 = 4, 000111 w5 = 5,
0001110 d6 = 3, 0001110 w6 = 4, 0001110 w6 = 5, 0001110 w6 = 6,

(21)

even though this string can be assembled with three larger pathway depths w6 = {4, 5, 6} and the
ASD of a minimum ASI string C(7,2)

min = [0101010] is

01 d1 = 1, 0101 d2 = 2, 010101 d3 = 3, 0101010 d4 = 4. (22)

Similarly, the ASD of a string C(8,2)
max = [00011101] is d(8,2)

amax = ⌈log2(8)⌉ = 3 as

00 d1 = 1, 00 w1 = 1, 00 w1 = 1, 01 w1 = 1,
01 d2 = 1, 01 w2 = 1, 01 w2 = 1, 001 w2 = 2,
11 d3 = 1, 11 w3 = 1, 0001 w3 = 2, 0001 w3 = 3,
0001 d4 = 2, 0001 w4 = 2, 00011 w4 = 3, 00011 w4 = 4,
1101 d5 = 2, 000111 w5 = 3, 000111 w5 = 4, 000111 w5 = 5,
00011101 d6 = 3, 00011101 w6 = 4, 00011101 w6 = 5, 00011101 w6 = 6.

(23)

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 8 November 2024 doi:10.20944/preprints202409.1581.v5

https://doi.org/10.20944/preprints202409.1581.v5


8 of 22

However, the non-maximum ASI string C(8,2)
k = [01001011] has only two doublets that can be assem-

bled in independent steps. Hence, its ASD cannot be decreased to ⌈log2(8)⌉

01 d1 = 1, 01 w1 = 1,
11 d2 = 1, 010 w2 = 2,
010 d3 = 2, 010010 w3 = 3,
010010 d4 = 3, 0100101 w4 = 4,
01001011 d5 = 4, 01001011 w5 = 5.

(24)

The seven-bit string is the longest string that can have the maximum ASI a(7,2)
max = 7 − 1 = 6. There

are four such bitstrings containing two clear triplets and the starting bit at the end or the ending bit at
the start, that is

[∗ ∗ ∗ ⋆ ⋆ ⋆ ∗] and [⋆ ∗ ∗ ∗ ⋆ ⋆ ⋆], (25)

and their lengths cannot be increased without a repetition of a doublet, which keeps the ASI at the
same level a(8,2)

max = 8 − 2 = 6.
This observation and Theorem 2 motivated us to develop a general method to construct the

longest possible string having the ASI a(N,b)
max (C(N−1)) = N − 1, as a function of the radix b. We denote

the length of this string by N(N−1) or N(N−1)(b), and we call this string a C(N−1) string.
After a few groping try-outs, we eventually reached two stable methods (cf. Appendices, Meth-

ods A and B). In both methods, we start with an initial balanced string of length 3b containing b clear
triplets ordered as

[0001112 . . . (b − 2)(b − 1)(b − 1)(b − 1)]. (26)

The doublets that can be inserted into the initial string (26) can be arranged in a b × b matrix

��ZZ00 ��01 02 . . . 0(b − 1)
10 ��ZZ11 ��12 . . . 1(b − 1)
20 21 ��ZZ22 . . . 2(b − 1)
. . . . . . . . . . . . . . .

(b − 2)0 (b − 2)1 (b − 2)2 . . . (((((((
(b − 2)(b − 1)

(b − 1)0 (b − 1)1 (b − 1)2 . . . (((((((hhhhhhh(b − 1)(b − 1)


, (27)

where the crossed out entries on a diagonal cannot be reused, as they would create repetitions in this
string. If we assume that we shall not insert doublets between the clear triplets of the string (26), we
can also cross out the entries in the first superdiagonal of the matrix (27). The strings of odd lengths
generated by these general methods are not only the longest but also the most balanced. This can be
stated in the following theorem.

Theorem 14 (N(N−1)). The longest length of a string that has the ASI of N − 1 is given by

N(N−1) = 3b + (b − 1)2 = b2 + b + 1 (28)

(OEIS A353887) and this string is nearly balanced, that is

N(N−1) = bNc + 1, (29)

where Nc = b + 1 is the number of occurrences of all but one symbol within the string, and its Shannon entropy
is

H(C(N−1)) = −
b−1

∑
c=0

pc log2(pc) = −(b − 1)
N(N−1) − 1

bN(N−1)
log2

(
N(N−1) − 1

bN(N−1)

)
−

N(N−1) − 1 + b
bN(N−1)

log2

(
N(N−1) − 1 + b

bN(N−1)

)
=

=
1 − b2

b2 + b + 1
log2

(
b + 1

b2 + b + 1

)
− b + 2

b2 + b + 1
log2

(
b + 2

b2 + b + 1

)
≲ log2(b).

(30)
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The proof of Theorem 14 is given in Appendix D. A C(N−1) string must contain all clear triplets
and all doublets and if it is generated by Method A or B it is terminated with 0 and has a form

C(N−1) = [000111222 . . . 0]. (31)

Although the case for b = 1 is degenerate, as no information can be conveyed using only one
symbol (H(C(N−1)) = 0 in this case), nothing precludes the assembly of such defunct strings and

the formula (28) yields the correct result; the string [000] is the longest string with a(N,1)
max = N − 1 by

Theorem 1, as for b = 1 the upper and the lower bound on the ASI are the same, a(N,1)
max = a(N)

min (OEIS
A003313). This is the only case where the maximum ASI is not a monotonically nondecreasing function
of N.

For b = 3, only two doublets can be introduced without repetitions into the initial string (26),
leading to twelve unique strings of length N(N−1) = 13

[000111222|0210], [000111222|1020], [20|21|000111222], [21|02|000111222], [0001112|02|22|10], [0001112|10|22|20],

[21|000|20|111222], [000|20|111222|10], [02|000111222|10], [20|00|21|0111222], [21|0001112|02|22], [21|000111222|02].
(32)

Finally, we have to multiply the cardinality of this set by 3! = 6 to account for permutations. For
example, the first string [0001112220210], is equivalent to five strings [0002221110120], [1110002221201],
[1112220001021], [2220001112102], and [2221110002012]. Hence, there are seventy-two different strings
of length N(N−1)(3) = 13.

Subsequently, we considered other C(N−k) strings of length N(N−k) with the maximum ASI
amax(C(N−k)) = N − k for k > 1.

Theorem 15 (N(N−k)). For all b > 1 and 2 ≤ k ≤ 9 the longest length of a string that has the ASI of N − k is
given by

N(N−k) = b2 + b + 2k. (33)

The proof of Theorem 15 is given in Appendix E. This result disproves our upper bound Conjecture
1 for b = 2 stated in our previous study [9]. If the strings of Theorem 15 are based on strings generated
by Method A or B, for b > 2 they owe their properties to the following distributions of symbols

C(N−2) = [010000111222 . . . 10 . . . 0],

C(N−3) = [01010000111222 . . . 10 . . . 0],

C(N−4) = [0101010000111222 . . . 10 . . . 0],

C(N−5) = [010101000000111222 . . . 10 . . . 0],

C(N−6) = [01010100000011111222 . . . 10 . . . 0],

C(N−7) = [0101010000000111111222 . . . 10 . . . 0],

C(N−8) = [010101000000011011111222 . . . 10 . . . 0],

C(N−9) = [01010100100000011011111222 . . . 10 . . . 0].

