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Abstract: This paper addresses a critical concern in intrusion detection within the broader realm of
cyber security, particularly focusing on login activity involving the majority of normal users.
Utilizing the AdaBoost classifier, the study employs various optimizers to enhance performance by
selecting optimal control parameters. A specially tailored version of Crayfish Optimization
Algorithm (COA) is introduced to cater to the unique requirements of this investigation. Through a
comparative analysis of a simulated publicly available dataset, models optimized by the modified
algorithm demonstrate superior outcomes, achieving an accuracy of 94.6128% and displaying an
adaptive convergence rate capable of navigating local minima to identify optimal solutions. The
best-performing model undergoes SHapley Additive exPlanations (SHAP) analysis to identify key
contributing features. Limitations arise from the computational intensity of the optimization
process, necessitating consideration of limited populations and smaller numbers of estimators
during simulations. Future endeavors will extend the methodology to incorporate additional user
actions in classification, with a focus on addressing computational constraints as hardware
advancements occur. Proposed, modified algorithm could be applied to deal with various
optimization tasks, beyond the scope of this study.

Keywords: AdaBoost; legal frameworks; cyber security; crayfish optimization algorithm; insider
threat; metaheuristics

1. Introduction

In modern, complex information systems, cyber security intrusion detection plays an ever-
increasingly important role [1]. Ransomware attacks and data breaches, often initialized by insiders
[2], cost organizations millions with many institutions being forced to shut down due to loss of trust
or finance. Due to the ever-evolving topology of cybersecurity, administrators and security specialists
often struggle to keep up with new developments [3].

One promising approach, capable of adapting to the changing landscape of security in the digital
realm is the application of artificial intelligence (AI). Algorithms from this class have ability to discern
patterns and effectively learn from observations of data. This allows the application and adaptation
of Al with minimal programming required. Additionally, algorithms learn from new data and are
therefore capable of adapting to new developments as well [4].

There are several challenges to the proper application of Al in cyber security. The first one is
data availability. Companies are often hesitant to make data concerning attacks publicly available
and therefore real-world data is scarce. The second challenge is associated with parameter selections.
Namely, algorithms are often designed with good general performance in mind, however, to be well
suited to a specific task, parameter tuning is required in order to adjust the algorithm to the available
data. This process can often be NP-hard due to the large search spaces when considering options for
parameters.

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.
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A class of algorithms often selected by researchers to tackle hyperparameter tuning are
metaheuristic algorithms [5]. These algorithms take a randomness-driven approach and often borrow
inspiration from search strategies observed in nature to handle and guide optimizations toward an
optimal solution. These algorithms have even been shown to tackle NP-hard problems with
acceptable results and within realistic time constraints, however, a true optimal solution is not
guaranteed.

This work seeks to explore the potential of the AdaBoost classifier in order to handle detection
of insider threats within an organization. A publicly available simulated cyber security dataset is
used, and user login patterns are analyzed in order to detect malicious actors. Additionally, a
modified version of the recently introduced crayfish optimization algorithm (COA) [6] is introduced
specifically for the needs of this study.

The main contributions of this work can be outlined as the following;:

e  This is proposal for new insider threat detection framework based on the AdaBoost algorithm
to boost institution cyber security,

e  We present a novel, modified version of the COA designed to overcome some of the observed
shortcomings of the original,

¢  We have conducted evaluation of several contemporary optimizers in order to determine their
advantages and disadvantages when optimizing AdaBoost for cyber security.

Proper management of cyberspace refers to the application of the following principles:
responsibility, transparency, rule of law, participation of the entire audience in cyberspace,
institutional responsiveness, effectiveness of institutional and individual roles, as well as efficiency
in operations. The basic problem in ensuring cyber security is the definition of legal norms and
institutions that would monitor the flow of data and actions in cyberspace, as well as ensure the
privacy rights of users. U.S. Congress still struggles to establish a system that provides essential
privacy protection while retaining investigative capabilities [7]. Cybersecurity and privacy protection
are subjects of intensive research [8], as well as governments’ considerations around the world. In
2023 Australia has established its 2023-2030 Australian Cyber Security Strategy [9].

