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Abstract: Several studies in recent years have shown that the use of non-Saccharomyces yeasts, used both in
single and in mixed fermentations with Saccharomyces cerevisiae can help produce craft beers with distinctive
compositional characteristics. The aim of this study was to evaluate the suitability of three Metschnikowia
pulcherrima strains, isolated from Albanian vineyards, to be used as starters in the brewing process. Due to its
specific enzymatic activities (protease, p-glucosidase and (3-lyase) and its low production of hydrogen sulfide,
M. pulcherrima 62 was selected as a starter culture for the production of craft beer. Specifically, the aptitude of
this yeast to be used in sequential inoculation with S. cerevisiae S04 for the production of an American IPA-style
beer and the main volatile compounds produced during fermentation were evaluated. Results showed
significant differences in glycerol, isoamyl alcohol and isoamyl acetate content in beer obtained with sequential
inoculum of M. pulcherrima 62 with S. cerevisiae S04 compared to beer obtained using S. cerevisiae S04 as a single
starter. Therefore, these preliminary data support a candidacy of M. pulcherrima 62 as a new starter in the
brewing process.

Keywords: craft beer; Metschnikowia pulcherrima; Saccharomyces cerevisiae; sequential inoculation

1. Introduction

In recent years, the craft beer production sector has increased widespread, with a growing
consumer interest in new beer with distinctive organoleptic characteristics [1-4].

Among the adopted strategies, in addition to the use of unconventional ingredients (e.g.
alternative grains, exotic hops) and innovative brewing techniques (e.g. spontaneous fermentation,
barrel-aging) [5-7], the role of non-Saccharomyces yeasts is a trending topic to improve the sensory
characteristics of the beers [8]. For decades, the use of starters in the brewing industry has been almost
exclusively limited to pure yeast cultures belonging to the genus Saccharomyces. This well-established
technique ensured better control of the fermentation process and, as a result, helped to elevate and
standardize the quality of the beers. In recent years, in the brewing sector, the need to diversify final
products as a business strategy has grown more and more to conquer new markets and meet the
needs of increasingly demanding and quality-conscious consumers. On the basis of these
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considerations, especially in the craft beer industry, non-Saccharomyces yeasts represent a great source
of biodiversity and opens up new possibilities compared to traditional Saccharomyces genus, in order
to obtain distinctive products, with peculiar compositional and organoleptic characteristics [9-16].
Multiple studies in recent years have highlighted the potential of wild Saccharomyces and non-
Saccharomyces yeasts, isolated from spontaneously fermented beers as well as from non-brewing
environments (e.g. wines, vineyards, sourdoughs, honey by-products), for the production of beers
with appreciable and distinctive compositional and sensory characteristics compared to those
obtained with conventional brewer's yeasts [17-23]. Although the use of non-Saccharomyces yeasts in
beer production is relatively recent, the genus Metschnikowia is one of the most studied, due to its
multiple positive contributions in winemaking processes and recently in beer production [24-26] . In
particular, Metschnikowia pulcherrima is recommended in winemaking to obtain wines with reduced
ethanol content, for the bio-control, for their contribution to the aromatic development of wines
through their enzymatic activities (e.g. p-D-glucosidase, cysteine (3-lyase) and the production of a
wide range of metabolites (e.g. esters, higher alcohols) resulting from alcoholic fermentation [26-29].

On the basis of their low tolerance to alcohol and their enzymatic activities, recent studies have
verified that selected M. pulcherrima strains are functional for obtaining beers with a low alcohol
content, if used in pure culture, or can contribute to positively modifying the organoleptic properties
of beers if used in co-culture with S. cerevisiae [30-33].

However, while for the wine sector there is a limited availability of commercial strains belonging
to this species, in the beer sector this availability is not yet there.

The present study aims to evaluate new M. pulcherrima strains, previously isolated from
vineyards located in Albania [34], to be specifically targeted for the brewing industry. After a
preliminary screening, M. pulcherrima 62 was selected as a starter for craft beer production.
Specifically, the aptitude of this yeast to be used in sequential inoculation with S. cerevisiae for the
production of an American IPA-style beer was evaluated.

2. Materials and Methods

2.1. Yeast Strains and Growth Condition

For this study M. pulcherrima 62, 82 and 86 strains (GenBank accession numbers: PP922572.1,
PP922568.1, PP922571.1), belonging to the culture collection of the Agri-Food Research Centre of the
Faculty of Biotechnology and Food of Agriculture University of Tirana, were used. These strains were
previously isolated from autochthonous Albanian red grapes [34]. For the preliminary
characterization and for the brewing trials, the commercial S. cerevisinze S04 (Fermentis, Lesaffre,
France) strain was used as a reference. For the beer fermentation, the yeasts were cultured aerobically
at 28 °C in YEPD broth (Merck Millipore, Darmstadt, Germany) and after 48 hours the broth cultures
were centrifuged at 8,000 rpm for 10 min at 4 °C. Finally, the cell pellet was washed twice with saline
solution (0.9% w/v NaCl) and used as a starter. Cell density of inoculum was assessed using Thoma
Counting Chamber (Thermo Fisher Scientific).

