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Abstract: This paper addresses a critical concern in intrusion detection within the broader realm of 
cyber security, particularly focusing on login activity involving the majority of normal users. 
Utilizing the AdaBoost classifier, the study employs various optimizers to enhance performance by 
selecting optimal control parameters. A specially tailored version of Crayfish Optimization 
Algorithm (COA) is introduced to cater to the unique requirements of this investigation. Through a 
comparative analysis of a simulated publicly available dataset, models optimized by the modified 
algorithm demonstrate superior outcomes, achieving an accuracy of 94.6128% and displaying an 
adaptive convergence rate capable of navigating local minima to identify optimal solutions. The 
best-performing model undergoes SHapley Additive exPlanations (SHAP) analysis to identify key 
contributing features. Limitations arise from the computational intensity of the optimization 
process, necessitating consideration of limited populations and smaller numbers of estimators 
during simulations. Future endeavors will extend the methodology to incorporate additional user 
actions in classification, with a focus on addressing computational constraints as hardware 
advancements occur. Proposed, modified algorithm could be applied to deal with various 
optimization tasks, beyond the scope of this study.  

Keywords: AdaBoost; legal frameworks; cyber security; crayfish optimization algorithm; insider 
threat; metaheuristics 

 

1. Introduction 

In modern, complex information systems, cyber security intrusion detection plays an ever-
increasingly important role [1]. Ransomware attacks and data breaches, often initialized by insiders 
[2], cost organizations millions with many institutions being forced to shut down due to loss of trust 
or finance. Due to the ever-evolving topology of cybersecurity, administrators and security specialists 
often struggle to keep up with new developments [3]. 

One promising approach, capable of adapting to the changing landscape of security in the digital 
realm is the application of artificial intelligence (AI). Algorithms from this class have ability to discern 
patterns and effectively learn from observations of data. This allows the application and adaptation 
of AI with minimal programming required. Additionally, algorithms learn from new data and are 
therefore capable of adapting to new developments as well [4]. 

There are several challenges to the proper application of AI in cyber security. The first one is 
data availability. Companies are often hesitant to make data concerning attacks publicly available 
and therefore real-world data is scarce. The second challenge is associated with parameter selections. 
Namely, algorithms are often designed with good general performance in mind, however, to be well 
suited to a specific task, parameter tuning is required in order to adjust the algorithm to the available 
data. This process can often be NP-hard due to the large search spaces when considering options for 
parameters. 

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting 
from any ideas, methods, instructions, or products referred to in the content.
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A class of algorithms often selected by researchers to tackle hyperparameter tuning are 
metaheuristic algorithms [5]. These algorithms take a randomness-driven approach and often borrow 
inspiration from search strategies observed in nature to handle and guide optimizations toward an 
optimal solution. These algorithms have even been shown to tackle NP-hard problems with 
acceptable results and within realistic time constraints, however, a true optimal solution is not 
guaranteed. 

This work seeks to explore the potential of the AdaBoost classifier in order to handle detection 
of insider threats within an organization. A publicly available simulated cyber security dataset is 
used, and user login patterns are analyzed in order to detect malicious actors. Additionally, a 
modified version of the recently introduced crayfish optimization algorithm (COA) [6] is introduced 
specifically for the needs of this study. 

The main contributions of this work can be outlined as the following: 
• This is proposal for new insider threat detection framework based on the AdaBoost algorithm 

to boost institution cyber security, 
• We present a novel, modified version of the COA designed to overcome some of the observed 

shortcomings of the original, 
• We have conducted evaluation of several contemporary optimizers in order to determine their 

advantages and disadvantages when optimizing AdaBoost for cyber security.  
Proper management of cyberspace refers to the application of the following principles: 

responsibility, transparency, rule of law, participation of the entire audience in cyberspace, 
institutional responsiveness, effectiveness of institutional and individual roles, as well as efficiency 
in operations. The basic problem in ensuring cyber security is the definition of legal norms and 
institutions that would monitor the flow of data and actions in cyberspace, as well as ensure the 
privacy rights of users. U.S. Congress still struggles to establish a system that provides essential 
privacy protection while retaining investigative capabilities [7]. Cybersecurity and privacy protection 
are subjects of intensive research [8], as well as governments’ considerations around the world. In 
2023 Australia has established its 2023-2030 Australian Cyber Security Strategy [9].   