The interconnected nature of cyberspace, "without borders", poses a real problem for the
traditional framework of territorial application of laws [10]. Data and cyber activities are generated
on servers that may fall under the jurisdiction of one state, while users or cyber victims may fall under
the jurisdiction of another state or legal system [11].

It is often considered that laws applicable to offline activities should also apply to online
activities, but clear characterization of such actions in practice is difficult to achieve. Cybersecurity
raises complex legal questions primarily related to the right to privacy and freedom of expression.
This complexity is further compounded by public-private collaboration and the related legal issues
concerning responsibility and control. The issue of monitoring activities and data flows is
complicated due to the diverse nature of actors involved in cyberspace. According to the broadest
understanding, national oversight institutions oversee the work of various agencies or functional
lines of administration. Consequently, state-level parliamentary committees may oversee the work
of intelligence services, armed forces, or judicial bodies. On the other hand, public-private
collaboration in the field of cybersecurity goes beyond the boundaries of individual agencies, leading
to a collision of expert understandings of cyber activities and surveillance mandates. The
consequence of this collision is the existence of a large number of cases where surveillance is either
inadequate or nonexistent. Regarding the overlap of responsibilities and control, the procedures of
each government agency are linked in a chain of accountability from the first to the last.

In cyberspace, chains of command can be disrupted by the involvement of private actors and
the establishment of public-private collaboration mechanisms. In practice, there may be IT companies
that engage with government agencies and work exclusively for the state, but this relationship is
often much more complex and obscured by numerous information asymmetries that reduce
transparency and hinder the smooth and successful functioning of surveillance and control
mechanisms [12].
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The oversight boards in each government should control the government agencies for which
they are directly responsible. In this way, there may be an omission of private partners of these
agencies from the oversight space, even in cases when they are directly funded or closely collaborate
with these agencies. The technical specificity of characterizing cyberspace further complicates the
traditional problems faced by national parliamentarians tasked with overseeing the security sector,
leading to reduced effective accountability. Difficulties in reliably identifying perpetrators of
cybercrimes can lead to hindered or even nonexistent accountability of the security sector to civilian
authorities, contributing to a culture of impunity for these criminal acts. Thus, the judicial sector may
grant special powers to law enforcement and intelligence agencies through issuing search warrants.
This fact is particularly important in the context of communication interception. In practice, judicial
oversight is often circumvented or restricted for reasons of national security preservation under
emergency conditions.

As a model of good legislation, we can mention the National Cyber Security Strategy of Sweden
from 2016, which regulates issues from the legal regulation of ICT to the protection of critical
infrastructure. However, it seems that there is not just one committee or subcommittee dealing solely
with cybersecurity. Unlike most national cybersecurity strategies, the Swedish strategy includes
strategic principles and an action plan that helps parliament hold both public and private actors
accountable in the process of controlling cyber security. The principle of the rule of law is interpreted
by international courts, such as the European Court of Human Rights (ECHR). This court has
developed a rule-of-law test stating that "all restrictions on fundamental rights must be based on
clear, precise, accessible, and predictable legal provisions and must pursue legitimate aims in a
manner that is necessary and proportionate to the aim in question, and there must be an effective,
preferably judicial, remedy". Consequently, authorities in states demand that private companies who
own social media platforms ensure that their services do not harbor violent extremists and terrorists.
To meet these demands, governments [13], and private companies holding social media, have
developed specific terms and codes of conduct to control the content posted on these platforms, and
generally, apply legal rules in the digital world. In this way, they have de facto established rules and
norms on the Internet. However, these terms and rules are not the same on all platforms, creating
ambiguity and legal uncertainties regarding the type of content prohibited on each platform.

Hackers and various agencies routinely engage in eavesdropping on private conversations and
intercept them at the "back door". In other words, when it comes to state security, there is no truly
established need for the application of the rule of law, although we have at least basic principles that
could form the basis of such an important part of the universal fortress of human rights. With the
increasing partnership between law enforcement agencies and intelligence and security services, this
weakening of the rule of law threatens to spread and be transferred to the police and prosecutors.
The lack of clear legal frameworks in this area, both domestically and internationally, poses an
additional threat to the rule of law on the Internet and in the global digital environment [14].

