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Abstract: The mining industry, critical for global resource supply, has historically been linked to significant 

environmental degradation and social challenges including habitat disruption, water and soil contamination 

as well as fatalities. But recently the industry has been undergoing a transformative change to meet evolving 

environmental and societal expectations. Operations Research (OR) provides essential tools and techniques to 

optimize decision-making processes in this context. This paper presents a comprehensive review of different 

OR methods and their applications in balancing economic, social and environmental objectives in surface mine 

planning. By evaluating the strengths and limitations of these techniques, this review offers valuable insights 

for researchers and practitioners aiming to improve production efficiency and sustainability through advanced 

planning strategies. 
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1. Introduction 

1.1. Sustainability 

In the literature sustainable development (SD) has several definitions. The definition that 

remains the most frequently cited today, was introduced by the United Nations' World Commission 

on Environment and Development in 1987 as: “Sustainable development is development that meets 

the needs of the present without compromising the ability of future generations to meet their own 

needs” [1]. 

Since that time, various researchers have introduced different definitions of SD. However, the 

primary characteristic of SD is its holistic nature, encompassing diverse aspects of human needs. 

Environment, society, and economy are three pivotal aspects of sustainability that should be 

considered concurrently in any decision-making process. In mining engineering, these three 

principles can be connected to various indicators, some of which are illustrated in Figure 1. These 

indicators are utilized to ensure that industries are acting responsibly [2]. Environmental 

considerations focus on minimizing ecological damage and ensuring that mining activities do not 

leave a lasting negative impact on the environment. Social indicators emphasize the importance of 

mining operations in providing employment, ensuring safety, and maintaining social welfare. 

Economic indicators ensure that mining activities are financially sustainable and contribute 

positively to the local and national economy.  

Following the acceptance of SD concept, numerous companies and governments began 

incorporating SD aspects into their activities and scholars started to discuss some of its dimensions 

in various sectors like Energy [3], Construction [4], urban planning [5,6] and community and 

agriculture [7]. 

Villas-Boas et al. (2005) distinguished between two terms, sustainability and SD, despite their 

often interchangeable use. They noted that sustainability pertains to the resilience of social and 

environmental systems, enabling them to endure external shocks and recover to normal operations. 
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According to this view, sustainability does not apply to non-renewable minerals. In contrast, SD 

involves combining environmental policies with development strategies to meet present and future 

human needs, improve life quality, and safeguard the environment essential for life. Considering this 

framework, minerals are explicitly included within the scope of SD [8]. 

In the mining industry, where operations often have significant environmental and social 

impacts, it is essential to establish a framework for assessing and improving the sustainability of 

projects while balancing the three pillars of sustainable development. OR optimization methods are 

among the most widely utilized by specialists to achieve this goal. In this research, our focus is 

specifically on the application of these methods in surface mine planning. 

 
Figure 1. Sustainable development principles and indicators. 

1.2. Surface Mine Planning 

Mine planning refers to the process of determining how an ore deposit will be exploited over 

the lifespan of a mining operation. The primary goal is to create an efficient system for extracting and 

supplying minerals to the market, ensuring minimal costs while adhering to the regulations. 

Decisions made at this stage are critical, as they have the most significant and lasting impact on the 

mine's future. It relies on all factors that planning engineers deem crucial for the proposed mine’s 

eventual success. This process is both strategic and tactical, initially focusing on long-term objectives 

derived from strategic factors, then shifting to more intricate short-term planning stages, which are 

influenced by tactical factors. The latter stages are a direct outcome of the former [9]. 

Surface mining (such as open pit mining) is recognized as an appropriate approach for extracting 

mineral resources or ore deposits situated at shallow depths and it is the most practiced and more 

efficient method compared to underground mining. However, when ore deposits are located at 

significant depths, the volume of waste material that must be removed can become prohibitively 

large, making surface mining economically impractical. This highlights the importance of economic 

feasibility in selecting a mining method. If surface mining is determined to be the best approach, 

efforts focus on developing reserves and infrastructure suitable to the specific mineral commodity 

being extracted [10]. Efficient and timely use of resource is also a crucial for maintaining profitability 

and competitiveness in surface mining operations [11]. 

In open pit mining, As the surface of the land is excavated, a progressively deeper pit is created 

until the mining operation concludes. Before extraction of ore can commence, the overburden must 

be removed. Haul roads typically wind through the mine from the bottom of the pit to the surface. 

By dividing the deposit into blocks, determining the value of each block, and creating a geometric 
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model of the deposit, we can address the pit design problem. This approach helps establish the 

ultimate pit limit, determine the cutoff grade, and plan long-term production.  

The dynamic nature of surface mining environments presents unique challenges that require 

sophisticated algorithms and methods to effectively manage the complexities of mine planning tasks, 

and this make it an active area of research, encouraging the development of innovative approaches. 

Nowadays optimization methods are essential in addressing mine planning challenges, focusing on 

cost reduction and profit maximization using advanced algorithms [12]. 

1.3. Sustainable Mine Planning 

One of the key industries influencing economic, social, and environmental benefits is the mining 

sector. SD was likely first introduced to the mining industry in the early 1990s, at events such as the 

Rio Summit in 1992 [13]. However, in recent years integration of SD into this industry is gaining more 

attention as the demand for raw materials and their products, along with the environmental impacts 

resulting from extraction, continues to increase [14]. It was demonstrated that all aspects of SD can 

be negatively impacted by the mining industry despite its benefits. Amirshenava and Osanloo (2019) 

evaluated the impact of mining activities on three SD elements and calculated the relative severity 

score for each of the suggested indicators. However, the principles of SD, which are essential for 

reducing the negative impacts of mining activities during the design phase, are often overlooked [15]. 

To date, standard practices for resource evaluation, planning, and mine design have not sufficiently 

incorporated SD concepts. The most widely used methods for economic and engineering assessments 

in the mining industry's feasibility and design projects have failed to fully embrace sustainability 

principles [16]. Key reasons for this include: 

1. Sustainability considerations are often addressed late in the project, after major decisions 

affecting social and environmental factors have been made. 

2. Sustainability efforts focus on mitigating effects and implementing control measures, rather than 

being incorporated into the initial mine design and operational planning stages [17]. 

