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Abstract: Purpose: Decomposition analysis of forecasting errors relating to time series generated by a 3PL
logistics operator for ten distribution channels operated by the logistics operator Design / methodology /
approach: The studies were focused on the analysis of 10 distribution channels operated by the 3PL logistics
operator who used a forecasting tool based on a modified ARIMA algorithm to prepare forecasts. In this paper,
R environment was used. The studies focused on the visual analysis of forecasting error series, on the analysis
of the basic parameters of the error time series distributions, on the analysis of STL decomposition and
statistical tests relating to trend and seasonality. Findings: The forecasting error analysis indicates that there
are different patterns and characteristics of errors for individual channels. The statistical test results for various
channels display significant differences between forecast groups in some cases. This suggests that the
forecasting tool can be more accurate for some than for other channels. Research limitations: Logistic
operations are usually based on numerous variables which may influence forecast quality. Moreover, the
absence of any information on the forecasting models and input data used may prevent complete
understanding of error sources. Value of the paper: The studies described in this paper emphasized valuable
conclusions which can be drawn from the analysis of time series forecasting errors in the context of logistic
operations. The findings indicated the need for an adapted approach to forecasting for each and every channel,
the importance of improving the forecasting tool and the potential to optimize the forecast accuracy by focusing
on the trend and seasonality. For this reason, the analysis is an important input into the theory and practice
relating to demand forecasting by logistics operators in distribution networks. The studies contribute to the
works related to demand forecasting by logistics operators.

Keywords: time series of forecasting errors; 3PL; logistics operator; demand forecasting; distribution channels,

1. Introduction

The effective delivery chain management is of key importance for ensuring smooth movement
of goods and services in a contemporary dynamic business environment (Davis, 1993; Fawcett et al.,
2008; Towill et al., 2000). An accurate forecast plays a key role in this process, enabling organizations
to make apt decisions, optimize stock levels and meet customers’ needs effectively (Babai et al., 2022;
Abolghasemi et al., 2020; Hofmann and Rutschmann, 2018). Consequently, forecast accuracy is a key
to improve operating effectiveness and customer satisfaction. At present, 3PL logistics operators play
a crucial role in delivery chains and distribution networks (Qureshi, 2022; Kmiecik, 2022; Minashkina
and Happonen, 2023; Baidoo-Baiden, 2022). Logistics operators, in particular 3PL ones, operate
different channels having unique demand patterns and supply dynamics (Kmiecik and Wolny, 2022).
Although the forecast models are becoming more and more advanced, their efficiency may differ
depending on the channels because of inherent complexities and variability of the demand and
supply characteristics. Understanding hidden patterns and behaviors relating to forecasting errors
for every channel is of crucial importance for improving predictive abilities of those models.
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This study is aimed at the comprehensive analysis of forecasting errors relating to time series
generated by a 3PL logistics operator for ten distribution channels operated by the logistics operator.
By means of the direct identification of similarities and differences of forecasting errors in different
channels, the authors intend to provide practical conclusions aimed at improving forecasting models
and the overall operating effectiveness which may be used for the logistics operators’ operations. The
studies are aimed at filling the gap connected with the demand forecasting by logistics operators.
Despite the expertise relating to the ability to implement forecasting solutions in the logistics
operators’ operations (Kmiecik, 2021b; Li et al., 2022; Al. Mesfer, 2023) and the overall benefits which
may be offered by the take-over of the other network participants’ forecasting function by the
operator (Kmiecik, 2023) and the studies of the importance of forecasting error time series (Wolny,
2023; Yang et al.,, 2021; Yang et al., 2022), there have been no studies of forecasting error time series
for the forecasting tools used by the logistics operators.

