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Abstract: Lung and colon cancers are among the leading causes of cancer-related mortality worldwide. Early
and accurate detection of these cancers is crucial for effective treatment and improved patient outcomes. False or
incorrect detection is more harmful. Accurately detecting cancer in a patient’s tissue is crucial to their effective
treatment. While analyzing tissue samples is complicated and time-consuming, deep learning techniques have
made it possible to complete this process more efficiently and a ccurately. As a result, researchers can study
more patients in a shorter amount of time and at a lower cost. Much research has been conducted to investigate
deep learning models that require great computational ability and resources. However, None of these have
had a 100% accurate detection rate for these life-threatening malignancies. Misclassified or falsely detecting
cancer can have more harmful consequences. This research proposes a new lightweight, parameter-efficient, and
mobile-embedded deep learning model based on a 1D convolutional neural network with Squeeze-and-Excitation
layers for efficient lung and colon cancer detection. This proposed model diagnoses and classifies lung squamous
cell carcinomas and adenocarcinoma of the lung and colon from digital pathology images. Extensive experiment
demonstrates that our proposed model achieves 100% accuracy for detecting lung, colon, and lung and colon
cancers from the histopathological (LC25000) lung and colon datasets, which is considered the best accuracy for
around 0.35 million trainable parameters and around 6.4 million flops. Compared with the existing results, our

proposed architecture shows state-of-the-art performance in lung, colon, and lung and colon cancer detection.

Keywords: 1D CNN; Squeeze-and-Excitation networks; RCN; lightweight model; lung and colon cancer detection;
lung cancer detection; colon cancer detection; cancer detection; histopathological images; image classification;

deep learning

1. Introduction

Cancer is a disease in which cells grow uncontrollably and spread throughout the body [1].
Trillions of cells are living in a healthy body. Normal cells unceasingly reproduce only if needed and
instructed by other cells, ensuring fixed sizes of each tissue. On the other hand, cancer cells, with
their ability to migrate, invade nearby tissues and thus increase the masses of tissue [2]. These cells
can develop tumors that can be malignant or benign. Cancerous tumors, which are also known as
malignant tumors, invade neighboring tissues and travel throughout the body to generate new tumors
(a process known as metastasis). Many malignancies produce solid tumors, while blood cancers, such
as leukemia. Benign tumors don’t spread to or infect surrounding tissues. They barely reproduce after
removal, although malignant tumors do. However, benign tumors can grow quite large. Some, like
benign brain tumors, can cause severe symptoms or even death [3].

According to the World Health Organization (WHO), there were estimated about 20 million
new cancer diagnoses and 9.7 million fatalities in 2022 [4]. After a cancer diagnosis, an estimated
53.5 million people are expected to survive for five years. About one in every five individuals will
experience cancer in their lifetime, and the disease is fatal for one in every nine men and one in every
twelve women. According to an estimation from the IARC’s Global Cancer Observatory, the three
most common cancer types worldwide in 2022 were lung, breast, and colorectal cancers. The data
covered 185 nations and 36 different types of cancer, and it showed that ten specific cancers account
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for around two-thirds of all new cases and fatalities worldwide. Lung cancer led the list, accounting
for 2.5 million in new cases, or 12.4% of all new cancer cases. Breast cancer was in second with 2.3
million cases (11.6%), followed by colorectal cancer with 1.9 million (9.6%). Other primary cancers
were prostate cancer (1.5 million cases) and stomach cancer (970, 000 instances). In terms of mortality,
lung cancer was the leading cause, accounting for 1.8 million in fatalities (18.7% of total cancer deaths),
followed by colorectal cancer, liver cancer, breast cancer, and stomach cancer. The high incidence of
lung cancer, particularly in Asia, is associated with continued tobacco use. There were significant
disparities in cancer incidence and death between sexes. Breast cancer was the most often diagnosed
cancer and the leading cause of cancer mortality in women, whereas lung cancer held both distinctions
in males. Prostate and colorectal cancers are the most common diagnoses in men after lung cancer, and
liver and colorectal cancers are the second and third leading causes of death, respectively. In women,
lung and colorectal cancers are the second and third most common causes of new cases and fatalities,
respectively. In 2024, it is expected that there will be 2,001, 140 in new cancer cases in the United States,
with 611,720 in deaths from the disease. For men, prostate, lung, and colorectal cancers are predicted
to account for 48% of all cancer cases. Similarly, breast, lung, and colorectal cancers are expected to
account for 51% of all diagnoses in women, indicating their widespread influence on the population
[3].

Cancer cells differ significantly from normal cells. They can develop without external growth
signals, whereas normal cells require such signals to divide. They also disregard signals that generally
stop cell division, trigger apoptosis, or programmed cell death. Furthermore, cancer cells invade
neighboring tissues and can spread to other areas of the body, but normal cells stick to their specific
territory and rarely move. They can stimulate the growth of blood vessels, leading to tumors and
providing a continuous supply of nutrients and oxygen while assisting in waste removal. These cells
can also evade the immune system, which typically destroys aberrant cells, and influence immunologi-
cal responses to promote their survival and growth. Furthermore, cancer cells often have significant
chromosomal changes, including duplication and deletion, and may have double the number of
chromosomes as normal cells. They also absorb and utilize nutrients differently, enabling faster growth
and multiplication compared to other cells [3].

Carcinomas, the most prevalent type of cancer, are caused by epithelial cells that cover both the
internal and external surfaces of the body. Under a microscope, these cells generally appear to be
column-shaped. Various carcinomas are called after the kind of epithelial cell involved. Adenocarci-
noma develops from epithelial cells that produce fluids or mucus and is common in breast, colon, and
prostate cancers. Basal cell carcinoma begins in the basal layer of the epidermis, the skin’s outermost
layer. Meanwhile, squamous cell carcinoma develops from squamous cells, which are flat and scale-like
and found just beneath the skin’s surface and lining various organs such as the stomach, intestines,
lungs, bladder, and kidneys. This form is also known as epidermoid carcinoma. Adenocarcinoma,
squamous cell carcinoma, and large cell carcinoma are identified as non-small cell lung cancer (NSCLC)
due to their similarities in treatment and prognoses. They accounted for 85% of lung cancer types. On
the other hand, small cell lung cancer (SLCL) took up to 15%. SCLC grows and spreads much faster
than NSCLC, and when patients are diagnosed, the cancer has already spread beyond the lungs [5].

Colorectal cancer occurs when cells in the colon or rectum grow out of control, which is also
known as “colon cancer”. Abnormal growths, known as polyps, can arise in the colon or rectum.
Over time, certain polyps may develop into cancer. Cancer cells spread from the innermost layer
of the colon and rectum’s wall to the outer layers. Even though colorectal cancer can be completely
treated if detected early, it can still spread to other organs, especially the lungs, which is known as
lung metastasis. The American College of Surgeons found that of 50% colon cancer patients, 18% of
them are spread to the lungs. That is, a patient with colon cancer might have a high chance of having
lung cancer synchronously [6].

Symptoms can manifest in the very early stages of cancer. However, they are often not significantly
noticeable as these symptoms are commonly mistaken for a common cold or flu, displaying signs
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such as loss of appetite and coughing. This underscores the importance of regular screening tests
to detect and remove abnormalities such as polyps before they develop into cancer. Imaging tests
or histopathology images, such as X-rays, ultrasound, MRI, and CT scans, create detailed internal
body images. These tests serve multiple purposes: identifying potential cancer locations, measuring
cancer spread, assessing ongoing treatment effectiveness, and monitoring for cancer reappearance
post-treatment. A Computed Tomography (CT or CAT) scan, which uses X-rays to produce accurate
cross-sectional pictures, is particularly useful in diagnosing whether colon cancer has spread to lymph
nodes or essential organs such as the liver, lungs, or others. In the past, doctors had to go through a
lengthy and laborious procedure to review histological pictures and identify cancer cases; however,
with the continuous development of technology, this process may now be completed much faster with
the vital assistance of Artificial Intelligence (AI) [7].

