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Abstract: Bearing fault diagnosis is crucial for ensuring the stable operation of mechanical equipment. With
the continuous development of deep learning technology, Convolutional Neural Networks (CNNs) have
demonstrated significant advantages in the field of fault diagnosis. This paper proposes a new method that
combines various CNN architectures to improve the accuracy of bearing fault diagnosis. We designed five
different convolutional network structures, including SerConv, ResConv, One-Shot Aggregation Convolution
(OSAConv), Cross-Stage Aggregation Convolution (CSAConv), and MD-DAConv. Experimental results on the
Case Western Reserve University (CWRU) bearing dataset show that the proposed method exhibits high
accuracy and robustness in fault diagnosis. The results indicate that strategies such as multi-directional, multi-
scale, and residual connections play a crucial role in enhancing the depth and breadth of feature extraction,
while simple and effective feature fusion and information transmission mechanisms are key to ensuring the

robustness and generalization ability of the model.

Keywords: bearing fault diagnosis; convolutional neural network; feature extraction; multi-
directional convolution; multi-scale convolution

1. Introduction

With the continuous development of mechanical equipment, the internal structure of these
systems has become increasingly sophisticated. Bearings, as critical components, are essential for the
stable and efficient operation of the equipment. Bearing failures can severely impact equipment
performance, leading to significant safety risks and economic losses. Therefore, monitoring and
diagnosing bearing faults to detect issues promptly is of paramount importance [1-3].

In recent years, with the advancement of machine learning technologies, deep learning has
increasingly been applied in the field of fault diagnosis. Compared to traditional fault detection
methods, such as commonly used techniques including Support Vector Machines (SVM) [4-6],
Random Forests [7-9], and BP Neural Networks [10-12], some deep learning methods significantly
improve fault diagnosis accuracy while reducing human labor. Examples of such methods include
Recurrent Neural Networks (RNN) [13-15], Convolutional Neural Networks (CNN) [16-18], and
Deep Belief Networks (DBN) [19-21]. CNN, a biologically inspired variant of neural networks, offers
powerful feature learning capabilities for classification problems. Current bearing fault diagnosis
requires comprehensive analysis of various data types, such as vibration, sound, and temperature, to
draw conclusions. Therefore, CNNs have become a research focus in the fault diagnosis field due to
their strong feature extraction, autonomous learning, and prediction capabilities.

In previous studies, CNNs have been widely applied in the field of fault diagnosis [22].
However, CNNs were initially proposed to solve object detection and image classification problems.
Currently, research on applying CNNs’ object detection capabilities to fault diagnosis is limited but
has achieved some results. For instance, Wang et al. [23] designed a method to convert time-domain
vibration signals into RGB 3D images using morphological operations, then input the converted
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images into the AlexNet CNN, achieving a certain level of accuracy. Shi et al. [24] proposed a fault
diagnosis method combining CEEMDAN and CNN-SVM, utilizing 2D grayscale images for analysis
to achieve fault diagnosis. Li et al. [25] discussed the use of an improved YOLOvVS8 model for
diagnosing misfire faults in gasoline engines, with experimental results demonstrating higher
recognition accuracy compared to other methods. Liu et al. [26] proposed an improved residual
network for mechanical fault recognition through multi-channel weighting and used the GAF
algorithm to convert vibration signals into feature images, achieving fault diagnosis for rolling
bearings.

In recent years, significant progress has been made in the field of traditional CNN structure
improvements. Howard et al. proposed MobileNets [27], a modification of the CNN architecture.
Concurrently, Chollet [28] introduced the Xception algorithm, which replaces the inception module
with depthwise separable convolutions. Xie et al. [29] designed a new network architecture model,
ResNeXt, which improves computational precision while maintaining the same level of complexity.
Zhang et al. [30] introduced ShuffleNet, a highly computationally efficient CNN that utilizes two new
operations—pointwise group convolution and channel shuffle—greatly reducing computational
costs while maintaining accuracy. It is evident that improvements to CNN architectures can
significantly enhance computational efficiency.

As technology advances, more improved networks are being applied to diagnostic tasks. In
recent years, deep learning technology has made remarkable progress in the field of fault diagnosis.
Zhang ] et al. proposed an intelligent fault diagnosis method combining time-frequency analysis and
CNN, demonstrating its effectiveness under complex conditions [31]. Han et al. proposed a
diagnostic framework combining Spatio-Temporal Feature Network (STPN) and CNN, effectively
addressing fault diagnosis problems in complex systems, achieving good results in experiments [32].
Wang et al. proposed a method to improve fault recognition accuracy and robustness by fusing multi-
sensor vibration signal images and using a bottleneck CNN for fault diagnosis [33]. He et al. proposed
an Improved Multi-Scale CNN (IMSCNN) for bearing fault diagnosis by introducing convolution
kernels with different dilation rates to expand the receptive field of the CNN. Experimental results
showed that this method achieved higher diagnostic accuracy than traditional methods on the CWRU
and PU datasets [34]. Gao et al. proposed a method combining multimodal data fusion and deep
learning, using an Extended Wide First Layer Convolution Kernel (EWDCNN) and Long Short-Term
Memory Network (LSTM) to improve diagnostic accuracy for rotating machinery in complex
environments, demonstrating high diagnostic accuracy under different conditions [35]. Te et al.
proposed a hybrid ST-CNN model by integrating the spatiotemporal pattern network (STPN) with
convolutional neural networks (CNN), enhancing fault diagnosis performance in complex
systems[36]. Zhang and Gu proposed a lightweight one-dimensional deep subdomain adaptation
network (1D-LDSAN) for fast and accurate bearing fault diagnosis, with experimental results
showing higher classification accuracy than mainstream transfer learning methods under different
conditions [37]. Zhang et al. reviewed various fault diagnosis methods for mechanical rotating
components, particularly the application of deep learning models, and mentioned that transfer
learning-based methods can significantly improve diagnostic accuracy and efficiency [38]. Liang et
al. proposed a new method based on deep learning that improves diagnostic accuracy by integrating
information from different data sources [39]. Huang, T et al. proposed a novel fault diagnosis method
combining a sliding window processing technique with a CNN-LSTM model, enhancing the
performance of fault diagnosis by integrating feature extraction and time delay information of faults
in complex systems. [40]. Hu et al. proposed an EfficientNet strategy based on attention mechanisms
for bearing fault diagnosis in high-noise environments, achieving high diagnostic accuracy under
different noise levels [41]. Zhang et al. proposed a bearing fault diagnosis method based on an
improved dilated CNN (MAB-DrNet), enhancing feature extraction capabilities and classification
accuracy in noisy environments by introducing the Maximum Average Block (MAB) module and the
Global Residual Block (GRB) module [42]. Chen et al. proposed a bearing fault diagnosis method
based on a stacked denoising autoencoder (SDAE), improving diagnostic accuracy in noisy
environments through structural self-adaptation [43].
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In the related work on bearing diagnosis, most network design strategies currently focus on
increasing network depth to improve feature extraction capabilities across different layers. This paper
proposes five efficient aggregation networks/extended neural networks by extending them
horizontally and vertically and designing efficient dilated convolution layers to enhance the
network’s feature extraction capabilities. The results indicate that multi-directional, multi-scale, and
residual connection strategies play a crucial role in improving feature extraction depth and breadth.
In contrast, simple and effective feature fusion and information transfer mechanisms are key to
ensuring model robustness and generalization capabilities.

