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Abstract: The mining industry, critical for global resource supply, has historically been linked to significant
environmental degradation and social challenges including habitat disruption, water and soil contamination
as well as fatalities. But recently the industry has been undergoing a transformative change to meet evolving
environmental and societal expectations. Operations Research (OR) provides essential tools and techniques to
optimize decision-making processes in this context. This paper presents a comprehensive review of different
OR methods and their applications in balancing economic, social and environmental objectives in surface mine
planning. By evaluating the strengths and limitations of these techniques, this review offers valuable insights
for researchers and practitioners aiming to improve production efficiency and sustainability through advanced
planning strategies.
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1. Introduction

1.1. Sustainability

In the literature sustainable development (SD) has several definitions. The definition that
remains the most frequently cited today, was introduced by the United Nations' World Commission
on Environment and Development in 1987 as: “Sustainable development is development that meets
the needs of the present without compromising the ability of future generations to meet their own
needs” [1].

Since that time, various researchers have introduced different definitions of SD. However, the
primary characteristic of SD is its holistic nature, encompassing diverse aspects of human needs.
Environment, society, and economy are three pivotal aspects of sustainability that should be
considered concurrently in any decision-making process. In mining engineering, these three
principles can be connected to various indicators, some of which are illustrated in Figure 1. These
indicators are utilized to ensure that industries are acting responsibly [2]. Environmental
considerations focus on minimizing ecological damage and ensuring that mining activities do not
leave a lasting negative impact on the environment. Social indicators emphasize the importance of
mining operations in providing employment, ensuring safety, and maintaining social welfare.
Economic indicators ensure that mining activities are financially sustainable and contribute
positively to the local and national economy.

Following the acceptance of SD concept, numerous companies and governments began
incorporating SD aspects into their activities and scholars started to discuss some of its dimensions
in various sectors like Energy [3], Construction [4], urban planning [5,6] and community and
agriculture [7].

Villas-Boas et al. (2005) distinguished between two terms, sustainability and SD, despite their
often interchangeable use. They noted that sustainability pertains to the resilience of social and
environmental systems, enabling them to endure external shocks and recover to normal operations.
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According to this view, sustainability does not apply to non-renewable minerals. In contrast, SD
involves combining environmental policies with development strategies to meet present and future
human needs, improve life quality, and safeguard the environment essential for life. Considering this
framework, minerals are explicitly included within the scope of SD [8].

In the mining industry, where operations often have significant environmental and social
impacts, it is essential to establish a framework for assessing and improving the sustainability of
projects while balancing the three pillars of sustainable development. OR optimization methods are
among the most widely utilized by specialists to achieve this goal. In this research, our focus is
specifically on the application of these methods in surface mine planning.

Sustainable Development

Environmental Social Economic
Indicators: Indicators: Indicators:
Reclamation Job security Profit or NPV

Land use Safety Mine closure income

Waste production Resource efficiency Tax generation

Energy consumption Number of employees Mining indirect benefit

Figure 1. Sustainable development principles and indicators.

1.2. Surface Mine Planning

Mine planning refers to the process of determining how an ore deposit will be exploited over
the lifespan of a mining operation. The primary goal is to create an efficient system for extracting and
supplying minerals to the market, ensuring minimal costs while adhering to the regulations.
Decisions made at this stage are critical, as they have the most significant and lasting impact on the
mine's future. It relies on all factors that planning engineers deem crucial for the proposed mine’s
eventual success. This process is both strategic and tactical, initially focusing on long-term objectives
derived from strategic factors, then shifting to more intricate short-term planning stages, which are
influenced by tactical factors. The latter stages are a direct outcome of the former [9].

Surface mining (such as open pit mining) is recognized as an appropriate approach for extracting
mineral resources or ore deposits situated at shallow depths and it is the most practiced and more
efficient method compared to underground mining. However, when ore deposits are located at
significant depths, the volume of waste material that must be removed can become prohibitively
large, making surface mining economically impractical. This highlights the importance of economic
feasibility in selecting a mining method. If surface mining is determined to be the best approach,
efforts focus on developing reserves and infrastructure suitable to the specific mineral commodity
being extracted [10]. Efficient and timely use of resource is also a crucial for maintaining profitability
and competitiveness in surface mining operations [11].

In open pit mining, As the surface of the land is excavated, a progressively deeper pit is created
until the mining operation concludes. Before extraction of ore can commence, the overburden must
be removed. Haul roads typically wind through the mine from the bottom of the pit to the surface.
By dividing the deposit into blocks, determining the value of each block, and creating a geometric
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model of the deposit, we can address the pit design problem. This approach helps establish the
ultimate pit limit, determine the cutoff grade, and plan long-term production.

The dynamic nature of surface mining environments presents unique challenges that require
sophisticated algorithms and methods to effectively manage the complexities of mine planning tasks,
and this make it an active area of research, encouraging the development of innovative approaches.
Nowadays optimization methods are essential in addressing mine planning challenges, focusing on
cost reduction and profit maximization using advanced algorithms [12].

1.3. Sustainable Mine Planning

One of the key industries influencing economic, social, and environmental benefits is the mining
sector. SD was likely first introduced to the mining industry in the early 1990s, at events such as the
Rio Summit in 1992 [13]. However, in recent years integration of SD into this industry is gaining more
attention as the demand for raw materials and their products, along with the environmental impacts
resulting from extraction, continues to increase [14]. It was demonstrated that all aspects of SD can
be negatively impacted by the mining industry despite its benefits. Amirshenava and Osanloo (2019)
evaluated the impact of mining activities on three SD elements and calculated the relative severity
score for each of the suggested indicators. However, the principles of SD, which are essential for
reducing the negative impacts of mining activities during the design phase, are often overlooked [15].
To date, standard practices for resource evaluation, planning, and mine design have not sufficiently
incorporated SD concepts. The most widely used methods for economic and engineering assessments
in the mining industry's feasibility and design projects have failed to fully embrace sustainability
principles [16]. Key reasons for this include:

1. Sustainability considerations are often addressed late in the project, after major decisions
affecting social and environmental factors have been made.