Al has shown exceptional abilities in medical diagnosis, analyzing various tests such as CT
scans, MRI scans, X-rays, blood tests, and biopsies using Al techniques. However, this paper also
analyzes test images using our proposed architecture. The diagnostic process involves collecting
samples and integrating and interpreting information to provide a diagnosis, which forms the basis for
implementing the appropriate treatment plan. Given that people are prone to errors, it is not surprising
that overdiagnosis is more common among patients, leading to unnecessary treatment and impacting
health and the economy [8]. Al can significantly aid the healthcare system in timely and accurately
identifying and diagnosing diseases. A branch of Al, machine learning (ML), focuses on using data as
input resources [9] and performs tasks without explicit programming. Healthcare experts implement
the most recent machine learning in triage to highlight abnormal cells and prioritize life-threatening
patients [10]. Applying specified mathematical functions produces a result (classification or regression)
often impossible for people to achieve [8]. The evolution of deep learning (DL) algorithms has enabled
machines to evaluate complicated, high-dimensional data, such as images, multidimensional anatomy
scans, and videos. DL, a subset of Machine Learning (ML), is a collection of algorithms meant to
replicate the structure and function of the human brain. This improves their capacity to comprehend
and learn from massive quantities of data [11]. DL algorithms can identify patterns and abnormalities
that may not be visible to the human eye. In recent decades, DL has optimized using artificial neural
networks (ANNSs), support vector machines (SVMs), etc., to improve its pattern identification abilities.
This paper introduces a novel mobile-embedded deep learning architecture with a 1D convolutional
neural network (CNN) and Squeeze-and-Excitation layers to detect lung and colon cancer from the
histopathological images dataset (LC25000). Our proposed model achieved state-of-the-art accuracy
in detecting cancerous cells and promises to bring this advancement to global healthcare for better
medical diagnostics.

The rest of the paper is organized in the following order. Section 2 provides an insight into
previous works that contribute to our achievement in this paper. Section 3 briefly overviews the
techniques to construct our proposed model. Section 4 elaborates our CNN model architecture. Section
5 details the methods used to evaluate the results. Section 6 outlines the dataset and methodologies
and reports the potential outcome of our research. Finally, Section 7 discusses the work that has been
done in this article as well as promising future works.

2. Related Works

2.1. Colon Cancer

Sena et al. [12] took a “direct’ method, labeling raw photos rather than segmenting them in 2019.
A total accuracy of 95% was reached, with most mislabeling related to a nearby category. Tests on an
external dataset with a different resolution produced more than 80% accuracies. This study proved
that a properly trained neural network may give fast, accurate, and reproducible labeling for colon
cancer images, thereby improving the quality and timeliness of medical diagnostics. In 2019, Yoon
et al. developed some improved systems based on the Visual Geometry Group (VGG), which won


https://doi.org/10.20944/preprints202409.1042.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 September 2024 d0i:10.20944/preprints202409.1042.v1

40f28

the classification task in the 2014 ImageNet Large Scale Visual Recognition Competition (ILSVRC),
and performed two tests [13]. Firstly, they found the optimal modified VGG configuration for their
incomplete dataset, yielding 82.50%, 87.50%, 87.50%, 91.40%, and 94.30% accuracies. And, the second
experiment used the best adjusted VGG configuration to assess the performance of the CNN model.
Their proposed modified VGG-E configuration demonstrated the highest performance in terms of
accuracy, loss, sensitivity, and specificity, achieving 93.48% accuracy, a loss of 0.4385, 95.10% sensitivity,
and 92.76% specificity across the entire dataset. In a study in 2019, Kather et al. looked into whether
deep convolutional neural networks (CNNSs) might derive prognosticators directly from these widely
available photos [14]. They manually identified single-tissue regions in 86 CRC tissue slides from 25
CRC patients, giving over 100,000 HE image patches, and utilized these to train a CNN using transfer
learning, achieving a accuracy of more than 94%.

Wei et al. proposed a paper in 2020 where the prognostic analysis used histopathologic slides
gathered from Dartmouth-Hitchcock Medical Center in Lebanon, New Hampshire [15]. This dataset
consisted with 326 slides for training, 157 for internal evaluation, and 25 for validation. The deep
neural network had a mean accuracy of 93.5% (95% CI, 89.6%-97.4%) in the internal evaluation of
157 slides compared to local pathologists” accuracy of 91.4% (95% Cl, 87.0%-95.8%). For the external
data collection, 238 slides for 179 different patients were received from 24 institutions in 13 states.
The deep neural network attained an accuracy of 87.0% (95% CI, 82.7%-91.3%) comparable to the
accuracy of local pathologists of 86.6% (95% CI, 82.3%-90.9%) on the external dataset. In 2020, lizuka et
al. trained convolutional neural networks (CNNs) and recurrent neural networks (RNNs) on biopsy
histopathology whole-slide images (WSIs) from the stomach and colon [16]. The models were taught to
categorize WSI as adenocarcinoma, adenoma, or non-neoplastic. They examined their models on three
separate test sets, reaching AUCs of 0.96 and 0.99 for colonic cancer and adenoma, respectively. The
results show that their models are generalizable and have considerable potential for use in a practical
histopathological diagnostic workflow system. In the same year, Xu et al. introduced a deep learning-
based technique for colorectal cancer identification and segmentation using digitized H&E-stained
histology slides [17]. This study showed that the neural network approach achieves a median accuracy
of 99.9% for normal slides and 94.8% for cancer slides when compared to pathologist-based diagnosis
using H&E-stained slides digitized from clinical samples.

In 2021, Hamida et al. published research where they proposed two DL models using CNN-based
histopathological image classification to diagnose colon cancer [18]. They achieved impressive patch-
level classification results, with ResNet reaching a 96.98% accuracy rate. Their ResNet model evaluated
on CRC — 5000, nct — crc — he — 100k, and merged datasets and showed the effectiveness with accuracy
rates of 96.77%, 99.76%, and 99.98%, respectively. They evaluated these datasets with SegNet and
achieved accuracy rates of 98.66%, 99.12%, and 78.39%, respectively. Researchers, including Babu
and Tina, worked on automatically extracting high-level characteristics from colon biopsy images
for automated patient diagnosis and prognosis using transfer learning architectures for colon cancer
detection this year [19]. This study utilized a pre-trained CNN to extract visual features, which are then
used to train a Bayesian optimal Support Vector Machine classifier. Furthermore, this optimal network
for colon cancer detection was examined using pre-trained neural networks such as Inception-V3,
VGG-16, and Alexnet. Additionally, four datasets are tested to assess the proposed framework: two
are from Indian hospitals and are categorized as different magnifications (4X, 10X, 20X, and 40X),
while the other two are public datasets of colon images. Based on public datasets analysis using the
above-mentioned models, the Inception-V3 network achieved an accuracy range of 96.5% to 99%
and outperformed the other tested frameworks. Tasnim et al. used CNN with pooling layers and
MobileNetV2 models for colon cell image categorization [20]. The models are trained and tested at
different epochs to determine the learning rate. The max pooling and average pooling layers were
found to be 95.48% and 97.49% accurate, respectively. MobileNetV2 surpasses the other two models,
with the highest accuracy of 99.67% and a data loss rate of 1.24.
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Sakr et al. proposed a lightweight deep learning method in 2022, utilizing CNNSs to efficiently
detect colon cancer histopathological images and normalizing input before training [21]. The system
achieved an accuracy of 99.50%, which was considered remarkable after comparative analysis with
existing methods, highlighting its potential for improving colon cancer detection. Hasan et al. also
used CNN s to analyze digital images of colon tissue to accurately classify adenocarcinomas in 2022 [22].
Automated Al diagnosis could accelerate assessments and reduce associated costs, leveraging modern
DL and digital image processing techniques. The results showed accuracy rates of up to 99.80%,
indicating that implementation of this approach could lead to automated systems for detecting various
forms of colon cancer. This year, Talukder et al. introduced a hybrid ensemble feature extraction
model aimed to efficiently detect colon cancer using machine learning and deep learning techniques
[23]. Integrating deep feature extraction and ensemble learning with high-performance filtering for
cancer image datasets, the computer-based model achieved impressive accuracy rates of 100% for
colon cancer detection on the histopathological LC25000 dataset.

The study done by Bostanci’s research team in 2023 analyzed RNA-seq data from extracellular
vesicles of healthy individuals and colon cancer patients to develop predictive models for cancer
presence and stage classification [24]. The study achieved high accuracy rates by utilizing both
canonical machine learning and deep learning classifiers, including KNN, LMT, RT, RC, RE, 1-D CNN,
LSTM, and BiLSTM. Canonical ML algorithms reached up to 97.33% accuracy for cancer prediction
and 97.33% for cancer stage classification, while DL models achieved 97.67% and 98% accuracies,
respectively. The results indicate that both ML and DL models can effectively predict and classify
colon cancer stages, varying their performance depending on the number of features.