(34)

For the strings of the form (34) the fractions in the Shannon entropy are

p0 =
b + k + f0

b2 + b + 2k
, p1 =

b + k + f1

b2 + b + 2k
, p2,...,b−1 =

b + 1
b2 + b + 2k

, (35)

where f0 = 3, f1 = −1 if k = 5 and f0 = 2, f1 = 0 otherwise, as [00] is inserted into C(N−5), [11] into
C(N−6) and [01] or [10] otherwise. This leads to Shannon entropy

H(C(N−k)) = − b2 − b − 2
b2 + b + 2k

log2

(
b + 1

b2 + b + 2k

)
− b + k + f1

b2 + b + 2k
log2

(
b + k + f1

b2 + b + 2k

)
− b + k + f0

b2 + b + 2k
log2

(
b + k + f0

b2 + b + 2k

)
. (36)
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The entropies (30) and (36) are shown in Figure 1. Radix b = 4 is the smallest one at which the
entropy (36) is a monotonically decreasing function. For b ∈ {2, 3} there is a local entropy minimum
for k = 5 and for b = 2 an additional local entropy minimum for k = 2.

1 2 3 4 5 6 7 8 9
0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

b = 2

b = 3

b = 4

b = 5

k

H
(C

(N
−
k
)
)

Figure 1. Shannon entropies H(C(N−k)) for 1 ≤ k ≤ 9 and 2 ≤ b ≤ 5.

Conjecture 16 (Nmax > N(N−k)). If b > 1 and N(N−2) ≤ N ≤ Nmax then

a(N,b)
max =

{
a(N−1,b)

max + 1 iff N = 2l,
a(N−1,b)

max iff N = 2l + 1,
. (37)

or equivalently

a(N,b)
max =

⌊
N
2

⌋
+

b(b + 1)
2

, (38)

where

Nmax =

{
4b4 iff b = 2l,
4(b4 + 1) iff b = 2l + 1,

. (39)

In other words, if N ≥ N(N−2), then ASI increases by one, where N increases by two (b(b + 1)/2 are triangular
numbers, OEIS A000217).

First, we note that maximum ASI must rise. If it were constant for N > N̂max, then at some even
larger N it would inevitably become lower than the minimum ASI bound 2 which also rises, and this
would be a contradiction. W.l.o.g. we aim to prove this conjecture for b = 2. We note that inserting
any doublet into a C(12,2)

(N−3) string (A19) at any position creates a triplet. Using the equation (10) of
Theorem 10 we have
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as = as−2 + 1, Ns = Ns−2 + 2,

as = Ns − 1 −
Rr

∑
r=1

[
kr(nr − 1)− a

(
C(nr ,b)

r

)]
,

as−2 = Ns−2 − 1 −
Rs−2

∑
p=1

[
kp(np − 1)− a

(
C
(np ,b)
p

)]
,

as − as−2 = (Ns−2 + 2)− 1 −
Rr

∑
r=1

[
kr(nr − 1)− a

(
C(nr ,b)

r

)]
−
(

Ns−2 − 1 −
Rp

∑
p=1

[
kp(np − 1)− a

(
C
(np ,b)
p

)])
=

= 2 −
Rr

∑
r=1

[
kr(nr − 1)− a

(
C(nr ,b)

r

)]
+

Rp

∑
p=1

[
kp(np − 1)− a

(
C
(np ,b)
p

)]
= 1,

Rr

∑
r=1

[
kr(nr − 1)− a

(
C(nr ,b)

r

)]
=

Rp

∑
p=1

[
kp(np − 1)− a

(
C
(np ,b)
p

)]
+ 1,

(40)

for any step s if only N(N−2) ≤ Ns ≤ Nmax. Now, assume that ∀r, a
(

C(nr ,b)
r

)
= nr − 1 and ∀p,

a
(

C
(np ,b)
p

)
= np − 1. Then

Rr

∑
r=1

[(kr − 1)(nr − 1)] =
Rp

∑
p=1

[
(kp − 1)(np − 1)

]
+ 1,

Rr

∑
r=1

nrkr −
Rr

∑
r=1

nr −
Rr

∑
r=1

kr + Rr =
Rp

∑
p=1

npkp −
Rp

∑
p=1

np −
Rp

∑
p=1

kp + Rp + 1.

(41)

The proof of the Conjecture 16 must show the conditions for the equations (40) and (41) to hold. We
note that the assumption used in the equation (41) is valid only for nr ≤ N(N−1) and np ≤ N(N−1).
The bounds of Theorems 14 and 15 and Conjecture 16 are illustrated in Figure 2.

0 5 10 15 20 25 30

0

5

10

15

20

25

30

N

a
(N

,b
)

b = 1

b = 2

b = 3

b = 4

b = 5

Figure 2. Lower assembly index bound (red) and upper bounds (green) for 1 ≤ b ≤ 4, lower assembly

depth bound (blue) of C(N,b)
max strings for b > 1, log2(N) (red, dash-dot), and OEIS A014701 sequence

(cyan) for 0 < N ≤ 33.

The results thus far led us to a simple method of determining the ASI of a maximum ASI and a
minimum ASD string and strengthened our Conjectures 3 and 4 stated in the previous study [9]. The
method is based on unique 2s-plets and powers of two, as shown in Table 1. First, a maximum ASI
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string is sequenced, every two symbols to find the number nUAD of unique adjoining doublets ×2(b).

In particular, a C(N−1) string (A3) or (A4) contain the maximum of
⌊

N(N−1)/2
⌋

unique adjoining
doublets, a C(N−2) string (A13) contains the maximum of N(N−2)/2 − 1 unique adjoining doublets,
and so on. In general, a C(N−k) string contains the maximum of

nUAD =

⌊N(N−k)

2

⌋
− k + 1 =

{
b(b + 1)/2 = ∑b

l=1 l iff k = 1,
b(b + 1)/2 + 1 = ∑b

l=1 l + 1 iff k ̸= 1,
. (42)

unique adjoining doublets, where N(N−k) is given by the relations (28) or (33), which is independent
of k.

Table 1. Distributions of n-plets in strings of maximum ASI.