The interconnected nature of cyberspace, "without borders", poses a real problem for the 
traditional framework of territorial application of laws [10]. Data and cyber activities are generated 
on servers that may fall under the jurisdiction of one state, while users or cyber victims may fall under 
the jurisdiction of another state or legal system [11].  

It is often considered that laws applicable to offline activities should also apply to online 
activities, but clear characterization of such actions in practice is difficult to achieve. Cybersecurity 
raises complex legal questions primarily related to the right to privacy and freedom of expression. 
This complexity is further compounded by public-private collaboration and the related legal issues 
concerning responsibility and control. The issue of monitoring activities and data flows is 
complicated due to the diverse nature of actors involved in cyberspace. According to the broadest 
understanding, national oversight institutions oversee the work of various agencies or functional 
lines of administration. Consequently, state-level parliamentary committees may oversee the work 
of intelligence services, armed forces, or judicial bodies. On the other hand, public-private 
collaboration in the field of cybersecurity goes beyond the boundaries of individual agencies, leading 
to a collision of expert understandings of cyber activities and surveillance mandates. The 
consequence of this collision is the existence of a large number of cases where surveillance is either 
inadequate or nonexistent. Regarding the overlap of responsibilities and control, the procedures of 
each government agency are linked in a chain of accountability from the first to the last.  

In cyberspace, chains of command can be disrupted by the involvement of private actors and 
the establishment of public-private collaboration mechanisms. In practice, there may be IT companies 
that engage with government agencies and work exclusively for the state, but this relationship is 
often much more complex and obscured by numerous information asymmetries that reduce 
transparency and hinder the smooth and successful functioning of surveillance and control 
mechanisms [12].  

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 20 September 2024                   doi:10.20944/preprints202409.1500.v1

https://doi.org/10.20944/preprints202409.1500.v1


 3 

 

The oversight boards in each government should control the government agencies for which 
they are directly responsible. In this way, there may be an omission of private partners of these 
agencies from the oversight space, even in cases when they are directly funded or closely collaborate 
with these agencies. The technical specificity of characterizing cyberspace further complicates the 
traditional problems faced by national parliamentarians tasked with overseeing the security sector, 
leading to reduced effective accountability. Difficulties in reliably identifying perpetrators of 
cybercrimes can lead to hindered or even nonexistent accountability of the security sector to civilian 
authorities, contributing to a culture of impunity for these criminal acts. Thus, the judicial sector may 
grant special powers to law enforcement and intelligence agencies through issuing search warrants. 
This fact is particularly important in the context of communication interception. In practice, judicial 
oversight is often circumvented or restricted for reasons of national security preservation under 
emergency conditions.  

As a model of good legislation, we can mention the National Cyber Security Strategy of Sweden 
from 2016, which regulates issues from the legal regulation of ICT to the protection of critical 
infrastructure. However, it seems that there is not just one committee or subcommittee dealing solely 
with cybersecurity. Unlike most national cybersecurity strategies, the Swedish strategy includes 
strategic principles and an action plan that helps parliament hold both public and private actors 
accountable in the process of controlling cyber security. The principle of the rule of law is interpreted 
by international courts, such as the European Court of Human Rights (ECHR). This court has 
developed a rule-of-law test stating that "all restrictions on fundamental rights must be based on 
clear, precise, accessible, and predictable legal provisions and must pursue legitimate aims in a 
manner that is necessary and proportionate to the aim in question, and there must be an effective, 
preferably judicial, remedy". Consequently, authorities in states demand that private companies who 
own social media platforms ensure that their services do not harbor violent extremists and terrorists. 
To meet these demands, governments [13], and private companies holding social media, have 
developed specific terms and codes of conduct to control the content posted on these platforms, and 
generally, apply legal rules in the digital world. In this way, they have de facto established rules and 
norms on the Internet. However, these terms and rules are not the same on all platforms, creating 
ambiguity and legal uncertainties regarding the type of content prohibited on each platform.  