2.2. Lung Cancer

In 2019, Zhang et al. introduced a three-dimensional CNN that detects and classifies lung nodules
as malignant or benign based on histological and laboratory results [25]. The well-trained model has
a sensitivity of 84.4% (95% CI, 80.5%-88.3%) and specificity of 83.0% (95% CI, 79.5%-86.5%). Smaller
nodules (<10 mm) have high sensitivity and specificity compared to bigger nodules (10-30 mm).
Manual assessments from various doctor grades were compared to three-dimensional CNN results to
validate the model. The results suggest that the CNN model outperformed the manual assessment.
Pham et al. created a revolutionary two-step deep learning system to address the problem of false-
positive prediction while retaining accurate cancer diagnosis [26]. Three hundred and forty-nine
whole-slide lung cancer lymph node pictures were gathered, including 233 slides for training, 10
for validation, and 106 for testing. The first step was using a deep learning algorithm to exclude
often misclassified noncancerous areas (lymphoid follicles). The second phase involved developing a
deep-learning classifier to detect cancer cells. These two-step strategies decreased errors by 36.4% on
average and up to 89% on slides containing reactive lymphoid follicles. Furthermore, 100% sensitivity
was achieved in macro-metastases, micro-metastases, and isolated tumor cells.

Gertych et al. developed a pipeline that used a CNN and soft-voting as the decision function
to identify solid, micro-papillary, acinar, and cribriform growth patterns, as well as non-tumor areas
[27]. Slides from the main LAC were received from Cedars-Sinai Medical Center (CSMC), the Military
Institute of Medicine in Warsaw, and the TCGA portal. Several CNN models trained with 19,924 image
tiles taken from 78 slides (MIMW and CSMC) were tested on 128 test slides from the three locations
based on F1-score and pathologist-manual tumor annotations. The best CNN produced F1 scores of
0.91 (solid), 0.76 (micropapillary), 0.74 (acinar), 0.6 (cribriform), and 0.96 (non-tumor), respectively. The
overall accuracy in recognizing the five tissue classifications was 89.24 percent. Slide-based accuracy
in the CSMC set (88.5%) was considerably higher (p<2.3E-4) than in the MIMW (84.2%) and TCGA
(84%), indicating superior slide quality. Hatuwal & Thapa proposed a CNN to categorize an image
as benign, adenocarcinoma, or squamous cell carcinoma in 2020 [28]. The model achieved 96.11%
and 97.20% accuracies during training and validation, respectively. The model’s performance was
evaluated using precision, f1-score, recall, and a confusion matrix.
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Saif et al. sought to use and modify the current pre-trained CNN-based model to detect lung
and colon cancer using histopathology pictures and improve augmentation strategies [29]. Eight
distinct pre-trained CNN models were trained on the LC25000 dataset: VGG16, NASNetMobile,
InceptionV3, InceptionResNetV2, ResNet50, Xception, MobileNet, and DenseNet169. The model’s
performance is evaluated using precision, recall, f1-score, and accuracy. GradCAM and SmoothGrad
were used to represent the pre-trained CNN models” attention images that identify malignant and
benign images. After training and testing on 1500 photos, the suggested model achieved an overall
accuracy of 98.53%, whereas the VGG16 model achieved 96.67%. The proposed model had a sensitivity
of 97.4% for adenocarcinoma, 99.6% for benign, and 98.6% for squamous cells. Abbas et al. used
several off-the-shelf pre-trained (on ImageNet data set) CNNss to classify the histopathological slides
into three classes: lung benign tissue, squamous cell carcinoma, and adenocarcinoma [30]. The F-1
scores of AlexNet, VGG-19, ResNet-18, ResNet-34, ResNet-50, and ResNet-101 on the test dataset
showed the results of 0.973, 0.997, 0.986, 0.992, 0.999, and 0.999, respectively. Srinidhi et al. created the
first deep learning-based classifier to classify lung adenocarcinoma, lung squamous cell carcinoma,
small cell lung carcinoma, pulmonary tuberculosis, organizing pneumonia, and normal lung in 2021
[31]. The EfficientNet-B5 model outperformed ResNet-50 and was chosen as the classifier’s backbone.
Four medical centers tested 1067 slides with a classifier showing consistently high AUCs of 0.970, 0.918,
0.963, and 0.978. The intraclass correlation coefficients were greater than 0.873. In the same year, Han et
al. used 50 top-ranked feature subset selection techniques for categorization [32]. The LDA (AUROC:
0.863; accuracy: 0.794) and SVM (AUROC: 0.863; accuracy: 0.792) classifiers, along with the I, {NR
feature selection approach, performed optimally. Our investigation found that the random forest (RF)
classifier (AUROC: 0.824; accuracy: 0.775) and the I, 1NR feature selection approach (AUROC: 0.815;
accuracy: 0.764) performed well on average. Furthermore, the VGG16 DL algorithm (AUROC: 0.903;
accuracy: 0.841) beat all other machine learning methods when combined with radiomics.

In a work in 2021, P Marentakis et al. wanted to look at the potential of NSCLC histological
classification into AC and SCC using various feature extraction and classification approaches on
pre-treatment CT scans [33]. The picture dataset used (102 patients) was obtained from the publicly
available cancer imaging archive collection (TCIA). They looked at four different technique families:
(a) radiomics with two classifiers (kNN and SVM), (b) four cutting-edge CNNs with transfer learning
and fine tuning (Alexnet, ResNet101, Inceptionv3, and InceptionResnetv2), (c) a CNN combined with
a long short-term memory (LSTM) network to fuse information about the spatial coherency of tumor
CT slices, and (d) combinatorial models (LSTM + CNN + radiomics). Additionally, two qualified
radiologists independently assessed the CT pictures. Our findings indicated that Inception was the
best CNN (accuracy = 0.67, auc = 0.74). LSTM + Inception outperformed all other algorithms (accuracy
=0.74, auc = 0.78). Additionally, LSTM + Inception beat experts by 7 — 25% (p < 0.05).

Abdul Rahaman Wahab Sait developed a deep-learning model for lung cancer detection using
PET/CT images comprising 31,562 annotated images in 2022 [34]. He addressed challenges like
computational complexity by employing techniques such as preprocessing, augmentation, and model
optimization. A CNN-based DenseNet-121 and MobileNetV3 models were constructed to extract
features and identify the types of lung cancer. His model achieved a high accuracy of 97.5% and a
Cohen’s Kappa value of 95.8 with fewer parameters and can potentially aid in early-stage lung cancer
detection. In 2022, Shandilya and Nayak formulated a computer-aided diagnostic (CAD) approach
for classifying histopathological images of lung tissues [35]. Utilizing a publicly available dataset
of 15,000 samples of histopathological photographs, they extracted image features and assessed
seven pre-trained convolutional neural network models, including MobileNEt, VGG-19, ResNet-101,
DenseNet-121, DenseNet-169, InceptionV3, Inception ResNet-V2, and MobileNetV2 for the 15,000
samples of histopathological images classification. Among them, ResNet-101 attained the highest
accuracy of 98.67%. In the same year, Ameer et al. developed a deep learning model for automated lung
cancer cell detection in histopathological tissue images [36]. They used several models encompassing
InceptionV3, Random Forest, and CNNs. These models were trained meticulously to extract important
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features from the images, thereby improving the efficiency and accuracy of lung cancer cell detection.
The proposed model achieved remarkable accuracy of 97.09%, precision of 96.89%, recall of 97.31%,
F-score of 97.09%, and specificity measures of 96.88%.