Asr et al. noted that all the SD studies in mine planning have concentrated on three main topics: 

determining the optimum cut-off grade (COG), the ultimate pit limit (UPL), and production planning 

[16]. Some of these studies addressed all three aspects of SD, while others focused on only two or 

even a single aspect, primarily economic. While each aspect is significant, even focusing on just one 

can provide valuable insights. 

There are several review papers on mine planning, each offering various perspectives on the 

topic. However, none of these papers examine mine planning from the standpoint of OR methods. 

This gap highlights the need for a comprehensive review focusing on the application of OR 

techniques in mine planning to provide insights into their pros and cons for optimizing mining 

operations. 

In this study, we will highlight OR methods developed and applied to optimize sustainable long 

term mine planning in surface mining operations. Additionally, by conducting a comparative 

analysis of these methodologies, we aim to highlight their effectiveness, limitations, and potential to 

improve the efficiency and profitability of surface mining operations. This understanding can enable 

mining companies to optimize their processes and adapt to the changing demands of the industry. 

The rest of this research is structured as follows: The next section gives information about the 

research methodology, followed by an overview of exact and metaheuristic methods that appear in 

the literature. In the fourth stage we discussed the strengths and weaknesses of the methods 

presented in the previous section. The final section presents future opportunities and provides a 

conclusion of the objectives. 

2. Research Methodology 

The aim of this literature review is to examine research that has employed OR methods for 

sustainable long-term mine planning. A systematic review was performed, starting with extracting 

English papers published in prominent journals. To compile the literature for this review, we 

conducted a comprehensive search using Scopus, which resulted in identifying 154 relevant papers 
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published between 1980 and 2024. The search was performed using the following keywords within 

the title, abstract, and keywords: 

"(sustainability OR sustainable OR sustainable mining OR NPV OR environment OR social) 

AND (production planning OR mine planning OR production scheduling OR open pit)" 

In addition to these, we included 15 more papers that, although not part of the initial search 

results, were referenced as secondary documents in Scopus. These secondary documents were 

deemed significant for providing a broader perspective on the subject matter. 

We did not include "operations research" or "OR" in the keywords because, based on experience, 

many papers utilize OR methods to optimize processes without explicitly mentioning the term "OR" 

within the text. To further narrow down the scope, 106 articles were excluded at different stages of 

the review process for various reasons, such as: 

1. The article did not apply an OR method. 

2. The article did not focus on long-term mine planning. 

3. The article was not related to the topic for any other reason. 

Figure 2. presents the different phases for the systematic review process. 

 

Figure 2. Different phases of systematic review. 

Following these guidelines, 63 papers were selected. First, these papers were analyzed based on 

year, subject area, document type, and country, as shown in Figures 3a, 3b, 3c, and 3d. The graphs 

show that the majority of the documents are journal papers from the last 20 years, predominantly 

from Canada, the United States, and Australia. Figure 2d illustrates that the subject areas defined by 

the database based on journal scope, article content, and keywords, primarily include Earth Sciences, 

Engineering, and Computer Science. 
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Figure 3. Distribution of the papers based on different factors. 

This review encompasses a significant portion of recent papers in the field of sustainable mine 

planning from the perspective of OR methods used. At the end, the opportunities for future research 

were identified.  

3. OR Methodologies 

OR and computer technology were introduced into mining engineering in the late 1950, to 

enhance the economic efficiency of mining development, consider a broader spectrum of factors, and 

optimize design and development processes [18]. In this section, we will explore the OR optimization 

methods and algorithms and their application in different stages of long-term surface mine planning 

in the context of SD. 

a. Exact Methods 

Exact methods guarantee finding the best possible solution for an optimization problem. These 

methods are usually applicable to smaller or well-defined problems due to their computational 

intensity. 

3.1.1. Linear Programming (LP) 

Linear optimization or Linear Programming is a technique used to achieve the best possible 

solution when the relationships between variables are linear, with both objectives and constraints 

expressed as linear equations. This method is among the most utilized approaches in mine 

production scheduling. A basic formulation of the problem with fundamental constraints can be 

illustrated as follows: 
Max  ∑ ∑ 𝑐𝑖𝑡𝑥𝑖𝑡

𝑇
𝑡=1

𝐼
𝑖=1  

s. t.  ∑ 𝑥𝑖𝑡
𝑇
𝑡=1 ≤ 1   ∀ 𝑖 = 1,2 … 𝐼 (Reserve constraints) 

     𝑥𝑖𝑡 ≤ ∑ 𝑥𝑖′𝑘
𝑡
𝑘=1         ∀ 𝑖 = 1,2 … 𝐼;    ∀𝑡 = 1,2 … 𝑇;  ∀ 𝑖′ ∈ 𝐵𝑖 ,  (Slope constraints) 

     ∑ 𝑤𝑖 ∗ 𝑥𝑖𝑡
𝐼
𝑖=1 ≤ 𝑀

𝑡
     ∀ 𝑡 = 1,2 … 𝑇               (Mining capacity constraints)  

∑ 𝑜𝑖 ∗ 𝑤𝑖 ∗ 𝑥𝑖𝑡
𝐼
𝑖=1 ≤  𝑂

𝑡
  ∀ 𝑡 = 1,2 … 𝑇            (Processing capacity constraints) 

Where: 
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𝑐𝑖𝑡 = discounted economic value of block i if mined in period 𝑡; 

𝑥𝑖𝑡  = {1, if block i is mined in period 𝑡; 0, otherwise}; 

I= total number of blocks; 

𝑇=total number of periods; 

𝐵𝑖 = Set of blocks that must be excavated before block i; 

𝑖 = blocks index, 𝑖=1,2⋅⋅⋅I; 

𝑡 = time period index, 𝑡=1,2⋅⋅⋅𝑇; 

𝑖′ = index of blocks that must be excavated before block i; 

𝑀
𝑡

= maximum mining capacity available during period 𝑡; 

𝑤𝑖 = tonnage of the block; 

𝑂
𝑡

= maximum processing capacity available during period 𝑡;  

𝑜𝑖 = {1, if block i is ore; 0, otherwise}; 

Burgher and Erickson (1984) explored the integration of reclamation cost with production 

scheduling using a linear optimization approach. They analyzed how optimal production schedules 

for a small coal mine are affected by reclamation requirements and a fluctuating discount rate. Their 

findings show that a higher discount rate encourages production to be moved forward, while 

reclamation requirements tend to delay production. This delay occurs because reclamation adds extra 

costs, which mine managers prefer to postpone, as these costs are reduced when discounted over 

time [19]. 