2. Sustainability efforts focus on mitigating effects and implementing control measures, rather than
being incorporated into the initial mine design and operational planning stages [17].

Asr et al. noted that all the SD studies in mine planning have concentrated on three main topics:
determining the optimum cut-off grade (COG), the ultimate pit limit (UPL), and production planning
[16]. Some of these studies addressed all three aspects of SD, while others focused on only two or
even a single aspect, primarily economic. While each aspect is significant, even focusing on just one
can provide valuable insights.

There are several review papers on mine planning, each offering various perspectives on the
topic. However, none of these papers examine mine planning from the standpoint of OR methods.
This gap highlights the need for a comprehensive review focusing on the application of OR
techniques in mine planning to provide insights into their pros and cons for optimizing mining
operations.

In this study, we will highlight OR methods developed and applied to optimize sustainable long
term mine planning in surface mining operations. Additionally, by conducting a comparative
analysis of these methodologies, we aim to highlight their effectiveness, limitations, and potential to
improve the efficiency and profitability of surface mining operations. This understanding can enable
mining companies to optimize their processes and adapt to the changing demands of the industry.

The rest of this research is structured as follows: The next section gives information about the
research methodology, followed by an overview of exact and metaheuristic methods that appear in
the literature. In the fourth stage we discussed the strengths and weaknesses of the methods
presented in the previous section. The final section presents future opportunities and provides a
conclusion of the objectives.

2. Research Methodology

The aim of this literature review is to examine research that has employed OR methods for
sustainable long-term mine planning. A systematic review was performed, starting with extracting
English papers published in prominent journals. To compile the literature for this review, we
conducted a comprehensive search using Scopus, which resulted in identifying 154 relevant papers
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published between 1980 and 2024. The search was performed using the following keywords within
the title, abstract, and keywords:

"(sustainability OR sustainable OR sustainable mining OR NPV OR environment OR social)
AND (production planning OR mine planning OR production scheduling OR open pit)"

In addition to these, we included 15 more papers that, although not part of the initial search
results, were referenced as secondary documents in Scopus. These secondary documents were
deemed significant for providing a broader perspective on the subject matter.

We did not include "operations research” or "OR" in the keywords because, based on experience,
many papers utilize OR methods to optimize processes without explicitly mentioning the term "OR"
within the text. To further narrow down the scope, 106 articles were excluded at different stages of
the review process for various reasons, such as:

1.  The article did not apply an OR method.
2. The article did not focus on long-term mine planning.
3.  The article was not related to the topic for any other reason.

Figure 2. presents the different phases for the systematic review process.
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Figure 2. Different phases of systematic review.

Following these guidelines, 63 papers were selected. First, these papers were analyzed based on
year, subject area, document type, and country, as shown in Figures 3a, 3b, 3c, and 3d. The graphs
show that the majority of the documents are journal papers from the last 20 years, predominantly
from Canada, the United States, and Australia. Figure 2d illustrates that the subject areas defined by
the database based on journal scope, article content, and keywords, primarily include Earth Sciences,
Engineering, and Computer Science.
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Figure 3. Distribution of the papers based on different factors.

This review encompasses a significant portion of recent papers in the field of sustainable mine
planning from the perspective of OR methods used. At the end, the opportunities for future research
were identified.

3. OR Methodologies

OR and computer technology were introduced into mining engineering in the late 1950, to
enhance the economic efficiency of mining development, consider a broader spectrum of factors, and
optimize design and development processes [18]. In this section, we will explore the OR optimization
methods and algorithms and their application in different stages of long-term surface mine planning
in the context of SD.

a. Exact Methods

Exact methods guarantee finding the best possible solution for an optimization problem. These
methods are usually applicable to smaller or well-defined problems due to their computational
intensity.

3.1.1. Linear Programming (LP)

Linear optimization or Linear Programming is a technique used to achieve the best possible
solution when the relationships between variables are linear, with both objectives and constraints
expressed as linear equations. This method is among the most utilized approaches in mine
production scheduling. A basic formulation of the problem with fundamental constraints can be
illustrated as follows:

Max o Bioy CieXie
sit. Xiogx <1 Vi=12..1 (Reserve constraints)
Xip < 212:1 Xl Vi=12..I; Vt=12..T; Vi €B;, (Slopeconstraints)
Y wxxg < MoV t=12..T (Mining capacity constraints)
o xwpxx, < 0 vt= 1,2..T (Processing capacity constraints)
Where:
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¢y = discounted economic value of block i if mined in period ¢;
xi¢ =1{1, if block i is mined in period t; 0, otherwise};

I= total number of blocks;

T=total number of periods;

B; = Set of blocks that must be excavated before block i;

i = blocks index, i=1,2--I;

t = time period index, t=1,2---T;

i’ = index of blocks that must be excavated before block i;
M = maximum mining capacity available during period t;

wi = tonnage of the block;
—t
0 = maximum processing capacity available during period t;

0; = {1, if block i is ore; 0, otherwise};

Burgher and Erickson (1984) explored the integration of reclamation cost with production
scheduling using a linear optimization approach. They analyzed how optimal production schedules
for a small coal mine are affected by reclamation requirements and a fluctuating discount rate. Their
findings show that a higher discount rate encourages production to be moved forward, while
reclamation requirements tend to delay production. This delay occurs because reclamation adds extra
costs, which mine managers prefer to postpone, as these costs are reduced when discounted over
time [19].

