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Abstract: Bearing fault diagnosis is crucial for ensuring the stable operation of mechanical equipment. With 

the continuous development of deep learning technology, Convolutional Neural Networks (CNNs) have 

demonstrated significant advantages in the field of fault diagnosis. This paper proposes a new method that 

combines various CNN architectures to improve the accuracy of bearing fault diagnosis. We designed five 

different convolutional network structures, including SerConv, ResConv, One-Shot Aggregation Convolution 

(OSAConv), Cross-Stage Aggregation Convolution (CSAConv), and MD-DAConv. Experimental results on the 

Case Western Reserve University (CWRU) bearing dataset show that the proposed method exhibits high 

accuracy and robustness in fault diagnosis. The results indicate that strategies such as multi-directional, multi-

scale, and residual connections play a crucial role in enhancing the depth and breadth of feature extraction, 

while simple and effective feature fusion and information transmission mechanisms are key to ensuring the 

robustness and generalization ability of the model.  

Keywords: bearing fault diagnosis; convolutional neural network; feature extraction; multi-

directional convolution; multi-scale convolution 

 

1. Introduction 

With the continuous development of mechanical equipment, the internal structure of these 

systems has become increasingly sophisticated. Bearings, as critical components, are essential for the 

stable and efficient operation of the equipment. Bearing failures can severely impact equipment 

performance, leading to significant safety risks and economic losses. Therefore, monitoring and 

diagnosing bearing faults to detect issues promptly is of paramount importance [1–3]. 

In recent years, with the advancement of machine learning technologies, deep learning has 

increasingly been applied in the field of fault diagnosis. Compared to traditional fault detection 

methods, such as commonly used techniques including Support Vector Machines (SVM) [4–6], 

Random Forests [7–9], and BP Neural Networks [10–12], some deep learning methods significantly 

improve fault diagnosis accuracy while reducing human labor. Examples of such methods include 

Recurrent Neural Networks (RNN) [13–15], Convolutional Neural Networks (CNN) [16–18], and 

Deep Belief Networks (DBN) [19–21]. CNN, a biologically inspired variant of neural networks, offers 

powerful feature learning capabilities for classification problems. Current bearing fault diagnosis 

requires comprehensive analysis of various data types, such as vibration, sound, and temperature, to 

draw conclusions. Therefore, CNNs have become a research focus in the fault diagnosis field due to 

their strong feature extraction, autonomous learning, and prediction capabilities. 

In previous studies, CNNs have been widely applied in the field of fault diagnosis [22]. 

However, CNNs were initially proposed to solve object detection and image classification problems. 

Currently, research on applying CNNs’ object detection capabilities to fault diagnosis is limited but 

has achieved some results. For instance, Wang et al. [23] designed a method to convert time-domain 

vibration signals into RGB 3D images using morphological operations, then input the converted 
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images into the AlexNet CNN, achieving a certain level of accuracy. Shi et al. [24] proposed a fault 

diagnosis method combining CEEMDAN and CNN-SVM, utilizing 2D grayscale images for analysis 

to achieve fault diagnosis. Li et al. [25] discussed the use of an improved YOLOv8 model for 

diagnosing misfire faults in gasoline engines, with experimental results demonstrating higher 

recognition accuracy compared to other methods. Liu et al. [26] proposed an improved residual 

network for mechanical fault recognition through multi-channel weighting and used the GAF 

algorithm to convert vibration signals into feature images, achieving fault diagnosis for rolling 

bearings. 

In recent years, significant progress has been made in the field of traditional CNN structure 

improvements. Howard et al. proposed MobileNets [27], a modification of the CNN architecture. 

Concurrently, Chollet [28] introduced the Xception algorithm, which replaces the inception module 

with depthwise separable convolutions. Xie et al. [29] designed a new network architecture model, 

ResNeXt, which improves computational precision while maintaining the same level of complexity. 

Zhang et al. [30] introduced ShuffleNet, a highly computationally efficient CNN that utilizes two new 

operations—pointwise group convolution and channel shuffle—greatly reducing computational 

costs while maintaining accuracy. It is evident that improvements to CNN architectures can 

significantly enhance computational efficiency. 

As technology advances, more improved networks are being applied to diagnostic tasks. In 

recent years, deep learning technology has made remarkable progress in the field of fault diagnosis. 

Zhang J et al. proposed an intelligent fault diagnosis method combining time-frequency analysis and 

CNN, demonstrating its effectiveness under complex conditions [31]. Han et al. proposed a 

diagnostic framework combining Spatio-Temporal Feature Network (STPN) and CNN, effectively 

addressing fault diagnosis problems in complex systems, achieving good results in experiments [32]. 

Wang et al. proposed a method to improve fault recognition accuracy and robustness by fusing multi-

sensor vibration signal images and using a bottleneck CNN for fault diagnosis [33]. He et al. proposed 

an Improved Multi-Scale CNN (IMSCNN) for bearing fault diagnosis by introducing convolution 

kernels with different dilation rates to expand the receptive field of the CNN. Experimental results 

showed that this method achieved higher diagnostic accuracy than traditional methods on the CWRU 

and PU datasets [34]. Gao et al. proposed a method combining multimodal data fusion and deep 

learning, using an Extended Wide First Layer Convolution Kernel (EWDCNN) and Long Short-Term 

Memory Network (LSTM) to improve diagnostic accuracy for rotating machinery in complex 

environments, demonstrating high diagnostic accuracy under different conditions [35]. Te et al. 