N ×
2 (

b=
1)

×
2 (

b=
2)

×
2 (

b=
3)

×
2 (

b=
4)

×
4 (

b)

×
8 (

b)

×
16

(b
)

×
32

(b
)

la
st
×

8

la
st
×

4

la
st
×

2

la
st
×

1

a(
N

,1
)

m
ax

a(
N

,2
)

m
ax

a(
N

,3
)

m
ax

a(
N

,4
)

m
ax

1 0 0 0 0 0 0 0 0 N N N 0 0 0 0
2 1 1 1 1 0 0 0 0 N N N 1 1 1 1
3 1 1 1 1 0 0 0 0 N N Y 2 2 2 2
4 1 2 2 2 1 0 0 0 N N N 2 3 3 3
5 1 2 2 2 1 0 0 0 N N Y 3 4 4 4
6 1 3 3 3 1 0 0 0 N Y N 3 5 5 5
7 1 3 3 3 1 0 0 0 N Y Y 4 6 6 6
8 1 3 4 4 2 1 0 0 N N N 3 6 7 7
9 1 3 4 4 2 1 0 0 N N Y 4 7 8 8

10 1 4 5 5 2 1 0 0 N Y N 4 8 9 9
11 1 3 5 5 2 1 0 0 N Y Y 5 8 10 10
12 1 4 6 6 3 1 0 0 Y N N 4 9 11 11
13 1 3 6 6 3 1 0 0 Y N Y 5 9 12 12
14 1 4 6 7 3 1 0 0 Y Y N 5 10 12 13
15 1 3 6 7 3 1 0 0 Y Y Y 6 10 13 14
16 1 4 7 8 4 2 1 0 N N N N 4 11 14 15
17 1 3 6 8 4 2 1 0 N N N Y 5 11 14 16
18 1 4 7 9 4 2 1 0 N N Y N 5 12 15 17
19 1 3 6 9 4 2 1 0 N N Y Y 6 12 15 18
20 1 4 7 10 5 2 1 0 N Y N N 5 13 16 19
21 1 3 6 10 5 2 1 0 N Y N Y 6 13 16 20
22 1 4 7 10 5 2 1 0 N Y Y N 6 14 17 20
23 1 3 6 10 5 2 1 0 N Y Y Y 7 14 17 21
24 1 4 7 11 6 3 1 0 Y N N N 5 15 18 22
25 1 3 6 10 6 3 1 0 Y N N Y 6 15 18 22
26 1 4 7 11 6 3 1 0 Y N Y N 6 16 19 23
27 1 3 6 10 6 3 1 0 Y N Y Y 7 16 19 23
28 1 4 7 11 7 3 1 0 Y Y N N 6 17 20 24
29 1 3 6 10 7 3 1 0 Y Y N Y 7 17 20 24
30 1 4 7 11 7 3 1 0 Y Y Y N 7 18 21 25
31 1 3 6 11 7 3 1 0 Y Y Y Y 8 18 21 25
32 1 4 7 11 8 4 2 1 N N N N 5 19 22 26
33 1 3 6 11 8 4 2 1 N N N Y 6 19 22 26

Subsequently, these doublets form ×4(b) unique adjoining quadruplets, quadruplets form ×8(b)
unique adjoining octuples, and so on depending on the length of the string N and the radix b, as there
can be at most b2s

unique 2s-plets. The columns "last 2s" indicate if the assembled string should be
terminated with a single substring of length 2s in descending order. The empty fields in the respective
columns for N > 1 indicate that a given ×2s substring can be interpreted as either a "regular" single
×2s substring or a last ×2s substring if ×2s = 1.
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For example, the N(N−3) string (A20) of length N(N−3) = 18 for b = 3 can be assembled as

0 ◦ 1 = [01], 0 ◦ 0 = [00], 1 ◦ 1 = [11], 1 ◦ 2 = [12],

2 ◦ 2 = [22], 1 ◦ 0 = [10], 2 ◦ 0 = [20] (×2(b=3) = 7),

[01] ◦ [01] = [0101], [00] ◦ [00] = [0000], [11] ◦ [12] = [1112], [22] ◦ [10] = [2210] (×4 = 4),

[0101] ◦ [0000] = [01010000], [1112] ◦ [2210] = [11122210] (×8 = 2),

[01010000] ◦ [11122210] = [0101000011122210] (×16 = 1),

[0101000011122210] ◦ [20] = [010100001112221020] (last × 2),

7 + 4 + 2 + 1 + 1 =15 steps.

(43)

Similarly, the N(N−1) string (A3) of length N(N−1) = 21 for b = 4 can be assembled, as shown in Table 1
as

0 ◦ 0 = [00], 0 ◦ 1 = [01], 1 ◦ 1 = [11], 2 ◦ 2 = [22], 2 ◦ 3 = [23],

3 ◦ 3 = [33], 1 ◦ 0 = [10], 2 ◦ 1 = [21], 3 ◦ 2 = [32], 0 ◦ 3 = [03] (×2(b=4) = 10),

[00] ◦ [01] = [0001], [11] ◦ [22] = [1122], [23] ◦ [33] = [2333],

[10] ◦ [21] = [1021], [32] ◦ [03] = [3203] (×4 = 5),

[0001] ◦ [1122] = [00011122], [2333] ◦ [1021], [23331021] (×8 = 2),

[00011122] ◦ [23331021] = [0001112223331021] (×16 = 1),

[0001112223331021] ◦ [3203] = [00011122233310213203] (last × 4),

[00011122233310213203] ◦ 0 = [000111222333102132030] (last × 1),

10 + 5 + 2 + 1 + 1 + 1 =20 steps.

(44)

For N < 15 and for other small N this combinatorics is valid also for b = 1, where obviously
max(×2s) = 1. For example, the string of length N = 15 can be assembled in six steps as

0 ◦ 0 = [00], (×2(b=1) = 1),

[00] ◦ [00] = [0000] (×4(b=1) = 1),

[0000] ◦ [0000] = [00000000] (×8(b=1) = 1),

[00000000] ◦ [0000] = [000000000000] (last × 4),

[000000000000] ◦ [00] = [00000000000000] (last × 2),

[00000000000000] ◦ [0] = [000000000000000] (last × 1),

1 + 1 + 1 + 1 + 1 + 1 =6 steps.

(45)

However, this is the 1st exception for b = 1 as the ASI of this string is five if it is assembled using
doublet [00] and triplet [000]. For b = 1 the method produces OEIS A014701 sequence corresponding
to the number of steps to reach 1 starting from N0 and assigning Ns+1 = Ns − 1 if Ns is odd and
Ns+1 = Ns/2 otherwise.

We further note that the method illustrated in Table 1 cannot be used to construct the maximum
ASI string. For example, both the following two distributions of doublets for N = 6 satisfy the
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distributions of Table 1. However, only the left one correctly reflects the maximum ASI of the assembled
string.

0 ◦ 0 = [00], 0 ◦ 1 = [01], 1 ◦ 1 = [11] (×2(b=2) = 3), 0 ◦ 0 = [00], 1 ◦ 0 = [10], 1 ◦ 1 = [11] (×2(b=2) = 3),
[00] ◦ [01] = [0001] (×4 = 1), [00] ◦ [10] = [0010] (×4 = 1),

[0001] ◦ [11] = [000111] (last × 2), [0010] ◦ [11] = [001011] (last × 2),
3 + 1 + 1 = 5 steps, 3 + 1 + 1 = 5 ̸= 4 steps,

(46)

as the right one can be assembled in four steps with P(2)
4 = {0, 1, 01, . . . }. Similarly, only the top

distribution of doublets below correctly reflects the maximum ASI of the assembled string for N = 10

0 ◦ 1 = [01], 0 ◦ 0 = [00], 1 ◦ 1 = [11], 1 ◦ 0 = [10] (×2(b=2) = 4),
[01] ◦ [00] = [0100], [00] ◦ [11] = [0011] (×4 = 2),

