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Abstract: Recently, the availability of many omics data source has given the rise of modelling biological networks
for each individual or patient. Such networks are able to represent individual-specific characteristics, providing
insights into the condition of each person. Given a set of networks of individuals, a network representing a
particular condition (e.g., an individual with a specific disease) may be seen as an anomaly network. Consequently,
the use of Graph Anomaly Detection techniques may support such analysis. Among the others, Generative
Adversarial Networks present optimal performances in anomaly detection. This paper presents ADIN (Anomaly
Detection in Individual Networks), a framework based on Generative Adversarial Attributed Networks (GAANSs)
for anomaly detection in convergence/divergence patients attributed networks. Preliminary results on networks
generated from computational biology gene expression data demonstrate the effectiveness of our approach in

detecting and explaining bladder cancer patients.

Keywords: ISN; GANN; patient

1. Introduction

Anomaly detection in network data is pivotal for numerous applications, ranging from secu-
rity surveillance to system health monitoring [1,2]. The challenge intensifies when dealing with
individual-specific networks where each network’s structure and pattern vary significantly from oth-
ers. Traditional anomaly detection techniques, which typically rely on static thresholds or predefined
metrics, need to catch up in such scenarios due to their inability to adapt to the unique characteristics of
each network [1,3]. Recent advances in artificial intelligence have led to the development of Generative
Adversarial Networks (GANs), which have shown promising results in learning complex data distri-
butions. Leveraging GANs for anomaly detection involves training these models to generate network
data that mimics the normal operational state of a specific network [4,5]. Once trained, these models
can identify deviations from the learned normal behaviour as anomalies. This paper proposes the use
of GANSs to address the challenge of anomaly detection in convergence/divergence patients attributed
networks. To address the challenge of graph anomaly detection using GANs we modified the known
Generative Adversarial Attributed Network anomaly detection (GAAN) to extract explanations.

Our approach adapts the adversarial training methodology to tailor the model to the nuanced
differences of each network, thereby enabling more precise detection of anomalies that are otherwise
overlooked by conventional methods. The main contributions of this paper are as follows:

* We are the first to use a GAAN model to perform anomalous node (patients) detection on
attributed convergence/divergence networks obtained from patients gene expression data;

* We compared results obtained with GAAN against a baseline of commonly used machine
learning (ML) binary classifiers algorithms trained and tested using raw gene expression data;

* We used explainability to explain the predictions of both ML and GAAN models. Those are
useful to understand the principal genes related with a given pathology;

* We developed an open-source freely available graphical user interface to reproduce our case
studies results and to produce new ones using appropriate gene expression data formats;
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* We demonstrate the effectiveness of our algorithm through experiments on real-world gene
expression profiling datasets, comparing the obtained results with other machine learning (ML)
methods.

The remainder of the paper is organized as follows: Section 2 discusses main related work;
Section 3 presents the proposed framework and discusses the main characteristics; Section 4 shows the
effectiveness of the framework; finally, Section 5 concludes the paper.

Section 2 introduces Material and Methods used for this experiment, for the Material point of
view we report information on the gene expression dataset used and for the Methods we introduce the
GAAN architecture and the convergence/divergence paradigm. Section 3 describes the experimental
setup in detail, providing the model hyperparameters and results obtained. Finally, Section 4 concludes
the paper and discusses potential directions for future research.

2. Related Work

3. The Proposed Framework

We developed an integrated program called ADIN (Anomaly Detection in Individual Networks)
with the main objective of detecting anomalies in gene expression data using both deep and machine
learning techniques and comparing the results obtained by the GAAN model. The program is designed
to identify significant deviations in gene expression patterns by using both structural and attribute
information from individualized coexpression networks [6]. This method allows for the detection of
potential anomalies that could indicate underlying biological abnormalities.

The program is built upon a modular framework that incorporates data preprocessing, network
construction, and anomaly detection components. The primary components are as follows:

¢ Data upload and preprocessing module: Starting from a GEO dataset, some preprocessing steps
need to be applied to clean the dataset: remove duplicates, handle null gene expression values;

* ML binary classification module: Evaluates the performances of a baseline of commonly used
algorithms for binary classification from gene expression data;

e Network Constructor: Generates an attributed network from gene expression data using the
convergence/divergence network paradigm [7]. This is a submodule, integrated inside the DL
graph based module;

* DL Anomaly Detection module: Evaluates the performance of the trained GAAN in the anomaly
detection task and compares them against ML results. After training the GAAN model on
"Normal" nodes, new nodes are tested, and those that significantly deviate from the learned
normal patterns are flagged as "Anomalous".