Some studies leverage the integration of linear programming (LP) with other methods, such as
integer programming. Mixed Integer Linear Programming (MILP) can be especially beneficial when
certain variables must be integers. Caccetta and Kelsey (2001) applied MILP to optimize the extraction
of waste blocks [20], whereas Badiozamani and Askari-Nasab (2014) used it to incorporate
reclamation and tailings cost into the Net Present Value (NPV) objective function. These researchers
emphasized the importance of integrating mining operations with environmental benchmarks,
where comprehensive schedule meets the tailing capacity constraint and adheres to the production
of the necessary reclamation material [21]. Recently, a new framework (LCA-MILP) was introduced
to integrate environmental data from life cycle assessment (LCA) with MILP. This approach focused
on dust emissions and greenhouse gases (GHGs) in open pit mine planning, achieving an 11.05%
reduction in GHG emissions while maintaining over 93% of the basic NPV [22].

In another study, researchers developed a simultaneous mixed integer programming (SimMIP)
model to optimize ore production as well as waste dump scheduling in mining complex. Unlike
traditional two-step methods that separate ore and waste scheduling, SimMIP creates both schedules
concurrently. It dynamically evaluates the economic value of possible routes for a mining block from
source to destination, balancing NPV optimization with waste management strategies considering
factors such as acid mine drainage (AMD) and greenhouse gas (GHG) emissions. When applied to a
gold mining complex, the SimMIP model demonstrated superior performance in maximizing NPV,
encapsulating potentially acid-forming (PAF) waste, and reducing GHG emissions [23]. MILP has
also been employed by other researchers to address waste rock handling while optimizing mine
scheduling [24-28].

Despite its frequent use in literature, addressing large-scale problems with MILP remains
challenging due to computational complexity. This issue can be mitigated by techniques such as block
clustering or using heuristic or meta-heuristic methods. In this regard, Lamghari et al. (2015)
introduced a two-phase hybrid solution method. In the first phase, a series of LP problems is solved
to generate an initial solution, followed by the second phase, where a variable neighborhood descent
(VND) procedure refines this solution. This method was tested on instances derived from real
mineral deposits and benchmark instances from literature. The efficiency of SH-VND was evaluated
using upper bounds provided by CPLEX, and its performance was compared to recent methods from
the literature and an alternate method in commercial mine planning software. Results indicate that
SH-VND outperforms existing approaches, enabling mine planners to obtain high-quality solutions
in shorter computational times. It can solve large problem instances quickly and manage more
complex variations of the open-pit mine production scheduling problem [29].
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3.1.2. Multi Criteria Decision Making (MCDM)

MCDM also known as Multi-criteria analysis (MCA), encompasses a range of methods used to
assist in decision-making when options are assessed based on multiple criteria, especially when these
criteria are measured in different units that cannot easily be converted. Although there are various
MCA methods, they all rely on data normalization and the assignment of weights to the criteria to
produce a combined score for each option. MCA methods are primarily categorized into two types:
Multi-Objective Decision Making (MODM) and Multi-Attribute Decision Making (MADM). We will
discuss these categories separately in the following sections.

3.1.2.1. Multi Objective Decision Making (MODM)

This method aims to find the optimal solution when there are multiple desired goals, often with
conflicting optimization directions. Goal programming (GP), a subset of multi-objective optimization,
is used to manage these conflicting objectives by assigning each a specific target value. Deviations
from these targets, whether above or below, are quantified, and the aim is to minimize these
undesired deviations through an achievement function. GP provides flexibility in formulating and
prioritizing various goals, as well as allowing a certain level of interaction between the decision
maker and the optimization process [30,31].

Ben-Awuah et al. (2012) applied Mixed Integer Linear Goal Programming (MILGP) in
Production Scheduling and Waste Disposal Planning for Oil Sands mining. Their goal was to
maximize NPV by determining the best schedule and destination for ore, dyke material, and waste
extraction using mining-cuts derived from block clustering techniques. The schedule is designed to
meet key factors for oil sands profitability and sustainability, such as maximizing NPV and creating
timely tailings storage areas. Additionally, decision makers have the right to determine goal
deviation variables, penalty costs, and priorities to achieve a balanced schedule and enhanced NPV.
Trade-offs can also be made between achieving specific goals and maximizing NPV or minimizing
dyke construction costs [32].

In a similar study, Ben-Awuah et al. (2018) developed an expanded model utilizing MILGP with
the primary aim of optimizing NPV and minimizing waste dump construction costs. The
methodology encompasses preprocessing the block economic model to reduce the number of
variables by defining an UPL and grouping mining blocks into mining cuts at various levels or
benches within the UPL. Then, a method is utilized to solve the GP formulation for the revised
problem. Comparative analysis showed that this approach outperforms schedules and waste dump
plans produced by the commercial mine scheduling software, Whittle. The MILGP model allocated
more ore for extraction in the early years, resulting in an increased NPV [33].

Later, Maremi et al. (2021) applied MILGP to long-term production planning (LTPP) with an
innovative strategy for waste management that involves dyke construction and backfilling activities.
This approach, implemented for oil sands production and tailings disposal planning, simultaneously
schedules production, reclamation, and dyke material while optimizing the size, shape, and location
of in-pit tailings cells. It also generates optimal annual targets for mining and processing within an
integrated mine planning and waste management framework. The direct combination of this
practical mine planning and waste management approach offers several benefits, including reduced
environmental footprint of external tailing facilities, advancement of progressive closure, and
support for sustainable waste disposal planning [34].

