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Abstract: Purpose: Decomposition analysis of forecasting errors relating to time series generated by a 3PL 

logistics operator for ten distribution channels operated by the logistics operator Design / methodology / 

approach: The studies were focused on the analysis of 10 distribution channels operated by the 3PL logistics 

operator who used a forecasting tool based on a modified ARIMA algorithm to prepare forecasts. In this paper, 

R environment was used. The studies focused on the visual analysis of forecasting error series, on the analysis 

of the basic parameters of the error time series distributions, on the analysis of STL decomposition and 

statistical tests relating to trend and seasonality. Findings: The forecasting error analysis indicates that there 

are different patterns and characteristics of errors for individual channels. The statistical test results for various 

channels display significant differences between forecast groups in some cases. This suggests that the 

forecasting tool can be more accurate for some than for other channels. Research limitations: Logistic 

operations are usually based on numerous variables which may influence forecast quality. Moreover, the 

absence of any information on the forecasting models and input data used may prevent complete 

understanding of error sources. Value of the paper: The studies described in this paper emphasized valuable 

conclusions which can be drawn from the analysis of time series forecasting errors in the context of logistic 

operations. The findings indicated the need for an adapted approach to forecasting for each and every channel, 

the importance of improving the forecasting tool and the potential to optimize the forecast accuracy by focusing 

on the trend and seasonality. For this reason, the analysis is an important input into the theory and practice 

relating to demand forecasting by logistics operators in distribution networks. The studies contribute to the 

works related to demand forecasting by logistics operators. 

Keywords: time series of forecasting errors; 3PL; logistics operator; demand forecasting; distribution channels, 

 

1. Introduction 

The effective delivery chain management is of key importance for ensuring smooth movement 

of goods and services in a contemporary dynamic business environment (Davis, 1993; Fawcett et al., 

2008; Towill et al., 2000). An accurate forecast plays a key role in this process, enabling organizations 

to make apt decisions, optimize stock levels and meet customers’ needs effectively (Babai et al., 2022; 

Abolghasemi et al., 2020; Hofmann and Rutschmann, 2018). Consequently, forecast accuracy is a key 

to improve operating effectiveness and customer satisfaction. At present, 3PL logistics operators play 

a crucial role in delivery chains and distribution networks (Qureshi, 2022; Kmiecik, 2022; Minashkina 

and Happonen, 2023; Baidoo-Baiden, 2022). Logistics operators, in particular 3PL ones, operate 

different channels having unique demand patterns and supply dynamics (Kmiecik and Wolny, 2022). 

Although the forecast models are becoming more and more advanced, their efficiency may differ 

depending on the channels because of inherent complexities and variability of the demand and 

supply characteristics. Understanding hidden patterns and behaviors relating to forecasting errors 

for every channel is of crucial importance for improving predictive abilities of those models. 

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
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This study is aimed at the comprehensive analysis of forecasting errors relating to time series 

generated by a 3PL logistics operator for ten distribution channels operated by the logistics operator. 

By means of the direct identification of similarities and differences of forecasting errors in different 

channels, the authors intend to provide practical conclusions aimed at improving forecasting models 

and the overall operating effectiveness which may be used for the logistics operators’ operations. The 

studies are aimed at filling the gap connected with the demand forecasting by logistics operators. 

Despite the expertise relating to the ability to implement forecasting solutions in the logistics 

operators’ operations (Kmiecik, 2021b; Li et al., 2022; Al. Mesfer, 2023) and the overall benefits which 

may be offered by the take-over of the other network participants’ forecasting function by the 

operator (Kmiecik, 2023) and the studies of the importance of forecasting error time series (Wolny, 

2023; Yang et al., 2021; Yang et al., 2022), there have been no studies of forecasting error time series 

for the forecasting tools used by the logistics operators. 

2. Theoretical Background 

2.1. Demand Forecasting by Logistics Operators 

One of more popular strategies to determine future demand is using forecasting methods to that 

aim. Forecasts are an input into the decision-making process relating to the supply, manufacture, 

deliveries and warehouse management (Alam and El Saddik, 2017) which has been stressed many 

times. Forecasts allow to plan production and supply of raw materials and other materials in relevant 

quantities and time. Thanks to that, it is possible to avoid shortages likely to result in late deliveries 

and in increased manufacturing costs. Forecasts allow to optimize the cost of supply and production 

by determining the optimum amount of raw materials and other materials as well as the delivery 

schedule. This leads to reduced warehousing costs and helps to avoid superfluous stock. 

Abholgasemi et al. (2020) (Abolghasemi et al., 2020) confirm this belief, mentioning such extra areas 

like demand planning, restocking, production planning and inventory control where forecasts are the 

grounds to make many decisions at the managerial level. A well-built forecasting system allows to 

plan goods flow between various production stages and between warehouses and points of sales. 

Thanks to that, fast and effective distribution of goods can be guaranteed and any delays and 

unnecessary costs can be avoided. Moreover, the forecasts are useful when implementing the 

assumptions of contemporary logistic concepts, e.g., mass customization (Guo et al., 2019). The 

forecasts also allow to adapt to the changing market conditions, including fluctuations of demand, 

raw material prices and also amendments to the applicable regulations. It allows to respond to market 

fluctuations fast and avoid unnecessary costs. Demand forecasting should allow primarily to 

aggregate short-term, medium-term and long-term forecasts (Kim et al., 2019). The ability to aggregate 

forecasts easily in different time horizons and the criterion relating to the geographic and product 

aggregation serves to adapt the forecasts to the requirements of individual customers. The grounds 

for the effective forecasting system are a well-adopted strategy of the forecast generation which 

includes e.g., the choice of relevant forecasting and information-flow methods. The most frequently 

mentioned algorithms used to forecast demand in logistic flows includes the ones based on ARIMA 

(Abolghasemi et al., 2020), machine learning (Chen and Lu, 2021) and neural networks (Kim et al., 2019). 

As it often is impossible to use highly accurate input data or adapt automatic, algorithm-based 

solutions to the forecasts, many forecasts are created or modified by human judgment. As stressed 

e.g., by Perera et al. (2019) (Perera et al., 2019), the human factor influences the forecast reliability. 

When forecasting, the factors of the highest impact on the forecast quality include the product history 

and promotion schedules (Ma et al., 2016), but also the ones relating to the distribution network 

coordination and its internal relations. 