In 2023, Priyadarsini et al. proposed a framework designed to detect and categorize lung cancer
using deep learning models trained on X-ray and CT scan images [37]. Three deep learning models -
sequential, functional, and transfer models, were implemented and trained on open-source datasets to
improve patient treatment. Emphasizing deep learning methods, particularly CNNS, they extracted
specific features from image datasets. The Functional model stood out with 99.9% accuracy and 99.89%
specificity for lung cancer detection while requiring fewer parameters and computational resources
than existing models. Siddiqui et al. introduced a pioneering method for lung CT image classification,
focusing on enhancing efficiency and accuracy in 2023 [38]. The method employed an enhanced
Gabor filter for pre-processing, reducing parameters using Gauss-Kuzmin distribution to maintain
detail while minimizing computational load. Feature selection was conducted via an enhanced deep
belief network (E-DBN) with two cascaded restricted Boltzmann machines (RBMs), followed by
evaluation with five classifiers, leading to the selection of a support vector machine (SVM) for optimal
performance. Experimental results demonstrate superior accuracy and sensitivity compared to existing
methods, with the proposed approach achieving an F1 score of 99.37% and accuracy of 99.424%.
These findings suggest promising advancements in lung cancer diagnosis through advanced image
processing techniques. Wahid et al. proposed a CAD in 2023 utilizing CNNs to detect lung cancer
within the LC25000 dataset, encompassing 25,000 histopathological color image samples [39]. Four
CNN models, including ShuffleNet-V2, GoogLeNet, ResNet-18, and a customized CNN model, were
used. Among them, ShuffleNet-V2 achieved the highest accuracy of 99.87% and exhibited the shortest
training time of 1202.3 seconds.

2.3. Lung and Colon Cancer

A study by Masud et al. aims to offer a computer-aided diagnosis system for diagnosing squamous
cell carcinomas, lung adenocarcinomas, and colon adenocarcinomas using convolutional neural
networks and digital pathology pictures in 2020 [40]. A shallow neural network design was employed
to identify the histological slides as squamous cell carcinomas, adenocarcinomas, or benign lung. A
similar methodology was used to classify adenocarcinomas and benign colon tumors. The diagnosis
accuracy for the lung and colon was around 97% and 96%, respectively. Garg et al. also published a
work in 2020 that seeks to use and modify the current pre-trained CNN-based model to detect lung
and colon cancer using histopathology pictures and improved augmentation strategies [41]. This
article trained eight distinct pre-trained CNN models on the LC25000 dataset: VGG16, NASNetMobile,
InceptionV3, InceptionResNetV2, ResNet50, Xception, MobileNet, and DenseNet169. The model’s
performance is evaluated using precision, recall, f1-score, accuracy, and auroc scores. The results show
that all eight models achieved significant outcomes, ranging from 96% to 100% accuracy. GradCAM
and SmoothGrad are then utilized to represent the attention images of pre-trained CNN models that
identify malignant and benign images.

Ali et al. presented a novel multi-input dual-stream capsule network in 2021 that uses the
powerful feature learning capabilities of conventional and separable convolutional layers to classify
histopathological images of lung and colon cancer into five categories (three malignant and two
benign) [42]. They pre-processed the dataset using a novel color balancing technique that attempts to
adjust three color channels before gamma correction and sharpening the most noticeable features. The
suggested model was given two inputs simultaneously (one with original photos and the other with
pre-processed images), allowing it to learn features more effectively. The provided findings reveal that
the model has an overall accuracy of 99.58% and a f1-score of 99.04%.

In a research published in 2021, Mehedi et al. described a unique DL-based supervised learning
approach that uses pathological image analysis to identify five distinct tissue types (two non-cancerous,
three cancerous) present in lung and colon tumors [40]. The LC25000 dataset was utilized for both
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training and validation techniques. Two different kinds of domain transformations were used to
obtain four sets of features. The resulting features were concatenated to create a combined collection
of features with both kinds of information. The results confirm that the model is accurate and reliable
(96.38% F-measure score) for identifying lung and colon cancer, with a peak classification accuracy of
96.33%.

In 2022, Hage et al. developed CADs using artificial intelligence to accurately classify different
types of colon and lung tissues based on histopathological images [43]. The researchers utilized ma-
chine learning models, including XGBoost, SVM, RF, LDA, MLP, and LightGBM, to classify histopatho-
logical images that they got from the LC25000 dataset. The results showed that models achieved
satisfactory accuracy and precision in identifying lung and colon cancer subtypes, among which the
XGBoost model performed the best, with an accuracy of 99% and an F1-score of 98.8%. Talukder et
al. developed a hybrid ensemble model for the efficient detection of lung and colon cancer, which
combined deep feature extraction and ensemble learning techniques to analyze histopathological
image datasets using a set of metrics (LC25000) [23]. The model was evaluated using high-performance
filtering and achieved high accuracy rates for detecting lung and colon cancer of 99.30%. Mehmood et
al. also developed a highly accurate and computationally efficient model for the rapid and precise
diagnosis of lung and colon cancer in 2022 [44]. They utilized a dataset consisting of 25,000 images
divided into five classes. To train the model, they modified four layers of the pre-trained neural
network, AlexNet, and achieved an overall accuracy of 89%. They further enhanced the image quality
through contrast enhancement techniques, resulting in an improved accuracy of 98.4%.

In 2023, Singh et al. presented an ensemble classifier that combined random forest, support vector
machine (SVM), and logistic regression [45]. The deep features from lung and colon cancer images,
obtained from the LC25000 dataset, were extracted using VGG16 and binary pattern methods. These
methods yielded the initial relevant features for the ensemble classifier. The proposed methodology
achieved an average accuracy of 99%, precision of 99%, and recall of 98.8%. Bhattacharya et al.
proposed a framework that combined deep learning and meta-heuristic approaches for the accurate
prediction of lung and colon cancer from histopathological images in which they trained deep learning
models, ResNet-18 and EfficientNet-b4-wide, on the LC25000 dataset and extracted deep features [46].
They developed the AdBet-WOA hybrid meta-heuristic optimization algorithm to remove redundancy
in the feature vector. They used the SVM classifier to distinguish lung and colon cancer, achieving
an impressive accuracy of 99.96%. Al-Jabbar et al. developed three strategies, each with two systems,
to analyze the dataset in 2023 [47]. The GoogLeNet and VGG-19 models were used to enhance the
images and increase the contrast of affected areas, followed by dimensionality reduction using the
PCA method to retain essential features. They used ANN with fusion features of CNN models and
handcrafted models and reached a high sensitivity of 99.85%, precision of 100%, accuracy of 99.64%,
specificity of 100%, and AUC value of 99.86%, indicating the effectiveness of the proposed approach
for the early diagnosis of lung and colon cancer.

3. Background Works

3.1. Residual 1D Conwvolution Networks

Residual 1D convolution networks (RCNs), as shown in Figure 4a, is a technique introduced by
Shahadat and Maida where 2D convolution operation is replaced by 1D CNN layers with residual
connections [51]. Residual blocks in this particular network type focus on learning residual functions
rather than full transformations. They operate over one-dimensional data, such as a time-series signal,
where the convolutional filter moves along the time axis. Its architecture comprises an input layer
for 1D sequential data, convolutional layers with activation functions, residual connections for skip
connections, a pooling layer for downsampling the sequence, and fully connected layers for final
classification. The 1D CNN layer processes 1D input at a time (X € H or X € W) whereas 2D CNN
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X
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1x1 conv2d | 128, 1x1 Conv2d, 64 |
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(a) Residual bottleneck block. (b) SqueezeNext block. (c) Fire block in SqueezeNet.
Figure 1. Illustration of (a) ResNet bottleneck block [48], (b) SqueezeNext block [49], and (c) SqueezeNet
file module [50].

layer takes (X € H x W). This way the input cost becomes 2H instead of H?, and the operation is
explained by the equation given as,

CO(i,n): Z Wa,nXi+u—1,n 1)
ﬂENk(i)

where the neighborhood of pixel i with a spatial extent of k is Ny € R¥*%n and trainable weight
W € RE*dourxdin is the shared weight to compute the output for all pixel positions i. Additionally, the
n-th channel of the trainable weight W is applied to the n-th channel of the input X in order to generate
the n-th channel of the output feature map Cp, where the computational cost is calculated as,

COStlD =h- dout -k (2)

The total cost is multiplied by 2 for the two 1D CNN layers. This type of network is used to mitigate the
vanishing gradient problem, making it easier to train deep networks and helping in learning identity
mappings.