Hackers and various agencies routinely engage in eavesdropping on private conversations and 
intercept them at the "back door". In other words, when it comes to state security, there is no truly 
established need for the application of the rule of law, although we have at least basic principles that 
could form the basis of such an important part of the universal fortress of human rights. With the 
increasing partnership between law enforcement agencies and intelligence and security services, this 
weakening of the rule of law threatens to spread and be transferred to the police and prosecutors. 
The lack of clear legal frameworks in this area, both domestically and internationally, poses an 
additional threat to the rule of law on the Internet and in the global digital environment [14].  

Numerous existing approaches attempt to address cyber security, with traditional techniques 
like firewalls [15] and block lists proving useful over time [16]. However, rapid developments and 
the emergence of zero-day [17] vulnerabilities make it challenging for administrators to keep up with 
attackers. To adapt to the fast-paced information age, new techniques are imperative. 

IoT networks are frequent targets for DDoS and DoS attacks [18], where relatively simple devices 
can disrupt operations on a massive scale and compromise information about their environment and 
users. Additionally, insider actors seeking revenge for perceived unfair treatment pose a significant 
threat vector [19].  

A noticeable research gap exists in insider threat detection, creating a void in the field. This 
investigation aims to explore the potential of AI for preventing insiders from causing harm to 
organizations by focusing on user behavior classification. By addressing this gap, the research 
contributes to advancing methods that can better safeguard against evolving cyber security 
challenges, particularly in the context of insider threats.  

AdaBoost [20] utilized an iterative approach in order to cast an approximation of the Bayes 
classifier. This is done by combining several weaker classifiers. From a starting point of an 
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unweighted sample used to train the model, this approach builds a group of classifiers. If a miss 
classification occurs, the weights of each classifier are reduced and if a correct classification is made 
weights are incremented. The error of a weak classifier εt can be determined as given by Equation (1): 
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where εt denotes the weighted error of the weak learner in the t-th iteration. The variable N represents 
the number of training instances. The term ωi,t corresponds to the weight of the i-th instance in the t-
th iteration. The expression ht(xi) signifies the prediction made by the weak learner for the i-th 
instance in the t-th iteration. The variable yi represents the true label of the i-th instance. Additionally, 
the function I(·) is an indicator function that equals 1 if the condition within the parentheses is true 
and 0 otherwise. 

Further classifiers are built based on the attained weights and the weight adjustment process is 
repeated. Large groups of classifiers are usually assembled in order to create accurate classification. 
A score is given to each of these sub-models, and a linear model is constructed by their combination. 
The classifier weight in the ensemble can be determined according to Equation (2): 
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where weight αt, assigned to each weak learner in the final ensemble, is calculated based on its 
performance. It depends on the weighted error εt and is used to determine the contribution of the 
weak learner to the final combined model. To update weights Equation (3) is used: 

( )( )itittiti xhyαωω −=+ exp,1, , (3)

where ωi,t represents the weight of the i-th instance in the t-th iteration, αt denotes the weight of the 
weak learner in the t-th iteration, yi stands for the true label of the i-th instance, and ht(xi) signifies the 
prediction of the weak learner for the i-th instance in the t-th iteration.  

AdaBoost algorithm is well suited to binary classification problems. However, it does struggle 
with multi-class classification problems. As the challenge in this work is a binary classification 
problem, this algorithm is selected for optimization. 

Hyperparameter selection can often be difficult in practice. There is currently no unified 
approach for selection. Researchers often resort to computationally expensive complete search 
techniques or a trial-and-error process. When dealing with a mixed set of parameters this challenge 
can quickly form a mixed NP-hard problem. Therefore, techniques capable of addressing this 
category of challenge are required. 

Taking a heuristic approach is often preferable. Metaheuristic optimizers have demonstrated 
ability to handle NP-hard problems, often drawing inspiration from natural phenomena. Some 
notable examples include the genetic algorithm (GA) [21], particle swarm optimization (PSO) [22], 
firefly algorithm (FA) [23], sine cosine algorithm (SCA) [24], whale optimization algorithm (WOA) 
[25], reptile search algorithm (RSA) [26] and COLSHADE [27]. The driving reason for so many 
algorithms comes from the no free-lunch theorem of optimization (NFL) [28] that states that no single 
approach is perfectly suited to all challenges and across all metrics. Therefore, constant 
experimentation is needed to determine the most suitable optimizer for a given task.  