Some studies leverage the integration of linear programming (LP) with other methods, such as 

integer programming. Mixed Integer Linear Programming (MILP) can be especially beneficial when 

certain variables must be integers. Caccetta and Kelsey (2001) applied MILP to optimize the extraction 

of waste blocks [20], whereas Badiozamani and Askari-Nasab (2014) used it to incorporate 

reclamation and tailings cost into the Net Present Value (NPV) objective function. These researchers 

emphasized the importance of integrating mining operations with environmental benchmarks, 

where comprehensive schedule meets the tailing capacity constraint and adheres to the production 

of the necessary reclamation material [21]. Recently, a new framework (LCA-MILP) was introduced 

to integrate environmental data from life cycle assessment (LCA) with MILP. This approach focused 

on dust emissions and greenhouse gases (GHGs) in open pit mine planning, achieving an 11.05% 

reduction in GHG emissions while maintaining over 93% of the basic NPV [22].  

In another study, researchers developed a simultaneous mixed integer programming (SimMIP) 

model to optimize ore production as well as waste dump scheduling in mining complex. Unlike 

traditional two-step methods that separate ore and waste scheduling, SimMIP creates both schedules 

concurrently. It dynamically evaluates the economic value of possible routes for a mining block from 

source to destination, balancing NPV optimization with waste management strategies considering 

factors such as acid mine drainage (AMD) and greenhouse gas (GHG) emissions. When applied to a 

gold mining complex, the SimMIP model demonstrated superior performance in maximizing NPV, 

encapsulating potentially acid-forming (PAF) waste, and reducing GHG emissions [23]. MILP has 

also been employed by other researchers to address waste rock handling while optimizing mine 

scheduling [24–28]. 

Despite its frequent use in literature, addressing large-scale problems with MILP remains 

challenging due to computational complexity. This issue can be mitigated by techniques such as block 

clustering or using heuristic or meta-heuristic methods. In this regard, Lamghari et al. (2015) 

introduced a two-phase hybrid solution method. In the first phase, a series of LP problems is solved 

to generate an initial solution, followed by the second phase, where a variable neighborhood descent 

(VND) procedure refines this solution. This method was tested on instances derived from real 

mineral deposits and benchmark instances from literature. The efficiency of SH-VND was evaluated 

using upper bounds provided by CPLEX, and its performance was compared to recent methods from 

the literature and an alternate method in commercial mine planning software. Results indicate that 

SH-VND outperforms existing approaches, enabling mine planners to obtain high-quality solutions 

in shorter computational times. It can solve large problem instances quickly and manage more 

complex variations of the open-pit mine production scheduling problem [29]. 
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3.1.2. Multi Criteria Decision Making (MCDM) 

MCDM also known as Multi-criteria analysis (MCA), encompasses a range of methods used to 

assist in decision-making when options are assessed based on multiple criteria, especially when these 

criteria are measured in different units that cannot easily be converted. Although there are various 

MCA methods, they all rely on data normalization and the assignment of weights to the criteria to 

produce a combined score for each option. MCA methods are primarily categorized into two types: 

Multi-Objective Decision Making (MODM) and Multi-Attribute Decision Making (MADM). We will 

discuss these categories separately in the following sections.  

3.1.2.1. Multi Objective Decision Making (MODM) 

This method aims to find the optimal solution when there are multiple desired goals, often with 

conflicting optimization directions. Goal programming (GP), a subset of multi-objective optimization, 

is used to manage these conflicting objectives by assigning each a specific target value. Deviations 

from these targets, whether above or below, are quantified, and the aim is to minimize these 

undesired deviations through an achievement function. GP provides flexibility in formulating and 

prioritizing various goals, as well as allowing a certain level of interaction between the decision 

maker and the optimization process [30,31]. 

Ben-Awuah et al. (2012) applied Mixed Integer Linear Goal Programming (MILGP) in 

Production Scheduling and Waste Disposal Planning for Oil Sands mining. Their goal was to 

maximize NPV by determining the best schedule and destination for ore, dyke material, and waste 

extraction using mining-cuts derived from block clustering techniques. The schedule is designed to 

meet key factors for oil sands profitability and sustainability, such as maximizing NPV and creating 

timely tailings storage areas. Additionally, decision makers have the right to determine goal 

deviation variables, penalty costs, and priorities to achieve a balanced schedule and enhanced NPV. 

Trade-offs can also be made between achieving specific goals and maximizing NPV or minimizing 

dyke construction costs [32]. 

In a similar study, Ben-Awuah et al. (2018) developed an expanded model utilizing MILGP with 

the primary aim of optimizing NPV and minimizing waste dump construction costs. The 

methodology encompasses preprocessing the block economic model to reduce the number of 

variables by defining an UPL and grouping mining blocks into mining cuts at various levels or 

benches within the UPL. Then, a method is utilized to solve the GP formulation for the revised 

problem. Comparative analysis showed that this approach outperforms schedules and waste dump 

plans produced by the commercial mine scheduling software, Whittle. The MILGP model allocated 

more ore for extraction in the early years, resulting in an increased NPV [33]. 

Later, Maremi et al. (2021) applied MILGP to long-term production planning (LTPP) with an 

innovative strategy for waste management that involves dyke construction and backfilling activities. 

This approach, implemented for oil sands production and tailings disposal planning, simultaneously 

schedules production, reclamation, and dyke material while optimizing the size, shape, and location 

of in-pit tailings cells. It also generates optimal annual targets for mining and processing within an 

integrated mine planning and waste management framework. The direct combination of this 

practical mine planning and waste management approach offers several benefits, including reduced 

environmental footprint of external tailing facilities, advancement of progressive closure, and 

support for sustainable waste disposal planning [34]. 