2. Theoretical Background

2.1. Demand Forecasting by Logistics Operators

One of more popular strategies to determine future demand is using forecasting methods to that
aim. Forecasts are an input into the decision-making process relating to the supply, manufacture,
deliveries and warehouse management (Alam and El Saddik, 2017) which has been stressed many
times. Forecasts allow to plan production and supply of raw materials and other materials in relevant
quantities and time. Thanks to that, it is possible to avoid shortages likely to result in late deliveries
and in increased manufacturing costs. Forecasts allow to optimize the cost of supply and production
by determining the optimum amount of raw materials and other materials as well as the delivery
schedule. This leads to reduced warehousing costs and helps to avoid superfluous stock.
Abholgasemi et al. (2020) (Abolghasemi et al., 2020) confirm this belief, mentioning such extra areas
like demand planning, restocking, production planning and inventory control where forecasts are the
grounds to make many decisions at the managerial level. A well-built forecasting system allows to
plan goods flow between various production stages and between warehouses and points of sales.
Thanks to that, fast and effective distribution of goods can be guaranteed and any delays and
unnecessary costs can be avoided. Moreover, the forecasts are useful when implementing the
assumptions of contemporary logistic concepts, e.g., mass customization (Guo et al., 2019). The
forecasts also allow to adapt to the changing market conditions, including fluctuations of demand,
raw material prices and also amendments to the applicable regulations. It allows to respond to market
fluctuations fast and avoid unnecessary costs. Demand forecasting should allow primarily to
aggregate short-term, medium-term and long-term forecasts (Kim et al., 2019). The ability to aggregate
forecasts easily in different time horizons and the criterion relating to the geographic and product
aggregation serves to adapt the forecasts to the requirements of individual customers. The grounds
for the effective forecasting system are a well-adopted strategy of the forecast generation which
includes e.g., the choice of relevant forecasting and information-flow methods. The most frequently
mentioned algorithms used to forecast demand in logistic flows includes the ones based on ARIMA
(Abolghasemi et al., 2020), machine learning (Chen and Lu, 2021) and neural networks (Kim et al., 2019).
As it often is impossible to use highly accurate input data or adapt automatic, algorithm-based
solutions to the forecasts, many forecasts are created or modified by human judgment. As stressed
e.g., by Perera et al. (2019) (Perera et al., 2019), the human factor influences the forecast reliability.
When forecasting, the factors of the highest impact on the forecast quality include the product history
and promotion schedules (Ma et al., 2016), but also the ones relating to the distribution network
coordination and its internal relations.

Forecasting starts to be associated with logistics operators. Some authors associate the operators
with forecasting closely relating to the fact that the operators often forecast financial profitability of
some projects (Wang et al., 2018). Oftentimes, the operators are perceived as entities forecasting
demand in transport operations or cross-docking activity (Grzelak et al., 2019), although this is not an
implementation approach from the perspective of this function usability for the entire distribution
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network. To a higher extent, it is based on the appropriate use of data found in 3PL entities. The
increase in the complexity of the distribution network, in particular related to the development of omnichannel
systems (Briel, 2018) is an additional stimulus for the development of forecasting systems at the level of logistics
operators, which take over, in this system, the role of logistics processes coordinators (Kramarz and Kmiecik,
2022). A concept which assumes extending the logistics operators’ function is the one based on the
centralized forecasting in distribution networks. Centralization can be analyzed in many aspects, e.g.,
transport, operations or decision making (Simoes et al., 2018). The factors which are often associated
with centralization include trust and the ability to track the flows (Beikverdi and Song, 2015; Lu and
Hu, 2018). In this paper, centralization will be analyzed from the perspective of implementing
processes which will allow one network node to take over the decision-making function and to collect
information with its subsequent appropriate analysis. The main prerequisites for centralization
include (Szozda and Swierczek, 2016): the diverse nature of individual activities, which are typical
for many different organizational units operating in subsequent stages of product flow, the lack of
separate units responsible for coordinating processes related to managing demand for products from
other processes, as well as the vertical nature of organizational structures, which intensifies the
phenomenon of independent decisions regarding demand management in individual entities.