2.2. Pre Selection Trials

2.2.1. Carbon Assimilation Profiles

Carbon sources assimilation profiles were evaluated using the API 20 C AUX system
(Biomerieux, Montalieu-Vercieu, France) based on 19 carbohydrate assimilation tests plus a negative
control, read by assessing cupules for turbidity. The kit was used in accordance with the guidelines
given by the manufacturer. The yeast strains before use were cultured in YEPD broth at 28 °C for 48h.
Reading of the strips was done after 48 and 72 h of incubation at 30°C.

2.2.2. Cryotolerance

The cryotolerance was evaluated as reported by lorizzo et al. [11]. Each strain pre-grown
overnight in YEPD at 25 °C was inoculated at an initial concentration of 1x102 CFU/mL into
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Erlenmeyer flasks (100 mL capacity) containing 80 mL of YEPD, maintained under stirring using a
digital orbital shaker (Heathrow Scientific, IL, USA) at 4°C. The growth was determined visually after
24 h of incubation.

2.2.3. Biogenic Amines Production

Biogenic amines production was carried as described by Barbosa et al. [35] with some
modification. For this purpose, a culture media containing 3 % (wt/vol) yeast extract, 1 % (wt/vol)
glucose, 2 % (wt/vol) amino acid precursor (histidine, tyrosine, ornithine, phenylalanine and
histidine), and 0.015 g L-! (w/v) bromocresol purple, was used. The pH was adjusted to 5.2. The
medium without amino acid precursor was used as negative control. The decarboxylation of the
amino acids to the corresponding biogenic amines results in an increase in pH, detected by the culture
medium colour change. All reagents were purchased from Merck KGaA (Darmstadt, Germany).

2.2.4. Hydrogen Sulphide Production

Hydrogen sulphide (H:S) production by M. pulcherrima strains, was evaluated according to
Comitini et al. [36] using BIGGY agar (Bismuth Sulphite Glucose Glycine Yeast; Thermo Fisher
Scientific, Waltham, MA, USA), as medium. After 3 days, H25-negative strains showed white
colonies, while HaS-producing colonies were characterized by a brown or dark brown color. For
results, the following chromatic scale was considered: 0 (white colonies, no HzS production), 1 (cream
colonies), 2 (light brown colonies), 3 (brown colonies), 4 (dark brown or black colonies, very intensive
H:S production).

2.2.5. Pulcherrimin Production

Pulcherrimin production, was evaluated according to the method described by Mazeika et al.
[37] with some modification, using a culture medium with the following composition: 1% (wt/vol)
yeast extract, 2% (wt/vol) peptone, 2% (wt/vol) glucose and 2% (wt/vol) agar. After sterilization, the
medium was supplemented with sterile FeCls solution (0.05% wt/vol) and poured into Petri dishes.
Finally, 10 pL of yeast cultures (10¢ cells/mL) were spotted onto the medium and the plates were
incubated for 3 days at 28 °C. After incubation, colonies surrounded by reddish halos around the
colonies were recorded as positive results. All reagents used in the experiment were purchased from
Merck KGaA (Darmstadt, Germany).

2.3. Enzymatic Activities

2.3.1. API zym Assay

Screening of enzymatic activities was evaluated using the API ZYM system (Biomerieux,
Montalieu-Vercieu, France) according to the manufacturer’s instructions. The yeast strains were
cultured in YEPD broth at 28 °C. After 48 h, 60 pL the yeast cell suspensions were transferred into
the wells of the API ZYM strips and incubated at 37 °C for 4 h. The colour changes observed into the
wells indicating positive enzymatic reactions and were used for evaluation of the results on the basis
of the API ZYM colour chart.