3.1.2.2. Multi Attribute Decision Making (MADM) 

MADM is a specific type of MCA that deals with decisions involving multiple attributes for the 

alternatives that are usually conflicting. The aim of MCDM/A is to offer a process for selecting, 

ranking, describing, classifying, and sorting alternatives according to a set of decision criteria [35]. It 

is a widely used approach for weighting and ranking problems with diverse options [36], and several 

studies have utilized it to evaluate various situations considering SD indicators in mining 

engineering areas [37,38]. However, it is not limited to mining; MADM has been used to assist 
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decision-making processes in SD contexts for numerous other areas, such as energy, tourism, and 

transport [39–41]. Odell (2004) used MADM for UPL design and integrated the social and 

environmental criteria in assessing different scenarios of UPL based on mine life [42]. Another 

attempt was made by Adibi et al. (2015) to select UPL based on three indexes of SD. They converted 

UPL problem to a MADM problem and then used TOPSIS methodology to choose the best solution. 

This method proposes a UPL with higher social and economic scores. However, it also results in a 

larger pit and more waste being mined [43].  

3.1.3. Data Envelop Analysis (DEA) 

DEA is a non-parametric approach to measure productive efficiency of decision-making units 

(DMUs) by creating an objective function and evaluating each alternative. It is especially valuable for 

comparing relative performance when multiple inputs and outputs make direct comparison 

challenging. 

Efficiency is generally the ratio of output to input, represented by: 

Efficiency = output / input = (u₁y₁ + ... + uₛyₛ) / (v₁x₁ + ... + vₘxₘ), 

where x and y represent the input and output variables, respectively, and u and v are their associated 

weights. 

The most efficient Decision-Making Unit (DMU) scores a value of 1, while the remaining DMUs 

are compared against it, receiving scores between 0 and 1 (Figure 4). DEA is a useful tool because it 

integrates diverse data types into a single efficiency score. 

 

Figure 4. DEA method. 

Moradi and Osanloo (2015) quantified the criteria for SD and allocated their shares as 26% for 

environmental factors, 38% for economic factors, and 36% for social factors when designing UPL 

using DEA [44]. While this method could be beneficial in mine planning for its focus on economic 

efficiency and input-output relationships, it is primarily an economic model and may not adequately 

incorporate environmental and social considerations. Additionally, it requires a significant amount 

of accurate data to be effective. 

3.1.4. Lane Algorithm 

Lane’s algorithm is a practice to determine COG considering three main constraints of mining, 

milling/treatment, and refining along with their related costs and capacities. The Lane’s model is able 

to make proper use of the capacities of mining operations to increase the NPV (with consideration of 

discount rate) and total profit value of the whole project (not discounted) under fixed economic 

conditions. Applying this method, Ramirez-Rodriguezm and Rozgonyi (2004) considered the cost of 

reconstruction in COG optimization and proved that integrating the environmental requirement of 
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SD can have an essential impact on COG and mine profitability [45]. In a similar research paper, 

rehabilitation cost was inserted into COG optimization problem, and this resulted in decreasing the 

COG and increasing the achievable NPV of the process [46].  

Lane’s (1964, 1988) [47,48] method has been extensively utilized, but it has notable limitations 

highlighted by several researchers. There are some flaws in the derivation for maximizing profit and 

determining the optimal COG, where a key aspect was overlooked. Moreover, during differentiation, 

COG was inconsistently treated—first as a constant and later as a variable [49]. Because of these 

limitations, the method may not be suitable for identifying the optimum COG in all scenarios and for 

all deposit types [50]. 

3.1.5. Dynamic Programing (DP) 

In mathematical optimization, DP usually simplifies a decision by breaking it down into a series 

of sequential decision steps over time. A sequence of value functions determines the value of the 

system at each state and time [51]. In their recent study, De Lara and colleagues developed a dynamic 

optimization technique to tackle the open-pit block scheduling problem, a major challenge in mining 

due to its complexity. They introduced heuristics based on index strategies, which provide a 

suboptimal solution, and set upper and lower bounds for NPV. The findings were promising, as 

index strategies demonstrated speed and scalability for large mining cases. This supports their use, 

especially in scenarios requiring rapid planning simulations and NPV calculations [52]. Additionally, 

this methodology was used in research in which ecological costs like carbon emission and damaged 

land costs, were incorporated into open pit production scheduling. Geologically optimal pushbacks 

that maximize metal extraction are initially created within the ultimate pit. These pushbacks are 

subsequently prioritized through DP to derive the most favorable production schedule, integrating 

ecological costs into the economic evaluation criteria. It was shown that incorporating ecological costs 

into the schedule results in a different sequence with lower production rates and an extended mine 

life. This approach reduces the total present value of ecological costs by 2.8% and increases the overall 

net present value by 2.5% compared to schedules without ecological costs. However, it slightly 

decreases the purely economic gain (NPV calculated without ecological costs) [53]. 

3.1.6. Lagrangian Relaxation (LR) 

In mathematical optimization, LR is a method used to simplify complex constrained 

optimization problems. By relaxing the constraints, it converts a difficult problem into a more 

manageable one. The solution to this relaxed problem provides an approximation of the original 

problem, offering valuable insights. This technique handles inequality constraints by introducing a 

Lagrange multiplier, which penalizes constraint violations. Instead of enforcing strict inequality 

constraints, these penalties are incorporated into the optimization process. As a result, solving the 

relaxed problem is often more practical than addressing the original problem directly [54]. Various 

adaptations of LR have been developed for large-scale optimization problems [55]. However, the 

effectiveness of this method in converging to optimal solution hinges upon the values assigned to the 

lagrangian parameters initially and during adjustments [56]. 

The considerable size of mine scheduling problems makes it challenging to solve them using 

simple integer programming formulations alone. Consequently, various decomposition and 

aggregation methods have been commonly used in previous research [57]. Dagdelen improved this 

approach by employing LR and dividing the constraints into two types: constraints forming a 

network, such as sequencing constraints, and side constraints, which pertain to production and 

processing capacities [58]. Kawahata (2006) incorporated LR techniques into the large-scale MILP 

problem to reduce its size and accelerate the solution process, while still focusing on optimizing 

production and processing capacities [59]. 

When developing an LR model for a specific instance of the open pit block sequencing (OPBS) 

problems, it is challenging to decide which resource constraints to dualize and which to keep explicit. 