2. Feature Extraction Module

2.1. CNN Neural Network

Convolutional Neural Network (CNN) is a deep feedforward neural network model with strong
automatic feature extraction capabilities. Its basic structure consists of an input layer, convolutional
layers, pooling layers, fully connected layers, and an output layer.

(1) Input layer

The CNN model is a supervised learning model that requires learning under the supervision of
sample labels. Therefore, the input consists of samples X and sample labels Y. For example, for a C-
class classification problem, the model input, which is defined as Equation (1):

XY=y (1)

where N is the number of samples input into the model, x; is the iii-th sample, and yi is the class label

corresponding to the i-th sample.

(2) Convolutional layer

The convolutional layer is the core component of the CNN model, implementing the concepts
of local connectivity and weight sharing through convolutional kernels. The convolutional kernel
slides horizontally and vertically along the coordinates of the input feature map, performing
convolution operations with the data within the receptive field to extract structural features hidden
within the data. The convolutional layer is organized in three dimensions: depth, width, and height.
The width and height refer to the width and height of the convolutional kernel, which define the size
of the local receptive field. Vibration signals are one-dimensional data, so the size of the convolutional
kernel is k, with k constrained by the length of the input sample. Depth refers to the number of
convolutional kernels. To extract different features from the input feature map, the convolutional
layer performs convolution operations using a certain number of convolutional kernels, each with
different weights, corresponding to different feature extractions. The convolution operation extracts
features from the input feature map based on the size of the convolutional kernel and the stride. The
process of feature extraction by the convolutional kernel is defined as follows:

Q
fea = ZZWkL | * feam + bjL,

g=1 j=1

2)
i:{M +2p—k}+1

S

In the equation, wg; and b} represent the weight and bias of the i-th convolutional kernel in
the L-th convolutional layer, respectively. | is the number of convolutional kernels (the width of the
convolutional layer), s is the stride, which is the distance the convolutional kernel slides over the
input feature map, p is the padding size, feaj;, is the g-th feature map of size M output by the

L — 1-thlayer, and feaf; is the j-th convolutional kernel in the L-th convolutional layer, extracting

a feature map of size i from the input feature map. Each convolutional kernel will find specific


https://doi.org/10.20944/preprints202409.1055.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 September 2024 d0i:10.20944/preprints202409.1055.v1

features at every position in the feature map, and the types of features learned are dynamically
determined by the algorithm.

(3) Activation function

After the convolution operation, the results are processed by the activation function to obtain
the corresponding output features. The activation function maps the originally linearly inseparable
multidimensional features to another space, enabling the neural network to fit the nonlinear
relationship between the input sample data and labels. The choice of activation function affects
network training time and has a significant impact on performance on large datasets. Common
activation functions in the field of fault diagnosis include the Sigmoid function, the Hyperbolic
Tangent (Tanh) function, and the Rectified Linear Units (ReLU) function. The representations of these
three types of functions, which are defined as follows:

. . 1
L _ L1} _
fea’; = sigmoid ( fea’;!) = o
l+e ™
fea-t —fea"t
e O e ]
fea"; =tanh( fea';")=—— - (3)
' ' fay; —feaj
e™ te

feaifj’l, zi‘jL*21 >0

fear; =TeLU ( fea;')=
| ’ 0, fea;;" <0

L-1
ij
respectively. The Sigmoid and Tanh functions are saturated nonlinear functions, mapping the input
to the intervals [0,1] and [-1,1], respectively. During model training, if the neuron’s initialization or
optimization enters the saturation region, the Sigmoid and Tanh functions are prone to the vanishing
gradient problem, making further optimization difficult. Additionally, as the number of network
layers increases, due to the chain rule, the derivatives of the multiplied Sigmoid and Tanh functions
become increasingly small, hindering gradient backpropagation and reducing the network’s
convergence speed, or even preventing the network from converging to an optimal state. In contrast,
the ReLU function is a non-saturated nonlinear function that ensures all outputs are positive,
effectively reducing the risk of vanishing gradients and gradient explosion during training. This
alleviates the difficulty of training internal parameters in deep neural networks and facilitates faster
network training. Therefore, the ReLU function is used as the activation function for all network
layers.

(4) Pooling layer

The pooling layer, also known as the subsampling layer, is a network layer that performs pooling

In the equations, fea and feaf; represent the input and output of the function,

operations. After feature extraction by the convolutional layer, directly using these features for
classification would face significant computational challenges and the risk of overfitting. Thus, it is
necessary to perform pooling on the feature maps to reduce their data dimensionality. Pooling is a
process of further abstracting information, similar to the feature extraction process of the
convolutional layer. It involves sliding a window over the feature map and taking the statistical value
of the local region corresponding to the window as the sampling value for that region. These values
from the local regions are then concatenated to form a new feature map. Pooling operations are
usually applied after convolutional layers, reducing feature dimensionality while preserving
significant feature information and maintaining spatial invariance. Unlike convolution operations,
pooling does not involve parameter settings and memory usage, greatly reducing the computational
load. The pooling operation can be represented as:
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feay ; = f ( fee'}")

e 2]

where f is the pooling method, d is the size of the pooling function. When d < i, it indicates local
pooling of the feature map, and when d = i, it indicates global pooling, where the entire feature map
is pooled. s is the stride of the pooling function, and feaf; is the output feature map after the
corresponding pooling operation, with its size being 1i.

(5) Fully connected layer

After multiple convolutional layers and max pooling layers, there are usually a few fully
connected layers to integrate the local features extracted by the convolutional or pooling layers. The
fully connected layer is a traditional multilayer perceptron that connects each neuron from the
previous layer to every neuron in the next layer, generally using the ReLU function. For a one-
dimensional input x;*~* of length M, with N neurons in the fully connected layer, the output of
each neuron can be represented as:

M
z; =RelLU (Z_l:xf‘leﬁﬁb}j,j:1,2,...,N (5)

In the equation, w}; is the connection weight from the | -th neuron in the L — 1-th layer to the

j-th neuron in the L-th layer; x/~! is the input to the j-th neuron in the L-th layer; bﬁ
of the j-thneuroninthe L-thlayer;and M and N represent the number of neurons in the L — 1-th
layer and the L-th layer, respectively.

(6) Output layer

The output layer uses a classifier to output the model’s recognition results in the form of
categories or probabilities. The most commonly used function is the nonlinear Softmax function,
which is an extension of the logistic function and is typically used for multi-class classification
problems. The Softmax function converts the extracted features into a probability distribution, using
logarithmic probability values to estimate the likelihood of a sample belonging to a particular

category. A higher value indicates greater confidence. It is represented as follows:

is the bias

p(vi=1 z%6) exp(z")

g L1 p(vi=2 7740 1 exp(z ™

§, = softmax (z"*) = ( ) :W (z7) (©)
p(yi=c z0) exp(z)

where 0 is the model’s parameters, and z"' is the feature vector associated with the input x;. The

Softmax function maps the feature set to a c-dimensional vector ¥;, with each value in the vector
ranging from (0,1) and the sum of all values in the vector equal to 1. Each element can be considered
a category corresponding to the classifier parameters.