Figure 1 depicts the framework of our program.
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Figure 1. The Figure summarises the main software module sof the ADIN framework. A Gene Data
Processing module is responsible for reading and the gene expression data for further processing
in Network Data Processing and Data Analysis. The former is responsible for creating the conver-
gence/divergence attributed network from gene expression data, while the latter implements all the
analysis. The explainability module implements provides explanation of the artificial intelligence
algorithms contained in data analysis, while visualization offer visualization capabilities.

The workflow of the proposed experiment is divided into distinct stages and is depicted in Figure

¢ Data preprocessing to handle null values;

¢ Training and evaluation of Machine Learning classifiers to build a baseline of classifiers algo-
rithms used to confront our results. Those classifiers work directly on raw gene expression
data and can classify each patient with two labels: normal or anomalous. Explainability of this
proposed ML baseline is also made available to the user by using SHAP values;

¢ Convergence/Divergence network creation: Starting from the raw data we build a network of
patients where each node is a patient, nodes attributes are their gene expression values while
edges between two nodes are computed using their gene expression profile similarity;

¢ Training, evaluation, comparison and explainability of the deep learning GAAN model: We
developed, trained and tested an Explainable GAAN model that takes in input this conver-
gence/divergence network and performs a node-level binary classification by performing
anomaly detection using all the information available in the graph structure: edges and node

attributes.

Gene Anomalous patient Normal patient
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patient data
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dataset

Network DL graph-based

construction

y
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Figure 2. The Figure depicts a general ADIN experiment workflow: we start with a gene expression
file from the GEO platform, then we apply preprocessing. We can choose between an ML or DL based
analysis and then compare the results and extract model explanations.
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To detect anomalies within an attributed convergence/divergence network, we used the Genera-
tive Adversarial Attributed Network (GAAN) [8] available in the PyGOD python library [9,10] for
attributed network anomaly detection. This architecture consists of two key components: a Generator
and a Discriminator, each designed to leverage both the network structure and the attributes of the
nodes (gene expression values in our case).

The Generator produces synthetic node attributes that closely resemble the real data. It takes
random noise as input, along with the observed network structure, and generates new node attribute
vectors that mimic the distribution of real gene expression data. The goal of the Generator is to produce
outputs that are indistinguishable from real ones, thereby attempting to "fool" the Discriminator.

The network structure input to the Generator is preserved, while the node attributes are modified
in a way that reflects realistic gene expression profiles. The generated attributes are then reintegrated
with the existing network structure to form a synthetic attributed network.

The Discriminator serves as a classifier that differentiates between real and synthetic networks.
It takes as input both the node attributes and the network structure. The Discriminator is trained to
assign a higher probability to real network and a lower probability to the synthetic one generated by
the Generator.

The architecture of the Discriminator is designed to handle both the topological information
(edges) and the attributed information (node features) simultaneously. By analyzing the correlation
between the structure and attributes, the Discriminator can effectively distinguish between normal
and anomalous nodes, as anomalies often present irregularities in either the structure or the node
attributes.

The Generator and Discriminator are trained in an adversarial manner. During the training
process, the Generator continually improves its ability to produce realistic networks by learning from
the feedback provided by the Discriminator. Conversely, the Discriminator improves its accuracy in
identifying real versus synthetic networks. The interplay between these two networks enhances the
system’s ability to detect anomalies, as the Discriminator becomes more adept at spotting irregularities
in both the gene expression data and the network structure.

After training, the Discriminator is utilized to detect anomalies in the convergence/divergence
patient attributed network. It does this by evaluating the likelihood that a given networks (or its
components) is real or synthetic. A network, or a component (node, node attributes, edges), that
the Discriminator classifies as having a low probability of being real are flagged as anomalous. This
approach allows for the identification of genes or interactions that deviate significantly from normal
patterns, providing insight into potential biological abnormalities or disease mechanisms.

The general GAAN architecture is depicted in Figure 3.

| Reconstruction loss: |

LG = 1 - 11z, Lo(v) = Zi™ (A~ o(Ay, 1)

Sigmoid(z * 2")

DISCRIMINATOR

Sigmoid(z' *z'T)

Figure 3. GAAN architecture.