3.2. Squeeze-and-Excitation Networks

Squeeze-and-Excitation Network (SENet) is designed to improve CNNs by capturing channel
interdependencies with minimal computational overhead [50]. SENet introduces parameters to each
channel within a convolutional block, enabling the network to adaptively adjust the weighting of each
feature map. The network gives equal weight to each channel when generating the output feature
maps. It consists of two main operations named as “squeeze” and “excitation”. During the Squeeze
operation, the spatial dimensions of input feature maps are reduced while retaining the channel-wise
information. This process involves generating a channel descriptor and usually includes global pooling
operations. On the other hand, the excitation operation utilizes the channel descriptor to calculate
channel-wise scaling factors that determine how much emphasis should be placed on each channel.
The factors are computed using a small neural network, such as ReLU or sigmoid. It can be constructed
for any transformation as,

Fe:X = U, XeRHXWXC ¢ REXWxC (3)
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Figure 2. SqueezeNet block [50].

where F is a convolutional operator. If we suppose that V = [v1,0y,...,0¢] is a set of learned filter
channels, then we can write the outputs of Fy as U = [uq, Uy, ..., uc], where

C/
chUC*XZZUf;*Xs 4)
s=1

In the equation above, * represents convolution. v{ is a 2D spatial kernel. It acts as a single channel
of v., which operates on the corresponding channel of X. The output is the result of a summation
across all channels, encompassing channel dependencies within v.. However, these dependencies are
intertwined with the spatial correlation captured by the filters. The SENet is shown in Figure 2.

3.3. SqueezeNext Architecture

SqueezeNext architecture is a compact network designed to be trained with few model parameters
from the beginning, rather than relying on compression methods to reduce the parameter count. One
of the methods used by the SqueezeNext architecture to implement this efficiently is utilizing low-
rank filters. Assuming that the input to the i-th layer of the network with K x K convolution filters
is X € RF*Wxdin_ the output activation of Y € RF*Wxdout i5 produced. This layer transformation
consumes K2 - d;;, - doys cost and the filters would consist of d,; tensors of size K x K x d;,. The goal
is to reduce the parameters, W, using a low-rank basis, W in post-training compression. However,
upon examining the trained network weights, it becomes evident that they usually do not exhibit
a low-rank structure. Therefore, many networks necessitate some form of retraining. Instead of
doing that, redesigning the network using the low-rank decomposition from the outset encourages
the network to learn a low-rank structure from the beginning. This is the strategy adopted by the
SqueezeNext architecture. Firstly, they decompose the K-convolutions into two separable convolutions
of size 1 x K and K x 1 which reduces the number of parameters from K? to 2K and also increases
the network’s depth. Both of these convolutions have a ReLU activation and a batch normalization
layer [49]. The block diagram is depicted in Figure 1b. This SqueezeNext block is stacked together to
construct SequeezeNext network architecture, a 23-layer network architecture is depicted in Figure 3.

3.4. Residual 1D block with SE layer

Introduced by Shahadat, "Squeeze-and-Excitation based 1D Convolutional Networks" (SECs)
represent a parameter-efficient, mobile-embedded deep learning architecture. The SEC architecture,
shown in Figure 4b, replaces the 1D CNN layer with a Squeeze-and-Excitation (SE) block to enhance
cost efficiency and reduce computational complexity [52]. As the SEC replaces an RCN layer in RCNs,
the cost reduction is directly analyzed between these two layers. The cost comparison between the
computational costs of the residual 1D CNN and the SE block is expressed as:

Costipenn _ h-din -k _ h-k
COStSE-layer i - dout dout

)

Costg =
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Figure 3. SqueezeNext network architecture (23 layers) [49].

which equals %, where: - Costp is the ratio comparing the computational costs between the
original residual 1D convolutional layer and the SE block. Also, k is the kernel, d;,,, and d,,+ denote the
number of input and output channels.

3.5. Reduced CNN layer Network

A reduced CNN layer network functions similarly to traditional CNNs, achieving comparable
performance while minimizing computational cost and model size [53]. The bottleneck, SENets, and
channel squeezing are network architectures that utilize reduced CNN layers. The fundamental
architecture of ResNet includes the basic residual block, which consists of two 3 x 3 convolutional
layers and a residual connection. A bottleneck residual block also incorporates a 1 x 1 convolution,
depicted in Figure 1a. The computational cost of the basic block is twice the cost of the spatial CNN
layer, which is 2 - h% - d;, - doyt - k2. Another essential component of the ResNet architecture is the
bottleneck layer, which includes two pointwise convolution layers: first, known as the ConvDown
layer, and final, known as the ConvUp layer. The first layer reduces d;,,, passed through the spatial
convolution layer, whereas the final layer is responsible for increasing d,; of the spatial CNN layer. In
the reduced CNN block, this ConvUp layer in SEC [52] is replaced by the channel concatenation layer
shown in Figure 4c.

4. Proposed Architecture

The proposed parameter-efficient architecture is a novel, lightweight, mobile-embedded network
designed for the accurate detection of lung and colon cancer subtypes using histopathological images.
The primary objective of this architecture is to reduce computational costs while maintaining high
accuracy, making it suitable for deployment on mobile devices. We utilize a combination of residual
1D convolutional neural networks (Conv1D) [51] and Squeeze-and-Excitation (SE) [50] blocks as
their fundamental building blocks and construct our proposed block architecture, depicted in Figure
4d. Unlike traditional 2D CNNs, which are computationally expensive, the proposed architecture
employs 1D CNNs along the width axis, called residual 1D CNN (RCN) [51]. SE blocks are integrated
into the architecture to implement a channel-wise attention mechanism. This mechanism allows the
network to selectively emphasize important channels and suppress less relevant ones, improving
feature representation and overall efficiency.

Regarding computing, our suggested architecture is more economical than the lightweight
SqueezeNext block [49]. We only used one instead of the two pointwise CNN layers in the SqueezeNext
block. Savings of at least I X w X djj; X doy costs are beneficial. We use the RCN and SE layers to

d0i:10.20944/preprints202409.1042.v1
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(a) Residual 1D CNN s block [51]. layer (SEC) [52].
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(c) Reduced CNN layers block [54,55]. (d) Proposed block.
Figure 4. Illustration of (a) RCN block [51], (b) Residual 1D CNNs block with SE layer [52], (c) Reduced
CNN layers block [54,55], and (d) Our proposed block constructed with residual 1D CNN and SE
layers.

replace the two separable CNN layers (3 x 1 and 1 x 3). These changes’ cost comparisons are described
as follows:

Costof 3 x 1CNN+ Costof 1 x 3 CNN _ h-w-diy-doyr -k h-w-diy, - doys - k hedi hew ek
Cost of RCN Cost of SE — Block w-doyt - k diy - dout m
(6)
where the number of input channels, height, width, and output height are represented by the variables
din, h, w, and d,y¢, the kernel size is k. Equation 6 shows that our proposed blockis h-dj, +h-w - k
times more cost-effective than the separable CNN layers in the SqueezeNext block.
Our modifications are not limited to these. To decrease the complexity of the network, we also
replace the ConvUp layer (the 1 x 1 CNN layer is used to increase the number of output channels) using
channel concatenation. The absence of the channel-based weight layer from our channel concatenation

results in decreased performance attributed to the pointwise CNN layer. We employ the SE layer,

Costg =
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which helps to improve performance by utilizing a channel-wise attention method, to get around this
restriction. In addition, this SE layer is less expensive than the 1 x 1 CNN layer, which is described as,

Costof 1 x1CNN _ h-w-dj, - dout
Cost of SE — Block ~ diy, - dout

Costg = =h-w (7)
The above equation describes the computational cost reductions by our proposed block than the
SqueezeNext block with a factor of Costg = h-w-djy, - doyt +h - diy +h-w-k+h-w. So, our proposed
architecture is more parameter-efficient and cost-effective than the well-known compact SqueezeNext
block.

We utilize precisely two SE layers to boost performance. The SE layers take output feature maps
from the RCN layer as input and produce better output feature maps using channel-wise feature
recalibration. These channel-wise feature recalibrations improve the model’s performance, reduce
overfitting, and focus on important channels. We stack this proposed block in the SqueezeNext network
architecture to construct the proposed network.

5. Performance Evaluation

Evaluating performance is crucial for assessing how accurately a model predicts outcomes. It
confirms that the model fits the training data well and is also effective for new and unseen data.
Common evaluation metrics include accuracy, precision, recall (sensitivity), and F1 score.