According to this concept, the logistics operator providing logistic services to a manufacturing
entity and having a number of required attributes is able to take over the centralized forecasting in
the distribution network. This will allow to remove the burden of the need to forecast demand from
the manufacturer in the distribution network and will intensify favorable effects of the
manufacturers’ specialization. The concept of the take-over of the centralized forecasting function
was studied (Kmiecik, 2021a), with implementation guidelines prepared relating to the development
and implementation of the forecasting model in the logistic outsourcing company (Kmiecik, 2021b).
At present, the forecasting tool developed by the author has undergone an implementation pilot
study in one of the international logistics operators. This solution type may have significant
advantages for the entire distribution network. Given suitable conditions and attributes, the logistics
operators could forecast the demand which would be a component of the broadly-taken demand
management system. Demand forecasting can result in the development of the base for further
activities relating to the sales, goods placement and production planning in the entire distribution
network. By forecasting the demand, the logistics operators could control those components and
coordinate them based on their knowledge of flow management. Another important forecasting
component in the logistics operators’ structures is the use of forecasts for the operating activities. The
studies reveal that the logistics operators would use the forecasting system most eagerly to support
resource planning in warehousing management (Kmiecik and Wolny, 2022). However, irrespective
of whether the forecasts were to help the operator coordinate flows in the entire distribution network
or whether they were to serve solely the operators’ operating purposes, they would have to be
characterized by high reliability. High reliability of the demand forecasts in the distribution and the
warehouse is highly important for the effective management of the delivery chain and production,
as it allows to plan accurately, to optimize costs, to improve service quality and increase customer
satisfaction. This allows to avoid deficits resulting in delayed deliveries and cost increase, to reduce
warehousing costs and avoid excessive stock, to improve service quality and ensure the entity’s
continued operations. Forecast reliability can be improved based on the analysis of errors generated
by the forecasting system used by the entity at present.

2.2. Forecasting Error Analysis

The forecasting error analysis is an important forecasting tool enabling to assess the adopted
models’ effectiveness when forecasting future events. It consists in comparing the actual values
observed in the analyzed phenomenon with the values foreseen by the adopted forecasting model.
This comparison allows to identify discrepancies between the forecasts and the actual parameters
and to understand the model behavior in different scenarios more thoroughly.

The basic purpose of forecasting error analysis is to estimate the forecast accuracy. To that aim,
various forecasting error assessment indicators are used which help to determine the accuracy of the
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actual observation mapping by the forecasting model. The synthetic forecast accuracy assessment is
based on averaged forecasting errors (MAE, MAPE, MSE, MASE, MdAE etc.). Two basic measures
are used in this paper, i.e., MAE — Mean Absolute Error and MAPE - Mean Absolute Percentage

Error.
1 n
MAE = ;Zlyt —yi| = mean(ly. — y;), 1)
t=1
1% ; 3
MAPE=—2 Ve = Ve =mean(Yt Ve ), @
nt=1 Vi Yt

where n — number of errors, y, —observed value, y; — predicted value.

The forecasting error measures play an important role in the forecast quality assessment. They
are characterized by the general level of the forecasting model error regardless of the length of time
in the future covered by the forecast, i.e., of the forecast time horizon. Those synthetic measures of
forecasting errors are grounds for comparing different forecasting models and assessing their
performance. They provide information on the mean deviation between the predicted and the actual
values which allows to look at the overall forecast effectiveness in the context. For example, MAE
indicates how much the forecast values differ from the actual ones in an average case, whereas MAPE
expresses that error as an actual value percentage which helps to assess forecasts in the context of
their significance for the phenomenon. The comparison of forecasting error synthetic measures may
also provide further information on the error distribution asymmetry.

However, to carry out a more accurate forecast quality analysis, it is necessary to analyze a
comprehensive error distribution. The values of synthetic forecasting error measures may hide
various error aspects, including outliers, skewness of the distribution or other irregularities. This is
why it is so important to analyze error distribution. A more detailed error analysis consists in
studying the time series of forecasting errors. In such a case, the time series properties are interesting.
The analysis entails primarily the answer to the question on whether the series has any regularities
allowing e.g., to decompose the series into systematic constituents (seasonality, trend). Consequently,
the analysis should lead to the conclusions relating to the forecasting model assessment, including
the opportunity or necessity to adjust it.