Forecasting starts to be associated with logistics operators. Some authors associate the operators 

with forecasting closely relating to the fact that the operators often forecast financial profitability of 

some projects (Wang et al., 2018). Oftentimes, the operators are perceived as entities forecasting 

demand in transport operations or cross-docking activity (Grzelak et al., 2019), although this is not an 

implementation approach from the perspective of this function usability for the entire distribution 
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network. To a higher extent, it is based on the appropriate use of data found in 3PL entities. The 

increase in the complexity of the distribution network, in particular related to the development of omnichannel 

systems (Briel, 2018) is an additional stimulus for the development of forecasting systems at the level of logistics 

operators, which take over, in this system, the role of logistics processes coordinators (Kramarz and Kmiecik, 

2022). A concept which assumes extending the logistics operators’ function is the one based on the 

centralized forecasting in distribution networks. Centralization can be analyzed in many aspects, e.g., 

transport, operations or decision making (Simoes et al., 2018). The factors which are often associated 

with centralization include trust and the ability to track the flows (Beikverdi and Song, 2015; Lu and 

Hu, 2018). In this paper, centralization will be analyzed from the perspective of implementing 

processes which will allow one network node to take over the decision-making function and to collect 

information with its subsequent appropriate analysis. The main prerequisites for centralization 

include (Szozda and Świerczek, 2016): the diverse nature of individual activities, which are typical 

for many different organizational units operating in subsequent stages of product flow, the lack of 

separate units responsible for coordinating processes related to managing demand for products from 

other processes, as well as the vertical nature of organizational structures, which intensifies the 

phenomenon of independent decisions regarding demand management in individual entities. 

According to this concept, the logistics operator providing logistic services to a manufacturing 

entity and having a number of required attributes is able to take over the centralized forecasting in 

the distribution network. This will allow to remove the burden of the need to forecast demand from 

the manufacturer in the distribution network and will intensify favorable effects of the 

manufacturers’ specialization. The concept of the take-over of the centralized forecasting function 

was studied (Kmiecik, 2021a), with implementation guidelines prepared relating to the development 

and implementation of the forecasting model in the logistic outsourcing company (Kmiecik, 2021b). 

At present, the forecasting tool developed by the author has undergone an implementation pilot 

study in one of the international logistics operators. This solution type may have significant 

advantages for the entire distribution network. Given suitable conditions and attributes, the logistics 

operators could forecast the demand which would be a component of the broadly-taken demand 

management system. Demand forecasting can result in the development of the base for further 

activities relating to the sales, goods placement and production planning in the entire distribution 

network. By forecasting the demand, the logistics operators could control those components and 

coordinate them based on their knowledge of flow management. Another important forecasting 

component in the logistics operators’ structures is the use of forecasts for the operating activities. The 

studies reveal that the logistics operators would use the forecasting system most eagerly to support 

resource planning in warehousing management (Kmiecik and Wolny, 2022). However, irrespective 

of whether the forecasts were to help the operator coordinate flows in the entire distribution network 

or whether they were to serve solely the operators’ operating purposes, they would have to be 

characterized by high reliability. High reliability of the demand forecasts in the distribution and the 

warehouse is highly important for the effective management of the delivery chain and production, 

as it allows to plan accurately, to optimize costs, to improve service quality and increase customer 

satisfaction. This allows to avoid deficits resulting in delayed deliveries and cost increase, to reduce 

warehousing costs and avoid excessive stock, to improve service quality and ensure the entity’s 

continued operations. Forecast reliability can be improved based on the analysis of errors generated 

by the forecasting system used by the entity at present. 

2.2. Forecasting Error Analysis 

The forecasting error analysis is an important forecasting tool enabling to assess the adopted 

models’ effectiveness when forecasting future events. It consists in comparing the actual values 

observed in the analyzed phenomenon with the values foreseen by the adopted forecasting model. 

This comparison allows to identify discrepancies between the forecasts and the actual parameters 

and to understand the model behavior in different scenarios more thoroughly. 

The basic purpose of forecasting error analysis is to estimate the forecast accuracy. To that aim, 

various forecasting error assessment indicators are used which help to determine the accuracy of the 
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actual observation mapping by the forecasting model. The synthetic forecast accuracy assessment is 

based on averaged forecasting errors (MAE, MAPE, MSE, MASE, MdAE etc.). Two basic measures 

are used in this paper, i.e., MAE – Mean Absolute Error and MAPE – Mean Absolute Percentage 

Error. 

𝑀𝐴𝐸 =
1

𝑛
∑|𝑦𝑡 − 𝑦𝑡

∗| = 𝑚𝑒𝑎𝑛(|𝑦𝑡 − 𝑦𝑡
∗|)

𝑛

𝑡=1

, (1) 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑ |

𝑦𝑡 − 𝑦𝑡
∗

𝑦𝑡
| = 𝑚𝑒𝑎𝑛 (|

𝑦𝑡 − 𝑦𝑡
∗

𝑦𝑡
|)

𝑛

𝑡=1

, (2) 

where n – number of errors, 𝑦𝑡  – observed value, 𝑦𝑡
∗ – predicted value. 

The forecasting error measures play an important role in the forecast quality assessment. They 

are characterized by the general level of the forecasting model error regardless of the length of time 

in the future covered by the forecast, i.e., of the forecast time horizon. Those synthetic measures of 

forecasting errors are grounds for comparing different forecasting models and assessing their 

performance. They provide information on the mean deviation between the predicted and the actual 

values which allows to look at the overall forecast effectiveness in the context. For example, MAE 

indicates how much the forecast values differ from the actual ones in an average case, whereas MAPE 

expresses that error as an actual value percentage which helps to assess forecasts in the context of 

their significance for the phenomenon. The comparison of forecasting error synthetic measures may 

also provide further information on the error distribution asymmetry. 

However, to carry out a more accurate forecast quality analysis, it is necessary to analyze a 

comprehensive error distribution. The values of synthetic forecasting error measures may hide 

various error aspects, including outliers, skewness of the distribution or other irregularities. This is 

why it is so important to analyze error distribution. A more detailed error analysis consists in 

studying the time series of forecasting errors. In such a case, the time series properties are interesting. 

The analysis entails primarily the answer to the question on whether the series has any regularities 

allowing e.g., to decompose the series into systematic constituents (seasonality, trend). Consequently, 

the analysis should lead to the conclusions relating to the forecasting model assessment, including 

the opportunity or necessity to adjust it. 