3.1.2.2. Multi Attribute Decision Making (MADM)

MADM is a specific type of MCA that deals with decisions involving multiple attributes for the
alternatives that are usually conflicting. The aim of MCDM/A is to offer a process for selecting,
ranking, describing, classifying, and sorting alternatives according to a set of decision criteria [35]. It
is a widely used approach for weighting and ranking problems with diverse options [36], and several
studies have utilized it to evaluate various situations considering SD indicators in mining
engineering areas [37,38]. However, it is not limited to mining; MADM has been used to assist
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decision-making processes in SD contexts for numerous other areas, such as energy, tourism, and
transport [39-41]. Odell (2004) used MADM for UPL design and integrated the social and
environmental criteria in assessing different scenarios of UPL based on mine life [42]. Another
attempt was made by Adibi et al. (2015) to select UPL based on three indexes of SD. They converted
UPL problem to a MADM problem and then used TOPSIS methodology to choose the best solution.
This method proposes a UPL with higher social and economic scores. However, it also results in a
larger pit and more waste being mined [43].

3.1.3. Data Envelop Analysis (DEA)

DEA is a non-parametric approach to measure productive efficiency of decision-making units
(DMUs) by creating an objective function and evaluating each alternative. It is especially valuable for
comparing relative performance when multiple inputs and outputs make direct comparison
challenging.

Efficiency is generally the ratio of output to input, represented by:

Efficiency = output / input = (u1y1 + ... + Usys) / (ViXi + .. + VinXm),
where x and y represent the input and output variables, respectively, and u and v are their associated
weights.

The most efficient Decision-Making Unit (DMU) scores a value of 1, while the remaining DMUs
are compared against it, receiving scores between 0 and 1 (Figure 4). DEA is a useful tool because it
integrates diverse data types into a single efficiency score.

Efficient Frontier

Output

Figure 4. DEA method.

Moradi and Osanloo (2015) quantified the criteria for SD and allocated their shares as 26% for
environmental factors, 38% for economic factors, and 36% for social factors when designing UPL
using DEA [44]. While this method could be beneficial in mine planning for its focus on economic
efficiency and input-output relationships, it is primarily an economic model and may not adequately
incorporate environmental and social considerations. Additionally, it requires a significant amount
of accurate data to be effective.

3.1.4. Lane Algorithm

Lane’s algorithm is a practice to determine COG considering three main constraints of mining,
milling/treatment, and refining along with their related costs and capacities. The Lane’s model is able
to make proper use of the capacities of mining operations to increase the NPV (with consideration of
discount rate) and total profit value of the whole project (not discounted) under fixed economic
conditions. Applying this method, Ramirez-Rodriguezm and Rozgonyi (2004) considered the cost of
reconstruction in COG optimization and proved that integrating the environmental requirement of
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SD can have an essential impact on COG and mine profitability [45]. In a similar research paper,
rehabilitation cost was inserted into COG optimization problem, and this resulted in decreasing the
COG and increasing the achievable NPV of the process [46].

Lane’s (1964, 1988) [47,48] method has been extensively utilized, but it has notable limitations
highlighted by several researchers. There are some flaws in the derivation for maximizing profit and
determining the optimal COG, where a key aspect was overlooked. Moreover, during differentiation,
COG was inconsistently treated —first as a constant and later as a variable [49]. Because of these
limitations, the method may not be suitable for identifying the optimum COG in all scenarios and for
all deposit types [50].

3.1.5. Dynamic Programing (DP)

In mathematical optimization, DP usually simplifies a decision by breaking it down into a series
of sequential decision steps over time. A sequence of value functions determines the value of the
system at each state and time [51]. In their recent study, De Lara and colleagues developed a dynamic
optimization technique to tackle the open-pit block scheduling problem, a major challenge in mining
due to its complexity. They introduced heuristics based on index strategies, which provide a
suboptimal solution, and set upper and lower bounds for NPV. The findings were promising, as
index strategies demonstrated speed and scalability for large mining cases. This supports their use,
especially in scenarios requiring rapid planning simulations and NPV calculations [52]. Additionally,
this methodology was used in research in which ecological costs like carbon emission and damaged
land costs, were incorporated into open pit production scheduling. Geologically optimal pushbacks
that maximize metal extraction are initially created within the ultimate pit. These pushbacks are
subsequently prioritized through DP to derive the most favorable production schedule, integrating
ecological costs into the economic evaluation criteria. It was shown that incorporating ecological costs
into the schedule results in a different sequence with lower production rates and an extended mine
life. This approach reduces the total present value of ecological costs by 2.8% and increases the overall
net present value by 2.5% compared to schedules without ecological costs. However, it slightly
decreases the purely economic gain (NPV calculated without ecological costs) [53].

3.1.6. Lagrangian Relaxation (LR)

In mathematical optimization, LR is a method used to simplify complex constrained
optimization problems. By relaxing the constraints, it converts a difficult problem into a more
manageable one. The solution to this relaxed problem provides an approximation of the original
problem, offering valuable insights. This technique handles inequality constraints by introducing a
Lagrange multiplier, which penalizes constraint violations. Instead of enforcing strict inequality
constraints, these penalties are incorporated into the optimization process. As a result, solving the
relaxed problem is often more practical than addressing the original problem directly [54]. Various
adaptations of LR have been developed for large-scale optimization problems [55]. However, the
effectiveness of this method in converging to optimal solution hinges upon the values assigned to the
lagrangian parameters initially and during adjustments [56].

The considerable size of mine scheduling problems makes it challenging to solve them using
simple integer programming formulations alone. Consequently, various decomposition and
aggregation methods have been commonly used in previous research [57]. Dagdelen improved this
approach by employing LR and dividing the constraints into two types: constraints forming a
network, such as sequencing constraints, and side constraints, which pertain to production and
processing capacities [58]. Kawahata (2006) incorporated LR techniques into the large-scale MILP
problem to reduce its size and accelerate the solution process, while still focusing on optimizing
production and processing capacities [59].

When developing an LR model for a specific instance of the open pit block sequencing (OPBS)
problems, it is challenging to decide which resource constraints to dualize and which to keep explicit.
Lambert and Newman (2014) introduced the Maximum Value Feasible Pit method and a tailored LR
approach to dualize several resource constraints. These formulations considerably shorten solution
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times compared to directly solving the original problem or using an Initial Integer Feasible Solution
(IIES). They also presented an algorithm for generating an IIFS, which they applied to the OPBS
problem (Lambert & Newman, 2014).