2.3.2. Proteolytic Activity

The proteolytic activity was detected qualitatively by using skim milk agar hydrolysis method
as previously described by Gut et al. [38] with some modifications. Briefly, 10 uL of yeast suspensions
in YEPD broth (10¢ cells/mL), were spotted onto SDA (Sabouraud Dextrose Agar) containing 10 %
(wt/vol) skim milk (Merck KGaA, Darmstadt, Germany), with a final medium pH of 7.3. Plates were
incubated at 28 °C for 5 days. Proteolityc activity was indicated by the presence of a clear zone around
the colony.
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2.3.3. p-glucosidase Activity

Qualitative assay of 3-Glucosidase activity, was performed as reported by Testa et al. [39]. For
this purpose, 10 pL of yeast suspensions in YEPD broth (10¢ cells/mL), were spotted onto a culture
medium having the following composition: 2 g/L (wt/vol) glucose, 1 g/L (wt/vol) peptone, 1 g/L
(wt/vol) yeast extract, 0.3 g/L (wt/vol) esculin, 0.01g/L (wt/vol) ferric-ammonium citrate and 15 g/L
(wt/vol) agar (Merck KGaA , Darmstadt, Germany). Plates were incubated at 28°C for 3 days. The f3-
Glucosidase activity based on appearance of black zone around the colonies indicating the hydrolysis
of esculin.

2.3.4. B-lyase Activity

Qualitative screening of [3-lyase activity was conducted as described by Belda et al. [40], using a
medium containing 0.1 % (wt/vol) S-methyl-l-cysteine, 0.01 % (wt/vol) pyridoxal-5-phosphate, 1.2 %
(wt/vol) Yeast Carbon Base and 2 % (wt/vol) agar with a final medium pH of 3.5. 10 puL of yeast
suspensions in YEPD broth (106 cells/mL), were spread onto the plate’s surface and incubated at 25
°C for 72 h. The growth of yeast cultures after 72h of incubation indicated the presence of (3-lyase
activity [41]. All reagents were purchased from Merck KGaA (Darmstadt, Germany).

2.4. Craft Beer Brewing Process

After the pre-selection tests, M. pulcherrima 62 was chosen as starter for the American IPA-style
beer production using a Grainfather G series brewing system (Bevie Handcraft, Nelson NZ Ltd) at
the Department of Agricultural, Environmental and Food Sciences (University of Molise;
Campobasso, Italy). For American IPA style beer production, pale ale and cara crystal malts (Chateau
Pale ale, Castle Malting, Lambermont, Belgium) were used. Amarillo and cascade hops (Barth-Hass,
Niirnberg, Germany) were added during the boiling and dry hopping phase. The main analytical
characteristics of the wort, meeting the requirements established by Beer judge certification program
(BJCP) [42] for the American IPA, were as follows: pH 5.50, °Plato 11.7, density (original gravity)
1.047 g/cm?, IBU (International Bitterness Unit) 54, and FAN (free amino nitrogen) 208.67 mg/L.
Fermentation tests were carried out at 20°C + 1°C using thermoregulated stainless steel tanks
(capacity 30 L), containing 20 L of wort. In detail, test A was inoculated initially with M. pulcherrima
62 and after 48 h with S. cerevisiae S04 (sequential inoculum) while test B was inoculated only with S.
cerevisiae SO4. The starter cultures were inoculated at an initial concentration around 106 CFU/mL and
the fermentations were conducted at 20 + 1°C. The fermentations were performed in triplicate. At the
end of the primary fermentation, 3.5 g/L of sucrose was added as a primer for the secondary
fermentation which took place in 330 mL dark brown glass bottles. After 40 days of maturation at 20
°C, the beers were subjected to chemical analysis.

2.5. Fermentation Kinetics

During the primary fermentation, density values (g/cm?3) were monitored. For the determination
of yeast cell viability (CFU/mL), the culture medium WL agar containing 100 mg/L chloramphenicol
(Merck KGaA, Darmstadt, Germany) was used. The plates were incubated at 28 °C in aerobic
conditions. After 72 hours, the colonies were evaluated by color and topography to distinguish S.
cerevisiae from M. pulcherrima [29].

2.6. Main Chemical Parameters of Beers

A pH meter (Crison basic 20, Barcelona, Spain) was used to measure the pH. The density (g/cm?),
alcohol content (% v/v), FAN and IBU were determined according to analytical procedures as
described by European Brewery Convention (EBC) [43]. Glycerol (mg/L), acetic acid (mg/L),
acetaldehyde (mg/L), L-malic acid (g/L) and L-lactic acid (g/L) were determined using enzymatic kits
(Steroglass, Perugia, Italy) according to the manufacturer’s instructions. All measurements were
conducted in triplicate.
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2.7. Analysis of Volatile Compounds by GC-FID

The volatile compounds were determined by Gas Chromatography with flame ionization
detection (GC-FID), using a GC2010 Plus apparatus with FID-2010 detector equipped with a
headspace autosampler (HS-20) (Shimadzu Corporation, Kyoto, Japan) and a CP-WAX 57 CB column
(50 mx0.32 mm IDx0.2 um) (Agilent Technologies, Santa Clara, CA, USA). Quantification of volatile
compounds was performed using external standards based on a standard curve with five calibration
points (the coefficient of determination R2 was greater than or equal to 0.999). The limit of detection
was 0.1 mg/l. The analysis method was conducted according to Paszkot et al [44]. All measurements
were conducted in triplicate.