Numerous existing approaches attempt to address cyber security, with traditional techniques
like firewalls [15] and block lists proving useful over time [16]. However, rapid developments and
the emergence of zero-day [17] vulnerabilities make it challenging for administrators to keep up with
attackers. To adapt to the fast-paced information age, new techniques are imperative.

IoT networks are frequent targets for DDoS and DoS attacks [18], where relatively simple devices
can disrupt operations on a massive scale and compromise information about their environment and
users. Additionally, insider actors seeking revenge for perceived unfair treatment pose a significant
threat vector [19].

A noticeable research gap exists in insider threat detection, creating a void in the field. This
investigation aims to explore the potential of Al for preventing insiders from causing harm to
organizations by focusing on user behavior classification. By addressing this gap, the research
contributes to advancing methods that can better safeguard against evolving cyber security
challenges, particularly in the context of insider threats.

AdaBoost [20] utilized an iterative approach in order to cast an approximation of the Bayes
classifier. This is done by combining several weaker classifiers. From a starting point of an
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unweighted sample used to train the model, this approach builds a group of classifiers. If a miss
classification occurs, the weights of each classifier are reduced and if a correct classification is made
weights are incremented. The error of a weak classifier ¢: can be determined as given by Equation (1):

N ow 1 (x.)# y,
8; — lela)t,tN( t(xt);tyt)l (1)

Zi:] a)[,t

where ¢: denotes the weighted error of the weak learner in the ¢-th iteration. The variable N represents

the number of training instances. The term wi: corresponds to the weight of the i-th instance in the ¢-
th iteration. The expression hi(xi) signifies the prediction made by the weak learner for the i-th
instance in the -th iteration. The variable y: represents the true label of the i-th instance. Additionally,
the function I(-) is an indicator function that equals 1 if the condition within the parentheses is true
and 0 otherwise.

Further classifiers are built based on the attained weights and the weight adjustment process is
repeated. Large groups of classifiers are usually assembled in order to create accurate classification.
A score is given to each of these sub-models, and a linear model is constructed by their combination.
The classifier weight in the ensemble can be determined according to Equation (2):

N @
2 &

where weight at, assigned to each weak learner in the final ensemble, is calculated based on its

performance. It depends on the weighted error ¢: and is used to determine the contribution of the
weak learner to the final combined model. To update weights Equation (3) is used:

W41 = Wy exp(— a,yh, (xi ))l 3)

where wi: represents the weight of the i-th instance in the -th iteration, a: denotes the weight of the
weak learner in the #-th iteration, yi stands for the true label of the i-th instance, and h:(xi) signifies the
prediction of the weak learner for the i-th instance in the #-th iteration.

AdaBoost algorithm is well suited to binary classification problems. However, it does struggle
with multi-class classification problems. As the challenge in this work is a binary classification
problem, this algorithm is selected for optimization.

Hyperparameter selection can often be difficult in practice. There is currently no unified
approach for selection. Researchers often resort to computationally expensive complete search
techniques or a trial-and-error process. When dealing with a mixed set of parameters this challenge
can quickly form a mixed NP-hard problem. Therefore, techniques capable of addressing this
category of challenge are required.

Taking a heuristic approach is often preferable. Metaheuristic optimizers have demonstrated
ability to handle NP-hard problems, often drawing inspiration from natural phenomena. Some
notable examples include the genetic algorithm (GA) [21], particle swarm optimization (PSO) [22],
firefly algorithm (FA) [23], sine cosine algorithm (SCA) [24], whale optimization algorithm (WOA)
[25], reptile search algorithm (RSA) [26] and COLSHADE [27]. The driving reason for so many
algorithms comes from the no free-lunch theorem of optimization (NFL) [28] that states that no single
approach is perfectly suited to all challenges and across all metrics. Therefore, constant
experimentation is needed to determine the most suitable optimizer for a given task.