Hybridization of existing algorithms is a popular approach for researchers to overcome some of 
the observed drawbacks of optimizers. Metaheuristics is successfully applied in several fields of 
optimization, including finance [29], medicine [30,31], computer security [32], renewable power 
generation [33] and may others [34].  
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2. Materials and Methods 

This section describes the base methods and algorithms that served as inspiration for our work. 
Following that, the potential for improvements is described alongside the modifications aimed at 
improving performance. Finally, the algorithm pseudocode is presented. 

2.1. Original Crayfish Optimization Algorithm 

The Crayfish optimization algorithm (COA) is a recently created metaheuristic algorithm 
depicting the behavior of crayfish, also known as crayfish, a form of crustacean, in a natural setting 
[6]. These animals belong to the infraorder Astacidea family and make freshwater such as lakes and 
rivers their home. They are omnivores, foraging the floor of the body of water for nutritious meals. 

Algorithm emulates crayfish summer resort behavior which entails the crayfish searching for 
cool caves when the temperatures are high. This behavior acts as the algorithm’s exploration stage. 
Next, these animals compete for the best shelter. Foraging, which happens when the temperatures 
allow, is also modeled. Competing and foraging are used as exploitation stages in COA. 

As is the norm with swarm intelligence, the population of crayfish P is initialized in the 
beginning stage of the algorithm. To manage the stages of exploration and exploitation, temperature 
is represented by a random constant defined by the Equation (4): 

2015 +×= randtemp  (4)

The summer retreat behavior happens when the temperature is higher than 30°C, in which case the 
crayfish look for a cool shelter from the heat, such as caves. Temperatures between 15°C and 30°C 
are suitable for crayfish feeding, with 25°C being ideal. Since most reliable foraging behavior happens 
in the range of 20°C to 30°C, the model’s temperature ranges from 20°C to 35°C. The mathematical 
representation of the feeding behavior of crayfish may be seen in Equation (5): 

( )
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1 2
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In this expression, µ marks the thriving weather for crayfish, while C1 and σ serve the purpose of 
controlling the food intake of crayfish at varying temperatures.  

When temp>30, the stage of exploring starts. The shelter crayfish take from the heat is modeled 
by Equation (6): 

2
L

Gshade
XXX +=  (6)

where, XL marks the current colony optimal positioning, while XG marks the best possible place 
gained, in regards to the number of iterations. 

Whether the crayfish competes for the shelter is randomly dictated by the variable value rand. 
In case this value is lesser than 0.5, no competition between crayfish for the shelter occurs. Since there 
is no obstacle, the crayfish will enter the cave without issue, per the Equation (7) and Equation (8): 

( )jitshadejitjit XXrandCXX ,2,,1 −×+=+  (7)

T
tC −= 22  (8)

C2 denotes a decreasing curve, T marks the topmost number of repetitions, and t marks live iteration, 
while t+1 depicts the repetition number for the next generation. 

During the high temperatures, the crayfish seek shelter. This shelter or cave is a symbol of the 
best possible solution. In the summer resort stage, the crayfish head towards the cave thus nearing 
the optimal solution. The closer to the cave they are, the better COA‘s potential for exploitation 
becomes, and the faster the algorithm converges.  
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When rand≥0.5, there is competition between crayfish for the shelter. This competition has 
played the role of the start of the exploitation stage. The conflict is represented by the Equation (9) 
and Equation (10): 

shadejtZjitjit XXXX +−=+ ,,1  (9)

( )( ) 11 +−= Nrandroundz  (10)

where z marks the crayfish’s random individual. 
In the competition phase, crayfish fight with each other. Crayfish Xi adapt their position in 

relation to another crayfish’s position Xz. This adaptation of positions expands the search range of 
COA, thereby boosting the algorithm’s exploration capacity. 

The crayfish feed in temperatures below or equal to 30°C. When such conditions are met, the 
crayfish moves towards the food. Location of the food Xfood and its size Q are decided as defined by 
Equation (11) and Equation (12): 

Gfood XX =  (11)

food

i
fitness
fitnessrandCQ ×= 3  (12)

In this context, C3 stands for the food factor representing the biggest food source, with a constant 
value of 3. The fitness variable denotes the fitness value of the i-th crayfish, whereas fitnessfood indicates 
the fitness value linked to the food’s location. 