3. Methods 

This is a case study of two distribution networks where the logistics operator provides logistic 

services for a manufacturing company (Figure 1). 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 12 September 2024 doi:10.20944/preprints202409.1003.v1

https://doi.org/10.20944/preprints202409.1003.v1


 5 

 

 

Figure 1. The outline of the distribution network with a logistics operator. 

This is a logistic company specializing in the distribution and warehousing of goods for different 

entities. This company offers a broad range of logistic services, including transport, warehousing, 

delivery chain management, forwarding services and stock-taking processes. The operator keeps 

investing in cutting-edge technology and offers training to their employees to meet the market 

requirements and improve competitiveness. The operator operates on the international market 

primarily in Europe, but also outside it. 

For their operating activities, the operator uses a forecasting tool fed with data from WMS 

(Warehouse Management System). To facilitate their warehousing activities, the operator decided 

that the tool would be used primarily to forecast collective releases (for all SKUs, i.e., Stock Keeping 

Units) for various picking methods and sales channels. Various picking methods imply diverse 

warehouse stock involvement in the process of the customer’s order preparation. The said forecasting 

tool is supplied with WMS data and is based on the modified ARIMA algorithm (Autoregressive 

Integrated Moving Average). ARIMA is a time series forecasting model that is commonly used in 

statistical analysis to understand the pattern of data over time and forecast future values based on 

the patterns found. ARIMA models can be used to model and forecast data that has three key 

characteristics: stationarity, autocorrelation, and seasonality. Stationarity refers to the property of a 

time series that has a constant mean and variance over time. Autocorrelation refers to the property 

of a time series where the values of the series at different time points are correlated with each other. 

Seasonality refers to the property of a time series that shows regular patterns or cycles over a fixed 

period of time, such as daily, weekly, or monthly (Hyndman and Athanasopoulos, 2018). The ARIMA 

model is built by combining the AR (Autoregressive) model, the MA (Moving Average) model, and 

the differencing method. The AR component models the dependence of the current value on past 

values of the same series, while the MA component models the dependence of the current value on 

past errors. The differencing method is used to remove the trend and seasonality of the series, making 

it stationary and easier to model (Box et al., 2015). ARIMA models are commonly used in demand 

forecasting because they are able to capture the complex patterns and trends often found in demand 

data, such as seasonality and autocorrelation. The tools employed by the operator use a commercial 

version of the modified ARIMA algorithm (www.cloud.google.com). That extends the capacities of 

the traditional ARIMA model. It is designed to handle time series which display complex patterns 

and it has such functionalities as the automatic detection of seasons, automatic detection of outliers 
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and the ability to handle missing data values. The model overcomes some limitations of the 

traditional ARIMA model by introducing new functions (Table 1). 

Table 1. Examples of the new functionalities of the model used by the logistic operator when 

compared to the traditional ARIMA model. 

New functionality New functionality general outline 

Automatic detection of 

seasons 

The model detects seasons automatically and uses them to adapt the 

forecasting algorithm accordingly.  

Outlier detection 

The model detects outliers automatically to identify and delete outliers 

from data before the model is adapted. This helps to improve the model 

accuracy by reducing the effect of extreme values in the data. 

Handling of missing values 

The model may handle missing values in the data by completing them 

using the linear interpolation method. Thanks to that, the model uses as 

much data as possible which may improve forecast accuracy. 

Nonlinear transformation 

The model offers the ability to use nonlinear transformations for data, 

including logarithmic or exponential transformations. This may help to 

capture more complex data patterns which are not represented by the 

linear ARIMA model. 

The discussed model is used by the logistics operator and has collected historical data 

concerning the forecast and actual values for ca. half a year. In this context, the forecasts were 

generated in a 30-day horizon with daily data updates in daily granulation. The forecast values were 

consistent with the managerial requirements learned during the analysis of the operator’s business 

needs and were based on forecasting collective values of SKU releases where the release handling 

was similar (forecasts for different picking methods). 

The studies focused on the analysis of two distribution networks where the logistics operator 

providing services to the manufacturer operates. In both cases, the forecasting tool operates based on 

the above-mentioned assumptions and is oriented towards forecasting collective SKU releases for 

various picking methods. The first case (Manufacturer 1) is a distribution network where the 

manufacturer specializes in pharmaceutical products and their two main sales channels operated 

logistically by the operator include the distribution to hospital and to pharmaceutical wholesalers. In 

both circumstances, the forecasts referred to three picking types, e.g., picking of individual units, 

picking of a cardboard collective packagings and picking of shrink-wrap collective packagings. In the 

other distribution network, the logistics operator provides services to a manufacturer of household 

appliances (Manufacturer 2), for whom the forecasts are generated for two main distribution 

channels, i.e., e-commerce and brick-and-mortar stores, divided into four main picking methods 

(picking of individual units from the mezzanine, picking of individual units from the racks, picking 

of cardboard boxes for e-commerce and picking of cardboard boxes for brick-and-mortar stores). The 

general data characteristics for the individual manufacturers is presented in Table 2. 

Table 2. General data characteristics for the analyzed distribution networks. 

Manufacturer 
Distribution 

channel 

Picking method for which 

the release volumes were 

forecast 

Designation of the 

channel and the 

picking method in 

the paper 

General data 

characteristics 

1 

Hospitals 

Picking of individual units Channel_01 

182 days of daily 

forecast history  

Picking of cardboard boxes Channel_02 

Picking of shrink-wrap 

packagings 
Channel_03 

Wholesalers 
Picking of individual units Channel_04 

Picking of cardboard boxes Channel_05 
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Picking of shrink-wrap 

packagings 
Channel_06 

2 
e-commerce 

Picking of individual units 

from the mezzanine 
Channel_07 

96 days of daily 

forecast history 

Picking of individual units 

from the racks 
Channel_08 

Picking of cardboard boxes Channel_09 

Retail stores Picking of cardboard boxes Channel_10 

Various picking methods define different use of resources for warehousing works relating to 

SKU releases from specific perspectives. For this reason, accurate forecasts facilitate the components 

relating to resource planning in the warehouse. The paper analyses series of forecasting errors 

collected in the forecasting tool implemented by the logistic operator. The paper contains two 

research hypotheses (Figure 2). 

 

Figure 2. Hypotheses verified in the paper. 