Lambert and Newman (2014) introduced the Maximum Value Feasible Pit method and a tailored LR 

approach to dualize several resource constraints. These formulations considerably shorten solution 
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times compared to directly solving the original problem or using an Initial Integer Feasible Solution 

(IIFS). They also presented an algorithm for generating an IIFS, which they applied to the OPBS 

problem (Lambert & Newman, 2014). 

Rahimi and Ghasemzadeh (2015) employed this method to optimize leaching and concentration 

cut-off grades as well as annual cashflows by analyzing the bio-heap leaching method. 

Environmental and social costs were integrated into the problem to make it a sustainable process. 

Bio-heap leaching of low-grade copper ore has been found to enhance the NPV of copper mines while 

minimizing environmental harm [60]. In a different study, an enhanced version of LR known as 

Temporally Decomposed Greedy Lagrangian Relaxation (TDGLR) was utilized to optimize 

scheduling problems by simultaneously addressing NPV and carbon emissions. By reducing the 

problem space, this method was demonstrated to be more efficient and faster than MIP using several 

datasets, particularly for larger instances where MIP struggles to generate feasible solutions [61].  

3.1.7. Stochastic Programming 

Stochastic programming is a framework used to address problems involving uncertainty. In 

stochastic programs, some or all of the problem parameters are uncertain but follow known 

probability distributions. Unlike deterministic optimization, which assumes precise knowledge of all 

parameters, stochastic programming seeks to find a solution that not only optimizes a specific 

criterion but also effectively manages the uncertainty in the parameters. Given that many real-world 

decisions in mining engineering involve uncertainty, stochastic programming has been widely 

utilized in this field for over twenty years. Traditionally, open pit mine design and planning relied 

on a single deterministic block model despite various sources of uncertainty due to sparse drill hole 

data. To address this, Menabde et al. (2018) developed a novel mathematical algorithm for mine 

optimization with orebody uncertainty. Their approach simultaneously focuses on optimization of 

the extraction sequence and COG. Using the MIP technique and employing a set of equally probable 

orebody realizations, the algorithm can significantly improve the expected NPV. The use of variable 

COG optimized under uncertainty evaluated through conditionally simulated orebodies also 

enhances accuracy and performance. Applying this method on a simple and rescaled problem and 

using the variable COG on the mean grade block model showed a 20% increase in NPV over the base 

case, while further optimization using all orebody realizations produced an additional 4.1% increase 

[62]. This method, known as Stochastic Integer Programming (SIP), has been employed in various 

research studies focused on mine scheduling optimization with the aim of maximizing NPV while 

utilizing several simulated scenarios for the orebody [63,64]. 

Remele et al. (2018) introduced a two-stage SIP approach to optimize NPV while ensuring that 

waste and tailings are disposed of within the mined-out sections of a pit. The objective function was 

split into two parts: first, optimizing the average discounted cash flows for various scenarios, and 

second, penalizing deviations from the minimum production goals. Their innovative method 

determines the extraction sequence of mining blocks as well as the allocation of strips for waste 

storage (destination policy). The approach accounts for geological uncertainties, such as metal grades, 

type of material, and chemical compositions. Applied to an iron ore deposit, the model demonstrated 

that utilizing in-pit storage significantly reduces re-handling costs during the rehabilitation stage, 

minimizes environmental impact, and addresses the challenge of limited external material storage 

space [65]. 

In a different study, researchers employed simultaneous stochastic optimization to tackle the 

issues of material uncertainty and waste variability in a gold mining complex. Considering the impact 

of uncertainty, the model aims to concurrently optimize cut-off grade, waste management, 

stockpiling, and processing decisions, while establishing the production schedule as the target 

outcome. The implementation focused on maximizing the value of the products sold. The results 

show significant improvements over the base case, particularly in meeting environmental, 

permitting, and processing targets. By reducing the total waste produced by treating it as a mining 

product, the new schedule requires a lower mining rate. Even though less material is mined and 

lower grades are sent to the processing facility, the total metal production remains unchanged over 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 19 September 2024                   doi:10.20944/preprints202409.1474.v1

https://doi.org/10.20944/preprints202409.1474.v1


 11 

 

the life of the mine. This decrease in mining rate reduces costs and equipment expenditures, which 

results in a 6% increase in NPV [66]. 

Several studies have considered different types of uncertainty in mine planning and scheduling. 

Dimitrakopoulos (2018) reviewed various techniques used in Mine Design and Production 

Scheduling, categorizing them into two groups: 

1. Algorithms based on simulated annealing [64,67,68]. 

2. Algorithms based on stochastic integer programming [62,63,69–71]. 

The same study introduced a new framework to enhance common approaches by integrating 

both stochastic modeling of orebodies and stochastic optimization in a complementary way. Using a 

copper deposit as an example, the author compared the results to the industry's ‘best practice’ which 

involves a conventional schedule based on a single estimated orebody model and Whittle’s approach 

[72]. The study demonstrated that the stochastic framework increases production schedule value by 

approximately 25%, regardless of which of the two methods is applied. Additionally, stochastic 

optimal pit limits were approximately 15% larger in total tonnage compared to traditional 

(deterministic) optimal pit limits. This difference extends the mine's lifespan and increases the NPV 

by about 10% compared to conventional pit limits using stochastic production scheduling. [73]. 

3.2. Metaheuristic Algorithms 

In mathematical optimization, a metaheuristic is an advanced procedure intended to discover, 

generate, or select a heuristic (partial search algorithm) that can offer a sufficiently good solution to 

an optimization problem. In mine production scheduling, various metaheuristic methods have been 

used to tackle the complexities of optimization. In this section, we will explore some of the commonly 

applied approaches. 

3.2.1. Genetic Algorithm (GA) 

GA is an optimization technique that simulates the process of natural selection from biological 

evolution. 

As mentioned in the previous section, the LR algorithm does not always guarantee convergence 

to the optimal solution. To address this limitation, Moosavi and colleagues (2014) developed a hybrid 

algorithm that combines LR with GA to solve the scheduling problem with a grade blending 

constraint, which is essential for maintaining the desired average grade in materials delivered to 

various processing facilities. By using LR, this approach tackles the computational challenges of the 

original problem, particularly related to mining and processing capacity, as well as the grade 

blending constraints. The method integrates these constraints into the objective function and uses 

penalties as lagrangian multipliers to avoid violations. GA provides the initial population and 

updates the lagrangian parameters through mutation and crossover. By numerical results they 

showed that LA-GA method performs better in terms of convergence speed and attaining highly 

near-optimal solution [74]. 