Rahimi and Ghasemzadeh (2015) employed this method to optimize leaching and concentration
cut-off grades as well as annual cashflows by analyzing the bio-heap leaching method.
Environmental and social costs were integrated into the problem to make it a sustainable process.
Bio-heap leaching of low-grade copper ore has been found to enhance the NPV of copper mines while
minimizing environmental harm [60]. In a different study, an enhanced version of LR known as
Temporally Decomposed Greedy Lagrangian Relaxation (TDGLR) was utilized to optimize
scheduling problems by simultaneously addressing NPV and carbon emissions. By reducing the
problem space, this method was demonstrated to be more efficient and faster than MIP using several
datasets, particularly for larger instances where MIP struggles to generate feasible solutions [61].

3.1.7. Stochastic Programming

Stochastic programming is a framework used to address problems involving uncertainty. In
stochastic programs, some or all of the problem parameters are uncertain but follow known
probability distributions. Unlike deterministic optimization, which assumes precise knowledge of all
parameters, stochastic programming seeks to find a solution that not only optimizes a specific
criterion but also effectively manages the uncertainty in the parameters. Given that many real-world
decisions in mining engineering involve uncertainty, stochastic programming has been widely
utilized in this field for over twenty years. Traditionally, open pit mine design and planning relied
on a single deterministic block model despite various sources of uncertainty due to sparse drill hole
data. To address this, Menabde et al. (2018) developed a novel mathematical algorithm for mine
optimization with orebody uncertainty. Their approach simultaneously focuses on optimization of
the extraction sequence and COG. Using the MIP technique and employing a set of equally probable
orebody realizations, the algorithm can significantly improve the expected NPV. The use of variable
COG optimized under uncertainty evaluated through conditionally simulated orebodies also
enhances accuracy and performance. Applying this method on a simple and rescaled problem and
using the variable COG on the mean grade block model showed a 20% increase in NPV over the base
case, while further optimization using all orebody realizations produced an additional 4.1% increase
[62]. This method, known as Stochastic Integer Programming (SIP), has been employed in various
research studies focused on mine scheduling optimization with the aim of maximizing NPV while
utilizing several simulated scenarios for the orebody [63,64].

Remele et al. (2018) introduced a two-stage SIP approach to optimize NPV while ensuring that
waste and tailings are disposed of within the mined-out sections of a pit. The objective function was
split into two parts: first, optimizing the average discounted cash flows for various scenarios, and
second, penalizing deviations from the minimum production goals. Their innovative method
determines the extraction sequence of mining blocks as well as the allocation of strips for waste
storage (destination policy). The approach accounts for geological uncertainties, such as metal grades,
type of material, and chemical compositions. Applied to an iron ore deposit, the model demonstrated
that utilizing in-pit storage significantly reduces re-handling costs during the rehabilitation stage,
minimizes environmental impact, and addresses the challenge of limited external material storage
space [65].

In a different study, researchers employed simultaneous stochastic optimization to tackle the
issues of material uncertainty and waste variability in a gold mining complex. Considering the impact
of uncertainty, the model aims to concurrently optimize cut-off grade, waste management,
stockpiling, and processing decisions, while establishing the production schedule as the target
outcome. The implementation focused on maximizing the value of the products sold. The results
show significant improvements over the base case, particularly in meeting environmental,
permitting, and processing targets. By reducing the total waste produced by treating it as a mining
product, the new schedule requires a lower mining rate. Even though less material is mined and
lower grades are sent to the processing facility, the total metal production remains unchanged over
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the life of the mine. This decrease in mining rate reduces costs and equipment expenditures, which
results in a 6% increase in NPV [66].

Several studies have considered different types of uncertainty in mine planning and scheduling.
Dimitrakopoulos (2018) reviewed various techniques used in Mine Design and Production
Scheduling, categorizing them into two groups:

1.  Algorithms based on simulated annealing [64,67,68].
2. Algorithms based on stochastic integer programming [62,63,69-71].

The same study introduced a new framework to enhance common approaches by integrating
both stochastic modeling of orebodies and stochastic optimization in a complementary way. Using a
copper deposit as an example, the author compared the results to the industry's ‘best practice” which
involves a conventional schedule based on a single estimated orebody model and Whittle’s approach
[72]. The study demonstrated that the stochastic framework increases production schedule value by
approximately 25%, regardless of which of the two methods is applied. Additionally, stochastic
optimal pit limits were approximately 15% larger in total tonnage compared to traditional
(deterministic) optimal pit limits. This difference extends the mine's lifespan and increases the NPV
by about 10% compared to conventional pit limits using stochastic production scheduling. [73].

3.2. Metaheuristic Algorithms

In mathematical optimization, a metaheuristic is an advanced procedure intended to discover,
generate, or select a heuristic (partial search algorithm) that can offer a sufficiently good solution to
an optimization problem. In mine production scheduling, various metaheuristic methods have been
used to tackle the complexities of optimization. In this section, we will explore some of the commonly
applied approaches.

3.2.1. Genetic Algorithm (GA)

GA is an optimization technique that simulates the process of natural selection from biological
evolution.

As mentioned in the previous section, the LR algorithm does not always guarantee convergence
to the optimal solution. To address this limitation, Moosavi and colleagues (2014) developed a hybrid
algorithm that combines LR with GA to solve the scheduling problem with a grade blending
constraint, which is essential for maintaining the desired average grade in materials delivered to
various processing facilities. By using LR, this approach tackles the computational challenges of the
original problem, particularly related to mining and processing capacity, as well as the grade
blending constraints. The method integrates these constraints into the objective function and uses
penalties as lagrangian multipliers to avoid violations. GA provides the initial population and
updates the lagrangian parameters through mutation and crossover. By numerical results they
showed that LA-GA method performs better in terms of convergence speed and attaining highly
near-optimal solution [74].