The hypotheses are as follows: 

H1. In the forecasting errors for different picking systems, it is possible to find certain regularities allowing to 

decompose them in terms of seasonality and trend. 

H2. The analysis of the forecasting error series may improve the operation of the current forecasting tool in 

terms of the generated forecasts’ reliability. 

The first hypothesis refers to the attempt at detecting the regularity of e.g., seasonality or the 

deterministic constituent in the series of forecasting errors relating to different picking methods. The 

verification of this hypothesis will provide the answer to the question of whether the forecasting tool 

operation has any regularities relating to the errors of the forecasts. The second hypothesis is to verify 

if the analysis may affect the tool operation and improve the reliability of forecasts generated by it. 

The error series was analyzed in the R environment (R Core Team, 2022), including but not 

limited to the “forecast” package (Hyndman et al., 2023). A significance level of 0.05 was adopted for 

statistical inference. The error series randomness was analyzed using a “randtests” package (Caeiro 

F, Mateus A, 2022). The hypothesis concerning trend presence was verified using the functionalities 
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from the “funtimes” package (Lyubchich V., Gel Y., Vishwakarma S., 2023). Seasonality was analyzed 

by means of the “seastest” package (Ollech D., 2021). 

Additionally, H1 hypothesis was verified using the procedure described in the reference work 

(Wolny 2023). The systematic components of seasonality and trend were identified by means of the 

STL decomposition (Cleveland et al., 1990). The strength of the error seasonality and trend presence 

was assessed using the following measures (Wang et al., 2006): 

𝐹𝑇 = max (0, 1 − 
𝑉𝑎𝑟(𝑅𝑡)

𝑉𝑎𝑟(𝑇𝑡 + 𝑅𝑡)
), (3) 

𝐹𝑆 = max (0, 1 −  
𝑉𝑎𝑟(𝑅𝑡)

𝑉𝑎𝑟(𝑆𝑡 + 𝑅𝑡)
), (4) 

where Tt is the smoothed trend component, St is the seasonal component and Rt is a remainder 

component. Equation (3) describes the strength of the trend component, whereas equation (4) the 

strength of the seasonal component. 
The R package functionalities used for error analysis are presented in Table 3. The detailed 

assumptions concerning the functionalities employed are presented in the column called 

“Functionalities employed”. The default values for the functionality are the values of the other, non-

specified, parameters. 

Table 3. Main methods and functionalities of R employed in the forecasting error analysis. 

Functionality Functionalities used 

Analysis of the forecasting error 

randomness 
bartels.rank.test(),runs.test(),cox.stuart.test(),difference.sign.test() 

Stationarity analysis adf.test() (Trapletti, Hornik, 2023) 

Autocorrelation analysis acf(), Box.test() 

STL decomposition of time 

series  

stl(t.window = length(number_of_errors), s.window = 

length(number_of_errors)) 

Trend presence analysis 

notrend_test(tests = “t”), 

notrend_test(tests = “MK”),  

notrend_test(tests = “WAVK”) (Lyubchich V. et al. 2023) 

Seasonality component 

presence analysis 
combined_test(), qs(), fried(), kw.p(), seasdum(), welch() (Olech, 2021) 

4. Results 

The first step of the analysis was the visual assessment of the forecasting error series. The visual 

analysis of the forecasting error time series consists in plotting those errors on the timeline. Such 

diagrams may reveal the existing patterns, including cyclicality, seasonality or the trend, which were 

not visible in the analysis of the forecast value time series. For example, if the series of forecasting 

errors display regular fluctuations in specific periods of time, this may suggest that the forecasting 

model has difficulties predicting certain seasonal patterns. The behavior of the analyzed time series 

is presented in Figure 3. 
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Figure 3. Time series of forecasting errors for the considered channels. 

The visual analysis of the forecasting error times series is an important stage of the forecasting 

model analysis. By means of the reliable understanding of error series patterns and properties, the 
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researchers and analysts may identify significant relationships and aspects which are worth 

analyzing further and in more detail. Such an approach allows to understand the forecasting error 

dynamics and potential model-related problems better. Following the visual analysis, it is possible to 

carry out a more advanced statistical analysis. Calculations of the basic parameters of the forecasting 

error distribution, including the mean value, standard deviation or skewness, may provide 

information on the error characteristics and asymmetry. Moreover, the STL decomposition (Seasonal 

and Trend decomposition using Loess) allows to determine the components of the trend, seasonality 

and the remainder which may help to identify the major sources of errors in the forecasts. Statistical 

hypothesis testing plays an important role in the analysis. Determination of the p-value for the tests 

with the hypothesis concerning the absence of any trend or seasonality allows to find out whether 

there are any statistically significant deviations from those assumptions. The basic numerical 

characteristics of the analyzed error time series are presented in Table 4. 

Table 4. The basic parameters of the forecasting error distribution for the analyzed channels. 

  
Channel

_01 

Channel

_02 

Channel

_03 

Channel

_04 

Channel

_05 

Channel

_06 

Channel

_07 

Channel

_08 

Channel

_09 

Channel

_10 

Mean 176 245 0 574 126 25 -1387 -706 -1583 -228 

Std.Dev 1095 2268 174 5665 1017 52 2822 1602 2969 420 

Min -3249 -13376 -786 -18267 -3160 -118 -7773 -4455 -9193 -1388 

Q1 -581 -752 -97 -2221 -416 -3 -2806 -1981 -4357 -532 

Median 172 507 15.5 297 149 29.5 -687 -175 -732 -147 

Q3 916 1419 84 3571 765 57 629 545 863 21 

Max 3868 8508 740 22774 3151 202 2901 2436 2918 681 

MAD 1103 1559 145 4340 859 45 2423 1634 2950 397 

IQR 1476 2117 179.5 5653 1171.25 59 3435 2526 5220 553 

CV 6.212 9.272 - 9.876 8.040 2.079 -2.034 -2.268 -1.875 -1.843 

Skewnes

s 
0.037 -1.606 -0.201 0.279 -0.278 -0.161 -0.715 -0.354 -0.531 -0.288 

SE.Skew

ness 
0.229 0.219 0.219 0.222 0.235 0.219 0.245 0.245 0.245 0.245 

Kurtosis 0.954 11.280 4.387 2.270 1.330 0.567 -0.487 -0.774 -0.726 -0.354 

N.Valid 111 122 122 119 106 122 97 97 97 97 

The analysis of the forecasting error time series for different channels revealed diversified error 

patterns and characteristics in those channels. Some channels tend to overestimate, whether others 

to underestimate the forecast values. The differences of the standard deviation, coefficient of 

variation, skewness and kurtosis indicate diverse error variation. For every channel, the analysis of 

those parameters may offer valuable guidelines for further optimization and improvement of 

forecasting models. For Channel_01, the mean value of error is 172, whereas the median is 176, which 

suggests that most errors are below the mean value. However, the asymmetry coefficient value 

indicates that there is a poor asymmetry of error distribution. However, high standard deviation 