Hybridization of existing algorithms is a popular approach for researchers to overcome some of
the observed drawbacks of optimizers. Metaheuristics is successfully applied in several fields of
optimization, including finance [29], medicine [30,31], computer security [32], renewable power
generation [33] and may others [34].
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2. Materials and Methods

This section describes the base methods and algorithms that served as inspiration for our work.
Following that, the potential for improvements is described alongside the modifications aimed at
improving performance. Finally, the algorithm pseudocode is presented.

2.1. Original Crayfish Optimization Algorithm

The Crayfish optimization algorithm (COA) is a recently created metaheuristic algorithm
depicting the behavior of crayfish, also known as crayfish, a form of crustacean, in a natural setting
[6]. These animals belong to the infraorder Astacidea family and make freshwater such as lakes and
rivers their home. They are omnivores, foraging the floor of the body of water for nutritious meals.

Algorithm emulates crayfish summer resort behavior which entails the crayfish searching for
cool caves when the temperatures are high. This behavior acts as the algorithm’s exploration stage.
Next, these animals compete for the best shelter. Foraging, which happens when the temperatures
allow, is also modeled. Competing and foraging are used as exploitation stages in COA.

As is the norm with swarm intelligence, the population of crayfish P is initialized in the
beginning stage of the algorithm. To manage the stages of exploration and exploitation, temperature
is represented by a random constant defined by the Equation (4):

temp = rand x15+20 4)

The summer retreat behavior happens when the temperature is higher than 30°C, in which case the
crayfish look for a cool shelter from the heat, such as caves. Temperatures between 15°C and 30°C
are suitable for crayfish feeding, with 25°C being ideal. Since most reliable foraging behavior happens
in the range of 20°C to 30°C, the model’s temperature ranges from 20°C to 35°C. The mathematical
representation of the feeding behavior of crayfish may be seen in Equation (5):

)

1
p=C——exp| —
' 2o [ 20

In this expression, u marks the thriving weather for crayfish, while Ci and ¢ serve the purpose of
controlling the food intake of crayfish at varying temperatures.

When temp>30, the stage of exploring starts. The shelter crayfish take from the heat is modeled
by Equation (6):

©)

X
Xshade :XG +TL (6)

where, X1 marks the current colony optimal positioning, while X¢ marks the best possible place
gained, in regards to the number of iterations.

Whether the crayfish competes for the shelter is randomly dictated by the variable value rand.
In case this value is lesser than 0.5, no competition between crayfish for the shelter occurs. Since there
is no obstacle, the crayfish will enter the cave without issue, per the Equation (7) and Equation (8):

Xt+ll~’j = Xl,'7j + C2 X rand(Xshade - th',j ) (7)

t
Cy=2-— ®)

C2 denotes a decreasing curve, T marks the topmost number of repetitions, and ¢ marks live iteration,
while #+1 depicts the repetition number for the next generation.

During the high temperatures, the crayfish seek shelter. This shelter or cave is a symbol of the
best possible solution. In the summer resort stage, the crayfish head towards the cave thus nearing
the optimal solution. The closer to the cave they are, the better COA’s potential for exploitation
becomes, and the faster the algorithm converges.
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When rand>0.5, there is competition between crayfish for the shelter. This competition has
played the role of the start of the exploitation stage. The conflict is represented by the Equation (9)
and Equation (10):

XH-ll"j = Xti’j _Xth +Xshade (9)

z= round(rand(N— 1))+1 (10)

where z marks the crayfish’s random individual.

In the competition phase, crayfish fight with each other. Crayfish X: adapt their position in
relation to another crayfish’s position X:. This adaptation of positions expands the search range of
COA, thereby boosting the algorithm’s exploration capacity.

The crayfish feed in temperatures below or equal to 30°C. When such conditions are met, the
crayfish moves towards the food. Location of the food Xo: and its size Q are decided as defined by
Equation (11) and Equation (12):

X food =X (1)
fitness;
0 =Cyxrand ——— (12)
Jitness z,,q

In this context, Cs stands for the food factor representing the biggest food source, with a constant
value of 3. The fitness variable denotes the fitness value of the i-th crayfish, whereas fitnessso: indicates
the fitness value linked to the food’s location.