In the case when the food is too big, and Q>(C3+1)/2, the process of tearing up the food is depicted 
in Equation (13): 

( ) foodfood XQX −= exp  (13)

When the food is small enough, Q<(C3+1)/2, the crayfish will simply eat the food, as given by Equation 
(14): 

jitfoodjitjit randXppXXX ,,,1 ×+−=+  (14)

During the foraging phase, crayfish employ various feeding tactics depending on the size of 
their food denoted by Q, where the food location Xfood signifies the ideal solution. They will move 
closer to the food of readily edible size. Conversely, when Q is excessively large, meaning a 
substantial disparity between the crayfish and the optimal solution, Xfood will be decreased, thereby 
drawing it nearer to the meal.  

2.2. Hybrid COA 

Despite the admirable performance demonstrated by the COA, as a recently introduced 
algorithm, there is still plenty of room to explore potential improvements. To that end, this work 
introduced two new mechanisms into the original COA. 

The initial modification incorporates quasi-reflective learning (QRL) [35] in the first T iterations. 
Following each iteration, the worst solutions are replaced by new solutions generated based on 
Equation (15): 







 += aublbradA zzqr

z ,
2

 (15)

where lb and ub denote lower and upper bounds of the search space and rad denotes a random value 
within the given interval. The newly generated solution is not subjected to objective function 
evaluation thus the computational complexity of the modified algorithm is kept consistent with the 
original. 
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When examining optimization metaheuristics, it becomes crucial to find an equilibrium between 
exploration and exploitation. In order to enhance exploitation, a supplementary adjustment is 
incorporated, drawing inspiration from the widely recognized firefly algorithm (FA) [23]. The FA 
simulates the courtship behaviors of bioluminescent beetles through mathematical modeling, where 
individuals emitting brighter light attract those in their vicinity. The brightness of each agent is 
computed according to a problem-dependent objective function, outlined in Equation (16): 

( )ii XfF =  (16)

Several environmental factors are also simulated to replicate real-world conditions such as light 
fading depending on the distance between agents, as well as the characteristics of the medium of 
propagation. The basic search mechanism of the FA is shown by Equation (17): 

( ) ( ) ( ) ( )( ) ( )ttXtXetXtX iij
jir

ii αεβ
γ

+−+=+
− 2

,1  (17)

Equation (17) is commonly swapped for Equation (18) to improve computational performance, where 
β0 represents the attractiveness at r=0: 

( ) ( )2
0

1 r
r

×+
=

γ
ββ  (18)

In these formulas, Xi(t) represents the current position of agent i at a specific iteration t, and rij 
denotes the current position of agent j during the corresponding iteration t. The parameter β signifies 
the separation between agents indexed as i and j serving as a metric for their mutual attraction. β is 
termed the agent attraction coefficient, γ denotes the light absorption coefficient, α controls the 
degree of randomness, and εi(t) represents a stochastic vector. 

Although the introduced search mechanism of the FA does enhance convergence, it is crucial to 
strike a balance throughout the optimization process. The firefly search mechanism becomes active 
only in the latter half of the optimization interactions. After each of these iterations, a pseudo-random 
value is generated within the range [0, 1] and compared to a threshold value ψ. If the generated value 
surpasses ψ, the firefly search is initiated; otherwise, a normal COA search is employed. The value of 
ψ is determined empirically to yield optimal results for the given problem, typically set at 0.6. 

The described algorithm is dubbed the hybrid COA(HCOA). The pseudocode for the described 
algorithm is provided in the following Algorithm 1 pseudocode: 

Algorithm 1 – Pseudo-code for the introduced HCOA algorithm 
Set initial population size (N), 
Set the maximum number of iterations (T), 
Set coefficient ψ 
while t < T do 

Evaluate agents using an objective function 
if t > T/2 then 

Update agent’s locations using the appropriate COA search mechanisms 
else 

Generate a random value rnd 
if rnd > ψ then 

Update agent’s locations using the appropriate COA search mechanisms 
else 

Update agent’s locations using the Firefly search mechanisms 
end if 

end if 
end while 
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3. Experimental Results 

To facilitate experimentation a publicly accessible simulated dataset is utilized provided by the 
Carnegie Mellon University CERT Division Software Engineering Institute [36]. The dataset was 
accessed on January 25, 2023. and is publicly available [37]. While this dataset contains information 
on several malicious insider threat users and their activities our work focuses on logon activities and 
their relative period. 