A Multi-Objective Genetic Algorithm (MOGA) is a tailored form of genetic algorithms
specifically designed to handle multi-objective optimization problems by using a search mechanism
that simultaneously finds optimal solutions across multiple objectives. Azhar et al. (2023) used
MOCGA to integrate carbon costs into mine production scheduling. Their method was proven effective
in generating Pareto fronts, allowing for the simultaneous consideration of both NPV and carbon
costs [75].

3.2.2. Particle Swarm Optimization (PSO)

PSO is inspired by the collective behavior seen in bird flocking. It manages a group of particles
that explore the solution space by taking into account their own experiences as well as those of
neighboring particles, allowing it to solve large-scale complex problems. In this algorithm, each
particle in the swarm represents a potential solution. Initially, every particle is given a starting
position and velocity. As the algorithm iterates, it continuously updates the position and velocity of
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each particle based on how desirable their current solutions are. This process continues until the
algorithm converges on an optimal or near-optimal solution for the given problem. Using this
algorithm, Khan and Niemann (2014) developed a new method for optimizing long-term production
scheduling. Their research centered on applying this computationally efficient metaheuristic
technique to tackle the complexities of mine production scheduling. They proposed a procedure to
assess various PSO algorithm variants, and compared their performance, seeking the most effective
solution for this difficult optimization problem. To minimize constraint violations, they incorporated
a penalty into the objective function [76]. Several researchers have employed the PSO algorithm to
address uncertainty in mining scheduling such as Geological factors [77] and grade uncertainty
[78,79].

3.2.3. Simulated Annealing (SA)

SA is an optimization method inspired by the metallurgical annealing process, where materials
are heated and then gradually cooled. Developed by Kirkpatrick et al. in 1983, SA is particularly well-
suited for combinatorial optimization problems with large search spaces and non-linear or
discontinuous objective functions. The process begins with an initial solution and systematically
explores the solution space through iterations, accepting new solutions based on a probability
distribution. At the beginning, the algorithm allows the acceptance of worse solutions with a higher
probability, similar to the high-temperature phase in the annealing. As the algorithm advances, the
temperature parameter decreases, gradually lowering the likelihood of accepting worse solutions,
mimicking the cooling process [80].

Goodfellow and Dimitrakopoulos (2013) applied the Simulated Annealing (SA) algorithm in a
modified scheduling model to address the pushback design challenge in mining operations with
grade uncertainty. Their method improved the conventional phase design by introducing two
distinct formulations aimed at minimizing deviations from phase production targets across different
simulated grade scenarios. Applying these formulations at a copper mining operation led to a
significantly improved solution, marked by reduced variability in achieving production goals [81].
Subsequently, Goodfellow and Dimitrakopoulos (2016) developed a framework for globally
optimizing scheduling problems by integrating non-linear relationships that are typically overlooked
due to the complexities of non-linear optimization. Three solvers, utilizing a mix of SA, PSO, and
differential evolution, were devised, and evaluated. Experimental results from a copper and gold
mining complex showed that the algorithm could generate solutions that reduce the risk of failing to
meet production targets, resulting in a 6.6% increase in NPV compared to deterministic design and a
22.6% higher NPV than commercial software [82].

Similarly, Kumral (2013) proposed a solution approach, combining GP and SA, to address a
modified scheduling model dealing with both scheduling and COG problems under grade
uncertainty. The method initially aims to minimize capacity constraint violations (mining and
processing) while creating a schedule that meets a specified NPV, along with reserve and block
precedence constraints. Subsequently, SA iteratively refines the initial solution over multiple
iterations, making adjustments to the mining period and COG for randomly selected blocks. When
applied to a gold mining operation, this hybrid approach proved effective, with SA significantly
improving the initial solution generated by GP [83].

After reviewing the selected papers, they were summarized based on several factors: area of
mine planning, primary objective, sustainability dimensions considered (economic, environmental,
or social), and modeling method used in Table 1.

Table 1. Summary of reviewed papers.

Reference Area Primary objective SD aspect OR method
Considered recl ti
Burgher and  Production O_HSI ere reF a.ma '10n Economic
. . cost into the optimization of ) LP
Erickson, 1984  planning Environmental

production schedule
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Caccettaand Production  Presented a system for Economic
Kelsey, 2001 planning waste block removal Environmental
Badiozamani and . Integrated reclamation and .
. Production . . Economic
Askari-Nasab, lannin tailings cost into NPV Environmental
2014 P & optimization MILP

Considered dust emissions

Mirzehi &
1r‘ze ! . Production and greenhouse gasesinto  Economic
Moradi Afrapoli, . .. .
planning the optimization of Environmental
2024 .
production schedule
Optimized production and
Production waste dump scheduling Economic
Lin et al., 2024 lannin simultaneously (Maximize Environmental MIP
PIANMIE NPV and Minimize GHG o ome
and AMD)
Introduced a hybrid
method using LP and
Lamgharietal, P i . . .
amg2 (?ils eta r?::;;ion variable neighborhood Economics  LP & VND
P & descent (VND) procedure
Maximize NPV by

determining the best
Ben-Awuah et Production schedule and destination for ~ Economic
al., 2012 planning ore, dyke material, and  Environmental
waste extraction using
mining-cuts