5.1. Accuracy

Accuracy is a crucial performance evaluation metric used in machine learning and statistics for
classifying problems. It measures the correctness of the trained parameters or cases and assesses the
proportion of correct observations among the total observations. The accuracy is calculated as,

TP+TN
TP+ FP+TN+FN

Accuracy = (8)
where, TP is True Positives, which is the number of correctly predicted positive instances by the model.
For example, if a person has the disease, the test is positive; TN stands for True Negatives, which
represents the number of negative instances correctly predicted by the model. This means that if the
person does not have the disease, the test results are negative; FP stands for False Positives, which is
the number of negative instances incorrectly predicted as positive by the given model. This means
that the test can show a positive result even if the person is not diseased; Lastly, FN stands for False
Negative, representing the number of positive instances that the model incorrectly predicts as negative.
This means that even if a person is diseased, the test results are negative. When the numbers of true
positives (TP) and true negatives (TN) are high in comparison to the total predictions, the accuracy is
high. On the other hand, if the numbers of TP and TN are low compared to the total predictions, the
accuracy is low. The total prediction is the sum of all the predictions: TP + TN + false positives (FP) +
false negatives (FN). Therefore, we can conclude that higher accuracy is needed to enhance the overall
reliability of the model’s predictions. By improving accuracy, we can decrease the occurrences of false
positives and false negatives, leading to more reliable and effective decision-making.

5.2. Precision

Another way to measure the performance of machine learning models is Precision, which is
calculated as the ratio of True Positives to the sum of True Positives and False Positives. The equation
to calculate the precision is defined as,

TP

Precision = m

©)
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In the equation, a high precision value indicates that when the model predicts a positive outcome,
it is usually correct. This suggests that the model has a low number of false positives, making its
positive predictions reliable. Conversely, a low precision value indicates that the positive predictions
made by the model are incorrect. Therefore, we can conclude that low precision can have a negative
impact.

5.3. Recall

Recall, also known as sensitivity, is another important metric used to assess the performance of
machine learning models. It quantifies the model’s capability to accurately predict all the positive
instances in a dataset. It is calculated as the ratio of True Positives to the sum of true positives and
false negatives. The formula to calculate recall is as follows,

TP
Recall = ———— 1
eca TP+ EN (10)
Based on the above equation, we understand that a high recall signifies that the model predicts
most actual positives, while a low recall score indicates a high number of false negatives, leading
to the model failing to predict actual positives. A low recall score could result in significant issues,
particularly when conducting disease screenings, and can lead to severe repercussions.

5.4. F1-score

In the statistical analysis of binary classification, the F1 score is used to measure predictive
performance. It is calculated as the ratio of two times precision and recall (both determined using the
previously mentioned equations) to the sum of precision and recall. The F1 score can also be defined
as the harmonic mean of precision and recall. Its values range from 0 to 1, where 0 indicates the lowest
performance and 1 indicates the highest performance.

2 X Precision X Recall 2x TP
Precision + Recall =~ 2x TP+ FP+FN

F1 — Score = (11)
Based on the equation above, a high F-1 score indicates that the model identifies a greater proportion
of positive instances while minimizing false positives. Conversely, a low F-1 score suggests that the
model struggles to accurately predict positive instances.

6. Experimental Result

6.1. Dataset Description

This research uses the lung and colon cancer histopathological images LC25000 dataset [56]. This
dataset is consisted with two main categories of cancer cells: colon adenocarcinoma, benign colon
tissue, lung adenocarcinoma, lung squamous cell carcinoma, and benign lung tissue. The sample
images of these lung and colon cancer categories are depicted in Figure 5. It contains 25,000 color cancer
cell images from five classes of lung and colon cancer’s benign and malignant tissue images. Initially,
1,250 photos were taken from cancer tissues on pathology glass slides at James A. Haley Veterans’
Hospital in Tampa, Florida, with 250 images for each category [40]. The original LC25000 dataset
includes 750 lung tissue samples, comprising 250 adenocarcinoma, 250 squamous cell carcinomas, and
250 benign tissue samples. The dataset includes 500 colon tissue samples, with 250 adenocarcinoma
and 250 benign tissue samples. These photos were then augmented with techniques like rotation and
flipping, resulting in a collection of 5,000 images per class and totalling 25000 images for lung and
colon cancers.

The photos were originally 1024 x 768 pixels but were cropped to 768 x 768 pixels before augmen-
tation to retain a uniform square shape. All photos are HIPA A-compliant, vetted, and freely available
to Al researchers, making them an invaluable resource for creating more effective diagnostic tools. In
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our experimental analysis, we resized all the images to 256 x 256 pixels and randomly cropped them
to 224 x 224 pixels. After resizing, we normalized the images using their mean and standard deviation.
Moreover, we split the main dataset (LC25000) into two parts: 80% for training and 20% for testing
samples. Image distribution of the lung and colon dataset is explained in Table 1.

Table 1. Distributions of Lung and Colon cancer LC25000 histopathological images dataset.

Lung Dataset Colon Dataset

Data Samples Adenocarcinoma  Cell Carcinomas | Benign ~Adenocarcinoma | Benign Total
Training Data Samples 4000 4000 4000 4000 4000 20000
Testing Data Samples 1000 1000 1000 1000 1000 5000

(c) Lung Squamous cell

VW

=

] [

< @

(d) Colon Adeno. (e) Colon Benign tissue
Figure 5. Randomly selected lung and colon cancer histopathological images of: (a) Lung Adenocarci-
noma, (b) Lung Benign tissue, (c) Lung Squamous cell Carcinoma, (d) Colon Adenocarcinoma, and (e)
Colon Benign tissue from the LC25000 dataset [56].

6.2. Methodology

Similar hyperparameters have been used to the original SqueezeNet architectures [49]. We then
examined 23-layer architectures with the block multipliers “[6, 6, 8, 1]”. Likewise, we constructed
44-layer architectures with the block multipliers “[12, 12, 16, 2]”. All the proposed architectures were
trained using various batch sizes, including 8, 16, 32, 64, and 128.

The LC25000 dataset contains 25000 images resized and cropped to 224 x 224 pixels. Mean/std
normalization was applied to preprocess our image data. All models were trained using the stochastic
gradient descent (SGD) optimizer. We applied warmed-up linear learning for the first ten epochs,
followed by cosine learning scheduling from epochs 11 to 120.

6.3. Result Analysis

This section evaluates the outcomes of using our proposed model. It's important to note that the
accuracy does not significantly improve or decline as batch sizes increase. Additionally, our model
showed excellent performance for a smaller number of epochs. Furthermore, our model showed
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exceptional accuracy in colon cancer detection and achieved nearly perfect results in all tests. It takes
fewer epochs to show state-of-the-art performance than the lung cancer detection using our model. The
different batch sizes effectively train our models, demonstrating that our model can process varying
amounts of input data without sacrificing effectiveness. Finally, Tables 2 and 3 presented an overview
of our results, indicating that our model achieved the best performance for all datasets with a fixed
batch size of 64.

Table 2. The performance on the LC25000 dataset to detect lung and colon cancer using our proposed
networks.

Dataset  Epochs Parameters Batchsize Testing Accuracy

8 100
Colon 16 100
Cancer 30 0.35M 32 100
64 100
128 100
8 99.17
Lung 16 100
Cancer 40 0.35M 32 100
64 100
128 100
8 99.6
Lung and 16 99.94
Colon 50 0.36M 32 99.98
Cancer 64 100
128 99.98

Table 3. The overall performance on the LC25000 dataset using our proposed networks.

Dataset Epochs Parameters Batchsize Accuracy Precision Recall FI1-Score
Colon Cancer 30 0.35M 64 100% 100% 100% 100%
Lung Cancer 40 0.35M 64 100% 100% 100% 100%
Lung and Colon Cancer 50 0.36M 64 100% 100% 100% 100%

6.4. Result Comparisons

Tables 4, 5, 6, and 7 compare our proposed method and several previous well-known studies
and relevant network architectures. Table 4 compares several models and demonstrates the direct
effectiveness of our modified architecture. It’s crucial to note that these studies are based on using
different datasets and imaging with different numbers of epochs, and batch sizes, which makes
direct comparison a bit more difficult. However, our proposed method achieves perfect scores in
all evaluation metrics, i.e., 100% accuracy rate, precision, sensitivity, and F-1 Score, showcasing its
versatility in detecting lung and colon cancer. This comparison also offers a contextual understanding
of our proposed model in relation to other methodologies.
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Table 4. The performance on the LC25000 dataset to detect lung and colon cancer using some relevant
and our proposed networks [57].