To reflect real-world scenarios dataset is heavily imbalanced with malicious actor activities 
being a minority. A total of 854661 samples represent normal users with only 198 samples being 
malicious actors. To facilitate model training, the majority class is down-sampled to a 9:1 ratio of 
normal to malicious activities. During testing 1782 samples represent normal user activity and 198 
malicious. The datasets are further split into training and testing with 70% allocated to train 
respective models and 30% withheld for evaluations. The dataset structure, as well as the structure 
of the training and testing portions, are shown in Figure 1. 

Time of access features are considered in this experiment. Specifically, the day of access and time 
of day. Interesting patterns can be observed in the behavior of user access with insider threats often 
accessing machines outside of regular work hours. Additionally, insiders prefer accessing machines 
later in the week. The distribution of normal and malicious user access can be seen in Figure 2. 

 
Figure 1. Dataset training and testing structure. 

 
Figure 2. Normal, shown in blue, and insider thread user distributions shown in orange color. . 

Several contemporary optimizers were included in a comparative analysis with the introduced 
optimizer: COA [6], GA [21], PSO [22], FA [23], SCA [24], WOA [25], RSA [26] and COLSHADE [27]. 
Algorithms were independently implemented in Python using standard machine-learning libraries 
provided by Sklearn. Additional supporting libraries utilized include Pandas and Numpy. 
Optimizers are implemented with parameters set to the values suggested in the original works. 
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Optimizes are tasked with selecting optimal control parameter values for the AdaBoost 
algorithms. These parameters and their respective ranges are the number of estimators [10, 50], depth 
[1, 10] and learning rate [0.1, 2]. A relatively modest number of estimators is used due to the heavy 
computational demands of the optimization. Each optimizer was allocated a population size of ten 
and allowed 15 iterations to improve attained solutions. Finally, the experimentation is repeated 30 
times in independent executions to account for the randomness inherent in the application of 
metaheuristics. 

To guide the optimization Cohen’s kappa metric is utilized due to this metric’s ability to evaluate 
classifications of imbalanced data well. The Cohen’s kappa score is determined by Equation (19): 

e

e
c
cck

−
−

=
1
0  (19)

Further metrics are tracked to ensure thorough comparisons. These include a set of standard 
classification metrics used to get a comprehensive overview of algorithm performances including 
accuracy shown in Equation (20), precision Equation (21), recall Equation (22) and f1-score in 
Equation (23): 

edictionsProfNumberTotal
edictionsPrCorrectofNumberAccuracy =  (20)

PositivesFalsePositivesTrue
PositivesTrueecisionPr
+

=  (21)

NegativesFalsePositivesTrue
PositivesTruecallRe
+

=  (22)

callReecisionPr
callReecisionPr2score1f

+
××=−  (23)

Additionally, error rates are recorded for each algorithm determined by Equation (24): 

Accuracy1rateError −=  (24)

Error rate is the complement of accuracy and represents the proportion of incorrectly classified 
instances. It is the ratio of the number of misclassifications to the total number of instances. This is a 
convenient way to represent the error rate in terms of more intuitive accuracy metric. 

3.1. Simulation Outcomes 

Simulation results in terms of objective and indicator function are provided in Table 1 and Table 
2 respectively. As evident, introduced optimizer attained the best outcomes with the best scoring of 
0.711939, mean scoring of 0.673919, and median executions scoring of 0.672113 in terms of objective 
function results. The best outcomes in terms of the worst-case performance are demonstrated by the 
FA attaining an objective function score of 0.630255. 

These results are somewhat similar to the results in terms of an indicator function, with the 
introduced optimizer matching the best performance of 0.053872, sharing first place with the WOA, 
and attaining the best outcomes in mean and median executions scoring 0.057239 and 0.056397 
respectively. The PSO attained the best outcomes in the worst-case execution scoring 0.062290. 