(1,095) and high value of the coefficient of variation (CV = 6.212) point to high error variation. For 

Channel_02, the mean error is 245, whereas the median is 507, suggesting that the models tend to 

underestimate the predicted values. High standard deviation (2,268) and kurtosis (11.280) indicate 

significant variation of the error distribution. Analyzing Channel_03, a conclusion can be drawn that 

the mean error is close to zero, but low median (15.5) and high standard deviation (174) indicate 

diverse error characteristics. Skewness is close to zero and kurtosis (4.387) proves higher value 

concentration than in the normal distribution (kurtosis is 0). For Channel_04, the mean error is 574, 

whereas the median is 297, suggesting the underestimation of the predicted values. High standard 

deviation (5,665) and kurtosis (2.270) indicate significant error variation and a certain degree of the 

analyzed values dispersion. The distribution is right-skewed. The mean error in Channel_05 is 126 

and the median is 149, suggesting small value undervaluation. High standard deviation (1,017) and 
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the coefficient of variation (8.040) indicate significant variation. The distribution is left-skewed. For 

Channel_06, the mean error is 25, whereas the median is 29.5, suggesting small value 

underestimation. Low standard deviation (52) and kurtosis (0.567) indicate relatively low variation 

and the distribution close to normal. The distribution is left-skewed. The mean error for Channel_07 

(-1,387) and the median (-687) are negative, suggesting the tendency to overestimate the predicted 

values. High standard deviation (2,822) and kurtosis (-0.487) indicate significant error variation and 

platykurtic distribution. The distribution is left-skewed. Channel_08 is characterized by the mean 

error of -706 and the median -175, suggesting overestimation of the predicted values. High standard 

deviation (1,602) and kurtosis (-0.774) indicate certain error variation and platykurtic distribution. 

The distribution is left-skewed. For Channel_09, the mean error (-1,583) and the median are negative 

(-732), suggesting overestimation of the predicted values. High standard deviation (2,969) and 

kurtosis (-0.726) indicate significant error variation and platykurtic distribution. The distribution is 

left-skewed. For Channel_10, the mean error is -228, whereas the median is -147, suggesting value 

overestimation. High standard deviation (420) and kurtosis (-0.354) indicate error variation. The 

distribution is left-skewed. 

Generally speaking, the value of the coefficient of variation (CV = Std.Dev / Mean) indicates high 

variation in the analyzed error distributions. 

The subsequent analytical step was to analyze the forecasting error randomness. The results are 

presented in Table 5 

Table 5. Randomness (alternative hypothesis: nonrandomness). 

Channel bartels.rank.test runs.test cox.stuart.test difference.sign.test 

Channel_01 0.887 0.716 0.798 0.274 

Channel_02 0.037* 0.029* <0.001* 0.274 

Channel_03 0.545 0.716 0.443 0.530 

Channel_04 0.964 0.064 0.435 0.343 

Channel_05 0.227 0.172 0.583 0.402 

Channel_06 0.270 0.338 >0.999 0.513 

Channel_07 0.026* 0.412 0.312 <0.001* 

Channel_08 0.664 1.000 0.059 0.080 

Channel_09 0.117 0.218 0.006* 0.162 

Channel_10 0.009* 0.305 0.029* 0.726 

The analysis of the forecasting error randomness indicates that each analyzed series can be 

considered random (in the sense of one of the tests used and alpha = 0.05). Moreover, low p-values 

for Channel_02, Channel_07, Channel_09 and Channel_10 in some tests may suggest the presence of 

certain irregularities in the error behavior. 

The analysis of the stationarity of the analyzed error series using ADF (Augmented Dickey–

Fuller test) indicates that the series may be considered stationary (p-value <= 0.01 for every series). 

The results of the series autocorrelation analysis are not homogeneous and may point to irregularities. 

The detailed values of coefficients and critical significances (p-values) for the first seven delays are 

presented in Table 6. For the test, the values of ACF coefficients and Ljung-Box test were used. 

Table 6. ACF coefficient values with their critical significance and p-values for Ljung-Box test. The 

values refer to the first seven delays. 

Channe

l 
ACF (coefficient) ACF (p-value) Ljung-Box test (p-value) 