In the case when the food is too big, and Q>(Cs+1)/2, the process of tearing up the food is depicted
in Equation (13):

Xfood = exp(— Q)Xfood (13)

When the food is small enough, Q<(Cs+1)/2, the crayfish will simply eat the food, as given by Equation
(14):

Xt+1i’j = Xti,j _Xfoodp +pxrandXti’j (14)

During the foraging phase, crayfish employ various feeding tactics depending on the size of
their food denoted by Q, where the food location Xy signifies the ideal solution. They will move
closer to the food of readily edible size. Conversely, when Q is excessively large, meaning a
substantial disparity between the crayfish and the optimal solution, X will be decreased, thereby
drawing it nearer to the meal.

2.2. Hybrid COA

Despite the admirable performance demonstrated by the COA, as a recently introduced
algorithm, there is still plenty of room to explore potential improvements. To that end, this work
introduced two new mechanisms into the original COA.

The initial modification incorporates quasi-reflective learning (QRL) [35] in the first T iterations.
Following each iteratiom, the worst solutions are replaced by new solutions generated based on
Equation (15):

AT =rad(%,aj (15)

where [b and ub denote lower and upper bounds of the search space and rad denotes a random value
within the given interval. The newly generated solution is not subjected to objective function
evaluation thus the computational complexity of the modified algorithm is kept consistent with the
original.
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When examining optimization metaheuristics, it becomes crucial to find an equilibrium between
exploration and exploitation. In order to enhance exploitation, a supplementary adjustment is
incorporated, drawing inspiration from the widely recognized firefly algorithm (FA) [23]. The FA
simulates the courtship behaviors of bioluminescent beetles through mathematical modeling, where
individuals emitting brighter light attract those in their vicinity. The brightness of each agent is
computed according to a problem-dependent objective function, outlined in Equation (16):

F, = f(X;) (16)

Several environmental factors are also simulated to replicate real-world conditions such as light
fading depending on the distance between agents, as well as the characteristics of the medium of
propagation. The basic search mechanism of the FA is shown by Equation (17):

X+ )= X064 e (30 x,0) + e o) 17

Equation (17) is commonly swapped for Equation (18) to improve computational performance, where
po represents the attractiveness at r=0:

Bo

ﬂ(r)=m) (18)

In these formulas, Xi(t) represents the current position of agent i at a specific iteration ¢, and r;
denotes the current position of agent j during the corresponding iteration ¢. The parameter f signifies
the separation between agents indexed as i and j serving as a metric for their mutual attraction. f8 is
termed the agent attraction coefficient, y denotes the light absorption coefficient, a controls the
degree of randomness, and ¢i(t) represents a stochastic vector.

Although the introduced search mechanism of the FA does enhance convergence, it is crucial to
strike a balance throughout the optimization process. The firefly search mechanism becomes active
only in the latter half of the optimization interactions. After each of these iterations, a pseudo-random
value is generated within the range [0, 1] and compared to a threshold value 1. If the generated value
surpasses 1, the firefly search is initiated; otherwise, a normal COA search is employed. The value of
1 is determined empirically to yield optimal results for the given problem, typically set at 0.6.

The described algorithm is dubbed the hybrid COA(HCOA). The pseudocode for the described
algorithm is provided in the following Algorithm 1 pseudocode:

Algorithm 1 — Pseudo-code for the introduced HCOA algorithm
Set initial population size (N),
Set the maximum number of iterations (T),
Set coefficient 1
while ¢t < T do

Evaluate agents using an objective function

if t > T/2 then

Update agent’s locations using the appropriate COA search mechanisms

else
Generate a random value rnd
if rnd > 1 then
Update agent’s locations using the appropriate COA search mechanisms
else
Update agent’s locations using the Firefly search mechanisms
end if
end if
end while
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3. Experimental Results

To facilitate experimentation a publicly accessible simulated dataset is utilized provided by the
Carnegie Mellon University CERT Division Software Engineering Institute [36]. The dataset was
accessed on January 25, 2023. and is publicly available [37]. While this dataset contains information
on several malicious insider threat users and their activities our work focuses on logon activities and
their relative period.