[0100] ◦ [0011] = [01000011] (×8 = 1),
[01000011] ◦ [10] = [0100001110] (last × 2),

4 + 2 + 1 + 1 = 8 steps,

0 ◦ 0 = [00], 0 ◦ 1 = [01], 1 ◦ 0 = [10], 1 ◦ 1 = [11] (×2(b=2) = 4),
[00] ◦ [01] = [0001], [10] ◦ [11] = [1011] (×4 = 2),

[0001] ◦ [1011] = [00011011] (×8 = 1),
[0001011] ◦ [11] = [0001101111] (last × 2),

4 + 2 + 1 + 1 8 ̸= 6 steps,

(47)

as the bottom one can be assembled in six steps with P(2)
6 = {0, 1, 11, 011, . . . }. Furthermore, this

method tends to exaggerate the estimated maximum ASI value, that is,

a(N,b)
max ≤ a(N,b)

method(Ck), (48)

where a(N,b)
method is the ASI of a string Ck determined by the method illustrated in Table 1. For example,

the first six strings below contain four unique doublets instead of the required three. Therefore

C1 = [00|10|01|11], a(8,2)(C1) = 5, a(8,2)
method(C1) = 7,

C2 = [00|10|11|01], a(8,2)(C2) = 5, a(8,2)
method(C2) = 7,

C3 = [00|01|10|11], a(8,2)(C3) = 5, a(8,2)
method(C3) = 7,

C4 = [00|01|11|10], a(8,2)
max (C4) = 6, a(8,2)

method(C4) = 7,

C5 = [00|11|10|01], a(8,2)(C5) = 5, a(8,2)
method(C5) = 7,

C6 = [00|11|01|10], a(8,2)(C6) = 5, a(8,2)
method(C6) = 7,

C7 = [00|01|11|00], a(8,2)
max (C7) = 6 = a(8,2)

method(C7) = 6.

(49)

Further research should consider researching the formula equivalent to (28) that captures a quadruplet
repetition, similarly as b2 + b1 + b0 captures a doublet repetition.

3. Discussion

Applications of AT seem to be promising. It offers a new lens for studying the construction
of biological molecules like DNA and proteins. By analyzing the steps needed to assemble these
molecules from basic building blocks, researchers can gain deeper insights into the evolutionary
constraints and optimizations that shape biological pathways. This perspective also sheds light
on the efficient construction of cellular structures and helps to identify the minimum number of
assembly steps that define biological complexity, reinforcing the idea that life is characterized by highly
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organized pathways. Furthermore, AT provides an essential tool for understanding the growth of
complexity in biological systems over evolutionary time. By quantifying the assembly steps required
to form increasingly complex organisms, scientists can map the trajectory of evolutionary development
and identify key transitions that lead to higher levels of structural and functional complexity. It can
guide the design and optimization of synthetic biological systems by minimizing the number of steps
required to build new biological pathways, making bioengineering more efficient and scalable. The
ability to model and simplify complex biological processes using AT could lead to the development of
more robust and adaptable synthetic organisms.

Strings having lengths N(N−1) (e.g. (A3) or (A4)) are necessarily the most balanced: all but one
symbol occur b + 1 times and one symbol occurs b + 2 times within a string C(N−1). However, if the
length of a string is constant, it will tend to evolve to decrease the Shannon entropy [16,17] and, hence,
to become less balanced. As the energy of a black hole that can be thought of as a balanced bitstring
[18] can be two times the energy of the entropy variation sphere that it generates [19], this tendency
to imbalance seems to be associated with the minimum energy condition. For example, the Shannon
entropy of the SARS-CoV genome containing N = 29903 nucleobases decreased from H = 1.3565 to
1.3562 within two years after the Wuhan outbreak [9,16]. The minimum ASI for this length of the string,
given by the OEIS A003313, is a(29903)

min = 19. Perhaps, entropy (36) has other local entropy minima for
b < 4 and for k > 9 and is a monotonically decreasing function only for b ≥ 4. This could be the reason
nature has chosen the non-binary radix b = 4 and four nucleobases to encode genetic information.
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Appendix A. Method A for Generating C(N−1) String

We start with a string of clear triplets (26). In the 1st step, we create a string containing doublets
on the first subdiagonal of the matrix (27) starting with 10

[102132 . . . (b − 2)(b − 3)(b − 1)(b − 2)], (A1)

and we append it to the string (26). With this step, we also eliminate the doublets on the second
superdiagonal starting with the doublet 02, as well as the doublet (b − 1)1. In the 2nd step, we create a
string containing doublets on the third superdiagonal beginning with the doublet 03

[0314 . . . (b − 5)(b − 2)(b − 4)(b − 1)], (A2)

and append it to the string created so far. With this step, we also remove the doublet (b − 2)0 and
the middle part of the second subdiagonal containing {31, 42, . . . , (b − 2)(b − 4)}. And so on. Finally,
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we append 0 if b is even. This process is illustrated in Figure A1 and for 3 ≤ b ≤ 13 generates the
following C(N−1) strings

[000111222|10|20],

[000111222333|102132|03|0],
[000111222333444|10213243|0314|20|40],

[000111222333444555|1021324354|031425|0415|2053|0],
[000111222333444555666|102132435465|03142536|041526|2064|0516|30],

[000111222333444555666777|10213243546576|0314253647|04152637|2075|051627|306174|0],
[. . . |1021324354657687|031425364758|0415263748|2086|05162738|30617285|0718|40],

[. . . |102132435465768798|03142536475869|041526374859|2097|0516273849|
3061728396|071829|408195|0],
[. . . |102132435465768798a9|031425364758697a|0415263748596a|20a8|
05162738495a|3061728394a7|0718293a|408192a6|091a|50],

[. . . |102132435465768798a9ba|031425364758697a8b|0415263748596a7b|20b9|
05162738495a6b|3061728394a5b8|0718293a4b|408192a3b7|091a2b|50a1b6|0],
[. . . |102132435465768798a9bacb|031425364758697a8b9c|0415263748596a7b8c|20ca|
05162738495a6b7c|3061728394a5b6c9|0718293a4b5c|408192a3b4c8|091a2b3c|50a1b2c7|0b1c|60].