proposed a hybrid ST-CNN model by integrating the spatiotemporal pattern network (STPN) with 

convolutional neural networks (CNN), enhancing fault diagnosis performance in complex 

systems[36]. Zhang and Gu proposed a lightweight one-dimensional deep subdomain adaptation 

network (1D-LDSAN) for fast and accurate bearing fault diagnosis, with experimental results 

showing higher classification accuracy than mainstream transfer learning methods under different 

conditions [37]. Zhang et al. reviewed various fault diagnosis methods for mechanical rotating 

components, particularly the application of deep learning models, and mentioned that transfer 

learning-based methods can significantly improve diagnostic accuracy and efficiency [38]. Liang et 

al. proposed a new method based on deep learning that improves diagnostic accuracy by integrating 

information from different data sources [39]. Huang, T et al. proposed a novel fault diagnosis method 

combining a sliding window processing technique with a CNN-LSTM model, enhancing the 

performance of fault diagnosis by integrating feature extraction and time delay information of faults 

in complex systems. [40]. Hu et al. proposed an EfficientNet strategy based on attention mechanisms 

for bearing fault diagnosis in high-noise environments, achieving high diagnostic accuracy under 

different noise levels [41]. Zhang et al. proposed a bearing fault diagnosis method based on an 

improved dilated CNN (MAB-DrNet), enhancing feature extraction capabilities and classification 

accuracy in noisy environments by introducing the Maximum Average Block (MAB) module and the 

Global Residual Block (GRB) module [42]. Chen et al. proposed a bearing fault diagnosis method 

based on a stacked denoising autoencoder (SDAE), improving diagnostic accuracy in noisy 

environments through structural self-adaptation [43]. 
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In the related work on bearing diagnosis, most network design strategies currently focus on 

increasing network depth to improve feature extraction capabilities across different layers. This paper 

proposes five efficient aggregation networks/extended neural networks by extending them 

horizontally and vertically and designing efficient dilated convolution layers to enhance the 

network’s feature extraction capabilities. The results indicate that multi-directional, multi-scale, and 

residual connection strategies play a crucial role in improving feature extraction depth and breadth. 

In contrast, simple and effective feature fusion and information transfer mechanisms are key to 

ensuring model robustness and generalization capabilities. 

2. Feature Extraction Module 

2.1. CNN Neural Network 

Convolutional Neural Network (CNN) is a deep feedforward neural network model with strong 

automatic feature extraction capabilities. Its basic structure consists of an input layer, convolutional 

layers, pooling layers, fully connected layers, and an output layer. 

(1) Input layer 

The CNN model is a supervised learning model that requires learning under the supervision of 

sample labels. Therefore, the input consists of samples 𝑿 and sample labels 𝑌. For example, for a C-

class classification problem, the model input, which is defined as Equation (1): 

   , ,
N

i iX Y x y=  (1) 

where 𝑁 is the number of samples input into the model, 𝒙𝒊  is the iii-th sample, and iy  is the class label 

corresponding to the i-th sample. 

(2) Convolutional layer 

The convolutional layer is the core component of the CNN model, implementing the concepts 

of local connectivity and weight sharing through convolutional kernels. The convolutional kernel 

slides horizontally and vertically along the coordinates of the input feature map, performing 

convolution operations with the data within the receptive field to extract structural features hidden 

within the data. The convolutional layer is organized in three dimensions: depth, width, and height. 

The width and height refer to the width and height of the convolutional kernel, which define the size 

of the local receptive field. Vibration signals are one-dimensional data, so the size of the convolutional 

kernel is 𝑘, with 𝑘 constrained by the length of the input sample. Depth refers to the number of 

convolutional kernels. To extract different features from the input feature map, the convolutional 

layer performs convolution operations using a certain number of convolutional kernels, each with 

different weights, corresponding to different feature extractions. The convolution operation extracts 

features from the input feature map based on the size of the convolutional kernel and the stride. The 

process of feature extraction by the convolutional kernel is defined as follows: 

1

, , ,

1 1

,

2
1

Q J
L L L L

i j k j M q j

q j

fea w fea b

M p k
i

s

−

= =

=  +

+ − 
= + 
 


 (2) 

In the equation, 𝑤𝑘,𝑗
𝐿  and 𝑏𝑗

𝐿 represent the weight and bias of the 𝑖-th convolutional kernel in 

the 𝐿-th convolutional layer, respectively. 𝐽 is the number of convolutional kernels (the width of the 

convolutional layer), 𝑠 is the stride, which is the distance the convolutional kernel slides over the 

input feature map, 𝑝 is the padding size, 𝑓𝑒𝑎𝑀,𝑞
𝐿−1 is the 𝑞-th feature map of size 𝑀 output by the 

𝐿 − 1-th layer, and 𝑓𝑒𝑎𝑖,𝑗
𝐿  is the 𝑗-th convolutional kernel in the 𝐿-th convolutional layer, extracting 

a feature map of size 𝑖 from the input feature map. Each convolutional kernel will find specific 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 13 September 2024 doi:10.20944/preprints202409.1055.v1

https://doi.org/10.20944/preprints202409.1055.v1


 4 

 

features at every position in the feature map, and the types of features learned are dynamically 

determined by the algorithm. 

(3) Activation function 

After the convolution operation, the results are processed by the activation function to obtain 

the corresponding output features. The activation function maps the originally linearly inseparable 

multidimensional features to another space, enabling the neural network to fit the nonlinear 

relationship between the input sample data and labels. The choice of activation function affects 

network training time and has a significant impact on performance on large datasets. Common 

activation functions in the field of fault diagnosis include the Sigmoid function, the Hyperbolic 

Tangent (Tanh) function, and the Rectified Linear Units (ReLU) function. The representations of these 

three types of functions, which are defined as follows: 
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(3) 

In the equations, 𝑓𝑒𝑎𝑖,𝑗
𝐿−1  and 𝑓𝑒𝑎𝑖,𝑗

𝐿  represent the input and output of the function, 

respectively. The Sigmoid and Tanh functions are saturated nonlinear functions, mapping the input 

to the intervals [0,1] and [−1,1], respectively. During model training, if the neuron’s initialization or 

optimization enters the saturation region, the Sigmoid and Tanh functions are prone to the vanishing 

gradient problem, making further optimization difficult. Additionally, as the number of network 

layers increases, due to the chain rule, the derivatives of the multiplied Sigmoid and Tanh functions 

become increasingly small, hindering gradient backpropagation and reducing the network’s 

convergence speed, or even preventing the network from converging to an optimal state. In contrast, 

the ReLU function is a non-saturated nonlinear function that ensures all outputs are positive, 

effectively reducing the risk of vanishing gradients and gradient explosion during training. This 

alleviates the difficulty of training internal parameters in deep neural networks and facilitates faster 

network training. Therefore, the ReLU function is used as the activation function for all network 

layers. 