3.1. Machine Learning Algorithms in ADIN

To evaluate the effectiveness of the deep learning graph-based GAAN model, we compared its
performance against several traditional machine learning algorithms commonly used for binary classi-
fication. These algorithms were chosen for their relevance to anomaly detection in high-dimensional
datasets such as gene expression profiles.
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* Logistic Regression (LR), is a linear model, simple to implement and interpret, used for binary
classification tasks. It predicts the probability that a given instance belongs to one of two classes
by applying a logistic function to a linear combination of the input features. Effective for problems
where classes are linearly separable;

* Naive Bayes (NB), is a probabilistic classifier that applies Bayes’ theorem with the assumption
that features, in our case gene expressions, are conditionally independent given the class label.
NB is computationally efficient and works well with high-dimensional data. Performs well when
the independence assumption holds approximately true;

¢ Random Forest (RF) is an ensemble learning method that constructs a multitude of decision trees
during training and outputs the class that is the mode of the classes predicted by individual
trees. Can handle large datasets with high dimensionality, reduce over-fitting through ensemble
averaging, and provide feature importance scores;

* Decision Tree (DT) is a non-parametric model that splits the dataset into subsets based on the
most significant attribute at each node, forming a tree-like structure. It’s easy to visualize and
interpret, works well on both categorical and continuous data, and requires only little data
preprocessing;

¢ k-Nearest Neighbors (KNN) is a simple, instance-based learning algorithm that classifies a data
point based on the majority class among its k nearest neighbors in the feature space. It’s easy
to implement and doesn’t require a training phase. Effective for problems where the decision
boundary is irregular;

¢ Support Vector Machine (SVM) is a powerful classifier that finds the hyperplane which best sepa-
rates the classes in the feature space, often using a kernel trick to handle non-linear relationships.
It’s effective in high-dimensional spaces and with clear margin of separation. Particularly useful
for binary classification tasks;

¢ Linear Discriminant Analysis (LDA) is a linear classification technique that finds a linear combina-
tion of features that best separates two or more classes by maximizing the ratio of between-class
variance to within-class variance. It's well-suited for situations where classes are linearly separa-
ble. It also provides dimensionality reduction as part of the classification process.

3.2. Metrics for Model Evaluation

Let TP and TN be the number of patients (or nodes) correctly identified as normal or abnormal,
respectively, and FP and FN the number of normal or abnormal patients (or nodes) misclassified, each
ML or DL model has been evaluated in terms of the following performance metrics:

_ TP+TN
* Accuracy = ThLTNFFPFN

* Precision = rprp
* Sensitivity = Recall = TPE%

__ 2xPrecisionxRecall
* F1= Precision—&-RfigK;l

* Specificity = rprNn
e ROC AUC is calculated as the Area Under the Sensitivity-(1 — Specificity) curve, also known as
the ROC curve.

4. Case Studies
4.1. Using ADIN to Detect Bladder Cancer from Gene Expression Data
4.1.1. Dataset

We used the Gene Expression Omnibus (GEO) data repository to access the freely available
dataset from with accession code GSE37815. This dataset contains gene expression profiling microarray
data obtained using GPL6102 Illumina human-6 v2.0 expression beadchip. Profiling was performed
to differentiate between normal cells and from Non-Muscle-Invasive Bladder Cancer (NMIBC) and
predict patient prognosis: Normal or Tumour (Anomalous). The dataset contains gene expression
values of 27552 genes for 24 patients. Table 1 reports the distribution of the two diagnosis in the dataset,
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as we can see, this distribution is unbalanced: number of patients with cancer is three times higher
than that of healthy control patients.

Table 1. Dataset label distribution.

Label Count
Normal patient 6
Tumour NMIBC patient 18

Gene expression values and clinical diagnosis information were first extracted from the GEO
series matrix file. To address missing values, a class-dependent mode imputation strategy was applied.
Specifically, for each gene, missing values were replaced by the mode expression value calculated
separately for cancer patients and healthy controls, ensuring that imputation preserved the inherent
class structure. Gene identifiers, such as those in the format "cg00000292" from platforms like GPL6102
(IIlumina human-6 v2.0), were mapped to their corresponding gene names for better interpretability
and to enable a more useful model explainability.

4.1.2. Results using Machine Learning on Raw Data

To train and test our machine learning baseline, the dataset was splitted into training and test sets
using a 30/70 random split. More information on the train-test split are reported in Table 2.

Table 2. Dataset Train and Test split for the machine learning binary classification problem.

Set Count Normal | Count Anomalous
Train 2 5
Test 4 11

The train set is then used to compare the performance of the previously mentioned machine
learning models in the binary classification task. We used a 2-fold stratified cross validation technique
to assess the performances. The trained models are then validated using the test set obtaining the
binary classification performance metrics reported in Table 4.