2.8. Statistical Analysis

Results were expressed as mean value +
performed using t-test and one-way analysis of variance ANOVA (IBM SPSS Statistics 21) and Tukey
post-hoc tests at a significance level of p <0.05.

standard deviation (SD). Statistical analyses were

3. Results and Discussion

3.1. Technological and Biochemical Properties

The results of API20 C AUX test are shown in Figure 1 as heat map. The assimilation profiles of
the 19 sugars tested were similar but the inability of M. pulcherrima K191C7 to ferment D-Xylose and
M. pulcherrima K185C2-9 to ferment D-Melezitose has been detected. All M. pulcherrima strains tested
were able to assimilate glucose, maltose and saccharose that represent the main sugars present in
beer wort. These assimilative capacities make them suitable for their possible use as a starter in beer
production.

Enzymes

Alkaline phosphatase

Esterase (C4)

Esterase lipase (C8)

Lipase (C14)

Leucine arylamidase

Valine arylamidase

Cysteine arylamidase
Trypisine

a-chymotrypsin

Acid phosphatase

Naphthol AS-BI-phosphohydrolas
a-Galactosidase
B-Galactosidase
B-Glucuronidase
a-Glucosidase

B-Glucosidase

N -Acetyl -p- Glucosaminidase
a-mannosidase

a-fucosidase

Carbon sources

62 82 86

62 82 86

Glucose

Glycerol
2-Keto-gluconate
L-Arabinose

D-Xylose

Adonitol

Xylitol

Galactose

Inositol

Sorbitol
a-Methyl-D-Glycoside
NAcetyl-D-Glucosamine
Cellibiose

D-Lactose

D-Maltose
D-Saccharose
Trehalose
D-Melezitose
D-Raffinose

M. pulcherrima strains

Figure 1. Heatmap visualization for test results of carbohydrates assimilation and enzymatic activities

of M. pulcherrima strains. Red square:  negative; blue square:  positive.

The results on the HaS and pulcherrimin production, cryotolerance and {3 -Glucosidase, 3 -Lyase
and Protease activities of the three M. pulcherrima strains are reported in Table 1. M. pulcherrima 62
was able to grow at 4 °C, while M. pulcherrima 86 and 82 showed a very weak growth capacity at this
temperature. Low-temperature fermentation by Saccharomyces spp. is believed to lead to the
production of wines and beers with improved taste and aroma due to increased production of volatile
aromatic compounds [45,46].

Therefore, the cryotolerance of M. pulcherrima 62 could be functional to production of low-
temperature fermented products such as lager beers. Regarding the qualitative tests we carried out
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to evaluate the production ofbiogenic amines, our results showed that the three M.
pulcherrima strains are not producers of these nitrogenous compounds. In alcoholic beverages, the
biogenic amines are primarily formed by decarboxylation or transamination of precursor amino
acids, which are directly affected by the activity of amino acid decarboxylase in yeasts and lactic acid
bacteria (LAB) [47-49].

Biogenic amines in food might represent a potential public risk health because of their
physiological and toxicological effects. In foods, their concentrations typically increase during
processing and storage because of exposure to microorganisms that catalyze their formation [50]. In
recent years there has been an increase in the number of cases of food poisoning related to biogenic
amines in foods and beverages [51]. Therefore, it is extremely important to monitor the level of
biogenic amines in food and alcoholic beverages such as beer. The European legislation does not
specify a biogenic amines threshold, but the European Food Safety Authority (EFSA) has elaborated
a scientific opinion on the risk associated with the formation of these compounds in fermented
products [52].

During fermentation, yeasts are responsible for the production of several sulfur compounds
including H2S. This compound can have an undesirable impact by directly affecting the flavor profile
or masking other flavor compounds found in beer [20]. H2S is a highly volatile compound with a very
low flavor threshold level (11-80 pg/L) reminiscent of rotten eggs [53]. Our results, pertaining semi-
quantitative tests, highlighted the low production of H2S by the M. pulcherrima strains.

Table 1. H:2S and pulcherrimin production, cryotolerance and enzymatic activities of M. pulcherrima
strains.

M. pulcherrima
P 1m H2S5* B -Glucosidase**  3-Lyase** Protease*  Pulcherrimin®**  Cryotolerance**

strains
62 2 + + + + +
82 2 weak + - + weak
86 2 weak + + + weak

*H2S production: (1), white colour - no production; (2) light brown; (3) brown; (4) dark brown; (5) dark
brown/black - high production. **Enzymatic activities: (3-glucosidase, P-lyase, protease), pulcherrimin
production and cryotolerance (+ positive; - negative).