(4) Pooling layer 

The pooling layer, also known as the subsampling layer, is a network layer that performs pooling 

operations. After feature extraction by the convolutional layer, directly using these features for 

classification would face significant computational challenges and the risk of overfitting. Thus, it is 

necessary to perform pooling on the feature maps to reduce their data dimensionality. Pooling is a 

process of further abstracting information, similar to the feature extraction process of the 

convolutional layer. It involves sliding a window over the feature map and taking the statistical value 

of the local region corresponding to the window as the sampling value for that region. These values 

from the local regions are then concatenated to form a new feature map. Pooling operations are 

usually applied after convolutional layers, reducing feature dimensionality while preserving 

significant feature information and maintaining spatial invariance. Unlike convolution operations, 

pooling does not involve parameter settings and memory usage, greatly reducing the computational 

load. The pooling operation can be represented as: 
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where 𝑓 is the pooling method, 𝑑 is the size of the pooling function. When 𝑑 < 𝑖, it indicates local 

pooling of the feature map, and when 𝑑 = 𝑖, it indicates global pooling, where the entire feature map 

is pooled. 𝑠 is the stride of the pooling function, and 𝑓𝑒𝑎𝑖,𝑗
𝐿  is the output feature map after the 

corresponding pooling operation, with its size being 𝑖. 

(5) Fully connected layer 

After multiple convolutional layers and max pooling layers, there are usually a few fully 

connected layers to integrate the local features extracted by the convolutional or pooling layers. The 

fully connected layer is a traditional multilayer perceptron that connects each neuron from the 

previous layer to every neuron in the next layer, generally using the ReLU function. For a one-

dimensional input 𝑥𝑖
𝐿−1 of length 𝑀, with 𝑁 neurons in the fully connected layer, the output of 

each neuron can be represented as: 
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In the equation, 𝑤𝑗,𝑖
𝐿  is the connection weight from the i -th neuron in the 𝐿 − 1-th layer to the 

𝑗-th neuron in the 𝐿-th layer; 𝑥𝑖
𝐿−1 is the input to the 𝑗-th neuron in the 𝐿-th layer; 

L

jb  is the bias 

of the 𝑗-th neuron in the 𝐿-th layer; and 𝑀 and 𝑁 represent the number of neurons in the 𝐿 − 1-th 

layer and the 𝐿-th layer, respectively. 

(6) Output layer

 

The output layer uses a classifier to output the model’s recognition results in the form of 

categories or probabilities. The most commonly used function is the nonlinear Softmax function, 

which is an extension of the logistic function and is typically used for multi-class classification 

problems. The Softmax function converts the extracted features into a probability distribution, using 

logarithmic probability values to estimate the likelihood of a sample belonging to a particular 

category. A higher value indicates greater confidence. It is represented as follows: 
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(6) 

where 𝜽 is the model’s parameters, and 𝑧𝑖
𝐿−1 is the feature vector associated with the input 𝑥𝑖. The 

Softmax function maps the feature set to a c-dimensional vector 𝑦̃𝑖, with each value in the vector 

ranging from (0,1) and the sum of all values in the vector equal to 1. Each element can be considered 

a category corresponding to the classifier parameters. 

2.2. Construction of a Novel Network Architecture 

To enhance feature extraction capabilities, this paper proposes five network structures based on 

the fundamental CNN architecture by stacking different convolutional layers and pooling layers, as 

well as multiple feature fusions and channel expansions. These structures effectively extract complex 

features from sample data as channels expand and increase. The main innovation of the network 

structures lies in the design of efficient expanded convolution layers, with each module employing 

multi-path convolution and feature concatenation strategies. 
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2.2.1. Serial Convolution (SerConv) 

The SerConv network consists of two sequential convolutional blocks, each comprising a 

convolutional layer and a batch normalization layer. This setup stabilizes the learning process by 

normalizing the output of the convolutional layers, thereby enhancing the network’s generalization 

ability. 

Let 𝐹(𝑥; 𝜃1) represent the function applied by our convolutional block, where 𝑥 denotes the 

block input, and 𝜃 is the parameters of the convolutional layer and batch normalization. This process 

can be defined mathematically as follows:  

Convolutional Layer 1: 

( ) ( )( )1 1 1 1; ; ,x F x BN Conv x W b= =  (7) 

where 𝑥1  and 𝑏1  are the weights and bias of the first convolutional layer, and 𝑩𝑵 is the batch 

normalization operation. 

Convolutional Layer 2: 

( ) ( )( )2 2 2 21 1; ; ,x F x BN Conv x W b= =  (8) 

where 𝒙𝟐 and 𝑏2 are the weights and bias of the second convolutional layer. 

By sequentially connecting two convolutional blocks, the SerConv network can perform deeper 

feature extraction and processing on the input data without increasing computational complexity. 

Each convolutional block’s output undergoes batch normalization, which not only enhances the 

stability of the network during training but also improves the model’s ability to adapt to different 

data distributions to some extent. The specific structure is shown in Figure 1. 

 

Figure 1. Diagram of the SerConv network architecture. 