Proposed an expanded

. MODM
. model to Economic
Ben-Awuah et Production L. .
. maximize the NPV and Environmental
al.,, 2018 planning .
minimize waste dump
construction costs
Presented a framework for .
. . .. . . Economic
Maremi et al, Production optimizing mine scheduling .
. . Environmental
2021 planning  as well as shape, size and
location of tailing-cells
Integrated the social and
environmental criteria in Environmental
Odell, 2004 UPL evaluating various Social
scenarios of UPL based on MADM
mine life
Economic
Adibi et al., 2015 UPL Presented a method to Environmental
select UPL base on SD .
Social
Quantified SD criteria. The .
. . Economic
Moradi and share of environmental, )
UPL . . Environmental DEA
Osanloo, 2015 economic and social is 26, Social
38 and 36%, respectively
Rodriguezm and  COG Environmental Algorithm

Rozgonyi, 2004 grade optimization
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Gholamnejad, Inserted the cost of Economic

2008 COG rehabilitation in cut-off Environmental

grade optimization

Provided upper and lower
bound for NPV in the
De Laraetal, Production deterministic case using .
. . . Economic
2020 planning index strategies, and a
theoretical framework for DP

cases under uncertainty

Ecological costs like carbon

Production emission and damaged land
planning  costs, were incorporated

into production scheduling.

Economic

Xu et al., 2018 Environmental

Decomposed large scale
Production linear program resulted in
planning  an improved discounted
cash flow

Dagdelen, 1986 Economic

Presented two subproblems
to tighten the feasible
Production region for MILP, resulting
planning  in reduction in size of the
model and improvement in

Kawahata, 2006 Economic

solution time

Presented Maximum Value
Feasible Pit to determine LR
Lambert and Production which constraints should be

Newman, 2014 planning dualize in LR, and obtained Economic
a near-optimum solution
more quickly
Determined leaching and
Rahimi and concentration optimum Economic
Ghasemzadeh, COG COG and annual cashflows Environmental
2015 by analyzing the bio heap Social
leaching method.
Production An enhanced version of LR Economic
Azhar et al., 2022 was utilized to address .
Environmental

planning NPV and carbon emissions.

Optimizing NPV using MIP

technique and employinga  Economic
set of equally probable

Menabde and Production
Dimitrakopoulos planning &

, 2018 COG
orebody realizations
Optimizing NPV and waste
Remele etal. Production and tailing disposal Economic .
. Sy . . Stochastic

(2018) planning considering geological ~ Environmental .
s integer
uncertainties .

programming

Employed simultaneous
stochastic optimization to
Production  optimize COG, waste
Levinson, 2022 planning & management, stockpiling,
COG and processing decisions
under material uncertainty
and waste variability

Economic
Environmental
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Combined stochastic

Producti
Dimitrakopoulos ro u‘c ron modeling of orebodies with .
planning & . . Economics
, 2018 UPL stochastic optimization in a
complementary way
Employed Genetic
Moosavi et al,, Production élgomhm to p rovide the .
. initial population as wellas  Economic GA
2014 planning .
updated lagrangian
parameters
. Incorporated the carbon Economic
Production o . . .
Azhar et al., 2023 lannin cost in mine planning using Environmental MOGA
P & multi objective optimization
Khan & C . Developed.a procedure to
. . Production assess different PSO .
Niemann-Delius, . . . Economic PSO
planning algorithm variants and
2014 . .
compared their function
Created a method to reduce
Goodfellow & . deviations from phase
. Production ) .
Dimitrakopoulos lannin production goals across Economic
, 2013 P & different simulated grade
scenarios SA
Introduced a framework for
(.30.0dfellow & Production globa?ly optimizing '
Dimitrakopoulos . scheduling problems by Economic
planning . . .
, 2016 integrating non-linear
relationships
proposed a solution
Production approach for combining GP
Kumral, 2013  planning & and SA, to minimize Economic SA & GP
COG violations of capacity
constraints

4. Discussion

Exact methods strive to find the globally optimal solution but can be impractical for large-scale
problems. LP offers a mathematically rigorous framework for formulating and solving optimization
problems, making it well-suited for representing mining objectives, various constraints, and decision
variables. LP can effectively model large-scale problems, and a variety of software and solvers have
been developed to handle such challenges [12].

In mine production planning, mathematical programming models such as LP, MIP, MILP, and
GP can handle multiple material types, destinations and elements, and they yield solutions within
known bounds of optimality. As solutions approach optimality, they often produce production
schedules with higher NPVs compared to those achieved from heuristic optimization techniques.
Consequently, there has been extensive research into applying mathematical programming models
to the LTPP problem, primarily using LP, MIP, and MILP. However, as it is mentioned before, these
applications typically result in large-scale optimization problems with lengthy solution times [57,84].

While LP is a useful tool in this field, it's important to recognize that the relationships between
decision variables and constraints are not always linear. Many real-world mining constraints, such
as ore grades, processing capacities, and equipment availability, often demonstrate non-linear
behavior. Representing these constraints with linear programs can result in inaccurate outcomes and
suboptimal decisions. Additionally, LP solutions are typically continuous, which may not translate
into feasible operational decisions (decision variables like the number of mining blocks to extract) in
a mining context. Although MILP can handle discrete decision variables, the inclusion of integer
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constraints can greatly increase solution times and pose significant computational challenges in large-
scale mine scheduling problems [29]. Sensitivity is another concern with LP, as even minor changes
in input parameters like resource grade can lead to significant shifts in the optimal solution, making
LP solutions less robust in dynamic mining environments. This limitation can be mitigated by multi
objective optimization, as its solutions tend to be more robust and resilient to changes in input
parameters within the dynamic mining context [85].

The primary advantage of dynamic programming is that it ensures the discovery of the optimal
solution for problems with an optimal substructure. This means the best overall solution can be
constructed from the optimal solutions of smaller subproblems. This characteristic guarantees that
dynamic programming solutions are globally optimal. However, this approach requires more
memory and involves higher computational complexity [86].