Dataset Model Epochs Parameters Testing Accuracy

RCN 0.365M 99.69

Colon SEC 30 0.36M 99.77
Cancer Reduced CNN 0.35M 99.91
Our proposed model 0.35M 100

RCN 0.365M 99.65

Lung SEC 40 0.36M 99.69

Cancer Reduced CNN 0.35M 99.87
Our proposed model 0.35M 100

Lung and RCN 0.3656M 99.68

Colon SEC 50 0.36M 99.79

Cancer Reduced CNN 0.35M 99.89

Our proposed model 0.35M 100
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Table 5. Comparison of our proposed result with other methods on lung cancer detection Dataset.

“CAD”, “ML”, “GO”, and “LR” stand for clustering KNN-classifier, machine learning, genetic optimiza-

tion, and logistic regression, respectively.

Reference, year Models Imaging Dataset Accuracy
[58], 2013 SVM CT scan SUMS Accuracy: 98.1
[59], 2014 SVM CT scan LIDC Accuracy: 95.12
[60], 2014 CAD CT scans Radiological Data Average: 98.9
[61],2015 SVM CT scan Patients Accuracy: 94.67%
[62], 2015 CAD CT scan LIDC 75.01, 83.35(Sensitivity)
[63], 2015 Ensemble+ML CT scan LIDC 86.54
[64], 2015 CNNs Chest X-rays 433 image dataset AUC: 0.87-0.94
[65], 2016 DBN CT scan LIDC (174412 samples) 0.8119
[66], 2016 CADs and CNNs CT scans LIDC Sensitivity: 78.9
[67], 2016 SVM+GO CT scan Medical imaging Accuracy: 89.5
[68], 2016 Convolutional NN CT scan LIDC-IDRI 75.0
[69], 2016 Convolutional NN CT scan LIDC Accuracy: 82.5
[70], 2017 ConvNet, SVM CT scan Danish DLCST trial Accuracy:72.9
[71], 2017 CNN, DNN, SAE CT scans LIDC-IDRI 84.15, 83.96 (Sensitivity)
[72], 2017 3D-CNNs CT scan Kaggle Data Accuracy: 86.6
[73], 2017 CNN, DMN, SDAE CT scan LIDC AUC:0.899+0.018
[74], 2017 Entropy Degradation CT scan NCI Accuracy:77.8
[75], 2018 VGG-network CT scan LIDC-IDRI Accuracy:95.60
[76], 2018 DenseNet-121 Chest X-rays LIDC-IDRI 74.43,74.68 (Sensitivity)
[77],2018 Inception V3 CT scan Genome Atlas AUC:0.733-0.856
[78], 2018 Otsu+ConvNet CT scan LIDC-IDRI 84.13, 91.69 (Sensitivity)
[79], 2019 Profuse clustering CT scan CIA Accuracy:98.42
[80], 2019 3D R-CNN Chest X-rays LIDC-IDRI Sensitivity:94
[25], 2019 3D CNN CT scan Open-source image Sensitivity:84.4
[81], 2019 ODNN, LDA CT scan LIDC 94.56, 96.2 (Sensitivity)
[82], 2019 ANN CT scan Survey lung cancer Accuracy:96.67
[28], 2020 CNN CT scans LC25000 Accuracy: 97.20
[83], 2020 AlexNet, VGG19 LCDT images I-ELCAP 96.25, 97.5 (Sensitivity)
[84], 2020 DenseNet CT scans LIDC Accuracy: 90.85
[85], 2020 3D CNN CT scans LUNA16 Accuracy: 80
[86], 2020 AlexNet, VGG-16 CT scans Open Data set Accuracy: 99.52
[18], 2021 Transfer learning CT scans LIDC Accuracy: 99.12
[87], 2021 LCP-CNN CT scans US NLST Sensitivity: 99
[88], 2021 AlexNet, GoogLeNet CT scans LIDC-IDRI Precision:100
[89], 2021 CNN CT scans Massachusetts Hospital AUC:0.71(p=.018)
[90], 2021 Deep CNN, ReLU Chest X-rays Kaggle Accuracy: 89.77
[35], 2022 MobileNetV2 CT scans Public Accuracy: 98.67
[91], 2022 Mask-RCNN, DPN CT scans Patients 97.94, 98.12 (Sensitivity)
[92], 2022 SVM CT scans LIDC-IDRI Accuracy:94
[93], 2022 CNN-5CL Chest X-rays LIDC/IDRI 93.73, 98.88 (Sensitivity)
[94], 2023 2D-CNN CT scans LUNA16 Accuracy:95
[95], 2023 LCP-CNN Chest X-ray Open 99.9, 99.89 (Specificity)
[45], 2023 LR+VGG16 CT scans LC25000 99, 99 (Precision)
[46], 2023 EfficientNet-b4 CT scans LC25000 Accuracy:99.96
[47], 2023 GoogLeNet, VGG19 CT scans LC25000 99.64, 99.85 (Sensitivity)
Our, 2024 Ours CT scans LC25000 Accuracy: 100
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Table 6. Comparison of our proposed result with other methods on colon cancer detection Dataset. “HI”,
and “CRAG” stand for Histopathological Images, and Colorectal Adenocarcinoma Gland, respectively.

Reference, year Models Imaging Dataset Accuracy

[96], 2014 Neural Network HI Colonic Images 91.11

[97], 2014 CBIC Biopsy Images 174 Biopsy Images 98.85

[98], 2014 DNN HI 132 HI 96.30

[99], 2014 ANN HI 21+28 HCC 90.2

[100], 2015 MLP, SMO, BLR HT Open Access 83.33

[101], 2015 SIFT, EFDs Colon biopsy Open Access 92.62

[102], 2015 CCD Biopsy Images Open Access 95.40

[103], 2015 Graph-SSL algorithm HT PPIs 80.7

[103], 2015 ANN, BNs, DTs HT PPIs 91.7

[104], 2016 DCNN HI Hematoxylin, HI 88, 100 (F-1 Score)
[105], 2016 CNNs CT scans 56 patients Sensitivity: 85
[106], 2016 Neural Network CLE images Endomicroscopies Sensitivity: 85
[107], 2017 CNN, RF, kNN CT scan Open 87

[108], 2017 CNN autoencoders HT ETIS-LaribPolypDB 96.7

[109], 2017 CNNis MRI-DWI advanced rectal cancer 0.658, 0.99 (AUC)
[110], 2017 CNNs Biopsylmages Open Access 99.17

[111], 2018 RCCNet HI CRCHistoPhenotypes 80.61

[112], 2018 CNNs HI CRC samples 96
[113],2018 Segnet HI Warwick-QU (A & B) 88.2 (A), 86.4 (B)
[114], 2018 SampEnMF HI Public Colorectal MRI AUC: 0.983
[115], 2019 Random Forest HI Chang Gung, Taiwan 84,0.82 (AUC)
[116], 2019 CNN HI NHI, Taiwan Sensitivity:0.837
[117], 2019 CNNs Colonoscopy Danish NSP 96.4, 97.1 (Sensitivity)
[14], 2019 CNN Tissue slides 25 CRC patients 95

[110], 2017 CNNs Biopsy Images Open Access 99.17

[118], 2020 CNN CT scans 10000-HI 99.6

[118], 2020 MFF-CNN CT scans NORM and TUM 96, 0.95 (F-1 score)
[119], 2020 CNN CT scans CRAG 93.91

[120], 2020 CNN CT scans 322 Images 94.8

[18], 2021 CNN + PCA CT scans LC25000 99.8

[121], 2021 ResNet, Inception Slide Images AiCOLO 96.98

[20], 2021 MobileNetV2 Colon cells - 99.67

[122], 2021 IR-v2 Type 5 WSI Chang Gung, Taiwan Fl-score, AUC:0.99
[123], 2021 ResNet-18, VGG-19 Colonoscopy - 98.3
[124], 2022 CNN CT scans Stoean and Kather 97.20