(A3)

3 4 5 6 7 8 9

0 → 2 → 2 3 0 → 2 3 → 2 3 5 0 → 2 3 5 → 2 3 5 7

↓ 00 01 02 ↓ 00 01 02 03 ↓ 00 01 02 03 04 ↓ 00 01 02 03 04 05 ↓ 00 01 02 03 04 05 06 ↓ 00 01 02 03 04 05 06 07 ↓ 00 01 02 03 04 05 06 07 08

1 10 11 12 1 10 11 12 13 1 10 11 12 13 14 1 10 11 12 13 14 15 1 10 11 12 13 14 15 16 1 10 11 12 13 14 15 16 17 1 10 11 12 13 14 15 16 17 18

2 20 21 22 20 21 22 23 4 20 21 22 23 24 4 20 21 22 23 24 25 4 20 21 22 23 24 25 26 4 20 21 22 23 24 25 26 27 4 20 21 22 23 24 25 26 27 28

30 31 32 33 30 31 32 33 34 30 31 32 33 34 35 6 30 31 32 33 34 35 36 6 30 31 32 33 34 35 36 37 6 30 31 32 33 34 35 36 37 38

40 41 42 43 44 40 41 42 43 44 45 40 41 42 43 44 45 46 40 41 42 43 44 45 46 47 8 40 41 42 43 44 45 46 47 48

1 2 50 51 52 53 54 55 50 51 52 53 54 55 56 50 51 52 53 54 55 56 57 50 51 52 53 54 55 56 57 58

0 60 61 62 63 64 65 66 60 61 62 63 64 65 66 67 60 61 62 63 64 65 66 67 68

00 00 01 70 71 72 73 74 75 76 77 70 71 72 73 74 75 76 77 78

10 11 80 81 82 83 84 85 86 87 88

10 11 12 13

0 → 2 3 5 7 → 2 3 5 7 9 0 → 2 3 5 7 9 → 2 3 5 7 9 11

↓ 00 01 02 03 04 05 06 07 08 09 ↓ 00 01 02 03 04 05 06 07 08 09 0a ↓ 00 01 02 03 04 05 06 07 08 09 0a 0b ↓ 00 01 02 03 04 05 06 07 08 09 0a 0b 0c

1 10 11 12 13 14 15 16 17 18 19 1 10 11 12 13 14 15 16 17 18 19 1a 1 10 11 12 13 14 15 16 17 18 19 1a b1 1 10 11 12 13 14 15 16 17 18 19 1a b1 1c

4 20 21 22 23 24 25 26 27 28 29 4 20 21 22 23 24 25 26 27 28 29 2a 4 20 21 22 23 24 25 26 27 28 29 2a 2b 4 20 21 22 23 24 25 26 27 28 29 2a 2b 2c

6 30 31 32 33 34 35 36 37 38 39 6 30 31 32 33 34 35 36 37 38 39 3a 6 30 31 32 33 34 35 36 37 38 39 3a 3b 6 30 31 32 33 34 35 36 37 38 39 3a 3b 3c

8 40 41 42 43 44 45 46 47 48 49 8 40 41 42 43 44 45 46 47 48 49 4a 8 40 41 42 43 44 45 46 47 48 49 4a 4b 8 40 41 42 43 44 45 46 47 48 49 4a 4b 4c

50 51 52 53 54 55 56 57 58 59 10 50 51 52 53 54 55 56 57 58 59 5a 10 50 51 52 53 54 55 56 57 58 59 5a 5b 10 50 51 52 53 54 55 56 57 58 59 5a 5b 5c

60 61 62 63 64 65 66 67 68 69 60 61 62 63 64 65 66 67 68 69 6a 60 61 62 63 64 65 66 67 68 69 6a 6b 12 60 61 62 63 64 65 66 67 68 69 6a 6b 6c

70 71 72 73 74 75 76 77 78 79 70 71 72 73 74 75 76 77 78 79 7a 70 71 72 73 74 75 76 77 78 79 7a 7b 70 71 72 73 74 75 76 77 78 79 7a 7b 7c

80 81 82 83 84 85 86 87 88 89 80 81 82 83 84 85 86 87 88 89 8a 80 81 82 83 84 85 86 87 88 89 8a 8b 80 81 82 83 84 85 86 87 88 89 8a 8b 8c

90 91 92 93 94 95 96 97 98 99 90 91 92 93 94 95 96 97 98 99 9a 90 91 92 93 94 95 96 97 98 99 9a 9b 90 91 92 93 94 95 96 97 98 99 9a 9b 9c

a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 aa a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 aa ab a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 aa ab ac

b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 ba bb b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 ba bb bc

c0 c1 c2 c3 c4 c5 c6 c7 c8 c9 ca cb cc

14 15 16
0 → 2 3 5 7 9 11 → 2 3 5 7 9 11 13 0 → 2 3 5 7 9 11 13

↓ 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d ↓ 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e ↓ 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f
1 10 11 12 13 14 15 16 17 18 19 1a b1 1c 1d 1 10 11 12 13 14 15 16 17 18 19 1a b1 1c 1d 1e 1 10 11 12 13 14 15 16 17 18 19 1a b1 1c 1d 1e 1f
4 20 21 22 23 24 25 26 27 28 29 2a 2b 2c 2d 4 20 21 22 23 24 25 26 27 28 29 2a 2b 2c 2d 2e 4 20 21 22 23 24 25 26 27 28 29 2a 2b 2c 2d 2e 2f
6 30 31 32 33 34 35 36 37 38 39 3a 3b 3c 3d 6 30 31 32 33 34 35 36 37 38 39 3a 3b 3c 3d 3e 6 30 31 32 33 34 35 36 37 38 39 3a 3b 3c 3d 3e 3f
8 40 41 42 43 44 45 46 47 48 49 4a 4b 4c 4d 8 40 41 42 43 44 45 46 47 48 49 4a 4b 4c 4d 4e 8 40 41 42 43 44 45 46 47 48 49 4a 4b 4c 4d 4e 4f
10 50 51 52 53 54 55 56 57 58 59 5a 5b 5c 5d 10 50 51 52 53 54 55 56 57 58 59 5a 5b 5c 5d 5e 10 50 51 52 53 54 55 56 57 58 59 5a 5b 5c 5d 5e 5f
12 60 61 62 63 64 65 66 67 68 69 6a 6b 6c 6d 12 60 61 62 63 64 65 66 67 68 69 6a 6b 6c 6d 6e 12 60 61 62 63 64 65 66 67 68 69 6a 6b 6c 6d 6e 6f

70 71 72 73 74 75 76 77 78 79 7a 7b 7c 7d 14 70 71 72 73 74 75 76 77 78 79 7a 7b 7c 7d 7e 14 70 71 72 73 74 75 76 77 78 79 7a 7b 7c 7d 7e 7f
80 81 82 83 84 85 86 87 88 89 8a 8b 8c 8d 80 81 82 83 84 85 86 87 88 89 8a 8b 8c 8d 8e 80 81 82 83 84 85 86 87 88 89 8a 8b 8c 8d 8e 8f
90 91 92 93 94 95 96 97 98 99 9a 9b 9c 9d 90 91 92 93 94 95 96 97 98 99 9a 9b 9c 9d 9e 90 91 92 93 94 95 96 97 98 99 9a 9b 9c 9d 9e 9f
a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 aa ab ac ad a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 aa ab ac ad ae a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 aa ab ac ad ae af
b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 ba bb bc bd b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 ba bb bc bd be b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 ba bb bc bd be bf
c0 c1 c2 c3 c4 c5 c6 c7 c8 c9 ca cb cc cd c0 c1 c2 c3 c4 c5 c6 c7 c8 c9 ca cb cc cd ce c0 c1 c2 c3 c4 c5 c6 c7 c8 c9 ca cb cc cd ce cf
d0 d1 d2 d3 d4 d5 d6 d7 d8 d9 da db dc dd d0 d1 d2 d3 d4 d5 d6 d7 d8 d9 da db dc dd de d0 d1 d2 d3 d4 d5 d6 d7 d8 d9 da db dc dd de df

e0 e1 e2 e3 e4 e5 e6 e7 e8 e9 ea eb ec ed ee e0 e1 e2 e3 e4 e5 e6 e7 e8 e9 ea eb ec ed ee ef
f0 f1 f2 f3 f4 f5 f6 f7 f8 f9 fa fb fc fd fe ff

Figure A1. Doublet matrices for 1 ≤ b ≤ 16 that illustrate the generation of N(N−1) strings according
to Method A. Colored doublets are appended to the initial string of clear triplets in the order indicated
by arrows starting from the 1st column or row. Finally, 0 is appended at the end, if b is even.