A Multi-Objective Genetic Algorithm (MOGA) is a tailored form of genetic algorithms 

specifically designed to handle multi-objective optimization problems by using a search mechanism 

that simultaneously finds optimal solutions across multiple objectives. Azhar et al. (2023) used 

MOGA to integrate carbon costs into mine production scheduling. Their method was proven effective 

in generating Pareto fronts, allowing for the simultaneous consideration of both NPV and carbon 

costs [75]. 

3.2.2. Particle Swarm Optimization (PSO) 

PSO is inspired by the collective behavior seen in bird flocking. It manages a group of particles 

that explore the solution space by taking into account their own experiences as well as those of 

neighboring particles, allowing it to solve large-scale complex problems. In this algorithm, each 

particle in the swarm represents a potential solution. Initially, every particle is given a starting 

position and velocity. As the algorithm iterates, it continuously updates the position and velocity of 
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each particle based on how desirable their current solutions are. This process continues until the 

algorithm converges on an optimal or near-optimal solution for the given problem. Using this 

algorithm, Khan and Niemann (2014) developed a new method for optimizing long-term production 

scheduling. Their research centered on applying this computationally efficient metaheuristic 

technique to tackle the complexities of mine production scheduling. They proposed a procedure to 

assess various PSO algorithm variants, and compared their performance, seeking the most effective 

solution for this difficult optimization problem. To minimize constraint violations, they incorporated 

a penalty into the objective function [76]. Several researchers have employed the PSO algorithm to 

address uncertainty in mining scheduling such as Geological factors [77] and grade uncertainty 

[78,79]. 

3.2.3. Simulated Annealing (SA) 

SA is an optimization method inspired by the metallurgical annealing process, where materials 

are heated and then gradually cooled. Developed by Kirkpatrick et al. in 1983, SA is particularly well-

suited for combinatorial optimization problems with large search spaces and non-linear or 

discontinuous objective functions. The process begins with an initial solution and systematically 

explores the solution space through iterations, accepting new solutions based on a probability 

distribution. At the beginning, the algorithm allows the acceptance of worse solutions with a higher 

probability, similar to the high-temperature phase in the annealing. As the algorithm advances, the 

temperature parameter decreases, gradually lowering the likelihood of accepting worse solutions, 

mimicking the cooling process [80]. 

Goodfellow and Dimitrakopoulos (2013) applied the Simulated Annealing (SA) algorithm in a 

modified scheduling model to address the pushback design challenge in mining operations with 

grade uncertainty. Their method improved the conventional phase design by introducing two 

distinct formulations aimed at minimizing deviations from phase production targets across different 

simulated grade scenarios. Applying these formulations at a copper mining operation led to a 

significantly improved solution, marked by reduced variability in achieving production goals [81]. 

Subsequently, Goodfellow and Dimitrakopoulos (2016) developed a framework for globally 

optimizing scheduling problems by integrating non-linear relationships that are typically overlooked 

due to the complexities of non-linear optimization. Three solvers, utilizing a mix of SA, PSO, and 

differential evolution, were devised, and evaluated. Experimental results from a copper and gold 

mining complex showed that the algorithm could generate solutions that reduce the risk of failing to 

meet production targets, resulting in a 6.6% increase in NPV compared to deterministic design and a 

22.6% higher NPV than commercial software [82]. 

Similarly, Kumral (2013) proposed a solution approach, combining GP and SA, to address a 

modified scheduling model dealing with both scheduling and COG problems under grade 

uncertainty. The method initially aims to minimize capacity constraint violations (mining and 

processing) while creating a schedule that meets a specified NPV, along with reserve and block 

precedence constraints. Subsequently, SA iteratively refines the initial solution over multiple 

iterations, making adjustments to the mining period and COG for randomly selected blocks. When 

applied to a gold mining operation, this hybrid approach proved effective, with SA significantly 

improving the initial solution generated by GP [83]. 

After reviewing the selected papers, they were summarized based on several factors: area of 

mine planning, primary objective, sustainability dimensions considered (economic, environmental, 

or social), and modeling method used in Table 1. 

Table 1. Summary of reviewed papers. 

Reference Area Primary objective SD aspect OR method 

Burgher and 

Erickson, 1984 

Production 

planning 

Considered reclamation 

cost into the optimization of 

production schedule 

Economic 

Environmental 
LP 
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Caccetta and 

Kelsey, 2001 

Production 

planning 

Presented a system for 

waste block removal 

Economic 

Environmental 

MILP 

Badiozamani and 

Askari-Nasab, 

2014 

Production 

planning 

Integrated reclamation and 

tailings cost into NPV 

optimization 

Economic 

Environmental 

Mirzehi & 

Moradi Afrapoli, 

2024 

Production 

planning 

Considered dust emissions 

and greenhouse gases into 

the optimization of 

production schedule 

Economic 

Environmental 

Lin et al., 2024 
Production 

planning 

Optimized production and 

waste dump scheduling 

simultaneously (Maximize 

NPV and Minimize GHG 

and AMD)  

Economic 

Environmental 
MIP 

Lamghari et al., 

2015 

Production 

planning 

Introduced a hybrid 

method using LP and 

variable neighborhood 

descent (VND) procedure 

 

Economics LP & VND 

Ben-Awuah et 

al., 2012 

Production 

planning 

Maximize NPV by 

determining the best 

schedule and destination for 

ore, dyke material, and 

waste extraction using 

mining-cuts 

Economic 

Environmental 

MODM 

 Ben-Awuah et 

al., 2018 

Production 

planning 

Proposed an expanded 

model to  

maximize the NPV and 

minimize waste dump 

construction costs  

Economic 

Environmental 

 

Maremi et al., 

2021 

Production 

planning 

Presented a framework for 

optimizing mine scheduling 

as well as shape, size and 

location of tailing-cells 

Economic 

Environmental 

 