2.2.2. Residual Convolution (ResConv) 

The ResConv structure consists of two consecutive convolutional blocks, each comprising a 

convolutional layer and a batch normalization layer. The residual connection is achieved by directly 

adding the input 𝑥 to the output of the second convolutional block, merging the information before 

and after, thus allowing the network to learn incremental modifications to the input. The process for 

Convolutional Layer 1 and Convolutional Layer 2 is consistent with SerConv (Equations (1)–(2)), and 

𝒙𝟑 is the final output.The process, which is defined as follows: 

3 2x x x= +  (9) 

By introducing residual connections into the convolutional network, the ResConv module 

increases the training depth of the network without compromising performance, effectively 

facilitating the learning of complex patterns. The specific structure is shown in Figure 2. 
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Figure 2. Diagram of the residual convolution network architecture. 

2.2.3. One-Shot Aggregation Convolution (OSAConv) 

OSAConv is a novel deep learning network designed for feature data, with a core focus on 

processing one-dimensional sequence signals through deep feature extraction and efficient feature 

fusion. The network employs multiple stacked convolutional modules that feature multi-path 

convolution and feature concatenation mechanisms. Additionally, the number of channels is 

progressively increased after each layer, significantly enhancing the richness of features and the 

expressiveness of the model. 

Each module utilizes multiple branches to extract features through consecutive convolution 

operations. These features are then concatenated with the original input, increasing the input 

information for subsequent layers. This design helps the model capture more refined local features 

and allows the network to acquire direct information from the original data before proceeding to 

deeper abstractions. 

After each feature concatenation, the network performs feature fusion through convolutional 

layers, effectively reducing feature dimensions, alleviating computational burden, and ensuring the 

effectiveness and completeness of features in the depth direction. Below, this paper elaborates on the 

relevant formulas for the network structure: 

In each module, the input first passes through a 3 × 3 convolutional layer to start the feature 

extraction process. For the nth layer of the module, its features (where n is the layer index) are 

obtained in the following manner: 

( ),1 1 3 3( )ny BN Conv x=  (10) 

Extract features on feature a through 𝒚𝒏,𝟏 series of 3 × 3 convolutional layers, the process is 

defined as follows: 

( )( )

( )( )

,2 2 3 3 ,1

,3 3 3 ,23

BN

BN

n n

n n

y Conv y

y Conv y





 =


=

 (11) 

Subsequently, the first concatenation layer fuses the relevant features as follows,the process is 

defined as follows: 

( ),,1 ( 1,2,3,4)ncat iy Con ycat i= =
 (12) 

Here, Concat is the feature concatenation operation, which concatenates various feature maps 

along the channel dimension. 

Subsequently, a 1 × 1 convolution is applied to the fused features for channel compression and 

feature integration to reduce the number of parameters and maintain computational efficiency,the 

process is defined as follows: 

( )( )1 ,1,1 4 1BNo tt cauy Conv y=  (13) 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 13 September 2024 doi:10.20944/preprints202409.1055.v1

https://doi.org/10.20944/preprints202409.1055.v1


 8 

 

The subsequent processing within the same module follows a similar pattern, further enhancing 

feature expression, the process is defined as follows:: 

( )( )

( )( )

( )

( )( )

,4 5 3 3 ,1

,5 6 3 3 ,4

,2 ,4 ,5

7 1 1 ,2
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BN Conv

BN Conv
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out

o

n out

n n

cat n n

catut

y y

y y

y Concat y y y

y Conv y







 =

 =


=


=

 (14) 

In summary, the construction of OSAConv is completed as Figure 3. 

 

Figure 3. Schematic diagram of the one-shot aggregation convolution network structure. 

2.2.4. Cross Stage Aggregation Convolution (CSAConv) Network 

CSAConv is an innovative deep learning network designed for one-dimensional sequence 

signals. This architecture enhances the network’s feature extraction capability through cross-stage 

feature fusion combined with multi-scale convolutional kernels. The design aims to extract more 

diverse features through cross-stage feature fusion while maintaining computational efficiency. 

Specifically, the structure includes multiple 3 × 3 convolutional layers and 1 × 1 convolutional layers, 

which perform cross-stage convolution operations, ultimately concatenating the features to form a 

more powerful feature representation. 

Below, this paper elaborates on the relevant formulas for the network structure: 

The input feature x first passes through the first 3 × 3 convolutional layer and a batch 

normalization layer,the process is defined as follows: 

( ),1 1 3 3BN ( )ny Conv x=  (15) 

Then it passes through another 3 × 3 convolutional layer for further feature extraction, the 

process is defined as follows: 

( )( ),2 2 3 3 ,1BNn ny Conv y=  (16) 
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Subsequently, the relevant features are concatenated together,the process is defined as follows : 

( ),1 ,2,1 , ncat ny Concat y y=  (17) 

Subsequently, a 1 × 1 convolutional layer and a batch normalization layer are used for channel 

compression and feature integration, the process is defined as follows: 

( )( ),1 3 1 1 ,1BNout caty Conv y=  (18) 

At this point, the feature 𝒚𝒐𝒖𝒕,𝟏 is passed through two more 3 × 3 convolutional layers to extract 

deeper-level features, the process is defined as follows: 

( )( ),3 4 3 3 ,1n outy BN Conv y=  

( )( ),4 5 3 3 ,3n ny BN Conv y=  
(19) 

Subsequently, the relevant features are further concatenated,the process is defined as follows: 

( )cat ,2 out ,1 ,3 ,4, ,n ny Concat y y y=  (20) 

Finally, the features are integrated through a 1 × 1 convolutional layer and a batch normalization 

layer to form the final output feature, the process is defined as follows: 

( )( )6 1 1 ,2BNfinal caty Conv y=  (21) 

In summary, the construction of CSAConv is completed as Figure 4. 

 

Figure 4. Cross stage aggregation convolution network structure diagram. 