2.2. Construction of a Novel Network Architecture

To enhance feature extraction capabilities, this paper proposes five network structures based on
the fundamental CNN architecture by stacking different convolutional layers and pooling layers, as
well as multiple feature fusions and channel expansions. These structures effectively extract complex
features from sample data as channels expand and increase. The main innovation of the network
structures lies in the design of efficient expanded convolution layers, with each module employing
multi-path convolution and feature concatenation strategies.
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2.2.1. Serial Convolution (SerConv)

The SerConv network consists of two sequential convolutional blocks, each comprising a
convolutional layer and a batch normalization layer. This setup stabilizes the learning process by
normalizing the output of the convolutional layers, thereby enhancing the network’s generalization
ability.

Let F(x;0;) represent the function applied by our convolutional block, where x denotes the
block input, and 8 is the parameters of the convolutional layer and batch normalization. This process
can be defined mathematically as follows:

Convolutional Layer 1:

% =F(x6,)=BN(Conv(xW,b)) (7)

where x; and b, are the weights and bias of the first convolutional layer, and BN is the batch
normalization operation.
Convolutional Layer 2:

X, = F(%;6,)=BN (Conv(x;W,,b,)) 8)

where x, and b, are the weights and bias of the second convolutional layer.

By sequentially connecting two convolutional blocks, the SerConv network can perform deeper
feature extraction and processing on the input data without increasing computational complexity.
Each convolutional block’s output undergoes batch normalization, which not only enhances the
stability of the network during training but also improves the model’s ability to adapt to different
data distributions to some extent. The specific structure is shown in Figure 1.

! c
[ 3x3,Conv,c,c+ BN ]
!

( 3x3.Conv,c,c+ BN |
e

Figure 1. Diagram of the SerConv network architecture.

2.2.2. Residual Convolution (ResConv)

The ResConv structure consists of two consecutive convolutional blocks, each comprising a
convolutional layer and a batch normalization layer. The residual connection is achieved by directly
adding the input x to the output of the second convolutional block, merging the information before
and after, thus allowing the network to learn incremental modifications to the input. The process for
Convolutional Layer 1 and Convolutional Layer 2 is consistent with SerConv (Equations (1)—(2)), and
x3 is the final output.The process, which is defined as follows:

X3 =X+ X2 (9)
By introducing residual connections into the convolutional network, the ResConv module

increases the training depth of the network without compromising performance, effectively
facilitating the learning of complex patterns. The specific structure is shown in Figure 2.
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li
[ 3x3,Conv,c,ct+ BN ]
}

[ 3x3.Conv,c,c+ BN ]
1

%7

Figure 2. Diagram of the residual convolution network architecture.

2.2.3. One-Shot Aggregation Convolution (OSAConv)

OSAConv is a novel deep learning network designed for feature data, with a core focus on
processing one-dimensional sequence signals through deep feature extraction and efficient feature
fusion. The network employs multiple stacked convolutional modules that feature multi-path
convolution and feature concatenation mechanisms. Additionally, the number of channels is
progressively increased after each layer, significantly enhancing the richness of features and the
expressiveness of the model.

Each module utilizes multiple branches to extract features through consecutive convolution
operations. These features are then concatenated with the original input, increasing the input
information for subsequent layers. This design helps the model capture more refined local features
and allows the network to acquire direct information from the original data before proceeding to
deeper abstractions.

After each feature concatenation, the network performs feature fusion through convolutional
layers, effectively reducing feature dimensions, alleviating computational burden, and ensuring the
effectiveness and completeness of features in the depth direction. Below, this paper elaborates on the
relevant formulas for the network structure:

In each module, the input first passes through a 3 x 3 convolutional layer to start the feature
extraction process. For the nth layer of the module, its features (where n is the layer index) are
obtained in the following manner:

Yo1 =BN, (Convsxs (X)) (10)

Extract features on feature a through 1y, series of 3 x 3 convolutional layers, the process is
defined as follows:

Yoo = BN, (ConV3><3(yn,1))

(11)
Yoz = BN, (Convsxs ( Yn2 ))

Subsequently, the first concatenation layer fuses the relevant features as follows,the process is
defined as follows:

Yes = CONCAL (Y, ) (i=1,2,3,4) (12)

Here, Concat is the feature concatenation operation, which concatenates various feature maps
along the channel dimension.

Subsequently, a 1 x 1 convolution is applied to the fused features for channel compression and
feature integration to reduce the number of parameters and maintain computational efficiency,the
process is defined as follows:

Yous = BN, (Convyy (Veus )) (13)
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The subsequent processing within the same module follows a similar pattern, further enhancing
feature expression, the process is defined as follows::

Y. =BN, (Conv3x3(yout’1))
Y, s = BN, (Convm (ynA))
Year2 = CONCAL (Vo1 Yoas Yos )
You = BN, (Convm(ycatvz))

(14)

In summary, the construction of OSAConv is completed as Figure 3.

|e

[ 3x3.ConvicctBN |

1

3x3,Conv,e,c+tBN
[ J

[ Catde,e ]
|
[ 1x1,Conv,de,c+BN J

|

[ 3x3,Conv,c,c+BN ]

I

[ 3Ix3,Conv,e,ctBN }

|

[ Catde,c ]
|
[ 1% 1,Conv,dc,c+BN ]

l’l:

Figure 3. Schematic diagram of the one-shot aggregation convolution network structure.

2.2.4. Cross Stage Aggregation Convolution (CSAConv) Network

CSAConv is an innovative deep learning network designed for one-dimensional sequence
signals. This architecture enhances the network’s feature extraction capability through cross-stage
feature fusion combined with multi-scale convolutional kernels. The design aims to extract more
diverse features through cross-stage feature fusion while maintaining computational efficiency.
Specifically, the structure includes multiple 3 x 3 convolutional layers and 1 x 1 convolutional layers,
which perform cross-stage convolution operations, ultimately concatenating the features to form a
more powerful feature representation.

Below, this paper elaborates on the relevant formulas for the network structure:

The input feature x first passes through the first 3 x 3 convolutional layer and a batch
normalization layer,the process is defined as follows:

Yo1 =BN, (COHVM (X)) (15)

Then it passes through another 3 x 3 convolutional layer for further feature extraction, the
process is defined as follows:

Y2 = BN, (Convsxs ( yn,l)) (16)
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Subsequently, the relevant features are concatenated together,the process is defined as follows :

ycat,l = Concat ( yn,l’ yn,2 ) (17)

Subsequently, a 1 x 1 convolutional layer and a batch normalization layer are used for channel
compression and feature integration, the process is defined as follows:

Yours = BN (Conlel ( ycat,l)) (18)

At this point, the feature y,,,, is passed through two more 3 x 3 convolutional layers to extract
deeper-level features, the process is defined as follows:

Yns = BN, (Convsxa (yout,l))
(19)
Yna = BNg (Convsxs ( yn,a))

Subsequently, the relevant features are further concatenated,the process is defined as follows:

Year2 = Concat ( Youar Ynas yn,4) (20)

Finally, the features are integrated through a 1 x 1 convolutional layer and a batch normalization
layer to form the final output feature, the process is defined as follows:

yfinal = BN6 (Conlel(ycat,z )) (21)

In summary, the construction of CSAConv is completed as Figure 4.