Odell, 2004 UPL 

Integrated the social and 

environmental criteria in 

evaluating various 

scenarios of UPL based on 

mine life  

Environmental 

Social 
MADM 

 

Adibi et al., 2015 UPL 
Presented a method to 

select UPL base on SD 

Economic 

Environmental 

Social 

Moradi and 

Osanloo, 2015 
UPL 

Quantified SD criteria. The 

share of environmental, 

economic and social is 26, 

38 and 36%, respectively 

Economic 

Environmental 

Social 

DEA 

Ramirez-

Rodriguezm and 

Rozgonyi, 2004 

COG 

Applied the cost of 

reconstruction in cut-off 

grade optimization 

 

Economic 

Environmental 

 

Lane 

Algorithm 
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Gholamnejad, 

2008 
COG 

Inserted the cost of 

rehabilitation in cut-off 

grade optimization 

Economic 

Environmental 

 

De Lara et al., 

2020 

Production 

planning 

Provided upper and lower 

bound for NPV in the 

deterministic case using 

index strategies, and a 

theoretical framework for 

cases under uncertainty  

Economic 

DP 

 

Xu et al., 2018 
Production 

planning 

Ecological costs like carbon 

emission and damaged land 

costs, were incorporated 

into production scheduling. 

Economic 

Environmental 

 

Dagdelen, 1986 
Production 

planning 

Decomposed large scale 

linear program resulted in 

an improved discounted 

cash flow 

Economic 

LR 

 

Kawahata, 2006 
Production 

planning 

Presented two subproblems 

to tighten the feasible 

region for MILP, resulting 

in reduction in size of the 

model and improvement in 

solution time 

Economic 

Lambert and 

Newman, 2014 

Production 

planning 

Presented Maximum Value 

Feasible Pit to determine 

which constraints should be 

dualize in LR, and obtained 

a near-optimum solution 

more quickly 

Economic 

Rahimi and 

Ghasemzadeh, 

2015 

COG 

Determined leaching and 

concentration optimum 

COG and annual cashflows 

by analyzing the bio heap 

leaching method. 

Economic 

Environmental 

Social 

Azhar et al., 2022 
Production 

planning 

An enhanced version of LR 

was utilized to address 

NPV and carbon emissions. 

Economic 

Environmental 

Menabde and 

Dimitrakopoulos

, 2018 

Production 

planning & 

COG 

Optimizing NPV using MIP 

technique and employing a 

set of equally probable 

orebody realizations 

Economic 

 

Stochastic 

integer 

programming 

 

Remele et al. 

(2018) 

Production 

planning 

Optimizing NPV and waste 

and tailing disposal 

considering geological 

uncertainties 

Economic 

Environmental 

Levinson, 2022 

Production 

planning & 

COG 

Employed simultaneous 

stochastic optimization to 

optimize COG, waste 

management, stockpiling, 

and processing decisions 

under material uncertainty 

and waste variability 

Economic 

Environmental 
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Dimitrakopoulos

, 2018 

Production 

planning & 

UPL 

Combined stochastic 

modeling of orebodies with 

stochastic optimization in a 

complementary way 

Economics 

Moosavi et al., 

2014 

Production 

planning 

Employed Genetic 

algorithm to provide the 

initial population as well as 

updated lagrangian 

parameters 

Economic GA 

Azhar et al., 2023 
Production 

planning 

Incorporated the carbon 

cost in mine planning using 

multi objective optimization 

Economic 

Environmental 

 

 MOGA 

Khan & C 

Niemann-Delius, 

2014 

Production 

planning 

Developed a procedure to 

assess different PSO 

algorithm variants and 

compared their function  

Economic PSO 

Goodfellow & 

Dimitrakopoulos

, 2013 

Production 

planning 

Created a method to reduce 

deviations from phase 

production goals across 

different simulated grade 

scenarios 

Economic 

SA 

 

Goodfellow & 

Dimitrakopoulos

, 2016 

Production 

planning 

Introduced a framework for 

globally optimizing 

scheduling problems by 

integrating non-linear 

relationships 

Economic 

Kumral, 2013 

Production 

planning & 

COG 

proposed a solution 

approach for combining GP 

and SA, to minimize 

violations of capacity 

constraints 

Economic SA & GP 

4. Discussion 

Exact methods strive to find the globally optimal solution but can be impractical for large-scale 

problems. LP offers a mathematically rigorous framework for formulating and solving optimization 

problems, making it well-suited for representing mining objectives, various constraints, and decision 

variables. LP can effectively model large-scale problems, and a variety of software and solvers have 

been developed to handle such challenges [12]. 

In mine production planning, mathematical programming models such as LP, MIP, MILP, and 

GP can handle multiple material types, destinations and elements, and they yield solutions within 

known bounds of optimality. As solutions approach optimality, they often produce production 

schedules with higher NPVs compared to those achieved from heuristic optimization techniques. 

Consequently, there has been extensive research into applying mathematical programming models 

to the LTPP problem, primarily using LP, MIP, and MILP. However, as it is mentioned before, these 

applications typically result in large-scale optimization problems with lengthy solution times [57,84]. 

While LP is a useful tool in this field, it's important to recognize that the relationships between 

decision variables and constraints are not always linear. Many real-world mining constraints, such 

as ore grades, processing capacities, and equipment availability, often demonstrate non-linear 

behavior. Representing these constraints with linear programs can result in inaccurate outcomes and 

suboptimal decisions. Additionally, LP solutions are typically continuous, which may not translate 

into feasible operational decisions (decision variables like the number of mining blocks to extract) in 

a mining context. Although MILP can handle discrete decision variables, the inclusion of integer 
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constraints can greatly increase solution times and pose significant computational challenges in large-

scale mine scheduling problems [29]. Sensitivity is another concern with LP, as even minor changes 

in input parameters like resource grade can lead to significant shifts in the optimal solution, making 

LP solutions less robust in dynamic mining environments. This limitation can be mitigated by multi 

objective optimization, as its solutions tend to be more robust and resilient to changes in input 

parameters within the dynamic mining context [85]. 

The primary advantage of dynamic programming is that it ensures the discovery of the optimal 

solution for problems with an optimal substructure. This means the best overall solution can be 

constructed from the optimal solutions of smaller subproblems. This characteristic guarantees that 

dynamic programming solutions are globally optimal. However, this approach requires more 

memory and involves higher computational complexity [86]. 