2.2.5. Multi-Directional Dense Aggregation Convolution (MD-DAConv) Network 

Currently, the use of dilated convolutional layers with different directions and scales has become 

a strategy for improving related networks. To verify whether this approach is suitable for fault 

diagnosis, this paper proposes a new convolutional structure called Multi-Directional Dense 

Aggregation Convolution (MD-DAConv). This structure aims to enhance the network’s feature 
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extraction capabilities through multi-directional and multi-scale dilated convolutional layers 

combined with dense connections. 

The design goal of this network is to extract more diverse features through multi-directional and 

multi-scale convolutional kernels while maintaining computational efficiency. Specifically, MD-

DAConv includes multiple 3 × 3 convolutional layers, 1 × 1 convolutional layers, left and right dilated 

convolutional layers (1 × 3 and 3 × 1), and top and bottom dilated convolutional layers (3 × 1 and 1 × 

3). The features from each layer are fused through dense connections to form a more powerful feature 

synthesis. 

Below, this paper elaborates on the relevant formulas for the network structure: 

In each module, the input x first passes through a 3 × 3 convolutional layer to begin the feature 

extraction process. For the nth layer of the module, its feature 𝑦𝑛,1 (where n is the layer index), which 

is defined as follows: 

( ),1 1 3 3BN ( )ny Conv x=  (22) 

On feature 𝒚𝒏,𝟏, features are extracted through dilated convolutional layers in four directions:

  

( )( )

( )( )

( )( )

( )( )

2 1 3 ,1

,1 3 1 3 ,1

,1 4 3 1 ,1

,

1

1 5 3 1 ,

,

1

BN

BN

BN

BN

left n

right n

up n

down n

y Conv y

y Conv y

y Conv y

y Conv y


















=



=

=

=

 (23) 

Subsequently, the concatenation operation, which is performed as follows: 

( )1,1 ,1,1 ,1,1 ,, , ,,cat un left rig p dht owny Concat y y y y y=  (24) 

Subsequently, channel compression and feature integration are performed through a 1 × 1 

convolutional layer and a batch normalization layer, which is performed as follows: 

( )( ),1 6 1 1 ,1BNout caty Conv y=  (25) 

And feature 𝒚𝒐𝒖𝒕,𝟏 is passed through a 3 × 3 convolutional layer and a batch normalization layer 

to extract deeper-level features, which is performed as follows: 

( )( ),2 7 3 3 ,1n outy BN Conv y=  (26) 

Subsequently, feature 𝒚𝒏,𝟐  is passed sequentially through left-right and top-bottom dilated 

convolutional layers, which is performed as follows: 

( )( )

( )( )

( )( )

( )( )

3

,2

,2

8 1 3 ,2

9 1 3 ,2

12 0 1 ,2

11 3 1 ,2 2

,

,

BN

BN

BN

BN

left

right n

up

dow

n

n

nn

y Conv y

y Conv y

y Conv y

y Conv y
















 =


=

=

=
 (27) 
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Subsequently, all the features from the dilated convolutional layers are concatenated as follows: 

( )2,2 ,2,2 ,2,2 ,, , ,,cat un left rig p dht owny Concat y y y y y=  (28) 

Finally, integration is performed through a 1 × 1 convolutional layer and a batch normalization 

layer to form the final output feature, which is performed as follows: 

( )( )1 1 ,212BNfina catly Conv y=  (29) 

In the end, we can get network structure as shown in Figure 5: 

 

Figure 5. Schematic diagram of the multi-directional dense aggregation convolution network 

structure. 

2.3. Overall Network Model Structure 

In the previous sections, we introduced various convolutional structures, including residual 

convolution (ResConv), multi-direction dense aggregation convolution (MD-DAConv), and so on. To 

compare the performance of different convolutional structures, we propose the following 

architecture as a general framework for subsequent experiments and validation as Figure 6. 
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Figure 6. Overall neural network structure. 

The CNN model is composed of multiple convolutional layers and pooling layers, and it 

performs classification through fully connected layers and a Softmax layer at the end. The input layer 

of the model accepts one-dimensional signal data with a size of 1 × N, where NNN is the length of 

the input signal. The first convolutional layer uses 64 filters to perform convolution operations on the 

input signal, extracting initial features. Subsequently, the second convolutional layer further 

enhances the feature representation ability. The third convolutional layer increases the number of 

channels to 128 to capture more complex features, and the fourth convolutional layer continues the 

convolution operation on the features. The fifth convolutional layer increases the number of channels 

in the feature map to 256, and the sixth convolutional layer further enhances the feature 

representation ability. The seventh convolutional layer increases the number of channels in the 

feature map to 512 through convolution operations, and the eighth and ninth convolutional layers 

continue convolution operations on the features, further enhancing the feature representation ability. 

The pooling layers use max pooling to reduce the size of the feature map by half, reducing 

computational load and the number of parameters while retaining the main features. Finally, the 

features extracted by the convolution and pooling operations are flattened into a one-dimensional 

vector through fully connected layers for feature fusion and classification, and the Softmax layer is 

used to output the final classification results. 

2.4. Network Model Parameter Settings 

The convolutional network structure data for the extended relevant layers is shown in the Tables 

1–5: 

Table 1. Multi-dimensional dual-aggregation convolution (MD-DAConv) layer details. 