¢
3x3.Conv,e,ctBN ]
3x3,Conv,e,ctBN

| 3x3,Conv,e,c+tBN

{ Catde,e ]
|

[ 1x1,Convde,ctBN ]

[ 3x3,ConveerBN |

3Ix3,Convie,ctBN }
3x3,Conv,c,c+tBN |

[ Catdec }

[ 1x1,ConvdectBN ]

lc

Figure 4. Cross stage aggregation convolution network structure diagram.

2.2.5. Multi-Directional Dense Aggregation Convolution (MD-DAConv) Network

Currently, the use of dilated convolutional layers with different directions and scales has become
a strategy for improving related networks. To verify whether this approach is suitable for fault
diagnosis, this paper proposes a new convolutional structure called Multi-Directional Dense
Aggregation Convolution (MD-DAConv). This structure aims to enhance the network’s feature
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extraction capabilities through multi-directional and multi-scale dilated convolutional layers
combined with dense connections.

The design goal of this network is to extract more diverse features through multi-directional and
multi-scale convolutional kernels while maintaining computational efficiency. Specifically, MD-
DAConv includes multiple 3 x 3 convolutional layers, 1 x 1 convolutional layers, left and right dilated
convolutional layers (1 x 3 and 3 x 1), and top and bottom dilated convolutional layers (3 x 1 and 1 x
3). The features from each layer are fused through dense connections to form a more powerful feature
synthesis.

Below, this paper elaborates on the relevant formulas for the network structure:

In each module, the input x first passes through a 3 x 3 convolutional layer to begin the feature
extraction process. For the nth layer of the module, its feature y, ; (where nis the layer index), which
is defined as follows:

Yoz = BN, (Conv, 4(x)) (22)

On feature Yy, ,, features are extracted through dilated convolutional layers in four directions:

Yiera = BN, (Conleg (y"’l))
Yiigna = BN (Conles (ynl))

o (Conea(1,,) =
Yaown1 = (ConVSXl ( You ))
Subsequently, the concatenation operation, which is performed as follows:
Years = CONCAL (Vo 1, Vit 1+ Veigness Yopa Yeouns ) (24)

Subsequently, channel compression and feature integration are performed through a 1 x 1
convolutional layer and a batch normalization layer, which is performed as follows:

Youra = BN (Conlel (ycat,l)) (25)

And feature 4,1 is passed through a 3 x 3 convolutional layer and a batch normalization layer
to extract deeper-level features, which is performed as follows:

Yoo = BN, (COnV, s (Yous ) (26)

Subsequently, feature y,, is passed sequentially through left-right and top-bottom dilated
convolutional layers, which is performed as follows:

Yer» = BN, (Convi, (y,.,))
Yign2 = BN (Conles(yn 2))
Yyp2 = BNy (Convsxl(yn ) ))
Yaouns = BNll(ConvM(ynyz))

(27)



https://doi.org/10.20944/preprints202409.1055.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 September 2024 d0i:10.20944/preprints202409.1055.v1

11

Subsequently, all the features from the dilated convolutional layers are concatenated as follows:

ycat,z = Concat(yn,21 yleft,2’ yright,2’ yup,Z’ ydown,z) (28)

Finally, integration is performed through a 1 x 1 convolutional layer and a batch normalization
layer to form the final output feature, which is performed as follows:

yfinal = BNlZ (Conlel ( ycat,z )) (29)

In the end, we can get network structure as shown in Figure 5:

|

3x3,Conv,c,c+BN }

(
&

[ 1x3,Conv,c,c+BN ] [ 1x3,Conv,c,c+BN ] [ 3x1,Conv,c,c+BN ] [ 3x1,Conv,c,c+BN J

[ Cat,dc,c ]
[ 1x1, Conv,c,c+BN ]

[ |

{ 3x3,Conv,c,c+BN }

[ 1x3,Conv,c,c+BN ] { 1x3,Conv,c,c+BN ] [ 3x1,Conv,c,c+BN ] [ 3x1,Conv,c,c+BN }

{ Catdc,c ]
[ 1x1, Conv,c,c+BN ]

Figure 5. Schematic diagram of the multi-directional dense aggregation convolution network
structure.

2.3. QOverall Network Model Structure

In the previous sections, we introduced various convolutional structures, including residual
convolution (ResConv), multi-direction dense aggregation convolution (MD-DAConv), and so on. To
compare the performance of different convolutional structures, we propose the following
architecture as a general framework for subsequent experiments and validation as Figure 6.
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Figure 6. Overall neural network structure.

The CNN model is composed of multiple convolutional layers and pooling layers, and it
performs classification through fully connected layers and a Softmax layer at the end. The input layer
of the model accepts one-dimensional signal data with a size of 1 x N, where NNN is the length of
the input signal. The first convolutional layer uses 64 filters to perform convolution operations on the
input signal, extracting initial features. Subsequently, the second convolutional layer further
enhances the feature representation ability. The third convolutional layer increases the number of
channels to 128 to capture more complex features, and the fourth convolutional layer continues the
convolution operation on the features. The fifth convolutional layer increases the number of channels
in the feature map to 256, and the sixth convolutional layer further enhances the feature
representation ability. The seventh convolutional layer increases the number of channels in the
feature map to 512 through convolution operations, and the eighth and ninth convolutional layers
continue convolution operations on the features, further enhancing the feature representation ability.

The pooling layers use max pooling to reduce the size of the feature map by half, reducing
computational load and the number of parameters while retaining the main features. Finally, the
features extracted by the convolution and pooling operations are flattened into a one-dimensional
vector through fully connected layers for feature fusion and classification, and the Softmax layer is
used to output the final classification results.

2.4. Network Model Parameter Settings

The convolutional network structure data for the extended relevant layers is shown in the Tables
1-5:

Table 1. Multi-dimensional dual-aggregation convolution (MD-DAConv) layer details.

| Out K 1
Layer Operation " " e.rne Stride Padding Activation Comments
channels channels size
il
Convl Convld In channel Out 3x3 1 1 SILU First block starts

channel (inplace)
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BatchNorm1d Out Out - - - - Normalization
channel channel
Convld In channel Out 1x1 1 . SILU Flr?t blo?k
channel (inplace) continuation
Conv2
BatchNorm1d Out Out - - - - -
channel channel
Convld In channel Out 3x3 1 1 . SILU -
channel (inplace)
Conv3
BatchNorm1d Out Out - - - - -
channel channel
Convld In channel Out 1x1 1 0 . SiLU -
channel (inplace)
Conv4
BatchNormld Out Out - - - - -
channel channel
N . .
Convid 4*In Out 33 1 1 .SILU Concatenate inputs
channel channel (inplace) X, X2, X3, x4
Convb
BatchNormld Out Out - - - - -
channel channel
Convld In channel Out 1x1 1 . SiLU Seco-nd. block
channel (inplace) similar
Convb
BatchN 1d Out Out
atchivorm channel channel
N . . .
Convid 4*In Out 1x1 1 .SILU Final concatenation
channel channel (inplace) and output
Conv7
BatchNorm1d Out Out
archiNoe channel channel
Table 2. Cross-stage aggregation convolution (CSAConv) layer details.
Layer Operation In Out Ke.rnel StridePadding Activation Comments
channels channels size
Convld In Out 33 1 1 ' SiLU Cross'—stage
Convi channel channel (inplace)  aggregation starts
BatchNormld Out Out - - - - Normalization
channel channel
Convld In out 5.3 1 SiLU -
channel channel (inplace)
Conv2
BatchNorm1d O Out - - - - -
archizorm channel channel
M . .
Convld 3*In Out 1x1 1 0 . SiLU  Concatenate inputs X,
channel channel (inplace) x1, x2
Conv3 Out Out
BatchNorm1d channel channel ) ) ) ) )
Convld In out 5.3 ¢ 1 SLU -
channel channel (inplace)
Conv4
BatchNormld Out Out - - - - -
channel channel
Convld In Out 5.3 . SiLU -
channel channel (inplace)
Convb
BatchN 1d Out Out i i ) i )
archizorm channel channel
M . . .
Convé  Convld 4*In Out 1x1 1 0 SiLU Final concatenation

channel channel (inplace) and output


https://doi.org/10.20944/preprints202409.1055.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 September 2024 d0i:10.20944/preprints202409.1055.v1

14

Out Out
BatchNormld channel channel ) ) ) ) )

Table 3. Residual convolution (ResConv) layer details.