Lagrangian relaxation provides a powerful and flexible method for solving constrained 

optimization problems, enhancing computational efficiency by converting a complex constrained 

problem into a series of simpler, unconstrained problems. However, it may face convergence issues, 

particularly in non-linear cases, and does not guarantee finding the globally optimal solution to the 

original problem. This limitation is also present in metaheuristic algorithms, potentially affecting 

confidence in the solutions obtained. Despite this, the capability of metaheuristic algorithms to 

address complex, nonlinear, large-scale, and non-convex optimization problems, which are common 

in mine scheduling, remains significant. 

Based on Table 1, LP, DP, LR, stochastic programming, and metaheuristics are among the most 

commonly used methods in surface mine planning that considered SD aspects. Table 2 provides a 

summary of the advantages and drawbacks of these methods. 

Table 2. Summary of optimization methods for surface mine planning. 

Method        Advantages        Disadvantages 

LP 

• Capable of modeling large scale 

problems 

• Supported by different software 

and solvers 

• Incapable of addressing non-

linear behavior in real-world 

mining constraints, such as ore 

grades, processing capacities, 

and equipment availability. 

• LP solutions are usually 

continuous and may not 

always align with practical 

operational decisions. 

• Less robust and highly 

sensitive to variations 

DP 

• Guarantee obtaining the optimal 

solution when there is an optimal 

substructure 

• Demand more memory and 

involves computational 

complexity 

LR 

• Effective and adaptable for 

addressing constrained 

optimization problems. 

• Enhance computational efficiency 

by breaking down a complex 

constrained problem into a series 

of simpler, unconstrained 

problems. 

• May face convergence 

problems, especially in non-

linear scenarios. 

• Do not ensure discovering the 

globally optimal solution 

Stochastic 

programmin

g 

• Incorporate uncertainty, leading 

to more robust and reliable 

decision making 

• Enhance risk management 

• High complexity 

• Computationally intensive, 

resulting in longer solution 

time 
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• Data-intensive, requiring 

detailed probabilistic 

information 

Metaheuristi

c 

• Address complex, nonlinear, 

large-scale, and non-convex 

optimization problems  

• Do not guarantee the discovery 

of globally optimal solution 

Through the review of related articles in this paper, several gaps in the field of sustainable mine 

production planning have been identified. Notably, the aspect of social sustainability has been largely 

overlooked. As shown in Figure 5, no published research has yet examined the integration of social 

factors with production scheduling optimization in surface mining operations.  Future studies 

should explore the impact of indicators such as safety standards, community health, and the social 

effects of mining activities, including vibration, on local populations. Addressing these gaps will 

contribute to a more holistic approach to sustainable mining operations, ensuring that economic, 

environmental, and social factors are balanced in the planning process. 

 

Figure 5. Papers distribution based on SD factors. 

Additionally, from the OR perspective, our review reveals that certain advanced methodologies 

have yet to be applied to sustainable mine planning. Approaches such as multi-level optimization 

and fuzzy logic, which have shown considerable potential in other fields, remain underutilized in 

this domain. These methods could offer significant benefits, allowing for more robust and adaptable 

decision-making when dealing with uncertainty and complexity.  

Multi- level optimization is particularly relevant when dealing with conflicting objectives, as it 

allows for a hierarchical decision-making process where one objective is prioritized at one level, and 

the other is considered at a subsequent level. 

In the context of sustainable mine planning, economic objectives often conflict with social and 

environmental goals. Two-level optimization allows the decision-making process to be structured in 

a hierarchical manner. For instance, at the first level, the optimization could focus on maximizing 

NPV, ensuring that the economic viability of the mining operation is secured. At the second level, 

within the constraints set by the first level, the optimization could focus on minimizing negative 

social and environmental impacts. This structure mirrors the real-world scenario where economic 

viability is a prerequisite, but sustainability considerations are also crucial.  

It also offers flexibility in model design. Different formulations can be used depending on the 

specific needs of the mine planning problem. For instance, if minimizing environmental impact is 

more critical in a particular context, the optimization levels can be reversed or adjusted accordingly. 
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This adaptability makes it a suitable approach for a wide range of mining operations with varying 

priorities and constraints.  

Fuzzy logic is another approach that should receive more attention in sustainable mining. In this 

field, factors such as environmental impact and social implications are often uncertain or difficult to 

quantify precisely, alongside operational factors like ore grade and market prices. Fuzzy logic is 

specifically designed to manage such uncertainty and ambiguity by incorporating imprecise data into 

the decision-making process. This makes it particularly suitable for sustainable mine production 

planning, where the exact trade-offs between economic, social, and environmental objectives may not 

always be clear. Additionally, it can be integrated with other optimization methods, such as multi-

level optimization, to enhance their ability to handle uncertainty and complex trade-offs. However, 

the specific applicability and effectiveness of these approaches would depend on the precise 

formulation of the problem and the nature of the mining operation in question. Further research and 

model testing would be necessary to validate their utility in this context. 

5. Conclusion 

Mining companies face a complex and critical challenge when developing long-term plans that 

must balance economic returns with the environmental and social impacts on the communities. OR 

methods have proven to be effective tools for addressing these intricate sustainable decision-making 

problems, particularly in the mining sector, where multiple conflicting criteria, subjective 

evaluations, uncertainties, and the involvement of diverse stakeholders are common challenges. 

This paper presented a comprehensive review of the literature on OR methods applied to assess 

sustainability in long term surface mining. We analyzed 59 articles, categorizing them based on the 

focus areas of surface mine planning (UPL, COG, and production planning), the methods employed 

to model and solve the problem, and the sustainability dimensions considered. Our review 

emphasizes the need for advanced planning and scheduling optimization techniques that integrate a 

mix of primary methods to address these complex problems more efficiently, both in terms of time 

and solution quality, ultimately supporting practitioners in enhancing production while achieving 

sustainability goals. 

Future research should place greater emphasis on incorporating the social dimension, 

particularly in mine production planning, and addressing project uncertainties to develop more 

realistic models and practical solutions that align more closely with the evolving needs of the mining 

industry. 
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