Layer Operation 
In 

channels 

Out 

channels 

Kernel 

size 
Stride Padding Activation Comments 

Conv1 Conv1d In channel 
Out 

channel 
3 × 3 1 1 

SiLU 

(inplace) 
First block starts 
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BatchNorm1d 
Out 

channel 

Out 

channel 
- - - - Normalization 

Conv2 

Conv1d In channel 
Out 

channel 
1 × 1 1 0 

SiLU 

(inplace) 

First block 

continuation 

BatchNorm1d 
Out 

channel 

Out 

channel 
- - - - - 

Conv3 

Conv1d In channel 
Out 

channel 
3 × 3 1 1 

SiLU 

(inplace) 
- 

BatchNorm1d 
Out 

channel 

Out 

channel 
- - - - - 

Conv4 

Conv1d In channel 
Out 

channel 
1 × 1 1 0 

SiLU 

(inplace) 
- 

BatchNorm1d 
Out 

channel 

Out 

channel 
- - - - - 

Conv5 

Conv1d 
4 * In 

channel 

Out 

channel 
3 × 3 1 1 

SiLU 

(inplace) 

Concatenate inputs 

x, x2, x3, x4 

BatchNorm1d 
Out 

channel 

Out 

channel 
- - - - - 

Conv6 

Conv1d In channel 
Out 

channel 
1 × 1 1 0 

SiLU 

(inplace) 

Second block 

similar 

BatchNorm1d 
Out 

channel 

Out 

channel 
- - - - - 

Conv7 

Conv1d 
4 * In 

channel 

Out 

channel 
1 × 1 1 0 

SiLU 

(inplace) 

Final concatenation 

and output 

BatchNorm1d 
Out 

channel 

Out 

channel 
- - - - - 

Table 2. Cross-stage aggregation convolution (CSAConv) layer details. 

Layer Operation 
In 

channels 

Out 

channels 

Kernel 

size 
Stride Padding Activation Comments 

Conv1 

Conv1d 
In 

channel 

Out 

channel 
3 × 3 1 1 

SiLU 

(inplace) 

Cross-stage 

aggregation starts 

BatchNorm1d 
Out 

channel 

Out 

channel 
- - - - Normalization 

Conv2 

Conv1d 
In 

channel 

Out 

channel 
3 × 3 1 1 

SiLU 

(inplace) 
- 

BatchNorm1d 
Out 

channel 

Out 

channel 
- - - - - 

Conv3 

Conv1d 
3 * In 

channel 

Out 

channel 
1 × 1 1 0 

SiLU 

(inplace) 

Concatenate inputs x, 

x1, x2 

BatchNorm1d 
Out 

channel 

Out 

channel 
- - - - - 

Conv4 

Conv1d 
In 

channel 

Out 

channel 
3 × 3 1 1 

SiLU 

(inplace) 
- 

BatchNorm1d 
Out 

channel 

Out 

channel 
- - - - - 

Conv5 

Conv1d 
In 

channel 

Out 

channel 
3 × 3 1 1 

SiLU 

(inplace) 
- 

BatchNorm1d 
Out 

channel 

Out 

channel 
- - - - - 

Conv6 Conv1d 
4 * In 

channel 

Out 

channel 
1 × 1 1 0 

SiLU 

(inplace) 

Final concatenation 

and output 
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BatchNorm1d 
Out 

channel 

Out 

channel 
- - - - - 

Table 3. Residual convolution (ResConv) layer details. 

Layer Operation 
In 

channels 

Out 

channels 

Kernel 

size 
Stride Padding Activation Comments 

Conv1 

Conv1d 
In 

channel 

Out 

channel 
3 × 3 1 1 - Residual block 

BatchNorm1d 
Out 

channel 

Out 

channel 
- - - - Normalization 

Conv2 

Conv1d 
In 

channel 

Out 

channel 
3 × 3 1 1 - - 

BatchNorm1d 
Out 

channel 

Out 

channel 
- - - - - 

ReLU ReLU - - - - - inplace 
Output of residual sum 

(x + x2) 

Table 4. Residual convolution (ResConv) layer details. 

Layer Operation 
In 

channels 

Out 

channels 

Kernel 

size 
Stride Padding Activation Comments 

Conv1 

Conv1d In channel Out channel 3 × 3 1 1 - 
Serial 

convolution 

BatchNorm1d 
Out 

channel 
Out channel - - - - Normalization 

Conv2 

Conv1d In channel Out channel 3 × 3 1 1 - - 

BatchNorm1d 
Out 

channel 
Out channel - - - - - 

ReLU ReLU - - - - - inplace Final output 

Table 5. One-shot aggregation convolution (OSAConv) layer details. 

Layer Operation 
In 

channels 

Out 

channels 

Kernel 

size 
Stride Padding Activation Comments 

Conv1 

Conv1d 
In 

channel 

Out 

channel 
3 × 3 1 1 

SiLU 

(inplace) 

One-Shot aggregation 

starts 

BatchNorm1d 
Out 

channel 

Out 

channel 
- - - - Normalization 

Conv2 

Conv1d 
In 

channel 

Out 

channel 
3 × 3 1 1 

SiLU 

(inplace) 
- 

BatchNorm1d 
Out 

channel 

Out 

channel 
- - - - - 

Conv3 

Conv1d 
In 

channel 

Out 

channel 
3 × 3 1 1 

SiLU 

(inplace) 
- 

BatchNorm1d 
Out 

channel 

Out 

channel 
- - - - - 

Conv4 

Conv1d 
4 * In 

channel 

Out 

channel 
1 × 1 1 0 

SiLU 

(inplace) 

Concatenate inputs x, 

x1, x2, x3 

BatchNorm1d 
Out 

channel 

Out 

channel 
- - - - - 

Conv5 Conv1d 
In 

channel 

Out 

channel 
3 × 3 1 1 

SiLU 

(inplace) 
- 
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BatchNorm1d 
Out 

channel 

Out 

channel 
- - - - - 

Conv6 

Conv1d 
In 

channel 

Out 

channel 
3 × 3 1 1 

SiLU 

(inplace) 
- 

BatchNorm1d 
Out 

channel 

Out 

channel 
- - - - - 

Conv7 

Conv1d 
In 

channel 

Out 

channel 
3 × 3 1 1 

SiLU 

(inplace) 
- 

BatchNorm1d 
Out 

channel 

Out 

channel 
- - - - - 

Conv8 

Conv1d 
4 * In 

channel 

Out 

channel 
1 × 1 1 0 

SiLU 

(inplace) 

Final concatenation 

and output 

BatchNorm1d 
Out 

channel 

Out 

channel 
- - - - - 

3. Experimental Verification and Analysis 

3.1. Hardware Parameters 

To verify the bearing fault diagnosis capability of the proposed model, experimental evaluations 

were conducted on two bearing datasets. The experiments were implemented using the PyTorch 

deep learning framework. The computer configuration is as follows: Intel Core i7-8300H processor, 

NVIDIA GeForce 3060 graphics processor, and 16GB RAM. 