Pulcherrimin-producing yeast species, like M. pulcherrima, are considered effective antimicrobial
agents against various microorganisms, with great potential for biocontrol applications [54]. The M.
pulcherrima strains tested in this study, were results pulcherrimin producers. Pulcherrimin has
inhibitory activity against several yeast species, but seems S. cerevisize not to be affected by this
antimicrobial activity [55-57]. This appears to be confirmed in the beer production trials discussed
below, which showed that M. pulcherrima 62 did not cause any interference on alcoholic fermentation
by S. cerevisiae S04.

The use of non-Saccharomyces yeasts, possessing specific enzymatic activities, is still an
innovative concept in beer production and opens possibilities to produce beers with distinctive
sensory characteristics, compared to the use of single cultures of Saccharomyces species [32].

The results of API ZYM test are presented in Figure 1 as heat map. All the M. pulcherrima strains
exhibited the following enzymatic activities: Phosphohydrolase, a- glucosidase, (3-glucosidase, acid
phosphatase, valine and leucine arylamidase.

Leucine arylamidase is involved in the production of leucine, which is needed for cyclodileucine
(cyclo(Leu-Leu)) formation—the precursor of pulcherriminic acid [58].

M. pulcherrima 62 and M.pulcherrima 82 possess esterase lipase (C8), and esterase (C4) activities.
Esterase are the enzymes involved in the release of phenolic compounds from plant cell walls [59].
Moreover, previous studies suggesting a crucial link between esterase activity and aroma production
during fermentation [16,60].

Some non-Saccharomyces yeasts, like M. pulcherrima, possess B-glucosidase enzyme, that can
hydrolize glycoconjugate precursors and promote the release of active aromatic compounds [61]. In
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our study, it was found that all three M. pulcherrima strains possessed B-glucosidase activity. During
the alcoholic fermentation of beer wort, the yeasts produced volatile compounds, as higher alcohol
and esters, which directly contribute to the organoleptic characteristics of the final product (Iorizzo
et al, 2021). In addition to these compounds, B-glucosidase activity results in the release of
monoterpene alcohols like linalool, a-terpineol, B-citronellol, geraniol, and nerol [61]. Terpenes can
have diverse flavor impacts (citrus, floral) and higher levels of these compounds are associated with
greater overall hop aroma intensity. In wort, these compounds are often present in glycosidically
bound forms and aromatically inactive [62]. In addition, our study detected 3-lyase activity produced
from the tested M. pulcherrima strains. This enzymatic activity results in the release of volatile flavour-
active thiols from their conjugated (glutathionylated or cysteinylated) and therefore aroma-inactive
forms present in hops [63]. Volatile thiols are active at very low flavor thresholds and impart tropical,
citrus, and other fruity aromas to beers [64,65]. Our results showed that M. pulcherrima 62 and M.
pulcherrima 86 possess protease activity. Yeast extracellular proteases have potential in beer
stabilization, facilitating the filtration and clarification. In addition, protein degradation results in
amino acids that are a source of nitrogen for yeast growth and are precursors for the biosynthesis of
higher alcohols, which significantly influence the aroma and flavour of beers [66]. Based on the
screening results M. pulcherrima 62 was chosen as starter for the production of an American IPA-style
beer on a pilot-scale.

3.2. Main Chemical Parameters of Beers

The data on the main physical-chemical parameters of the beers are shown in Table 2. The
ethanol values (% v/v) were respectively 5.2 % v/v in beer obtained in test A and 5.0 % v/v in beer
obtained in test B, thus showing non-significant differences. Therefore, sequential inoculation did not
affect the level of ethanol in the beer. In fact, S. cerevisiae S04 both in co-culture and as a single starter
managed to complete alcoholic fermentation after 10 days. These data confirm the findings in other
studies that the antimicrobial activity of M. pulcherrima does not cause any interference with the
completion of alcoholic fermentation by S. cerevisiae [55,67].

Table 2. Main physical-chemical parameters of beer produced using M. pulcherrima 62 and S. cerevisiae
S04 in sequential inoculation (Test A) and of beer produced using S. cerevisine S04 as a single starter

(Test B).
physical-chemical parameters Test A Test B
pH 435+0.052 4.31+0.06 =
Alcohol (% v/v) 520+0.102 5.00+0.10
Acetic acid (mg/L) 60.66 + 3.51 2 58.83 +1.252
L-malic acid (mg/L) 160.33 +2.51° 202.33+7.502
L-lactic acid (mg/L) 115.66 £5.13 11550 £2.29
Glycerol (mg/L) 1026.02 + 28.21 = 892.66 +9.60 »
Acetaldehyde (mg/L) 7.66 +0.80 2 7.70+0.192

All values are expressed as mean =+ standard deviation (n = 3). Different superscript letters in each row indicate
significant differences (p <0.05).