To reflect real-world scenarios dataset is heavily imbalanced with malicious actor activities
being a minority. A total of 854661 samples represent normal users with only 198 samples being
malicious actors. To facilitate model training, the majority class is down-sampled to a 9:1 ratio of
normal to malicious activities. During testing 1782 samples represent normal user activity and 198
malicious. The datasets are further split into training and testing with 70% allocated to train
respective models and 30% withheld for evaluations. The dataset structure, as well as the structure
of the training and testing portions, are shown in Figure 1.

Time of access features are considered in this experiment. Specifically, the day of access and time
of day. Interesting patterns can be observed in the behavior of user access with insider threats often
accessing machines outside of regular work hours. Additionally, insiders prefer accessing machines
later in the week. The distribution of normal and malicious user access can be seen in Figure 2.

1750 Training Dataset Structure Testing Dataset Structure

1500 1 Intrusion Intrusion

1250

1000

count

750

250 1

Narmal Insider

label

Normal Normal

Figure 1. Dataset training and testing structure.
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Figure 2. Normal, shown in blue, and insider thread user distributions shown in orange color. .

Several contemporary optimizers were included in a comparative analysis with the introduced
optimizer: COA [6], GA [21], PSO [22], FA [23], SCA [24], WOA [25], RSA [26] and COLSHADE [27].
Algorithms were independently implemented in Python using standard machine-learning libraries
provided by Sklearn. Additional supporting libraries utilized include Pandas and Numpy.
Optimizers are implemented with parameters set to the values suggested in the original works.
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Optimizes are tasked with selecting optimal control parameter values for the AdaBoost
algorithms. These parameters and their respective ranges are the number of estimators [10, 50], depth
[1, 10] and learning rate [0.1, 2]. A relatively modest number of estimators is used due to the heavy
computational demands of the optimization. Each optimizer was allocated a population size of ten
and allowed 15 iterations to improve attained solutions. Finally, the experimentation is repeated 30
times in independent executions to account for the randomness inherent in the application of
metaheuristics.

To guide the optimization Cohen’s kappa metric is utilized due to this metric’s ability to evaluate
classifications of imbalanced data well. The Cohen’s kappa score is determined by Equation (19):

k=——= (19)

Further metrics are tracked to ensure thorough comparisons. These include a set of standard
classification metrics used to get a comprehensive overview of algorithm performances including
accuracy shown in Equation (20), precision Equation (21), recall Equation (22) and fl-score in
Equation (23):

Numberof Correct Predictions

Accuracy =
Y Total Number of Predictions (20)

.. True Positives
Precision = — — (21)
True Positives + False Positives

TruePositives
Recall = - . o)
True Positives + False Negatives
fl —SCore = 2% Pr eC.ISIIOnX Re Call (23)
Precision + Recall

Additionally, error rates are recorded for each algorithm determined by Equation (24):

Errorrate =1— Accuracy (24)

Error rate is the complement of accuracy and represents the proportion of incorrectly classified
instances. It is the ratio of the number of misclassifications to the total number of instances. This is a
convenient way to represent the error rate in terms of more intuitive accuracy metric.

3.1. Simulation Outcomes

Simulation results in terms of objective and indicator function are provided in Table 1 and Table
2 respectively. As evident, introduced optimizer attained the best outcomes with the best scoring of
0.711939, mean scoring of 0.673919, and median executions scoring of 0.672113 in terms of objective
function results. The best outcomes in terms of the worst-case performance are demonstrated by the
FA attaining an objective function score of 0.630255.

These results are somewhat similar to the results in terms of an indicator function, with the
introduced optimizer matching the best performance of 0.053872, sharing first place with the WOA,
and attaining the best outcomes in mean and median executions scoring 0.057239 and 0.056397
respectively. The PSO attained the best outcomes in the worst-case execution scoring 0.062290.