3.2. CWRU Bearing Dataset 

The Case Western Reserve University (CWRU) dataset is provided by the Bearing Data Center 

at Case Western Reserve University and is widely used as a standard reference for testing bearing 

diagnostic methods. The experimental setup for this dataset includes an induction motor, a torque 

sensor, test bearings, accelerometers, and a load motor. In this study, the focus is on the vibration 

signals of the drive-end bearing (bearing type SKF6205). Vibration acceleration signals of faulty 

bearings are measured by placing an accelerometer above each of the bearing housings at the fan end 

and drive end of the motor, followed by high-bandwidth amplification. This experiment uses 

SKF6205 deep groove ball bearings, including outer race faults, inner race faults, and rolling element 

faults with different fault diameters. The dataset used in this experiment corresponds to a load of 0, 

and specific dataset information is shown in Table 6. 

Table 6. Diagnostic data set details. 

Fault location No Rolling element Inner race Outer race Load/kw 

Label 1 2 3 4 5 6 7 8 9 10  

Damage 

diameter/inch 
0 0.007 0.014 0.021 0.007 0.014 0.021 0.007 0.014 0.021  

A 
Train 52 52 52 52 52 52 52 52 52 52 

0 
Test 7 7 7 7 7 7 7 7 7 7 

B 
Train 52 52 52 52 52 52 52 52 52 52 

0.75 
Test 7 7 7 7 7 7 7 7 7 7 

C 
Train 52 52 52 52 52 52 52 52 52 52 

1.50 
Test 7 7 7 7 7 7 7 7 7 7 

The dataset includes four conditions: normal state, inner race fault, outer race fault, and rolling 

element fault. Each fault type has 3 fault sizes (0.007 inches, 0.014 inches, 0.021 inches), resulting in 9 

fault conditions. Including the normal state, there are a total of 10 operating conditions. These 10 

conditions are represented by category labels 0–9. 
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This study selects the vibration signals from the Drive End (DE) and the Fan End (FE) of the 

motor for subsequent training and testing, respectively, to compare the performance of the relevant 

structures. 

3.3. Experimental Parameter Design 

The network uses a batch size of 64 samples, 100 iterations, and a learning rate of 0.005. The 

accuracy function used is shown in Equation (30), and the categorical cross-entropy L is used as the 

loss function, as expressed in Equation (30). 

( )
1

log
M

ic ic

c

L y p
=

= −  

 Accuracy =
TP TN

TP TN FP FN

+

+ + +
 

(30) 

In the equations: 𝑀 is the number of classes; 𝑦𝑖𝑐  is the indicator function for whether sample 

𝑖 belongs to class 𝑐 (0 or 1), which is 1 if the true class of sample 𝑖 equals class 𝑐, and 0 otherwise; 

𝑝𝑖𝑐  is the predicted probability that sample 𝑖 belongs to class 𝑐. 

3.4. Experimental Results 

By comparing the performance of different convolution methods in diagnostic classification 

tasks, we have drawn some important conclusions. The table shows the average training accuracy, 

testing accuracy, training loss, and testing loss for each convolution method, as detailed Table 7 and 

Figures 7–11: 

Table 7. Experimental performance of each network structure (FE). 

Convolution 

methods 

Average training 

accuracy 

Average testing 

accuracy 

Average training 

loss 

Average testing 

loss 

MD-DAC 0.945929 0.878292 0.023526 0.202199 

OSA 0.927226 0.856083 0.02497 0.226928 

ResConv 0.936548 0.844167 0.02061 0.229602 

CSA 0.93981 0.863458 0.022856 0.208739 

SerialConv 0.91125 0.834375 0.024983 0.232127 

 

Figure 7. Visualization of experimental performance (FE). 
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   (a) 

  
    (b) 

Figure 8. CSA Network performance visualization(FE): (a)CSA training/validation loss curves; 

(b)CSA accuracy curves. 

 
   (a) 

  
    (b) 

Figure 9. MD-DAC Network performance visualization(FE): (a)MD-DAC training/validation loss 

curves;(b)MD-DAC accuracy curves. 
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   (a) 

  
    (b) 

Figure 10. OSA Network performance visualization(FE): (a)OSA Network training/validation loss 

curves; (b)OSA Network accuracy curves. 

  
   (a) 

 
   (b) 

Figure 11. SerialConv Network performance visualization(FE): (a)SerialConv Network 

training/validation loss curves; (b)SerialConv Network accuracy curves. 
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    (a) 

  
    (b) 

Figure 12. ResConv Network performance visualization(FE): (a)ResConv Network 

training/validation loss curves; (b)ResConv Network accuracy curves. 

By comparing the experimental results of different convolution methods, it can be observed that 

the network structure has a significant impact on bearing fault diagnosis performance. The MD-DAC 

network structure performs the best during the testing phase, with an average testing accuracy of 

87.83%. Additionally, its relatively low testing loss (0.202199) indicates the model’s superior 

generalization ability. The OSA network structure has an average testing accuracy of 85.51%. 