Comparisons in terms of algorithm stability can be viewed in Table 1 and Table 2 in terms of 
objective and indicator functions as well. In terms of stability, the PSO and SCA attained the highest 
rate of stability in comparison to other tested optimizes. However, they did not demonstrate the best 
performance. Visual comparisons are provided in Figure 3. While the introduced optimizer 
showcases a relatively low stability in terms of objective function it nonetheless demonstrates the best 
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outcomes. Additionally, in terms of indicator function, the introduced optimizers show the highest 
outcomes, outperforming all other algorithms. 

Table 1. Objective function outcomes for the best worst mean and median runs. 

Method Best Worst Mean Median Std Var 

AB-HCOA 0.711939 0.625510 0.673919 0.672113 0.024330 0.000592 

AB-COA 0.671187 0.613295 0.637825 0.636679 0.018445 0.000340 

AB-GA 0.677333 0.617112 0.645781 0.638252 0.019972 0.000399 

AB-PSO 0.659553 0.614028 0.638885 0.638874 0.012979 0.000168 

AB-FA 0.672196 0.630255 0.644348 0.640337 0.013494 0.000182 

AB-SCA 0.656084 0.613295 0.642558 0.647218 0.014036 0.000197 

AB-WOA 0.694297 0.625510 0.647621 0.639584 0.022794 0.000520 

AB-RSA 0.682312 0.625510 0.645486 0.645056 0.017144 0.000294 

AB-COLSHADE 0.055556 0.063973 0.060816 0.061448 0.002719 7.40E-06 

Table 2. Indicator function outcomes for the best worst mean and median runs. 

Method Best Worst Mean Median Std Var 

AB-HCOA 0.053872 0.063973 0.057239 0.056397 0.003260 1.06E-05 

AB-COA 0.060606 0.063973 0.061658 0.061448 0.003663 1.34E-05 

AB-GA 0.055556 0.069024 0.060816 0.060606 0.004075 1.66E-05 

AB-PSO 0.057239 0.062290 0.060396 0.060606 0.002296 5.27E-06 

AB-FA 0.055556 0.065657 0.062710 0.063131 0.004434 1.97E-05 

AB-SCA 0.060606 0.063973 0.061027 0.061448 0.002018 4.07E-06 

AB-WOA 0.053872 0.063973 0.059975 0.060606 0.003464 1.20E-05 

AB-RSA 0.055556 0.063973 0.059975 0.060606 0.002516 6.33E-06 

AB-COLSHADE 0.055556 0.063973 0.060816 0.061448 0.002719 7.40E-06 

Comparisons in terms of convergence rate are provided in terms of objective as well as indicator 
function in Table 2. A clear influence of the introduced modifications is evident in the modified 
version of the algorithm over the baseline. 
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Figure 3. Objective and indicator function outcome distributions over 30 independent runs. 

While many algorithms converge towards a local minimum, the modified version locates the 
best solution towards the final executions suggesting that the introduced alterations have introduced 
an improvement. 

Figure 4. shows the objective and indicator functions’ outcome convergence plots. 

 
Figure 4. Objective and indicator function outcome convergence plots. 

Detail metric comparisons between the best-constructed models are provided in Table 3. A clear 
dominance in terms of best outcomes is showcased by the introduced algorithm, with only the FA 
outperforming the algorithm in terms of precision for insider threat detection. However, this is to be 
somewhat expected as in accordance with the NFL [28] no single optimizer is equally suited to all 
challenges across all metrics. 
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Table 3. Metrics comparisons between the best performing models constructed by each optimizer. 