Lagrangian relaxation provides a powerful and flexible method for solving constrained
optimization problems, enhancing computational efficiency by converting a complex constrained
problem into a series of simpler, unconstrained problems. However, it may face convergence issues,
particularly in non-linear cases, and does not guarantee finding the globally optimal solution to the
original problem. This limitation is also present in metaheuristic algorithms, potentially affecting
confidence in the solutions obtained. Despite this, the capability of metaheuristic algorithms to
address complex, nonlinear, large-scale, and non-convex optimization problems, which are common
in mine scheduling, remains significant.

Based on Table 1, LP, DP, LR, stochastic programming, and metaheuristics are among the most
commonly used methods in surface mine planning that considered SD aspects. Table 2 provides a
summary of the advantages and drawbacks of these methods.

Table 2. Summary of optimization methods for surface mine planning.

Method Advantages Disadvantages

*  Incapable of addressing non-
linear behavior in real-world
mining constraints, such as ore
grades, processing capacities,
and equipment availability.

*  Capable of modeling large scale
problems

LP . *  LP solutions are usuall
*  Supported by different software ) y
continuous and may not
and solvers . . .
always align with practical
operational decisions.
*  Less robust and highly
sensitive to variations
*  Guarantee obtaining the optimal ¢«  Demand more memory and
DP solution when there is an optimal involves computational
substructure complexity
»  Effective and adaptable for
addressing constrained
N *  May face convergence
optimization problems. . .
. . problems, especially in non-
*  Enhance computational efficiency . .
LR linear scenarios.

by breaking down a complex
constrained problem into a series
of simpler, unconstrained

Do not ensure discovering the
globally optimal solution

problems.
Stochastic Incorporate uncertainty, leading «  High complexity
programmin to more robust and reliable *  Computationally intensive,
decision making resulting in longer solution

& *  Enhance risk management time
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*  Data-intensive, requiring
detailed probabilistic

information
..o Add lex, li ) .
Metaheuristi ress comprex, ionimeat Do not guarantee the discovery
large-scale, and non-convex . .
c of globally optimal solution

optimization problems

Through the review of related articles in this paper, several gaps in the field of sustainable mine
production planning have been identified. Notably, the aspect of social sustainability has been largely
overlooked. As shown in Figure 5, no published research has yet examined the integration of social
factors with production scheduling optimization in surface mining operations. Future studies
should explore the impact of indicators such as safety standards, community health, and the social
effects of mining activities, including vibration, on local populations. Addressing these gaps will
contribute to a more holistic approach to sustainable mining operations, ensuring that economic,
environmental, and social factors are balanced in the planning process.

70%
60%
50%
40%
30%
20%
10%

0%

Percentage of papers

Production UPL COG
planning

Mine planning areas

H Economic mEnvironmental m Social

Figure 5. Papers distribution based on SD factors.

Additionally, from the OR perspective, our review reveals that certain advanced methodologies
have yet to be applied to sustainable mine planning. Approaches such as multi-level optimization
and fuzzy logic, which have shown considerable potential in other fields, remain underutilized in
this domain. These methods could offer significant benefits, allowing for more robust and adaptable
decision-making when dealing with uncertainty and complexity.

Multi- level optimization is particularly relevant when dealing with conflicting objectives, as it
allows for a hierarchical decision-making process where one objective is prioritized at one level, and
the other is considered at a subsequent level.

In the context of sustainable mine planning, economic objectives often conflict with social and
environmental goals. Two-level optimization allows the decision-making process to be structured in
a hierarchical manner. For instance, at the first level, the optimization could focus on maximizing
NPV, ensuring that the economic viability of the mining operation is secured. At the second level,
within the constraints set by the first level, the optimization could focus on minimizing negative
social and environmental impacts. This structure mirrors the real-world scenario where economic
viability is a prerequisite, but sustainability considerations are also crucial.

It also offers flexibility in model design. Different formulations can be used depending on the
specific needs of the mine planning problem. For instance, if minimizing environmental impact is
more critical in a particular context, the optimization levels can be reversed or adjusted accordingly.
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This adaptability makes it a suitable approach for a wide range of mining operations with varying
priorities and constraints.

Fuzzy logic is another approach that should receive more attention in sustainable mining. In this
field, factors such as environmental impact and social implications are often uncertain or difficult to
quantify precisely, alongside operational factors like ore grade and market prices. Fuzzy logic is
specifically designed to manage such uncertainty and ambiguity by incorporating imprecise data into
the decision-making process. This makes it particularly suitable for sustainable mine production
planning, where the exact trade-offs between economic, social, and environmental objectives may not
always be clear. Additionally, it can be integrated with other optimization methods, such as multi-
level optimization, to enhance their ability to handle uncertainty and complex trade-offs. However,
the specific applicability and effectiveness of these approaches would depend on the precise
formulation of the problem and the nature of the mining operation in question. Further research and
model testing would be necessary to validate their utility in this context.

5. Conclusion

Mining companies face a complex and critical challenge when developing long-term plans that
must balance economic returns with the environmental and social impacts on the communities. OR
methods have proven to be effective tools for addressing these intricate sustainable decision-making
problems, particularly in the mining sector, where multiple conflicting criteria, subjective
evaluations, uncertainties, and the involvement of diverse stakeholders are common challenges.

This paper presented a comprehensive review of the literature on OR methods applied to assess
sustainability in long term surface mining. We analyzed 59 articles, categorizing them based on the
focus areas of surface mine planning (UPL, COG, and production planning), the methods employed
to model and solve the problem, and the sustainability dimensions considered. Our review
emphasizes the need for advanced planning and scheduling optimization techniques that integrate a
mix of primary methods to address these complex problems more efficiently, both in terms of time
and solution quality, ultimately supporting practitioners in enhancing production while achieving
sustainability goals.

Future research should place greater emphasis on incorporating the social dimension,
particularly in mine production planning, and addressing project uncertainties to develop more
realistic models and practical solutions that align more closely with the evolving needs of the mining
industry.
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