Compearisons in terms of algorithm stability can be viewed in Table 1 and Table 2 in terms of
objective and indicator functions as well. In terms of stability, the PSO and SCA attained the highest
rate of stability in comparison to other tested optimizes. However, they did not demonstrate the best
performance. Visual comparisons are provided in Figure 3. While the introduced optimizer
showcases a relatively low stability in terms of objective function it nonetheless demonstrates the best
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outcomes. Additionally, in terms of indicator function, the introduced optimizers show the highest

outcomes, outperforming all other algorithms.

Table 1. Objective function outcomes for the best worst mean and median runs.

Method Best Worst Mean Median Std Var
AB-HCOA 0.711939 0.625510 0.673919 0.672113 0.024330 0.000592
AB-COA 0.671187 0.613295 0.637825 0.636679 0.018445 0.000340
AB-GA 0.677333 0.617112 0.645781 0.638252 0.019972 0.000399
AB-PSO 0.659553 0.614028 0.638885 0.638874 0.012979 0.000168
AB-FA 0.672196 0.630255 0.644348 0.640337 0.013494 0.000182
AB-SCA 0.656084 0.613295 0.642558 0.647218 0.014036 0.000197
AB-WOA 0.694297 0.625510 0.647621 0.639584 0.022794 0.000520
AB-RSA 0.682312 0.625510 0.645486 0.645056 0.017144 0.000294
AB-COLSHADE 0.055556 0.063973 0.060816 0.061448 0.002719 7 40E-06

Table 2. Indicator function outcomes for the best worst mean and median runs.

Method Best Worst Mean Median Std Var
AB-HCOA 0.053872 0.063973 0.057239 0.056397 0.003260 1.06E-05
AB-COA 0.060606 0.063973 0.061658 0.061448 0.003663 1.34E-05
AB-GA 0.055556 0.069024 0.060816 0.060606 0.004075 1.66E-05
AB-PSO 0.057239 0.062290 0.060396 0.060606 0.002296 5.27E-06
AB-FA 0.055556 0.065657 0.062710 0.063131 0.004434 1.97E-05
AB-SCA 0.060606 0.063973 0.061027 0.061448 0.002018 4.07E-06
AB-WOA 0.053872 0.063973 0.059975 0.060606 0.003464 1.20E-05
AB-RSA 0.055556 0.063973 0.059975 0.060606 0.002516 6.33E-06
AB-COLSHADE 0.055556 0.063973 0.060816 0.061448 0.002719 7 40E-06

Comparisons in terms of convergence rate are provided in terms of objective as well as indicator

function in Table 2. A clear influence of the introduced modifications is evident in the modified

version of the algorithm over the baseline.
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Figure 3. Objective and indicator function outcome distributions over 30 independent runs.

While many algorithms converge towards a local minimum, the modified version locates the
best solution towards the final executions suggesting that the introduced alterations have introduced

an improvement.
Figure 4. shows the objective and indicator functions’” outcome convergence plots.
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Figure 4. Objective and indicator function outcome convergence plots.