Method metric normal insider accuracy macro avg weighted avg 

AB-HCOA precision 

recall 

f1-score 

0.975425 

0.964486 

0.969925 

0.707692 

0.779661 

0.741935 

0.946128 

0.946128 

0.946128 

0.841559 

0.872073 

0.855930 

0.948832 

0.946128 

0.947279 

AB-COA precision 

recall 

f1-score 

0.969868 

0.962617 

0.966229 

0.682540 

0.728814 

0.704918 

0.939394 

0.939394 

0.939394 

0.826204 

0.845715 

0.835573 

0.9413297 

0.939394 

0.940274 

AB-GA precision 

recall 

f1-score 

0.964815 

0.973832 

0.969302 

0.740741 

0.677966 

0.707965 

0.944444 

0.944444 

0.944444 

0.852778 

0.825899 

0.838633 

0.942558 

0.944444 

0.943345 

AB-PSO precision 

recall 

f1-score 

0.961326 

0.975701 

0.968460 

0.745098 

0.644068 

0.690909 

0.942761 

0.942761 

0.942761 

0.853212 

0.809884 

0.829685 

0.939849 

0.942761 

0.940892 

AB-FA precision 

recall 

f1-score 

0.963100 

0.975701 

0.969359 

0.750000 

0.661017 

0.702703 

0.944444 

0.944444 

0.944444 

0.856550 

0.818359 

0.836031 

0.941933 

0.944444 

0.942873 

AB-SCA precision 

recall 

f1-score 

0.964618 

0.968224 

0.966418 

0.701754 

0.677966 

0.689655 

0.939394 

0.939394 

0.939394 

0.833186 

0.823095 

0.828037 

0.938509 

0.939394 

0.938928 

AB-WOA precision 

recall 

f1-score 

0.968343 

0.971963 

0.970149 

0.736842 
0.711864 
0.724138 

0.946128 
0.946128 

0.946128 

0.852592 
0.841914 

0.847144 

0.945348 
0.946128 
0.945714 

AB-RSA precision 

recall 

f1-score 

0.966543 
0.971963 
0.969245 

0.732143 
0.694915 
0.713043 

0.944444 

0.944444 

0.944444 

0.849343 
0.833439 
0.841144 

0.943261 
0.944444 
0.943797 

AB-

COLSHADE 

precision 

recall 

f1-score 

0.964815 
0.973832 
0.969302 

0.740741 
0.677966 
0.707965 

0.944444 

0.944444 

0.944444 

0.852778 
0.825899 
0.838633 

0.942558 
0.944444 
0.943345 
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Graphical presentation of the outcomes for the best model in terms of confusion matrix and ROC 
are provided in Figure 5. 

(a) (b) 

Figure 5. (a) Best performing model ROC; (b) Confusion matrix. 

Additional sample additive explanations (SHAP) analysis [38] is conducted to determine the 
feature importance for the best models’ decision-making process. The outcomes are presented in 
Figure 6. SHAP interpretation suggests that the time of the day, and the day of the week play an 
important role in user activity being classified correctly. Additionally, the type of activity (logon or 
logoff) is considered. However, if an activity occurs on a weekend that is not considered important 
for the classification, likely due to this information being redundant with the day of the week being 
available.  

 
Figure 6. SHAP analysis outcomes for the best model. 

Finally, the parameter selections made by each optimizer for the respective best-constructed 
model are provided in Table 4. 

Table 4. Parameter selections for the respective best-performing model made by each optimizer. 

Method p1 p2  p3 

AB-HCOA 34 4 1.941851 

AB-COA 50 3 1.958571 

AB-GA 42 2 1.557575 

AB-PSO 30 2 1.522928 
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AB-FA 41 2 1.470723 

AB-SCA 20 2 1.685248 

AB-WOA 50 2 1.815289 

AB-RSA 50 2 1.839656 

AB-COLSHADE 43 2 1.469586 

5. Conclusions 

This work attempts to solve the problem of intrusion detection, based on login activity, within a 
greater context of cyber security, for a majority of normal users. AdaBoost classifier is applied to 
improve performance. Several optimizers are tasked with selecting optimal control parameters. 
Additionally, a modified version of COA algorithm is introduced specifically for this investigation. 
A comparative analysis is conducted, with several contemporary optimizers on a simulated, publicly 
available, dataset. The models optimized by the introduced modified algorithm attained the best 
outcomes demonstrating an accuracy of 94.6128% and an adaptive convergence rate that was capable 
of overcoming local minima and locating the best solution. Additionally, the best-constructed model 
was subjected to SHAP analysis in order to determine the key contributing features. 

Some limitations associated with this research are due to the heavy computational constraints 
of the optimization process. Namely, the training and evaluation process requires training of many 
models, therefore limited populations and smaller numbers of estimators are considered during the 
simulations. 

Future works will focus on further expanding the methodology, by incorporating other user 
actions in the classification. The computational constraint-associated limitations hope to be addressed 
as more powerful hardware becomes available. Finally, other optimization tasks will be improved by 
the introduced novel, modified algorithms. 
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