Appendix B. Method B for Generating C(N−1) String

This method is similar to the Method A. We also start with a string of clear triplets (26) and the
matrix of doublets (27) with a crossed diagonal and the first superdiagonal. In the first step, we append
the doublet 0(b − 1) (top right doublet of the matrix of doublets (27)) at the end of the string (26). Next,
we generally perform the following pairs of iterations:
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1. we check subsequent subdiagonals until we find one that does not contain a doublet present in
the string created so far, we append it at the end of this string and proceed to step 2;

2. we check subsequent superdiagonals until we find one that does not contain a doublet present in
the string created so far, we append it at the end of this string and proceed to step 1.

Finally, we append 0 if b is even. The method is illustrated in Figure A2 and for 3 ≤ b ≤ 13 generates
the C(N−1) strings in the form

[000111222|0210],

[000111222333|03|102132|0],
[000111222333444|04|10213243|0314|20],

[000111222333444555|05|1021324354|031425|304152|0],
[000111222333444555666|06|102132435465|03142536|405162|041526|30],

[000111222333444555666777|07|10213243546576|0314253647|3041526374|051627|506172|0],
[. . . |08|1021324354657687|031425364758|304152637485|05162738|607182|061728|40],

[. . . |09|102132435465768798|03142536475869|30415263748596|0516273849|5061728394|071829|708192|0],
[. . . |0a|102132435465768798a9|031425364758697a|30415263748596a7|05162738495a|
60718293a4|061728394a|8091a2|08192a|50],

[. . . |0b|102132435465768798a9ba|031425364758697a8b|30415263748596a7b8|05162738495a6b|
5061728394a5b6|0718293a4b|708192a3b4|091a2b|90a1b2|0],
[. . . |0c|102132435465768798a9bacb|031425364758697a8b9c|30415263748596a7b8c9|05162738495a6b7c|
5061728394a5b6c7|0718293a4b5c|8091a2b3c4|08192a3b4c|a0b1c2|0a1b2c|60].

(A4)

3 4 5 6 7 8 9
→ 1 0 → 1 → 3 1 0 → 3 1 → 3 5 1 0 → 3 5 1 → 3 5 7 1

↓ 00 01 02 ↓ 00 01 02 03 ↓ 00 01 02 03 04 ↓ 00 01 02 03 04 05 ↓ 00 01 02 03 04 05 06 ↓ 00 01 02 03 04 05 06 07 ↓ 00 01 02 03 04 05 06 07 08
2 10 11 12 2 10 11 12 13 2 10 11 12 13 14 2 10 11 12 13 14 15 2 10 11 12 13 14 15 16 2 10 11 12 13 14 15 16 17 2 10 11 12 13 14 15 16 17 18

20 21 22 20 21 22 23 4 20 21 22 23 24 20 21 22 23 24 25 20 21 22 23 24 25 26 20 21 22 23 24 25 26 27 20 21 22 23 24 25 26 27 28
30 31 32 33 30 31 32 33 34 4 30 31 32 33 34 35 6 30 31 32 33 34 35 36 4 30 31 32 33 34 35 36 37 4 30 31 32 33 34 35 36 37 38

40 41 42 43 44 40 41 42 43 44 45 4 40 41 42 43 44 45 46 40 41 42 43 44 45 46 47 8 40 41 42 43 44 45 46 47 48
1 2 50 51 52 53 54 55 50 51 52 53 54 55 56 6 50 51 52 53 54 55 56 57 50 51 52 53 54 55 56 57 58

0 60 61 62 63 64 65 66 60 61 62 63 64 65 66 67 6 60 61 62 63 64 65 66 67 68
00 00 01 70 71 72 73 74 75 76 77 70 71 72 73 74 75 76 77 78

10 11 80 81 82 83 84 85 86 87 88
10 11 12 13
0 → 3 5 7 1 → 3 5 7 9 1 0 → 3 5 7 9 1 → 3 5 7 9 11 1

↓ 00 01 02 03 04 05 06 07 08 09 ↓ 00 01 02 03 04 05 06 07 08 09 0a ↓ 00 01 02 03 04 05 06 07 08 09 0a 0b ↓ 00 01 02 03 04 05 06 07 08 09 0a 0b 0c
2 10 11 12 13 14 15 16 17 18 19 2 10 11 12 13 14 15 16 17 18 19 1a 2 10 11 12 13 14 15 16 17 18 19 1a b1 2 10 11 12 13 14 15 16 17 18 19 1a b1 1c
20 21 22 23 24 25 26 27 28 29 20 21 22 23 24 25 26 27 28 29 2a 20 21 22 23 24 25 26 27 28 29 2a 2b 20 21 22 23 24 25 26 27 28 29 2a 2b 2c

4 30 31 32 33 34 35 36 37 38 39 4 30 31 32 33 34 35 36 37 38 39 3a 4 30 31 32 33 34 35 36 37 38 39 3a 3b 4 30 31 32 33 34 35 36 37 38 39 3a 3b 3c
40 41 42 43 44 45 46 47 48 49 40 41 42 43 44 45 46 47 48 49 4a 40 41 42 43 44 45 46 47 48 49 4a 4b 40 41 42 43 44 45 46 47 48 49 4a 4b 4c

6 50 51 52 53 54 55 56 57 58 59 10 50 51 52 53 54 55 56 57 58 59 5a 6 50 51 52 53 54 55 56 57 58 59 5a 5b 6 50 51 52 53 54 55 56 57 58 59 5a 5b 5c
60 61 62 63 64 65 66 67 68 69 6 60 61 62 63 64 65 66 67 68 69 6a 60 61 62 63 64 65 66 67 68 69 6a 6b 12 60 61 62 63 64 65 66 67 68 69 6a 6b 6c

8 70 71 72 73 74 75 76 77 78 79 70 71 72 73 74 75 76 77 78 79 7a 8 70 71 72 73 74 75 76 77 78 79 7a 7b 70 71 72 73 74 75 76 77 78 79 7a 7b 7c
80 81 82 83 84 85 86 87 88 89 8 80 81 82 83 84 85 86 87 88 89 8a 80 81 82 83 84 85 86 87 88 89 8a 8b 8 80 81 82 83 84 85 86 87 88 89 8a 8b 8c
90 91 92 93 94 95 96 97 98 99 90 91 92 93 94 95 96 97 98 99 9a 10 90 91 92 93 94 95 96 97 98 99 9a 9b 90 91 92 93 94 95 96 97 98 99 9a 9b 9c

a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 aa a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 aa ab 10 a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 aa ab ac
b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 ba bb b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 ba bb bc

c0 c1 c2 c3 c4 c5 c6 c7 c8 c9 ca cb cc

Figure A2. Doublet matrices for 1 ≤ b ≤ 13 that illustrate the generation of N(N−1) strings according
to Method B. Colored doublets are appended to the initial string of clear triplets in the order indicated
by arrows starting from the 1st column or row. Finally, 0 is appended at the end, if b is even.