Detail metric comparisons between the best-constructed models are provided in Table 3. A clear
dominance in terms of best outcomes is showcased by the introduced algorithm, with only the FA
outperforming the algorithm in terms of precision for insider threat detection. However, this is to be
somewhat expected as in accordance with the NFL [28] no single optimizer is equally suited to all
challenges across all metrics.
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Method metric normal insider accuracy  macro avg  weighted avg
AB-HCOA precision 0975425  0.707692  0.946128  0.841559 0.948832
recall 0.964486  0.779661  0.946128  0.872073 0.946128
f1-score 0.969925  0.741935  0.946128  0.855930 0.947279
AB-COA precision  0.969868  0.682540  0.939394  0.826204 0.9413297
recall 0.962617  0.728814  0.939394  0.845715 0.939394
f1-score 0.966229  0.704918  0.939394  0.835573 0.940274
AB-GA precision  0.964815  0.740741  0.944444  0.852778 0.942558
recall 0.973832  0.677966  0.944444  0.825899 0.944444
f1-score 0.969302  0.707965  0.944444  0.838633 0.943345
AB-PSO precision  0.961326  0.745098  0.942761  0.853212 0.939849
recall 0.975701  0.644068  0.942761  0.809884 0.942761
f1-score 0.968460  0.690909  0.942761  0.829685 0.940892
AB-FA precision  0.963100  0.750000  0.944444  0.856550 0.941933
recall 0.975701  0.661017  0.944444  0.818359 0.944444
f1-score 0.969359  0.702703  0.944444  0.836031 0.942873
AB-SCA precision  0.964618  0.701754  0.939394  0.833186 0.938509
recall 0.968224  0.677966  0.939394  0.823095 0.939394
f1-score 0.966418  0.689655  0.939394  0.828037 0.938928
AB-WOA precision  0.968343  0.736842  0.946128  0.852592 0.945348
0.711864  0.946128  0.841914 0.946128
recall 0.971963
0.724138  0.946128  0.847144 0.945714
f1-score 0.970149
AB-RSA precision  0.966543  0.732143  0.944444  0.849343 0.943261
0.971963  0.694915 0.833439 0.944444
recall 0.944444
0.969245  0.713043 0.841144 0.943797
f1-score 0.944444
AB- precision  0.964815  0.740741  0.944444  0.852778 0.942558
0.973832  0.677966 0.825899 0.944444
COLSHADE recall 0.944444
0.969302  0.707965 0.838633 0.943345
f1-score 0.944444
support 535 59
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Graphical presentation of the outcomes for the best model in terms of confusion matrix and ROC
are provided in Figure 5.

AB-HCOA Insider threats logon activity - micro average ROC AB-HCOA Insider threats logon activity - confusion matrix
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Figure 5. (a) Best performing model ROC; (b) Confusion matrix.

Additional sample additive explanations (SHAP) analysis [38] is conducted to determine the
feature importance for the best models” decision-making process. The outcomes are presented in
Figure 6. SHAP interpretation suggests that the time of the day, and the day of the week play an
important role in user activity being classified correctly. Additionally, the type of activity (logon or
logoff) is considered. However, if an activity occurs on a weekend that is not considered important
for the classification, likely due to this information being redundant with the day of the week being
available.

Weekend

0.00 0.01 0.02 0.03 0.04 0.05 0.06
mean(|SHAP value|) (average impact on model output magnitude)

Figure 6. SHAP analysis outcomes for the best model.

Finally, the parameter selections made by each optimizer for the respective best-constructed
model are provided in Table 4.

Table 4. Parameter selections for the respective best-performing model made by each optimizer.

Method pl p2 p3
AB-HCOA 34 4 1.941851
AB-COA 50 3 1.958571
AB-GA 42 2 1.557575

AB-PSO 30 2 1.522928
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AB-FA 41 2 1.470723
AB-SCA 20 2 1.685248
AB-WOA 50 2 1.815289
AB-RSA 50 2 1.839656
AB-COLSHADE 43 2 1.469586

5. Conclusions

This work attempts to solve the problem of intrusion detection, based on login activity, within a
greater context of cyber security, for a majority of normal users. AdaBoost classifier is applied to
improve performance. Several optimizers are tasked with selecting optimal control parameters.
Additionally, a modified version of COA algorithm is introduced specifically for this investigation.
A comparative analysis is conducted, with several contemporary optimizers on a simulated, publicly
available, dataset. The models optimized by the introduced modified algorithm attained the best
outcomes demonstrating an accuracy of 94.6128% and an adaptive convergence rate that was capable
of overcoming local minima and locating the best solution. Additionally, the best-constructed model
was subjected to SHAP analysis in order to determine the key contributing features.

Some limitations associated with this research are due to the heavy computational constraints
of the optimization process. Namely, the training and evaluation process requires training of many
models, therefore limited populations and smaller numbers of estimators are considered during the
simulations.

Future works will focus on further expanding the methodology, by incorporating other user
actions in the classification. The computational constraint-associated limitations hope to be addressed
as more powerful hardware becomes available. Finally, other optimization tasks will be improved by
the introduced novel, modified algorithms.
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