Layer Operation In Out Ke'r nel Stride Padding Activation Comments
channels channels size
Convld In Out 3x3 1 1 - Residual block
channel channel
Convl Out Out
BatchNorm1d v v - - - - Normalization
channel channel
Convld I Out p sy 1 ; ;
channel channel
Conv2 Out Out
BatchNormld channel channel ) i i i )
ReLU ReLU ) ) ) i i inplace Output of residual sum

(x +x2)

Table 4. Residual convolution (ResConv) layer details.

| t K 1
Layer Operation " Ou e.r "€ Stride Padding Activation =~ Comments
channels channels size
Convld In channel Out channel 3x3 1 1 - Serlal.
convolution
Convl Out
BatchNorm1d Out channel - - - - Normalization
channel
Convld In channel Out channel 3 x3 1 1 - -
Conv2 Out
BatchNorm1d Out channel - - - - -
channel
ReLU ReLU - - - - - inplace  Final output
Table 5. One-shot aggregation convolution (OSAConv) layer details.
I Out K 1
Layer Operation n " M Stride Padding Activation Comments
channels channels size
Convid In Out 3%3 1 . SiILU  One-Shot aggregation
channel channel (inplace) starts
Convl Out Out
BatchNorm1d - - - - Normalization
channel channel
Convld In Out 4.3 1 SiLU -
channel channel (inplace)
Conv2
BatchNorm1d Out Out - - - - -
channel channel
Convld In Out 4.3 1 SiLU -
channel channel (inplace)
Conv3
BatchNorm1d Out Out - - - - -
channel channel
N . .
Convld 4*In Out 1x1 1 0 . SiLU Concatenate inputs X,
channel channel (inplace) x1, x2, x3
Conv4
BatchNorm1ld Out Out - - - - -
channel channel
Convs  Convld In out 5.5 1 1 SILU ;

channel channel (inplace)
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Out Out
BatchNormlId channel channel i ) i ) )
Convld In Out 5.3 ¢ 1 SLU -
channel channel (inplace)
Convb
BatchN 1d Out Out i ) i ) )
archivorin channel channel
Convld In Out 5.3 ¢ 1 SLU -
channel channel (inplace)
Conv7
BatchN 1d Out Out
archivorin channel channel
Convid 4*In Out 1x1 1 0 ‘SILU Final concatenation
channel channel (inplace) and output
Conv8 Out Out
BatchNormld v v - - - - -

channel channel

3. Experimental Verification and Analysis

3.1. Hardware Parameters

To verify the bearing fault diagnosis capability of the proposed model, experimental evaluations
were conducted on two bearing datasets. The experiments were implemented using the PyTorch
deep learning framework. The computer configuration is as follows: Intel Core i7-8300H processor,
NVIDIA GeForce 3060 graphics processor, and 16GB RAM.

3.2. CWRU Bearing Dataset

The Case Western Reserve University (CWRU) dataset is provided by the Bearing Data Center
at Case Western Reserve University and is widely used as a standard reference for testing bearing
diagnostic methods. The experimental setup for this dataset includes an induction motor, a torque
sensor, test bearings, accelerometers, and a load motor. In this study, the focus is on the vibration
signals of the drive-end bearing (bearing type SKF6205). Vibration acceleration signals of faulty
bearings are measured by placing an accelerometer above each of the bearing housings at the fan end
and drive end of the motor, followed by high-bandwidth amplification. This experiment uses
SKF6205 deep groove ball bearings, including outer race faults, inner race faults, and rolling element
faults with different fault diameters. The dataset used in this experiment corresponds to a load of 0,
and specific dataset information is shown in Table 6.

Table 6. Diagnostic data set details.

Fault location No Rolling element Inner race Outer race Load/kw
Label 1] 2 3 45 6 7] 8 9 10
 Damage 0 0.007 0.014 0.021]0.007 0.014 0.021|0.007 0.014 0.021
diameter/inch
N Train 52| 52 52 52 | 52 52 52 | 52 52 52 .
Test 7\ 7 7|7 v 7|7 7 7
o Train 520 52 52 52 | 52 52 5 |52 52 5 075
Test 7\ 7 7|7 v 7|7 7 7
. Train 52 52 52 52 | 52 52 52 | 52 52 52 50
Test 7\ 7 7|7 v 7|7 7 7

The dataset includes four conditions: normal state, inner race fault, outer race fault, and rolling
element fault. Each fault type has 3 fault sizes (0.007 inches, 0.014 inches, 0.021 inches), resulting in 9
fault conditions. Including the normal state, there are a total of 10 operating conditions. These 10
conditions are represented by category labels 0-9.
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This study selects the vibration signals from the Drive End (DE) and the Fan End (FE) of the
motor for subsequent training and testing, respectively, to compare the performance of the relevant
structures.

3.3. Experimental Parameter Design

The network uses a batch size of 64 samples, 100 iterations, and a learning rate of 0.005. The
accuracy function used is shown in Equation (30), and the categorical cross-entropy L is used as the
loss function, as expressed in Equation (30).

M

L= _Zlyic |Og( pic)
= (30)
TP+TN

TP+TN + FP+FN

Accuracy =

In the equations: M is the number of classes; y;. is the indicator function for whether sample
i belongs to class ¢ (0 or 1), which is 1 if the true class of sample i equals class ¢, and 0 otherwise;
Pic is the predicted probability that sample i belongs to class c.

3.4. Experimental Results

By comparing the performance of different convolution methods in diagnostic classification
tasks, we have drawn some important conclusions. The table shows the average training accuracy,
testing accuracy, training loss, and testing loss for each convolution method, as detailed Table 7 and
Figures 7-11:

Table 7. Experimental performance of each network structure (FE).

Convolution Average training Average testing  Average training Average testing
methods accuracy accuracy loss loss
MD-DAC 0.945929 0.878292 0.023526 0.202199

OSA 0.927226 0.856083 0.02497 0.226928
ResConv 0.936548 0.844167 0.02061 0.229602
CSA 0.93981 0.863458 0.022856 0.208739
SerialConv 0.91125 0.834375 0.024983 0.232127

I Average Test Loss
MD-DAC [ Average Train Loss
[ Average Test Accuracy
Average Train Accuracy
DerialCony ;_‘
ResCony h
O3aCony ;_‘
SR ;_‘

0.0 0.2 0.4 0.6 0.8 1.0

Convolution Method

Specific Value

Figure 7. Visualization of experimental performance (FE).
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(b)CSA accuracy curves.
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Figure 10. OSA Network performance visualization(FE): (a)JOSA Network training/validation loss

curves; (b)OSA Network accuracy curves.
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Figure 12. ResConv Network performance visualization(FE): (a)ResConv  Network
training/validation loss curves; (b)ResConv Network accuracy curves.