Channe

l_01 

-0.175, -0.235, 0.153,  

-0.080, 0.054, -0.166, 0.057 

0.053, 0.01, 0.091, 0.376, 0.548, 

0.067, 0.529 

0.050, 0.005, 0.003, 0.006, 

0.011, 0.005, 0.008 

Channe

l_02 

0.088, 0.118, 0.21, 0.139, 0.235, 

0.086, 0.157 

0.33, 0.193, 0.021, 0.126, 0.009, 

0.341, 0.083 

0.324, 0.256, 0.04, 0.029, 0.003, 

0.004, 0.002 
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Channe

l_03 

-0.109, -0.243, 0.096, 

-0.155, -0.097, 0.019, -0.026 

0.229, 0.007, 0.287, 0.087, 0.286, 

0.83, 0.776 

0.223, 0.012, 0.018, 0.01, 0.013, 

0.025, 0.043 

Channe

l_04 

-0.001, -0.257, -0.006, -0.009, 

0.126, 0.047, 0.013 

0.988, 0.005, 0.945, 0.921, 0.168, 

0.607, 0.89 

0.988, 0.017, 0.044, 0.087, 

0.071, 0.108, 0.165 

Channe

l_05 

0.087, -0.201, -0.011, 0.051, 

0.059, -0.069, -0.143 

0.369, 0.039, 0.909, 0.602, 0.545, 

0.474, 0.141 

0.362, 0.072, 0.153, 0.234, 

0.311, 0.369, 0.262 

Channe

l_06 

0.099, -0.314, -0.116, 0.109, 0.05, 

-0.107, -0.004 

0.297, 0.001, 0.223, 0.253, 0.599, 

0.261, 0.967 

0.29, 0.002, 0.003, 0.004, 0.008, 

0.009, 0.017 

Channe

l_07 

0.273, -0.009, -0.147, -0.128, -

0.062, 0.131, 0.4 

0.007, 0.932, 0.147, 0.208, 0.538, 

0.197, 0, 0.11 

0.006, 0.024, 0.021, 0.022, 

0.038, 0.034, <0.001 

Channe

l_08 

0.011, 0.023, -0.01, -0.066, -0.084, 

0.203, 0.375 

0.914, 0.821, 0.921, 0.514, 0.407, 

0.045, 0, 0.321 

0.912, 0.968, 0.995, 0.971, 

0.938, 0.466, 0.004 

Channe

l_09 

0.132, -0.055, 0.037, 0.07, 0.219, 

0.071, 0.245 

0.193, 0.587, 0.715, 0.488, 0.031, 

0.487, 0.016 

0.187, 0.358, 0.533, 0.608, 

0.173, 0.221, 0.041 

Channe

l_10 

0.275, -0.155, -0.041, -0.086, -

0.107, 0.131, 0.444 

0.007, 0.126, 0.684, 0.395, 0.292, 

0.197, 0, 0.766 

0.006, 0.007, 0.017, 0.027, 

0.033, 0.031 

According to the initial analyses, the regularities may refer to each analyzed series. In every 

analyzed case, the autocorrelation is present for the first seven rows. 

The results of the analysis of the forecasting error time series are presented in Tables 7–9. 

Table 7. The results of the analysis of the forecasting error series relating to STL decomposition. 

Channel Trend_stl Season_stl MAE_error MAPE_error Remainder_MAE_stl Quotient_stl 

Channel_03  0.007  0.021  125  0.593  124  0.994  

Channel_02  0.158  0.030  46  0.608  36  0.775  

Channel_06  0.006  0.037  861  29.518  816  0.947  

Channel_01  0.000  0.045  1500  0.425  1433  0.955  

Channel_04  0.029  0.049  4129  5.095  4009  0.971  

Channel_05  0.010  0.053  768  16.901  735  0.957  

Channel_09  0.145  0.128  109  0.455  90  0.828  

Channel_07  0.099  0.230  1010  0.341  779  0.771  

Channel_08  0.130  0.276  1363  0.279  984  0.722  

Channel_10  0.092  0.380  366  0.268  226  0.617 

Columns in Table 7 contain the following information: 

“Trend_stl” – the value determined using the equation (3), informing about the strength of the 

trend component in the STL decomposition (the closer it is to 1, the higher the significance of the 

trend in the error is), “Season_stl” – the value determined using the equation (4), informing about the 

strength of the seasonality component in the STL decomposition (similar to the preceding value, the 

closer it is to 1, the higher the significance of the component in the error is), “MAE_error” – value of 

the MAE error (1) for the product, “MAPE_error” – value of the MAPE error (2) for the product, 

“Remainder_MAE_stl” – “non-systematic” error understood as the MAE value for the error series, 

calculated for the remainder component in the STL decomposition (the mean of the absolute values 

of the remainder component in the error series), informing about MAE error excluding the systematic 

components of the error series, “Quotient_stl” – relative “non-systematic” error, understood as the 

quotient of “Remainder_MAE_stl” and “MAE_error”, informing what part of the general MAE error 

is taken by MAE, calculated solely based on the remainder component of STL decomposition. 

The data in the table were ordered based on the non-decreasing values of the measure (4) 

determining the strength of the seasonality component in the error series. In STL decomposition, the 

frequency of 7 was assumed for every analyzed series as the operator works 7 days a week and the 

data refers to daily values. The results in Table 7 do not show direct, strong and unambiguous 
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relationships between the values. Solely, (Pearson’s) correlations between the following values can 

be considered significant (alpha = 0.05): 

1. Between the strength of the trend component (Trend_stl) and the strength of the seasonal 

component (Season_stl), r = 0.59 (t = 2.426, p = 0.034). The more significant the trend component 

is, the higher the significance of the seasonal component. 

2. Between the strength of the trend component (Trend_stl) and the relative “non-systematic” error 

(Quotient_stl), r = -0.69 (t = -3.163, p = 0.009). The more significant the trend component in the 

errors is, the smaller the error relating to the exclusion of that component. 

3. Between the strength of the seasonal component (Season_stl) and the relative “non-systematic” 

error (Quotient_stl), r = -0.70 (t = -3.251, p = 0.007). The more significant the seasonal component, 

the smaller the “non-systematic” error. 

4. Between the “non-systematic” error (Remainder_MAE_stl) and MAE error (MAE_error), r = 0.88 

(t = 6.185, p < 0.001). The higher the absolute error, the higher the absolute “non-systematic” 

error. Generally speaking, this relation can be deemed obvious. 

Referring to section one, attention should be paid to the fact that the maximum value of the 

indicator (3) in the analyzed series is 0.158 and, generally speaking, proves small strength of the trend 

component in the analyzed error series. In just two cases, the strength of the trend component is 

higher than the strength of the seasonal component (Channel_02, Channel_09). In the analyzed 

problem, the seasonal component of the error series is more significant. 

The numerical aspects relating to the method of identifying systematic components using STL 

method should be emphasized. The general determined trend is not linear and decomposition 

parameter changes can be used to control trend variation. Moreover, this is closely connected with 

the seasonal component with a simultaneous absence of any impact on the remainder component. 

From this perspective, systematic components should be analyzed jointly. For the pre-determined 

decomposition parameters, the systematic components are naturally correlated. This means that the 

correlations in sections two and three should be considered natural. 

Despite a general low strength of the trend component, the results of the trend presence analysis 

using Student’s t-test, Mann–Kendall test, WAVK test (Lyubchich V. et al. 2023) point to an important 

trend presence in most analyzed series. The detailed results are presented in Table 8. 

Table 8. p-value in tests for the Null Hypothesis of no Trend. 