Although slightly inferior to MD-DAC, its multi-path feature concatenation and channel expansion 

increase feature richness to some extent but also introduce feature redundancy issues, affecting its 

effectiveness in certain aspects. ResConv alleviates the vanishing gradient problem through residual 

connections, achieving an average testing accuracy of 84.42%. Despite being relatively high, it 

sometimes fails to capture all useful features, limiting performance improvement. The CSA network 

structure performs well during the testing phase, with an average testing accuracy of 86.35%. Its 

cross-hierarchical feature fusion can capture more global features, but the complexity of information 

transmission may introduce redundancy, affecting some of its performance. Despite achieving a 

stable training process through sequential convolution and batch normalization, Serial Convolution 

has an average testing accuracy of 83.44%, revealing issues of insufficient feature extraction depth 

and some information loss. Overall, the differences in the design of network structures concerning 

feature extraction, information transmission, and fusion strategies are the main reasons for 

performance variations. Strategies such as multi-direction, multi-scale, and residual connections play 

crucial roles in enhancing feature extraction depth and breadth, while simple and effective feature 

fusion and information transmission mechanisms are key to ensuring model robustness and 

generalization ability. 

Subsequently, further testing experiments were conducted using DE data, the specific 

performance is shown in Table 8 and Figures 13–18: 

Table 8. Diagnostic data set details (DE). 

Convolution 

method 

Average training 

accuracy 

Average testing 

accuracy 

Average training 

loss 

Average testing 

loss 

ResConv 0.934405 0.816125 0.022608 0.259661 

SerialConv 0.933286 0.826208 0.023915 0.251315 

MD-DAC 0.949571 0.912917 0.019596 0.139110 

OSA 0.955012 0.878458 0.020920 0.193673 

CSA 0.947202 0.889917 0.019139 0.172181 
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Figure 13. Visualization of experimental performance (DE). 

 
   (a) 

  
    (b) 

Figure 14. CSA Network performance visualization(DE): (a)CSA training/validation loss curves; 

(b)CSA accuracy curves. 

 
   (a) 
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    (b) 

Figure 15. MD-DAC Network performance visualization(DE): (a)MD-DAC training/validation loss 

curves;(b)MD-DAC accuracy curves. 

 
   (a) 

  
   (b) 

Figure 16. OSA Network performance visualization(DE): (a)OSA Network training/validation loss 

curves; (b)OSA Network accuracy curves.. 

 
  (a) 
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    (b) 

Figure 17. SerialConv Network performance visualization(DE): (a)SerialConv Network 

training/validation loss curves; (b)SerialConv Network accuracy curves. 

 
   (a) 

  
    (b) 

Figure 18. ResConv Network performance visualization(DE): (a)ResConv Network 

training/validation loss curves; (b)ResConv Network accuracy curve. 

Simultaneously, by analyzing the experimental results of different convolution methods on DE 

data, it is found that the network structure has a significant impact on bearing fault diagnosis 

performance. Among them, the MD-DAC network structure performs the best during the testing 

phase, with an average testing accuracy of 91.29% and a low testing loss of 0.139110, demonstrating 

excellent generalization ability. In comparison, the OSAConv network structure has a testing 

accuracy of 87.85%, but with a testing loss of 0.193673, indicating that the feature redundancy issue 

still needs optimization. The CSAConv network structure performs well during the testing phase, 

with an average testing accuracy of 88.99%. Although its cross-hierarchical feature fusion design can 

capture more global features, the complexity may lead to some redundancy, affecting performance 

improvement. The SerialConv network structure achieves a stable training process through 

sequential convolution and batch normalization, but insufficient feature extraction depth results in 

an average testing accuracy of 83.61% and a testing loss of 0.259661, indicating problems of 

insufficient feature extraction depth and information loss. The ResConv network structure alleviates 

the vanishing gradient problem through residual connections, but its average testing accuracy is 

82.62% with a testing loss of 0.251315, suggesting shortcomings in capturing useful features. 

Based on the above experimental results, the advantage of MD-DAC lies in its combination of 

multi-directional and multi-scale convolution with dense connections. This design not only enhances 

the depth and breadth of feature extraction but also effectively reduces information loss. Although 
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OSA’s multi-path feature concatenation improves feature richness, it also introduces redundancy. It 

may be beneficial to incorporate feature selection or feature compression mechanisms before feature 

concatenation to automatically filter out the most useful features and reduce redundancy. ResConv 

alleviates the vanishing gradient problem through residual connections but still has deficiencies in 

feature capturing. In the future, combining residual connections with attention mechanisms could 

enhance focus on key features and improve feature capturing ability. CSA captures more global 

features through cross-hierarchical feature fusion, but the complexity of information transmission 

may cause redundancy. Introducing inter-layer feature selection mechanisms and dynamically 

adjusting feature fusion strategies could improve the effectiveness of information transmission. Serial 

Convolution achieves a stable training process through sequential convolution and batch 

normalization, but the feature extraction depth is insufficient. Adding more layers in the sequential 

convolution or combining with multi-scale convolution could increase the depth of feature extraction. 

4. Conclusion  

Through the analysis of experimental results with different convolution methods, we found that 

network structure significantly impacts the performance of bearing fault diagnosis. The MD-DAC 

network structure, with its multi-directional and multi-scale feature extraction capabilities, 

performed the best during testing, demonstrating extremely high accuracy and generalization ability. 

Although OSA and CSA networks improved in terms of feature richness and global feature capture, 

issues with feature redundancy and the complexity of information transmission limited their further 

enhancement. ResConv alleviated the vanishing gradient problem through residual connections, but 

it still had deficiencies in capturing useful features. The feature fusion strategies of Doubleconv and 

Serial Convolution structures need optimization to better utilize diverse features and enhance model 

performance. 

In summary, strategies such as multi-directional, multi-scale, and residual connections play a 

crucial role in the depth and breadth of feature extraction. At the same time, concise and effective 

feature fusion and information transmission mechanisms are key to ensuring model robustness and 

generalization ability. Future research can further optimize these network structures and explore 

more efficient feature fusion and information transmission methods to meet the application 

challenges in complex industrial environments. 
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