In our study, the glycerol content was significantly higher in test A (1026.02 + 28.21) than in test
B (892.66 + 9.60). Complex interactions and considerable differences have been shown in the
metabolism of S. cerevisiae in single culture and in co-culture with non-Saccharomyces yeasts [68,69].
As reported in previous studies, it appears that there may be an increase in glycerol when M.
pulcherrima is used in mixed culture with S. cerevisiae under controlled oxygenation conditions during
the first 48 hours of fermentation and subsequently under anaerobic conditions [69,70]. These studies
suggest that M. pulcherrima may have run out of oxygen during the 48 hours prior to inoculation of
S. cerevisiae. Lower oxygen conditions could explain the modulation of glyceropyruvic fermentation
and the orientation of metabolism towards pyruvate dehydrogenase (PDH) bypass in S. cerevisiae
leading to increased glycerol production [71]. Glycerol influence beer taste because of its sweetness,
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improve foam stability, enhance the aroma volatility and increase the worty off-flavor retention [72].
Its content in beer is usually higher than a great many other flavor compounds (e.g. higher alcohols,
esters, and organic acids), and the addition of glycerol to beer above and below the threshold level
(10 g/L) was found to modify the flavor of the product [73]. No significant difference in lactic acid
content was detected in the beers while lower amounts of L-malic acid (160.33 + 2.51 mg/L) were
detected in beer obtained in Test A compared to beer obtained using S. cerevisiae as a single starter
(Test B) in which 202.33 + 7.50 mg/L of L-malic acid were detected. In a previous study, it emerged
that some M. pulcherrima strains are able to metabolize malic acid in wine [74]. This could explain the
significant differences of these two organic acids in the beers analyzed. Finally, the analyses
conducted in our study found that the quantitative values of acetaldehyde and acetic acid were not
significantly different in the beers obtained in the A and B tests, thus confirming that M. pulcherrima
produces low amounts of these two compounds [36,75,76]. Acetic acid is the main component of the
volatile acids in beer and its threshold range is from 71 to 200 mg/L [77]. Therefore, the quantities
measured in our fermentation trials (Test A: 60.66 + 3.51 mg/L; Test B: 58.83 + 1.25 mg/L), are lower
than these values. Acetaldehyde (25 g/L threshold), is the carbonyl present in beer at the conclusion
of primary fermentation in the highest concentration as a result of the decarboxylation of pyruvate
and is an intermediate in the metabolic formation of ethanol during glycolysis [78,79]. In our study
this compound was present in all beers and, in low concentrations such as those detected (Test A:
7.66 £ 0.80; Test B: 7.70 + 0.19), can contribute positively to the sensory character of the beers (green
apple, umpkin pulp/seed, unripe avocado) [14,80,81].

3.3. Fermentation Kinetics

The pH and density trends, monitored during alcoholic fermentation, is illustrated in Figure 2.
The relative numeric data are reported in Table S1 (supplementary material).

The pH from an initial value of about 5.50 in both tests, gradually decreased, until it reaches final
values between 4.35 in Test A and 4.31 in Test B without significant differences. During fermentation,
the lowering of pH is due to the yeast's consumption of compounds with buffering capacity (i.e.,
amino acids) and the production of organic acids.

6.0 - 1.06
5.5 1.04
= g
®© o
T 5.0 P2 g g
=g
4.5+ - 1.00
4.0- - 0.98
I I 1 I 1 1
0 2 4 6 8 10
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— pHTest A pHTestB - Density Test A ---- Density Test B

Figure 2. pH and density (g/cm?®) trends during alcoholic fermentation. Test A, inoculated with M.
pulcherrima 62 and S. cerevisine S04 in sequential inoculum; Test B inoculated with S. cerevisiae as a
single starter.

In Test A, initially inoculated with M. pulcherrima 62, the density was decreased after 48 h of
fermentation, from 1.047 to 1.042 g/cm3. After sequential inoculation with S. cerevisiae S04, density
values decreased rapidly reaching 1.007 g/cm? at the end of alcoholic fermentation (10 days). In Test
B, the fermentative vigor of S. cerevisine S04 caused a greater decrease in density after 24 hours (1.022
g/cm?). After 10 days of fermentation, at the end of alcoholic fermentation, the density values were
not significantly different in the beers obtained in Tests A and B. Our results showed that the use of
M. pulcherrima 62 as an initial starter did not negatively affect the fermentation activity of S. cerevisiae
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S04. Regarding the yeast viable cells count (Table 3), the use of WL agar medium allowed us to
evaluate the populations of viable yeasts present during the alcoholic fermentation and in particular
confirmed the aptitude of this culture medium to differentiate S. cerevisize from M. pulcherrima
according to colony color and colony topographic parameters (Figure 3). Validation of the taxonomic
collocation of yeasts species was carried out by 265 rDNA D1/D2 domain sequence analysis, using
NL1 (5'-GCA TAT CAATAA GCG GAG GAA AAG-3') and NL4 (3'-GGT CCG TGT TTC AAG
ACGG-b5') as primers [29].