Channel 

Student’s t-

test (linear 

trend) 

Mann–Kendall Test 

(monotonic trend) 

WAVK test (possibly non-monotonic 

trend) 

Channel_01 0.927 0.690 0.052 

Channel_02 <0.001* <0.001* <0.001* 

Channel_03 0.426 0.415 0.041* 

Channel_04 0.042* 0.067 0.498 

Channel_05 0.357 0.340 0.578 

Channel_06 0.396 0.524 0.257 

Channel_07 0.023* 0.025* 0.071 

Channel_08 0.006* 0.001* 0.729 

Channel_09 <0.001* <0.001* 0.020* 

Channel_10 0.119 0.090 0.600 

The results presented in Table 8 point to the trend presence for the forecasting errors in 

channel_02, channel_07, channel_08 and channel_09. However, the visual assessment of the 

phenomenon in the function of time does not confirm any clear trend. 

The following tests were used to analyze a significant seasonal component in the analyzed time 

series : combined.kwr - Ollech and Webel’s combined seasonality test (Ollech, D., Webel, K., 2020), test 

QS (qs.p), Friedman Rank test (fried.p), Kruskall Wallis test (kw.p), F-Test on seasonal dummies 

(seasdum.p) and Welch seasonality test (welch.p). 
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Table 9. p-value in tests for the Null Hypothesis of no seasonality. 

Channel combined.kwr qs.p fried.p kw.p seasdum.p welch.p 

Channel_01 0.293 >0.999 0.098 0.106 0.504 0.179 

Channel_02 0.422 >0.999 0.905 0.729 0.760 0.723 

Channel_03 0.943 >0.999 0.976 0.969 0.874 0.829 

Channel_04 0.649 >0.999 0.848 0.546 0.466 0.368 

Channel_05 0.570 >0.999 0.187 0.307 0.500 0.173 

Channel_06 0.672 >0.999 0.638 0.553 0.684 0.629 

Channel_07 < 0.001 < 0.001 < 0.001 < 0.001 0.001 < 0.001 

Channel_08 < 0.001 0.026 0.003 0.001 < 0.001 < 0.001 

Channel_09 0.052 >0.999 0.058 0.013 0.055 0.025 

Channel_10 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

The results of the tests carried out point to clear seasonality in error series referring to 

channel_10, channel_07 and channel_08. For channel_09, low p-value suggest possible presence of 

significant seasonality as well. The results are consistent with those from the analysis of the strength 

of seasonality (4). 

Figures 4 and 5 present the visualized decompositions performed for two extreme examples. 

Figure 4 presents error decomposition for channel_03 characterized by the lower share of systematic 

components in the overall error. Figure 5 depicts error decomposition for channel_10 characterized 

by the highest share of systematic components. 

 

Figure 4. The STL decomposition of channel_03 errors time series. 
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Figure 5. The STL decomposition of channel_10 errors time series. 

The major difference of the systematic components’ strength lies in the error scale. For 

channel_03, the trend ranges from ca. -30 to ca. 10, seasonality from ca. -56 to ca. 23, whereas the 

overall error from -786 to 740. For channel_10, the trend ranges from ca. -340 to ca. -23, seasonality 

from ca. -457 to ca. 253, whereas the overall error from -1,388 to 681. This means that the error 

decomposition visualization can also be used to assess the strength and significance of the systematic 

error components. It should also be stressed that a key indicator here can be the range of individual 

component changes. 

5. Discussion 

5.1. Verification of Research Hypotheses 

In this paper, the first hypothesis (H1. In the forecasting errors for different picking systems, it 

is possible to find certain regularities allowing to decompose them in terms of seasonality and trend) 

was verified successfully. The forecasting error analysis indicates that there are different patterns and 

characteristics of errors for individual channels. The high value of the mean, standard deviation, 

coefficient of variation or skewness indicates error variation when compared to the mean value. For 

some channels, clear seasonality and certain trends can be noticed. The values of the correlation 

between trend and seasonality also suggest the existence of certain relationships between those 

components. 

The results obtained can be deemed consistent for the analytical methods used. The study of the 

error randomness showed that channel_02, channel_07, channel_09 and channel_10 can be 

characterized by a certain regularity. The strength analysis of individual components of the 

decomposed error series indicated the importance of regularity (trend or seasonality) for channel_09 

as well. For decomposition, seasonality and trend should be analyzed jointly as STL decomposition 

is largely conditional on the decomposition parameters (relating to the windows of trend and 

seasonality smoothing). 

Error series decomposition can be grounds for more in-depth analyses. When there are 

significant systematic components of errors, it is necessary to ask about the causes of such 

irregularities. Did the forecasting model not consider the characteristics of the analyzed phenomenon 

changes or this regularity stems from any qualitative factors? This can also be a premise to look for 

and consider a suitable regressor not included before in the forecasting model. 
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The paper failed to verify the second hypothesis (H2. The analysis of the forecasting error series 

may improve the operation of the current forecasting tool in terms of the generated forecasts’ 

reliability), although the authors believe that it would be highly probable to verify it once a detailed 

insight in the models used to generate forecasts was obtained. The statistical test results for various 

channels display significant differences between forecast groups in some cases (e.g., Channel_07, 

Channel_08, Channel_09, Channel_10). This suggests that the forecasting tool can be more accurate 

for some than for other channels. The presence of those differences points to the ability to improve 

the forecasting tool in those channels. Moreover, the analysis of such parameters as the standard 

deviation, coefficient of variation or skewness allows to understand the detailed tool operation in 

individual cases. This may encourage to verify the forecasting model more thoroughly and to 

improve it for those specific channels. However, it was not verified empirically due to the absence of 

the detailed analysis of models used for forecasting. 

The error analysis presented can identify channels for which the current forecasting tool falls 

short. This analysis can be automated relatively easily, revealing which forecasts (or channels) exhibit 

systematic errors. Identifying systematic components in forecast errors could lead to improvements 

in the forecasting model. We recommend that the logistics operator evaluates the need for alternative 

forecasting tools or approaches for these channels. 

5.2. Impact of the Error Time Series Analysis on the Forecasting Tool 

The logistic operator uses forecasting tools to generate forecasts (Kmiecik, 2021). The analysis of 

the forecasting error time series provides important information on the quality of such forecasts. The 

error values, their variation and distribution characteristics indicate that the forecasts have different 

reliability levels and are prone to overestimation or underestimation. The forecasting tool used by 

the operator generates forecasts which frequently over- or underestimate the actual values. This 

suggests the need to optimize and fine-tune the forecasting models to reduce the forecasting errors. 