By comparing the experimental results of different convolution methods, it can be observed that
the network structure has a significant impact on bearing fault diagnosis performance. The MD-DAC
network structure performs the best during the testing phase, with an average testing accuracy of
87.83%. Additionally, its relatively low testing loss (0.202199) indicates the model’s superior
generalization ability. The OSA network structure has an average testing accuracy of 85.51%.
Although slightly inferior to MD-DAGC, its multi-path feature concatenation and channel expansion
increase feature richness to some extent but also introduce feature redundancy issues, affecting its
effectiveness in certain aspects. ResConv alleviates the vanishing gradient problem through residual
connections, achieving an average testing accuracy of 84.42%. Despite being relatively high, it
sometimes fails to capture all useful features, limiting performance improvement. The CSA network
structure performs well during the testing phase, with an average testing accuracy of 86.35%. Its
cross-hierarchical feature fusion can capture more global features, but the complexity of information
transmission may introduce redundancy, affecting some of its performance. Despite achieving a
stable training process through sequential convolution and batch normalization, Serial Convolution
has an average testing accuracy of 83.44%, revealing issues of insufficient feature extraction depth
and some information loss. Overall, the differences in the design of network structures concerning
feature extraction, information transmission, and fusion strategies are the main reasons for
performance variations. Strategies such as multi-direction, multi-scale, and residual connections play
crucial roles in enhancing feature extraction depth and breadth, while simple and effective feature
fusion and information transmission mechanisms are key to ensuring model robustness and
generalization ability.

Subsequently, further testing experiments were conducted using DE data, the specific
performance is shown in Table 8 and Figures 13-18:

Table 8. Diagnostic data set details (DE).

Convolution Average training Average testing  Average training Average testing
method accuracy accuracy loss loss
ResConv 0.934405 0.816125 0.022608 0.259661
SerialConv 0.933286 0.826208 0.023915 0.251315
MD-DAC 0.949571 0.912917 0.019596 0.139110
OSA 0.955012 0.878458 0.020920 0.193673

CSA 0.947202 0.889917 0.019139 0.172181
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Figure 13. Visualization of experimental performance (DE).
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Figure 14. CSA Network performance visualization(DE): (a)CSA training/validation loss curves;

(b)CSA accuracy curves.
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Figure 15. MD-DAC Network performance visualization(DE): (a)MD-DAC training/validation loss

curves;(b)MD-DAC accuracy curves.
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Figure 16. OSA Network performance visualization(DE): (a)OSA Network training/validation loss

curves; (b)OSA Network accuracy curves..
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Figure 17. SerialConv Network performance visualization(DE): (a)SerialConv Network
training/validation loss curves; (b)Serial Conv Network accuracy curves.
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Figure 18. ResConv Network performance visualization(DE): (a)ResConv  Network
training/validation loss curves; (b)ResConv Network accuracy curve.

Simultaneously, by analyzing the experimental results of different convolution methods on DE
data, it is found that the network structure has a significant impact on bearing fault diagnosis
performance. Among them, the MD-DAC network structure performs the best during the testing
phase, with an average testing accuracy of 91.29% and a low testing loss of 0.139110, demonstrating
excellent generalization ability. In comparison, the OSAConv network structure has a testing
accuracy of 87.85%, but with a testing loss of 0.193673, indicating that the feature redundancy issue
still needs optimization. The CSAConv network structure performs well during the testing phase,
with an average testing accuracy of 88.99%. Although its cross-hierarchical feature fusion design can
capture more global features, the complexity may lead to some redundancy, affecting performance
improvement. The SerialConv network structure achieves a stable training process through
sequential convolution and batch normalization, but insufficient feature extraction depth results in
an average testing accuracy of 83.61% and a testing loss of 0.259661, indicating problems of
insufficient feature extraction depth and information loss. The ResConv network structure alleviates
the vanishing gradient problem through residual connections, but its average testing accuracy is
82.62% with a testing loss of 0.251315, suggesting shortcomings in capturing useful features.

Based on the above experimental results, the advantage of MD-DAC lies in its combination of
multi-directional and multi-scale convolution with dense connections. This design not only enhances
the depth and breadth of feature extraction but also effectively reduces information loss. Although
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OSA’s multi-path feature concatenation improves feature richness, it also introduces redundancy. It
may be beneficial to incorporate feature selection or feature compression mechanisms before feature
concatenation to automatically filter out the most useful features and reduce redundancy. ResConv
alleviates the vanishing gradient problem through residual connections but still has deficiencies in
feature capturing. In the future, combining residual connections with attention mechanisms could
enhance focus on key features and improve feature capturing ability. CSA captures more global
features through cross-hierarchical feature fusion, but the complexity of information transmission
may cause redundancy. Introducing inter-layer feature selection mechanisms and dynamically
adjusting feature fusion strategies could improve the effectiveness of information transmission. Serial
Convolution achieves a stable training process through sequential convolution and batch
normalization, but the feature extraction depth is insufficient. Adding more layers in the sequential
convolution or combining with multi-scale convolution could increase the depth of feature extraction.

4. Conclusion

Through the analysis of experimental results with different convolution methods, we found that
network structure significantly impacts the performance of bearing fault diagnosis. The MD-DAC
network structure, with its multi-directional and multi-scale feature extraction capabilities,
performed the best during testing, demonstrating extremely high accuracy and generalization ability.
Although OSA and CSA networks improved in terms of feature richness and global feature capture,
issues with feature redundancy and the complexity of information transmission limited their further
enhancement. ResConv alleviated the vanishing gradient problem through residual connections, but
it still had deficiencies in capturing useful features. The feature fusion strategies of Doubleconv and
Serial Convolution structures need optimization to better utilize diverse features and enhance model
performance.

In summary, strategies such as multi-directional, multi-scale, and residual connections play a
crucial role in the depth and breadth of feature extraction. At the same time, concise and effective
feature fusion and information transmission mechanisms are key to ensuring model robustness and
generalization ability. Future research can further optimize these network structures and explore
more efficient feature fusion and information transmission methods to meet the application
challenges in complex industrial environments.

Author Contributions: Conceptualization, Mingshen Xu, Bo Guan, Xinyu Shi and Jianghai Geng ;
methodology, Mingshen Xu, Bo Guan, Jianghai Geng and Wanli Liu; software, Mingshen Xu, Xinyu
Shi, and Runji Jiang; validation, Mingshen Xu, Wanli Liu, and Jingjia Tian; formal analysis, Mingshen
Xu, Xinyu Shi, and Runji Jiang; investigation, Mingshen Xu, Bo Guan, and Xinyu Shi; resources, Runji
Jiang, Wanli Liu, and Jingjia Tian; data curation, Bo Guan, Xinyu Shi, and Wanli Liu; writing—
original draft preparation, Mingshen Xu, Bo Guan, Xinyu Shi, and Runji Jiang; writing —review and
editing, Mingshen Xu, Wanli Liu, and Jingjia Tian; visualization, Mingshen Xu, Runji Jiang, and
Jingjia Tian; supervision, Mingshen Xu, Bo Guan, Jianghai Geng and Runji Jiang; project
administration, Mingshen Xu, Jianghai Geng and Jingjia Tian. All authors have read and agreed to
the published version of the manuscript.