Figure 3. Colonies morphology of S. cerevisiae (creamy white) and M. pulcherrima (light blue) using
WL agar medium.

In Test A, the population of M. pulcherrima averaged 6.93 log CFU/mL after 2 days of
fermentation, then decreased and was not detected 5 days after inoculation. In both tests, the density
of viable S. cerevisiae cells increased after inoculation to values greater than 7 log CFU/mL from day
4 and until the end of alcoholic fermentation. The fermentation kinetics reported in Table 3 confirm,
as already found in previous studies, that M. pulcherrima, while possessing multiple antimicrobial
activities, does not negatively affect the viability and metabolic activity of S. cerevisiae [28,30,55,82].

Table 3. Viability evolution (log CFU/mL) of S. cerevisite and M. pulcherrima during alcoholic
fermentation: Test A, inoculated with M. pulcherrima 62 and S. cerevisiae S04 in sequential inoculum;
Test B inoculated with S. cerevisiae as a single starter.

Fermentation time (days)

0 2 4 6 8 10
M. 6.93 +0.25 6.33 +£0.15 0.00 +0.00
. 6.12+0.13" 4.02+0.14< 0.00+0.00 4
Test pulcherrima a b d
A 0.00 +£.0.00 754+023 827+030 8.85x0.15
S. cerevisiae q 6.75+0.25¢ b . . 7.62+0.20°b
. 7.86+035 852+0.33 7.88 +0.10
Test B S. cerevisiae 6.83+0.15¢ 6.88+0.20¢ 7.73+0.15°b

b a a

All values are expressed as mean + standard deviation (n = 3). Different superscript letters in each row indicate
significant differences (p < 0.05).

3.4. Volatile Compounds

The concentrations of volatile compounds identified in beers by
GC-FID are shown in Table 4. The flavour and aroma of the beers
originate from the raw materials (malt, hops and yeast) and the
metabolic reactions that take place during fermentation that generate
ethanol and other co-products, mainly volatile compounds such as
higher alcohols, esters, acids and aldehydes [78,83].
Higher alcohols production by yeast occurs through the Ehrlich pathway either from amino
acids transported over the cell membrane or through de novo biosynthesis of amino acids. After the
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initial transamination a-ketoacid intermediates are excreted in the growth medium and yeasts
convert them into alcohols or acids via the Ehrlich pathway. In our tests, the identified alcohols,
regardless of the initial starter culture, were isobutanol, isoamyl alcohol, 2-phenylethanol and 1-
hexanol. Our results confirmed that these compounds are the most abundant higher alcohols found
in beer [84,85]. However, the amounts of these compounds were significantly different in the beers
obtained in the A and B Tests (Table 4). As for isoamyl alcohol, obtained using M. pulcherrima 62 as
the initial starter culture (Test A), its amount (101.83 + 1.55 mg/L) was well above its flavor threshold
in beer (70 mg/L) [14]. This alcohol has also some banana flavor character and has been identified
above its threshold in banana, orange, mango, pineapple and passion fruit [84]. As for isobutanol, the
highest concentrations was obtained in the sequential fermentation with M. pulcherrima 62 (42.26 +
0.75 mg/L) which has been previously reported as a high isobutanol producer [32,86]. Higher alcohols
not only impact on flavour, but also provide the alcohol moiety required for the synthesis of esters,
which represent the largest and possibly most important group of flavour-active compounds in beer
[78].

Flavor-active esters represent an important group of compounds, which give fruity and flowery
aromas to beer [87]. These volatile compounds are formed largely during the active phase of the
primary fermentation by the enzymatic condensation between activate fatty acids (acyl-CoA or
Acetyl-CoA) and higher alcohols [84]. Among the esters, we detected ethyl acetate and isoamyl
acetate in the highest concentrations. In particular, in the beers obtained in Tests A and B were
quantified respectively: ethyl acetate 1.31 + 0.18 mg/L (Test A) and 0.68 + 0.04 mg/L (Test B); isoamyl
acetate 2.50 + 0.14 mg/L (Test A) and 1.88 + 0.04 mg/L (Test B). The threshold concentration of ethyl
acetate in beer is 30 mg/L, but for lager-type beers the recommended concentration is <5 mg/L [88].
Therefore, the concentrations detected in the beers we produced were well below these threshold
levels of perception. M. pulcherrima has been described as a good producer of isoamyl acetate in beer
[86].This ester is formed by condensation of acetyl CoA and isoamyl alcohol during fermentation and
its intensive ‘fruity” aroma (banana, apple, pear) is perceived at concentrations >1.2 mg/L [78,89]. In
our study, other esters are present at concentrations below their threshold value. However, the
presence of different esters can have a synergistic effect on individual flavors, which means that esters
as a whole can also affect the flavor of beer well below their individual threshold values [14,90].