However, the tools available in business practice often prevent any more in-depth analysis or 

modification of their operation. The insufficient knowledge and ability to modify such tool type have 

been mentioned in reference works many times, e.g., by Voulgaris (2019) and Rahman et al. (2018). 

The forecasting error analysis points to specific areas where the models display difficulties. The 

managers may focus on improving such models further by adapting parameters, considering extra 

variables or using more advanced forecasting techniques. The analysis may constitute a basis for the 

development of the forecast quality improvement strategy. This may cover the development of more 

advanced forecasting methods, improved collection and management of model input data and also 

the use of machine learning techniques which may consider non-linear patterns better (Ryo and 

Rilling, 2017; Ghosh et al., 2019). In the context of forecasting error analysis and its impact on the 

efficiency of distribution channels, it is crucial to recognize how these errors can be a source of losses 

or inefficiencies in the distribution process. These errors not only reduce the reliability of forecasts 

but can also lead to excessive stockpiling or shortages, which in turn affects operational costs and 

customer satisfaction levels. Therefore, identifying the channels where disparities between forecasted 

and actual demand are greatest becomes key to focusing on optimizing forecasts for those channels. 

Additionally, the analysis of forecasting errors should be complemented by examining the impact of 

these errors on order fulfillment time and flexibility in responding to changing market conditions. 

For instance, channels with greater demand variability may require different forecasting strategies, 

such as more frequent updates of forecasting models or the integration of external data, to better 

predict changes. 

5.3. The Ability to Facilitate the Logistics Operator’s Operations 

The analysis of the forecasting error time series is highly important for logistic operations. 

Understanding error patterns, the operator may adapt their activities to respond to forecasting errors 

better and to minimize their impact on the logistic operations. For example, when the forecasts are 

underestimated, the operator may consider higher reserves in resource planning. This is particularly 

important when the operator knows that the algorithm does not operate correctly or that the data is 
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unforeseeable or turbulent enough to prevent any apt forecast. Understanding forecasting error 

characteristics allows to adapt operating strategies. For example, when the forecasting models tend 

to overestimate the values, certain flexibility can be introduced to resource planning or warehousing 

to cope with the sudden demand surges. The analysis of various channels and characteristics of 

forecasting errors allows to identify the areas most prone to errors. The managers may introduce risk 

management strategies including resource reserves or manufacturing flexibility to minimize the 

adverse impact of incorrect forecasts on the operations. The impact of the accurate forecasts on the 

risk management by the logistics operator has been described in reference works, e.g., by Yoon et al. 

(2016) and by Ben-Daya and Akram (2013), although the authors did not consider the opportunities 

which may stem from the statistical analysis of errors generated by a forecasting tool. The analysis of 

the forecasting error time series is not a one-off task. The managers should monitor the error 

characteristics continuously, adapting the strategies when acquiring new data and experience. This 

allows to adapt the company’s operations to the changing conditions. 

The analysis of forecasting errors in time series plays a crucial role in streamlining the operations 

of a logistics operator. Understanding and identifying the characteristics of these errors not only 

allows the logistics operator to optimize internal processes but also contributes to increasing the 

efficiency of the distribution system. The significance of forecasting error analysis is particularly 

evident in the context of inventory management. Thanks to a deep analysis of these errors, logistics 

operators can better predict demand fluctuations, which allows for more effective management of 

inventory levels. Adapting operational strategies based on the analysis of forecasting errors can lead 

to the creation of more integrated and flexible logistics systems in the long term. As a result, logistics 

operators are able to better respond to changes in the market environment and adapt to the evolving 

needs of customers, which in turn can contribute to building long-term competitive advantages. 

5.4. Main Limitations and Further Study Directions 

The forecasting error analysis, though significant, can be limited in terms of understanding 

deeper causes of those errors. Logistic operations are usually based on numerous variables which 

may influence forecast quality. Moreover, the absence of any information on the forecasting models 

and input data used may prevent complete understanding of error sources. The absence of any model 

knowledge is caused by the so-called black-box effect (Rudin, 2019; Papernot et al., 2017). For this 

reason, efforts should be made to integrate the logistics operator better with the forecasting software 

provider to ensure more in-depth understanding of its operation. The analysis of the causes of 

forecast overestimations or underestimations may help to understand specific sources of errors. The 

study of the impact of various forecasting models or data analysis methods on the forecast quality 

may improve the forecasting results. The forecasting error analysis may inspire further studies of 

specific channels, product types or seasonality. The innovative approach to modeling and forecasting 

may improve the quality of forecasts and enable the companies to plan more precisely. 

6. Conclusions 

In this paper, the authors carried out a comprehensive analysis of the forecasting error time 

series generated by the 3PL logistics operator for ten different channels. The major objective was to 

identify patterns and characteristics of forecasting errors and draw conclusions aimed at improving 

the forecasting capacities of the existing forecasting tools. The analysis comprised both visual studies 

and statistical tests of forecasting error series. The visual analysis of the forecasting error time series 

revealed various patterns and behaviors in individual channels. Some channels displayed tendency 

to overestimate whereas others to underestimate the predicted values. The forecasting error 

differences were emphasized further by the differences of the standard deviation, coefficient of 

variation, skewness and kurtosis. Those conclusions stressed the importance of in-depth explorations 

and improvements of forecasting models for every channel. Research hypotheses were verified and 

similarities and differences of forecasting error distributions were shown by means of statistical tests. 

The observation of trend and seasonality of forecasting errors pointed to the presence of the hidden 

data patterns. The correlation between the strength of trend and the strength of seasonality confirmed 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 12 September 2024 doi:10.20944/preprints202409.1003.v1

https://doi.org/10.20944/preprints202409.1003.v1


 18 

 

the mutual relationships of those two components which may open up the opportunities for 

improving forecast accuracy by focusing on the deterministic time series components. The results of 

the forecasting error analysis showed clearly the important role of error analysis when improving 

forecasting models. The analysis identified strengths and weaknesses of the existing forecasting tools 

providing the basis for its improvement. 

The studies described in this paper emphasized valuable conclusions which can be drawn from 

the analysis of time series forecasting errors in the context of logistic operations. The findings 

indicated the need for an adapted approach to forecasting for each and every channel, the importance 

of improving the forecasting tool and the potential to optimize the forecast accuracy by focusing on 

the trend and seasonality. For this reason, the analysis is an important input into the theory and 

practice relating to demand forecasting by logistics operators in distribution networks. 
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