[21], 2022 CNN CT scans LC25000 99.50
[125], 2022 Deep Learning (DL) CT scans WSI Sensitivity: 97.4
[126], 2022 ResNet CT scans TCIA 98.82, 98.28 (Sensitivity)
[127], 2022 CNN CT scans LC25000 100
[128], 2023 RNN, GoogLeNet HI Public Dataset 94.1, 97.5 (Sensitivity)
[129], 2023 ResNet Colonoscopy Public 99.8
[130], 2023 DL+AdaDelta Tissue Public Dataset 0.96
[131], 2023 RBM algorithm F-FDG, CTs Patients 99.4
[132], 2023 ResNet50+Squeezenet HI Veterans’ Hospital 99.12, 99.34 (Sensitivity)
Our, 2024 Our method CT scans LC25000 Accuracy: 100

6.4.1. Lung Cancer

Here, we discuss the comparison of lung cancer detection between various published works and
our proposed approach. Our mobile-supported and parameter-efficient method, a 1D convolutional
neural network with an SE layers, outperforms all of the other methods as seen in Table 5. Our method
utilized CT scan imaging of the publicly available LC25000 dataset and achieved perfect metrics,
i.e., accuracy rate, precision, recall, and F-1 score of 100%. Remarkably, despite using a different
dataset from LIDC-IDRI and a different network known as AlexNet and GoogLeNet, the method
proposed by Vinod Kumar and Brijesh Bakariya[88] also achieved the same precision score as ours
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using computer-based models. Nonetheless, our achievements in terms of accuracy exceed all of the
previous work, as detailed in Table 5.

6.4.2. Colon Cancer

This section portrays the comparative efficacy of various methodologies in detecting colon cancer,
as enumerated in Table 6. Utilizing CT scan imaging from the LC25000 dataset, our 1D convolutional
network with SE layers achieves a 100% accuracy rate, precision, recall, and F1 score in the detection of
colon cancer. Our proposed method surpasses nearly all studies referenced in Table 6, demonstrating
the model’s capability to identify all instances of colon cancer presence or absence across both trained
and new datasets. Additionally, Our model maintains consistent performance across 30 epochs and 64
batch sizes, with 0.35 million parameters. It is worth noting that other computer-based models, such
as the CNN model described by Dabass et al. (2022) [127], also achieved 100% accuracy scores using
computer-based deep learning model.

Table 7. Comparison of our proposed result with other methods on lung and colon cancer detection
Dataset. Here, “IQ-OTHNCCD” is a lung cancer Dataset.

Reference/
year Models Imaging  Dataset Results
[133], 2020 CNN CTscans LC25000  Accuracy: 97.00
[41], 2020 InceptionV3, MobileNet CTscans LC25000  Accuracy: 99.91
[134], 2021 DHS-CapsNet CTscans LC25000  Accuracy: 99.23
[40], 2021 CNN, 2D Fourier CTscans LC25000  Accuracy: 96.33
[42], 2021 Capsule Network CTscans LC25000  Accuracy: 99.58
[135], 2021 DarkNet-19 CTscans LC25000  Accuracy: 99.69
[136], 2022 AlexNet CT scans LC25000 Accuracy: 98.4
DenseNet121, Accuracy: 98.6
[137], 2022 Random Forest CTscans LC25000 F1 score: 0.985
[23],2022 A Hybrid Ensemble Model CTscans LC25000  Accuracy: 99.3
PCA + CNN + SVM, Accuracy: 99.5
[138], 2022 FHWT + CNN + SVM CTscans LC25000  Accuracy: 99.6
Accuracy: 99
[43], 2022 XGBoost CTscans LC25000 Fl-score: 98.8
[43],2022  MobileNetV2, InceptionV2 CTscans LC25000 Accuracy: 99.95
[39], 2023 Capsule Network CTscans LC25000  Accuracy: 99.32
[139], 2023 CNN CTscans LC25000  Accuracy: 99.76
[140], 2023 CNN CTscans LC25000  Accuracy: 98.96
Sensitivity: 99.85
Precision: 100
[471], 2023 ANN CTscans LC25000  Accuracy: 99.64
Accuracy: 99.00
Precision: 99.00
Recall: 98.80
[45],2023  Logistic Regression Model =~ CTscans LC25000  FI Score: 98.80
[141], 2024 SqueezeNet CTscans LC25000  Accuracy: 99.58
. Accuracy: 93.12
EfficientNetB6 A . 98.00
VGG19 ccuracy: 98.
InceptionResNetV2 Accuracy: 97.92
DenseNet201 Accuracy: 99.12
[142], 2024 MobileNetV2 CTscans LC25000  Accuracy: 99.32
[143], 2024 LightGBM CTscans LC25000 Accuracy: 100
Our, 2024 Our Proposed method CT scans  LC25000 Accuracy: 100

6.4.3. Lung and Colon Cancer

We compared lung and colon cancer detection among various published methods as mentioned
in Table 7. The proposed method, 1D CNN with Squeeze-and-Excitation (SE) layers, used CT scans
imaging from the publicly available LC25000 dataset as the input. The 1D CNN with SE layers is
trained on this data. The model identifies features related to the presence of lung and colon cancer.
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Our proposed method achieved a remarkable 100% accuracy rate, precision, recall, and F-1 Score in
lung and colon cancer detection. This high accuracy indicates that the proposed model consistently
correctly identifies all the instances of colon and lung cancer present or absent in the dataset. It
consistently performs well over 50 epochs and with a batch sizes 64, using 0.36 million parameters.
In machine learning, “epochs” refers to the number of times the entire dataset is passed through the
model during training. On the other hand, “batch size” refers to the number of samples processed
before the model’s internal parameters are updated. This means the model can be trained on various
datasets, not just a specific set. Additionally, it outperforms almost all the other methods mentioned
in Table 7. Additionally, the LightGBM computer-based model [143] proposed by Indu Chhillar and
Ajmer Singh in 2024 also achieved the same accuracy as our model using CT scan imaging from the
LC25000 dataset [143].

6.5. Discussion

Our model outperformed existing models significantly, which emphasizes the efficiency of our
approach. Surprisingly, our model accomplished 100% accuracy in detecting colon cancer across all
batch sizes. It also performed 100% accuracy in detecting lung cancer. It achieved perfect scores
in detecting lung and colon cancer types with a batch size of 64, while maintaining consistently
high results in other areas. While existing models have attained comparable performance, none
have consistently reached the best accuracy across three cancer types as our model has. Despite
implementing the same SqueezeNet network as the studies by Mohamed et al. (2023) [132] and
Suominen et al. (2024) [141], our models achieved higher accuracy rates. Moreover, it suggests
that combining SE layers and 1D convolutional networks can effectively enhance feature extraction
capabilities and achieve state-of-the-art performance in medical image analysis where timely and
accurate results are crucial.

To create a successful machine learning (ML) model, focusing on the network’s ability to generalize
and its reliability is essential. A large and diverse dataset is needed for effective training, so we used
data augmentation to artificially expand the dataset by making small changes to the original data.
This expansion allowed our model to recognize and generalize from a wider range of patterns and
abnormal details in histopathological images. It significantly contributed to the model’s performance
across different batches and resulted in the highest accuracy. Additionally, it helped us overcome
overfitting during training, which is crucial for learning detailed features of cancerous diseases without
being misled by identical patterns.

7. Conclusion and Future Works

According to the World Health Organization (WHO), lung and colon cancer were the leading
causes of death in 2020 [144]. Early diagnosis is crucial to overcome this issue. A study, proposed
by a CNN network, constructed with 1D convolutional networks and SE layers to detect lung and
colon cancer features from the large LC25000 dataset. Historically, diagnosis was a complex and
lengthy process. The aim was to propose an approach that is not only efficient but also computationally
economical by minimizing parameters; in this case, only 0.35M parameters were used. Overall,
we achieved a 100% accuracy, precision, recall, and F1 score across various batch sizes and epochs,
indicating significant progress and the reliability of our model. However, further analysis of the
results indicates that there is still room for improvement in detecting other types of cancer in order
to achieve optimal performance. Our comparisons show that our method outperforms almost all
previous studies. Implementing this mobile-supported identification method in healthcare will assist
pathologists in diagnosing lung and colon cancer more easily and reliably. In the future, we plan to
apply our diagnostic method on other medical disease detection datasets to expand the scope of our
study and improve the accuracy rate. This will enable us to extend our contributions to the detection
of other types of cancer.

Funding: This research was funded by the TruScholar Summer Undergraduate Research Program.
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