Appendix C. A String with Exactly Two Copies of All Doublets and No Repeated Triplets

A string that has exactly two copies of all doublets and no repeated triplets can have a form (for
b = {1, 2, 3, 4, 5})

[0000]

[00001111|010]

[000011112222|1021|202010]

[0000111122223333|102132|101202303203130]

[00001111222233334444|10213243|1012023034041304242143203140]

(A5)

and has a length of
N2D = 2b2 + b + 1. (A6)
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A suboptimal method for its generating (with repeated triplets) is illustrated in Figure A3.

1 2 3 4 5 6 7 8

→ 2 → 2 4 → 2 4 6 → 2 4 6 8 → 2 4 6 8 10 → 2 4 6 8 10 12

00 00 01 ↓ 00 01 02 ↓ 00 01 02 03 ↓ 00 01 02 03 04 ↓ 00 01 02 03 04 05 ↓ 00 01 02 03 04 05 06 ↓ 00 01 02 03 04 05 06 07

10 11 1 10 11 12 1 10 11 12 13 1 10 11 12 13 14 1 10 11 12 13 14 15 1 10 11 12 13 14 15 16 1 10 11 12 13 14 15 16 17

20 21 22 3 20 21 22 23 3 20 21 22 23 24 3 20 21 22 23 24 25 3 20 21 22 23 24 25 26 3 20 21 22 23 24 25 26 27

30 31 32 33 5 30 31 32 33 34 5 30 31 32 33 34 35 5 30 31 32 33 34 35 36 5 30 31 32 33 34 35 36 37

40 41 42 43 44 7 40 41 42 43 44 45 7 40 41 42 43 44 45 46 7 40 41 42 43 44 45 46 47

50 51 52 53 54 55 9 50 51 52 53 54 55 56 9 50 51 52 53 54 55 56 57

60 61 62 63 64 65 66 11 60 61 62 63 64 65 66 67

70 71 72 73 74 75 76 77

Figure A3. Doublet matrices for 1 ≤ b ≤ 8 that illustrate the generation of N2D strings containing ex-
actly two copies of all doublets. Colored doublets are appended to the initial string of clear quadruplets
in the order indicated by arrows starting from the 1st column or row. Finally, 0(b − 1)0 is appended at
the end. The 1st superdiagonal is appended as 01234 . . . .

Appendix D. Proof of C(N−1) String Theorem

The N(N−1) given by the formula (28) is an odd number for all b. The first element 3b is the
length of the initial string (26) containing b clear triplets and b2 − b − (b − 1) is the number of doublets
available in the matrix (27) after crossing out b doublets on its diagonal and b − 1 doublets on its
superdiagonal that are present in the starting string (26). By definition, a C(N−1) string cannot have
any repetitions. To be the longest, it must contain all doublets in the matrix (27) and all clear triplets.
Furthermore, to be the most patternless, this string must maximize Shannon entropy; must be the most
balanced. For the string of the form (29) the fractions in the Shannon entropy are

p0 =
Nc + 1
N(N−1)

, p1,2,...,b−1 =
Nc

N(N−1)
, (A7)

where w.l.o.g. we assume that the symbol occurring Nc(b) + 1 times within the string is c = 0. To see
that the Shannon entropy (30) of a C(N−1) string can be approximated by log2(b) for large b, first notice
that 1 − b2 < 0 and b2 + b + 1 > 0, ∀b > 1. Furthermore, ∀b > 0, b + 1 ≪ b2 + b + 1, which implies
that the first term

log2

(
b + 1

b2 + b + 1

)
< 0. (A8)

Similarly the second term,

log2

(
b + 2

b2 + b + 1

)
< 0. (A9)

Hence, the entropy (30) can be approximated by the dominant contribution from the first term, which
is log2(b).

The strings given by the relation (28) are not the shortest possible ones. Strings satisfying the
equation (29) and satisfying min(bNc(b) + 1) > N(N−1)(b − 1) are given by b2 + 1 (OEIS A002522).
They can be constructed to contain all possible doublets but without any triplets, starting with an
initial balanced string of length 2b containing b clear doublets ordered from the main diagonal of the
doublet matrix (27). Furthermore, their entropies are smaller than the entropies of the strings given by
the equation (28). Namely ∀b > 1

1 − b2

b2 + b + 1
log2

(
b + 1

b2 + b + 1

)
− b + 2

b2 + b + 1
log2

(
b + 2

b2 + b + 1

)
>

b(1 − b)
b2 + 1

log2

(
b

b2 + 1

)
− b + 1

b2 + 1
log2

(
b + 1
b2 + 1

)
. (A10)

Now, assume a contrario that a string C′
(N−1) longer than N(N−1) can be constructed, say of length

N′
(N−1) = N(N−1) + 1. But in this case, the corresponding H(C′

(N−1)) < H(C(N−1)). The string of the
length given by the formula (28) maximizes the Shannon entropy if it must additionally satisfy the
relation (29). Thus, Theorem 14 is proven.
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Appendix E. Proof of C(N−k) String Theorem

We start by noting that for b = 1, N(N−2)(1) = 5, as the ASI of [00000] is the same as the ASI of
[000000], N(N−3)(1) = 7, as the ASI of strings of seven and eight same symbols is three, there is no
N(N−4)(1), and so on. Hence, Theorem 15 does not hold for b = 1.

A C(N−1) string contains all doublets. Hence, inserting any basic symbol into any position
inevitably leads to a repetition of a doublet. W.l.o.g. we append it at the start of the C(N−1) string,
obtaining a string

Ck = [∗000111222 . . . ], a
(N(N−1)+1,b)
max (Ck) = N − 2. (A11)

Another symbol can be introduced to this string without an additional doublet repetition provided
that it adjoins the previously introduced symbol, which gives a string

Cl = [⋆ ∗ 000111222 . . . ], a
(N(N−1)+2,b)
max (Cl) = N − 2, (A12)

leading to the repetition of the doublet ⋆∗ or ∗0 but not both of them (here we allow ⋆ = ∗). Hence,
both the length and the ASI of this string increase by one. Finally, 0 can be appended at the start of this
string without an additional doublet repetition provided that ⋆ ̸= 0 and ∗ = 0 and the string becomes

C(N−2) = [0 ⋆ 0000111222 . . . ], a
(N(N−1)+3,b)
max (C(N−2)) = N − 2, (A13)

leading to the mutually exclusive repetition of the doublet 0⋆, ⋆0 or 00, so that also both length and the
ASI of this string increase by one. An insertion of another symbol into the string (A13) at any position
will maintain or even decrease the ASI of this newly formed string. For example, appending 0 at the
start of the C(N−2) string (A13), where ⋆ = 1

[0010000111222 . . . ]. (A14)

creates a 001 triplet based on 00 doublet leading to a decrease of the ASI of this longer string to
a = N − 4 as compared to a = N − 2 of the string (A13).