Funding: This research received no external funding
Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Data Availability Statement: The original data presented in this study are openly available in the Case Western
Reserve University Bearing Data Center repository at
https://csegroups.case.edu/bearingdatacenter/pages/welcome-case-western-reserve-university-bearing-data-
center-website.

Conflicts of Interest: The authors declare no conflicts of interest.

References


https://doi.org/10.20944/preprints202409.1055.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 September 2024 d0i:10.20944/preprints202409.1055.v1

24

1. Tian, J; Liu, L; Zhang, F.; Ai, Y.; Wang, R.; Fei, C. Multi-domain entropy-random forest method for the
fusion diagnosis of inter-shaft bearing faults with acoustic emission signals. Entropy 2020, 22, 57.
https://doi.org/10.3390/e22010057.

2. Jiang, D.;Wang, T; Jiang, Y.; Liu, L.; Lin, J. Reliability analysis of motor spindle bearing based on operating
condition. In Proceedings of the 2011 Third International Conference on Measuring Technology and
Mechatronics Automation, Shanghai, China, 6-7 January 2011; pp. 989-992. https://doi.org/
10.1109/ICMTMA.2011.529.

3. Jiang, D.; Wang, T.; Jiang, Y.; Liu, L.; Hu, M. Reliability assessment of machine tool spindle bearing based
on vibration feature. In Proceedings of the 2010 International Conference on Digital Manufacturing &
Automation, Changcha, China, 18-20 December 2010; PP 154-157.
https://doi.org/10.1109/ICDMA.2010.105.

4. Kumar, KK Srikanth, V.; Prasad, G.N.R.; Hazela, B.; Tamrakar, A.K. Fault detection on the 3-D printed
objective  surface by using the SVM  algorithm.  Mater. Today: ~ Proc.  2023.
https://doi.org/10.1016/j.matpr.2023.06.016.

5. Reddy, K.B.; Priya, M.V.; Murugesan. Power theft detection using novel linear SVM algorithm and
compared with convolutional SVM algorithm for accuracy. In Proceedings of the 2022 14th International
Conference on Mathematics, Actuarial Science, Computer Science and Statistics (MACS), Karachi, Pakistan,
12-13 November 2022; pp. 1-9. https://doi.org/10.1109/MACS56771.2022.10022957.

6. Yang, Y.; Wang, J; Yang, Y. Exploiting rotation invariance with SVM classifier for microcalcification
detection. In Proceedings of the 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI),
Barcelona, Spain, 2-5 May 2012; pp. 590-593. https://doi.org/10.1109/ISBI.2012.6235617.

7. Xu, G; Liu, M,; Jiang, Z.; Softker, D.; Shen, W. Bearing fault diagnosis method based on deep convolutional
neural network and random forest ensemble learning.  Semsors 2019, 19, 1088.
https://doi.org/10.3390/s19051088.

8. Dong, L.; Du, H,; Mao, F.; Han, N.; Li, X;; Zhou, G.; Zhu, D.; Zheng, ].; Zhang, M.; Xing,L.; Liu, T. Very high
resolution remote sensing imagery classification using a fusion of random forest and deep learning
technique —subtropical area for example. IEEE |. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 113-128.
https://doi.org/10.1109/JSTARS.2019.2953234.

9.  Singh, T.; Mansour, R.R. Chalcogenide phase change material GeTe based inline RF SPST series and shunt
switches. In Proceedings of the 2018 IEEE MTT-S International Microwave Workshop Series on Advanced
Materials and Processes for RF and THz Applications IMWS-AMP), Ann Arbor, MI, USA, 16-18 July 2018;
pp. 1-3. https://doi.org/10.1109/IMWS-AMP.2018.8457163.

10. Tian, Y.; Cai, B.; Liu, Y. Research on BPNN-based SVM-DTC for direct drive PMSG wind turbine. In
Proceedings of the 2021 China Automation Congress (CAC), Beijing, China, 22-24 October 2021; pp. 3098-
3103. https://doi.org/10.1109/CAC53003.2021.9727578.

11.  Chen, B,; Xing, L.; Zhao, L.; Xie, Y.; Cai, Y.; Chen, X. Prediction model of commercial economic index based
on BPNN optimization algorithm. In Proceedings of the 2020 International Conference on Computer
Engineering and Application (ICCEA), Guangzhou, China, 18-20 March 2020; pp. 529-532.
https://doi.org/10.1109/ICCEA50009.2020.00117.

12. Tsai, T.Y.; Chen, HW. Apply BPNN with Kalman Filtering to the dynamic system identification. In
Proceedings of the 2008 International Conference on Machine Learning and Cybernetics, Kunming, China,
12-15 July 2008; pp. 3188-3193. https://doi.org/10.1109/ICMLC.2008.4620956.

13. Panchapagesan, S.; Park, D.S.; Chiu, C.C,; Shangguan, Y.; Liang, Q.; Gruenstein, A. Efficient knowledge
distillation for RNN-transducer models. In Proceedings of the ICASSP 2021 - 2021 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), Toronto, ON, Canada, 611 June 2021;
pp. 5639-5643. https://doi.org/10.1109/ICASSP39728.2021.9413905.

14. Guo, Z.; Yang, M. TFFC-RNN: A new RNN based approach for bearing and misalignment compound fault.
In Proceedings of the 2022 International Power Electronics Conference (IPEC-Himeji 2022- ECCE Asia),
Himeji, Japan, 15-19 May 2022; pp. 2504-2509. https://doi.org/10.23919/IPEC-Himeji2022-
ECCE53331.2022.9807095.

15. Zhang, X,; Luo, T. ARNN decoder for channel decoding under correlated noise. In Proceedings of the 2019
IEEE/CIC International Conference on Communications Workshops in China (ICCC Workshops),
Changchun, China, 11-13 August 2019; pp. 30-35. https://doi.org/10.1109/ICCChinaW.2019.8849949.

16. Yanagisawa, H.; Yamashita, T.; Watanabe, H. A study on object detection method from manga images
using CNN. In Proceedings of the 2018 International Workshop on Advanced Image Technology (IWAIT),
Chiang Mai, Thailand, 7-9 January 2018; pp. 1-4. https://doi.org/10.1109/IWAIT.2018.8369633.

17. He, X,; Chen, Y. Optimized input for CNN-based hyperspectral image classification using spatial
transformer  network. IEEE Geosci. Remote Sens. Lett. 2019, 16, 1884-1888.
https://doi.org/10.1109/LGRS.2019.2911322.


https://doi.org/10.20944/preprints202409.1055.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 September 2024 d0i:10.20944/preprints202409.1055.v1

25

18. Daanouni, O.; Cherradi, B.; Tmiri, A. NSL-MHA-CNN: A novel CNN architecture for robust diabetic
retinopathy prediction against adversarial attacks. IEEE Access 2022, 10, 103987-103999.
https://doi.org/10.1109/ACCESS.2022.3210179.

19. Wang, L.; Liu, H,; Pan, Z.; Xu, Y.; Fan, D.; Zhou, C.; Li, Y. Temperature demodulation for optical fiber F-P
sensor based on DBNs with ensemble learning. Opt. Laser Technol. 2023, 162, 109275.
https://doi.org/10.1016/j.optlastec.2023.109275.