Table 3. Machine Learning algorithms performance on the test set

Model Acc f1 | Sens. | Spec. | AUC | Prec
LR 1.00 1.00 1.00 1.00 1.00 1.00
KNN 1.00 1.00 1.00 1.00 1.00 1.00
LDA 0.882 | 0.929 1.00 0.50 0.75 | 0.867
DT 0.882 | 0.929 1.00 0.50 0.75 | 0.867
RF 0.882 | 0.929 1.00 0.50 0.75 | 0.867
NB 0.765 | 0.867 1.00 0.00 0.50 | 0.765
SVM 0.765 | 0.867 1.00 0.00 0.50 | 0.765

Our framework uses the shapley values technique [11] available in the Shap python library [12] to
obtain interpretable explainations from the predictions obtained by each machine learning algorithm.
Using this approach, we can assess, for each patient, the contribution of individual genes to the model’s
prediction by quantifying how much each gene expression value influenced the model prediction. This
allows us to identify key genetic markers that drive the classification decision and provides a patient-
specific breakdown of feature importance, facilitating a deeper understanding of the biological factors
associated with the diagnosis. The Shapley values show the average contribution of each gene across
all test samples, with genes ranked by their overall impact on the model’s predictions. Positive Shapley
values indicate genes that consistently push the model towards a cancer diagnosis, while negative
values indicate genes that drive the prediction towards a non-cancer classification. Figure 4 depicts
three subfigures obtained by applying shapley values on the Random Forest predictions. Subfigure (A)
displays a force plot illustrating the classification of a healthy patient, where the contribution of genes
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aligns with a non-cancer outcome. In contrast, subfigure (B) provides a force plot for the classification
of an NMIBC patient, showing how specific genes strongly influence the model’s prediction towards a
cancer diagnosis. Finally, subfigure (C) show the top 10 genes contributing to model predictions of the
entire test set. This summary plot highlights the key genes that play a significant role in the model’s
performance across the test cohort.

Figure 4. Shap plots obtained using the random forest model: (A) force plot for the classification of an
Healthy Patient; (B) force plot for the classification of an NMIBC Patient; (C) Top 10 genes ranked by
their shapley value for the classification of the whole test set.

4.1.3. Results Using GAAN

We began by analyzing gene expression profiling data to construct convergence/divergence
attributed network, where each node represents an individual patients. The attributes of these nodes
correspond to the gene expression levels observed in the dataset. Each node was labelled as either
"Normal" or "Anomalous" based on the patient diagnosis the dataset provides. To determine the
connections (edges) between the nodes, we employed a correlation-based method, which calculates
the pairwise correlation coefficients between the gene expression profiles of these patients. We used to

As we reported in Table 4, we splitted the dataset in two disjoint sets for model training and
evaluation using a test set percentage of 80%. Different splitting in the train-test is required since
GAAN is an anomaly detection tool, that needs to be trained using only "Normal" instances (graphs in
our case) so it can be able to detect abnormalities during test.

Table 4. Machine Learning algorithms performance on the test set

Set Count Normal | Count Anomalous
Train 4 0
Test 2 16

5. Conclusions

In this study, we have shown the effectiveness of Generative Adversarial Attributed Networks
(GAAN ) for detecting anomalies in individual-specific networks (ISNs), especially in the context
of identifying diseases using gene expression data. Our framework, ADIN (Anomaly Detection in
Individual Networks), uses GAANSs to identify subtle irregularities in biological network patterns that
traditional methods might miss.

Our experimental results demonstrate that GAANSs outperform conventional machine learning
classifiers in identifying anomalous nodes in networks created from gene expression data. The success
of the model is due to its ability to generate realistic network data and identify deviations from the
norm, providing a robust method for anomaly detection.

Integrating explainability into the anomaly detection process improves the interpretability of
our model, allowing us to pinpoint specific genetic markers associated with diseases. This capability
is particularly valuable in medical research and diagnostics, as understanding the genetic basis of
abnormalities can lead to more effective treatments.

Looking ahead, the development of an open-source graphical user interface for ADIN will provide
a valuable tool for researchers and clinicians, promoting wider adoption and continuous improvement
of anomaly detection techniques in genomics. Future work will focus on enhancing the model’s
accuracy and computational efficiency, exploring its applicability to other types of omic data, and
improving its scalability for larger datasets, which is critical for advancing personalized medicine and
patient-specific treatments.

Code Availability

The software developed for this study is available at ... Gene expression data from the Gene
Expression Omnibus GSE37815 series is used as a case study to validate and test this software. The
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full dataset and documentation can be downloaded from https:/ /www.ncbi.nlm.nih.gov/geo/query
/acc.cgi?acc=GSE37815.
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