C(N−2) string (A13) must contain only two copies of a doublet. Hence, a clear quadruplet (bbbb)
and a pattern binding different symbols adjoining this quadruplet, such as [. . . abbbbc . . . abc . . . ],
[. . . abbbbaba . . . ], etc. must be present, so that any C(N−2) string contains only one pair of repeated
doublets ab, bb, or {bc, ba} (See also Appendix C). For example, for N = 10, sixteen bitstrings

[0100011110], [0111100010], [0111101000], [0100001110],

[0001011110], [0001111010], [0101111000], [0111000010]
(A15)

(an additional eight are given by swapping 0 with 1) have the ASI a = N − 2 = 8, where the underlined
string (A15) is the one that we created for b = 2. Each string C(N−2) (A15) contains three pairs of
doublets [01], [10], and [∗∗] overlapped in such a way that only one pair can be reused from the ASP to
decrease the maximum N − 1 ASI by one.

Searching for a C(N−3) string, w.l.o.g. we append ∗ ̸= 0 at the start of the C(N−2) string (A13)

Ck = [∗010000111222 . . . ], a
(N(N−1)+4,b)
max (Ck) = N − 3. (A16)

If ∗ = 1, we have the same three doublets 10. Otherwise, we have two pairs of the same doublets ∗0
and 10. Both cases are equivalent by Theorem 4. An insertion of another symbol to this string may
maintain or even decrease the ASI of this newly formed string. To maximize its ASI, another symbol
must adjoin ∗. Hence, we append ⋆ at the start, where ∀⋆ and ∀∗ ̸= 0, a string

Cl = [⋆ ∗ 010000111222 . . . ], a
(N(N−1)+5,b)
max (Cl) = N − 3, (A17)
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has an increased length and ASI. W.l.o.g. for b = 2 we have four bitstrings (A17), wherein three of
them

C(12,2)
1 = [000100001110], a

(
C(12,2)

1

)
= 12 − 4 = 8,

C(12,2)
2 = [110100001110], a

(
C(12,2)

2

)
= 8,

C(12,2)
3 = [100100001110], a

(
C(12,2)

3

)
= 8,

(A18)

have the same non-maximum ASI and only one have the maximum ASI

C(12,2)
(N−3) = [010100001110], a

(N(N−1)+5,2)
max (C(12,2)

(N−3)) = 12 − 3 = 9, (A19)

and cannot be further extended along with the increment of the ASI. Therefore

C(N,b)
(N−3) = [01010000111222 . . . 10 . . . ], a

(N(N−1)+5,b)
max (C(N,b)

(N−3)) = N − 3, (A20)

and the ASI of this newly formed string increases again. However, the insertion of another symbol
into this string will maintain or even decrease the ASI of this newly formed string. Any C(N−3) string
must contain only three copies of a doublet, two copies of a triplet, or two pairs of different doublets.
W.l.o.g. we have found the following C(N−k) strings for b = 2 and 4 ≤ k ≤ 8

C(10,2)
(N−2) = [0100001110], a(10,2)

max = 8,

C(12,2)
(N−3) = [010100001110], a(12,2)

max = 9
(
[01] to C(10,2)

max

)
,

C(14,2)
(N−4) = [01010100001110], a(14,2)

max = 10
(
[01] to C(12,2)

max

)
,

C(16,2)
(N−5) = [0101010000001110], a(16,2)

max = 11
(
[00] to C(14,2)

max

)
,

C(18,2)
(N−6) = [010101000000111110], a(18,2)

max = 12
(
[11] to C(16,2)

max

)
,

C(20,2)
(N−7) = [01010100000001111110], a(20,2)

max = 13
(
[01] to C(18,2)

max

)
,

C(22,2)
(N−8) = [0101010000000110111110], a(22,2)

max = 14
(
[10] to C(20,2)

max

)
,

C(24,2)
(N−9) = [010101001000000110111110], a(24,2)

max = 15
(
[01] to C(22,2)

max

)
,

(A21)

which led us to the strings (34) for all b > 1. Thus, Theorem 15 is proven.

Appendix F. Additional Comments for the Proof of Theorem 12

We can also use mathematical induction on the length N of the string, if is is a power of two.
For the base case (N = 20 = 1) the string consists of a single basic symbol c ∈ P(b)

0 . Hence, its ASI is

a(1)min := 0 and its ASD ds
(1,b) := 0. Therefore, ds

(1,b) = a(1)min = 0. Assume now that for all strings of
length 2k less than N, the ASD equals the minimum ASI, that is

d(2
k ,b)

amin = a(2
k)

min ∀2k < N. (A22)

For some integer k, we construct the minimum ASI string as follows. First, we assemble a doublet
from two basic symbols:

c1 ◦ c2 = C(2,b), c1, c2 ∈ P(b)
0 . (A23)
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Its ASI is a(2)min = 1 and its ASD is d(2,b)
s = 1. Then for each k ≥ 2 we have C(2k−1,b) with a(2

k−1)
min = k − 1

and ds
(2k−1,b) = k − 1 and we construct C(2k ,b) by joining two copies of C(2k−1,b)

C(2k−1,b) ◦ C2k−1,b) = C(2k ,b). (A24)

The ASI of C(2k ,b) is equal to

a(2
k)

min = a(2
k−1)

min + 1 = k, (A25)

and the ASD is equal to

d(2
k ,b)

s := max
(

d(2
k−1,b)

(s−1)L , d(2
k−1,b)

(s−1)R

)
+ 1 = (k − 1) + 1 = k. (A26)

Therefore, ds
(2k ,b) = a(2

k)
min = k in this case.

Appendix G. Misunderstanding Assembly Pools

Consider the following mapping [20] between a working ASP P(5)
3 containing five basic symbols

and three strings made of these symbols in three steps and the initial ASP of radix b = 8

P(5)
3 ↔ P(8)

0

0 ↔ 0

1 ↔ 1

2 ↔ 2

3 ↔ 3

4 ↔ 4

20 ↔ 5

201 ↔ 6

2012 ↔ 7

(A27)

Now consider the string
C(11,5)

k = [20123242012] (A28)

assembled beginning with the initial ASP P(5)
0 and having the ASI a(11,5)(Ck) = 7 only two steps above

a(11)
min = 5, as we can assemble this string as the string

C(8,8)
l = [20123247] (A29)

of length N = 8 in 7 steps with the initial ASP P(8)
0 and then, using the mapping (A27), it will

correspond to the string (A28). However, as we have shown in Section 2, N(N−1)(8) = 73 ̸= 7. In fact
the latter string (A29) should be assembled as

C(5,8)
m = [73247] (A30)

with the ASI a(5,8)(Cm) = 5 − 1 = 4 and with the initial ASP P(8)
0 , as 2012 ↔ 7 according to the

mapping (A27). Hence, considering a set P(5)
3 as the initial ASP is a gross misunderstanding; there is

only one initial ASP for a given b and many different working ASPs for b > 1 and s > 1 (P(1)
1 = {0, 00}).

Furthermore, basic objects must have the same vanishing ASD (13).
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