Table 4. Volatile compounds (mg/L) detected by GC-FID in the beer produced using M. pulcherrima
62 and S. cerevisiae S04 in sequential inoculation (Test A) and in beer produced using S. cerevisine S04
as a single starter (Test B).

Class of organic compounds Volatile compounds Test A Test B
Isobutanol 42.26+0.754 11.44+0.55"
Higher alcohols Isoamyl alcohol 101.83 +1.552 53.02+2.01°
1-Hexanol nd 1.23+0.10 2
[-phenylethanol 21.10+1.86" 34.77 +1.712
Ethyl acetate 1.31+0.182 0.68+0.04°
Ethyl isovalerate 0.24+0.06 2 0.17+0.03 2
Ethyl butirate 0.24+0.052 0.34+0.03 2
Esters Ethyl lactate nd 0.56 +0.06 2
Isoamyl acetate 2.50+0.14 2 1.88+0.04"
Ethyl hexanoate 0.03+£0.01= 0.05+0.012
Ethyl octanoate 0.13+0.02® 0.24+0.012
Diethyl succinate 0.34+0.04 0.22+0.02°
Butyric acid 1.80 +0.08 0.11+0.02°
Fatty acids Hexanoic acid 2.30+0.122 0.65+0.05°
Octanoic acid 1.13+0.10" 1.94+0.052
Decanoic acid 0.47 +0.08 2 0.30+0.04 2
Diacetyl 0.11+0.04= 0.12+0.032
Aldehydes/Ketones Acetoin 0.84 +0.05 2 0.64+0.08 b
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All values are expressed as mean + standard deviation (n = 3). Different superscript letters in each row indicate
significant differences (p < 0.05).

In our study, among the volatile compounds, butyric, hexanoic, octanoic and decanoic fatty acids
were detected. However, the quantities present in the beers produced were all below the sensory
perception thresholds [91,92]. Fatty acids have a beneficial effect on yeast growth during
fermentation, but can negatively affect the organoleptic properties of beer and the stability of the beer
foam [93,94]. These compounds and their oxidized forms cause unpleasant off-flavour of beer, such
as rancid, cheesy, soapy, fatty, butyric and others [95,96]. Finally, between the beers obtained in Test
A and those obtained in Test B, no significant difference in the content of diacetyl and acetoin was
found. This means that the use of M. pulcherrima 62 as a starter does not result in an increase in the
production of these substances. Diacetyl (butanedione or butane-2,3-dione) is a vicinal diketone
generated as a by-product of amino acid metabolism in yeast during wort fermentation and are
secreted into beer, imparting aroma characteristics described as butter, butterscotch, or buttermilk
when detected above its flavor threshold > 0.1 mg/L [79]. During maturation process, the yeast
reabsorbs the diacetyl and converts it to acetoin and subsequently to 2,3-butanediol. Both acetoin and
2,3-butanediol can escape the cell, but neither contribute much in terms of flavour.

5. Conclusions

The use of non-Saccharomyces yeasts is a biotechnological strategy increasingly pursued in
brewing processes to obtain a greater diversification of beers and improve their sensory
characteristics. In the present study we presented the results obtained in the production of an
American IPA-style beer on a pilot scale using M. pulcherrima 62 in sequential inoculation with S.
cerevisiae S04.

The higher glycerol, isoamyl alcohol and isoamyl acetate contained in beer obtained by
sequential inoculation of M. pulcherrima 62 with S. cerevisiae S04 compared to beer obtained using S.
cerevisiae S04 as a single starter appear remarkable. These data, while supporting a valid candidacy
of M. pulcherrima 62 as a new starter in beer production, need to be further validated with
investigations on the volatile compounds of beer, using more performing technique such as Gas
Chromatography-Mass Spectrometry (GC-MS), together with a sensory evaluation of the final
product. In the future, it may also be interesting to evaluate the influence of M. pulcherrima 62 on the
quality of other beer styles.

Supplementary Materials: The following supporting information can be downloaded at the website of this
paper posted on Preprints.org, Table S1: pH and density trends monitored during alcoholic fermentation. Test
A, inoculated with M. pulcherrima 62 and S. cerevisize S04 in sequential inoculum; Test B inoculated with S.
cerevisiae as a single starter.
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