20. Jiang, D.; Wu, P.; Wang, F.; Sahli, H.; Verhelst, W. Audio visual speech recognition based on multi-stream
DBN models with articulatory features. In Proceedings of the 2010 7th International Symposium on
Chinese Spoken Language Processing, Tainan, Taiwan, 29 November-3 December 2010; pp. 190-193.
https://doi.org/10.1109/ISCSLP.2010.5684915.

21. Chen, D,; Jiang, D.; Ravyse, J.; Sahli, H. Audio-visual emotion recognition based on a DBN model with
constrained asynchrony. In Proceedings of the 2009 Fifth International Conference on Image and Graphics,
Xi’an, China, 20-23 September 2009; pp. 912-916. https://doi.org/10.1109/ICIG.2009.120.

22. Lal Senanayaka, ]J.S.; Van Khang, H.; Robbersmvr, K.G. CNN based gearbox fault diagnosis and
interpretation of learning features. In Proceedings of the 2021 IEEE 30th International Symposium on
Industrial Electronics (ISIE), Kyoto, Japan, 20-23 June 2021; PP- 1-6.
https://doi.org/10.1109/ISIE45552.2021.9576257.

23. Wang, Z.; Zhao, W.; Du, W,; Li, N.; Wang, J. Data-driven fault diagnosis method based on the conversion
of erosion operation signals into images and convolutional neural network. Process Saf. Environ. Prot. 2021,
149, 591-601. https://doi.org/10.1016/j.psep.2021.03.016.

24. Shi, L.; Liu, W.; You, D.; Yang, S. Rolling bearing fault diagnosis based on CEEMDAN and CNN-SVM.
Appl. Sci. 2024, 14, 5847. https://doi.org/10.3390/app14135847.

25. Li, Z; Qin, Z,; Luo, W.; Ling, X. Gasoline engine misfire fault diagnosis method based on improved
YOLOVS. Electronics 2024, 13, 2688. https://doi.org/10.3390/electronics13142688.

26. Liu, Z.; Yu, H; Xu, K;; Miao, X. RMCW: An improved residual network with multi-channel weighting for
machinery fault diagnosis. IEEE Access 2023, 11, 124472-124483.
https://doi.org/10.1109/ACCESS.2023.3328906.

27. Howard A.G.; Zhu M.; Chen B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H.
MobileNets: Efficient convolutional neural networks for mobile vision applications. arXiv preprint, 2017,
arXiv:1704.04861. https://doi.org/10.48550/arXiv.1704.04861.

28. Chollet, F. Xception: Deep learning with depthwise separable convolutions. In Proceedings of the 2017 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21-26 July 2017; pp.
1800-1807. https://doi.org/10.1109/CVPR.2017.195.

29. Xie, S.; Girshick, R.; Dollar, P.; Tu, Z.; He, K. Aggregated residual transformations for deep neural networks.
In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
Honolulu, HI, USA, 21-26 July 2017; pp. 5987-5995. https://doi.org/10.1109/CVPR.2017.634.

30. Zhang, X.; Zhou, X,; Lin, M.; Sun, J. ShuffleNet: An extremely efficient convolutional neural network for
mobile devices. In Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition,
Salt Lake City, UT, USA, 18-23 June 2018; pp. 6848-6856. https://doi.org/10.1109/CVPR.2018.00716.

31. Zhang ], Zhang Q, Qin X, Sun Y. An intelligent fault diagnosis method based on domain adaptation for
rolling bearings under variable load conditions. Proceedings of the Institution of Mechanical Engineers,
Part C: Journal of Mechanical Engineering Science. 2021;235(24):8025-8038. d0i:10.1177/09544062211032995

32. Han, T.; Liu, C;; Wu, L,; Sarkar, S.; Jiang, D. An adaptive spatiotemporal feature learning approach for fault
diagnosis in  complex systems. Mech. Syst.  Signal  Process. 2019, 117, 170-187.
https://doi.org/10.1016/j.ymssp.2018.07.048.

33. Wang, H.;Li, S,; Song, L.; Cui, L. A novel convolutional neural network based fault recognition method via
image fusion of multi-vibration-signals. Comput. Ind. 2019, 105, 182-190.
https://doi.org/10.1016/j.compind.2018.12.013.

34. He, ].; Wu, P,; Tong, Y.; Zhang, X.; Lei, M.; Gao, J. Bearing fault diagnosis via improved one-dimensional
multi-scale dilated CNN. Sensors 2021, 21, 7319. https://doi.org/10.3390/s21217319.

35. Gao, Y.; Kim, CH.; Kim, .M. A novel hybrid deep learning method for fault diagnosis of rotating
machinery based on extended WDCNN and long short-term memory. Sensors 2021, 21, 6614.
https://doi.org/10.3390/s21196614.

36. Te, H,; Liu, C.; Wu, L.; Sarkar, S.; Jiang, D. An Adaptive Spatiotemporal Feature Learning Approach for
Fault Diagnosis in Complex Systems. Mech. Syst. Signal Process. 2019, 117, 170-187.
10.1016/j.ymssp.2018.07.048.

37. Zhang, R; Gu, Y. A Transfer Learning Framework with a One-Dimensional Deep Subdomain Adaptation
Network for Bearing Fault Diagnosis under Different Working Conditions. Sensors 2022, 22, 1624.
https://doi.org/10.3390/s22041624.


https://doi.org/10.20944/preprints202409.1055.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 September 2024 d0i:10.20944/preprints202409.1055.v1

26

38. Zhang, T.; Chen, ]; Li, F.; Zhang, K; Lv, H.; He, S.; Xu, E. Intelligent fault diagnosis of machines with small
& imbalanced data: A state-of-the-art review and possible extensions. ISA Trans. 2022, 119, 152-171.
https://doi.org/10.1016/j.isatra.2021.02.042.

39. Liang, P.; Wang, W.; Yuan, X,; Liu, S.; Zhang, L.; Cheng, Y. Intelligent fault diagnosis of rolling bearing
based on wavelet transform and improved ResNet under noisy labels and environment. Eng. Appl. Artif.
Intell. 2022, 115, 105269. https://doi.org/10.1016/j.engappai.2022.105269.

40. Huang, T., Zhang, Q., Tang, X. et al. A novel fault diagnosis method based on CNN and LSTM and its
application in fault diagnosis for complex systems. Artif Intell Rev 55, 1289-1315 (2022).
https://doi.org/10.1007/s10462-021-09993-z.

41. Hu, B,; Tang, J.; Wu, J.; Qing, J. An attention EfficientNet-based strategy for bearing fault diagnosis under
strong noise. Sensors 2022, 22, 6570. https://doi.org/10.3390/s22176570.

42. Zhang, F.;Yin, Z,; Xu, F; Li, Y.; Xu, G. MAB-DrNet: Bearing fault diagnosis method based on an improved
dilated convolutional neural network. Sensors 2023, 23, 5532. https://doi.org/10.3390/s23125532.

43. Chen, L.; Ma, Y,; Hu, H.; Khan, U.S. An effective fault diagnosis approach for bearing using stacked de-
noising auto-encoder with structure adaptive adjustment. Measurement 2023, 214, 112774.
https://doi.org/10.1016/j.measurement.2023.112774.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.


https://doi.org/10.20944/preprints202409.1055.v1