3. Methods

This is a case study of two distribution networks where the logistics operator provides logistic
services for a manufacturing company (Figure 1).
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Figure 1. The outline of the distribution network with a logistics operator.

This is a logistic company specializing in the distribution and warehousing of goods for different
entities. This company offers a broad range of logistic services, including transport, warehousing,
delivery chain management, forwarding services and stock-taking processes. The operator keeps
investing in cutting-edge technology and offers training to their employees to meet the market
requirements and improve competitiveness. The operator operates on the international market
primarily in Europe, but also outside it.

For their operating activities, the operator uses a forecasting tool fed with data from WMS
(Warehouse Management System). To facilitate their warehousing activities, the operator decided
that the tool would be used primarily to forecast collective releases (for all SKUs, i.e., Stock Keeping
Units) for various picking methods and sales channels. Various picking methods imply diverse
warehouse stock involvement in the process of the customer’s order preparation. The said forecasting
tool is supplied with WMS data and is based on the modified ARIMA algorithm (Autoregressive
Integrated Moving Average). ARIMA is a time series forecasting model that is commonly used in
statistical analysis to understand the pattern of data over time and forecast future values based on
the patterns found. ARIMA models can be used to model and forecast data that has three key
characteristics: stationarity, autocorrelation, and seasonality. Stationarity refers to the property of a
time series that has a constant mean and variance over time. Autocorrelation refers to the property
of a time series where the values of the series at different time points are correlated with each other.
Seasonality refers to the property of a time series that shows regular patterns or cycles over a fixed
period of time, such as daily, weekly, or monthly (Hyndman and Athanasopoulos, 2018). The ARIMA
model is built by combining the AR (Autoregressive) model, the MA (Moving Average) model, and
the differencing method. The AR component models the dependence of the current value on past
values of the same series, while the MA component models the dependence of the current value on
past errors. The differencing method is used to remove the trend and seasonality of the series, making
it stationary and easier to model (Box et al., 2015). ARIMA models are commonly used in demand
forecasting because they are able to capture the complex patterns and trends often found in demand
data, such as seasonality and autocorrelation. The tools employed by the operator use a commercial
version of the modified ARIMA algorithm (www.cloud.google.com). That extends the capacities of
the traditional ARIMA model. It is designed to handle time series which display complex patterns
and it has such functionalities as the automatic detection of seasons, automatic detection of outliers
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and the ability to handle missing data values. The model overcomes some limitations of the
traditional ARIMA model by introducing new functions (Table 1).

Table 1. Examples of the new functionalities of the model used by the logistic operator when
compared to the traditional ARIMA model.

New functionality New functionality general outline

Automatic detection ofThe model detects seasons automatically and uses them to adapt the
seasons forecasting algorithm accordingly.

The model detects outliers automatically to identify and delete outliers
Outlier detection from data before the model is adapted. This helps to improve the model
accuracy by reducing the effect of extreme values in the data.

The model may handle missing values in the data by completing them
Handling of missing valuesusing the linear interpolation method. Thanks to that, the model uses as
much data as possible which may improve forecast accuracy.

The model offers the ability to use nonlinear transformations for data,
including logarithmic or exponential transformations. This may help to
capture more complex data patterns which are not represented by the
linear ARIMA model.

Nonlinear transformation

The discussed model is used by the logistics operator and has collected historical data
concerning the forecast and actual values for ca. half a year. In this context, the forecasts were
generated in a 30-day horizon with daily data updates in daily granulation. The forecast values were
consistent with the managerial requirements learned during the analysis of the operator’s business
needs and were based on forecasting collective values of SKU releases where the release handling
was similar (forecasts for different picking methods).

The studies focused on the analysis of two distribution networks where the logistics operator
providing services to the manufacturer operates. In both cases, the forecasting tool operates based on
the above-mentioned assumptions and is oriented towards forecasting collective SKU releases for
various picking methods. The first case (Manufacturer 1) is a distribution network where the
manufacturer specializes in pharmaceutical products and their two main sales channels operated
logistically by the operator include the distribution to hospital and to pharmaceutical wholesalers. In
both circumstances, the forecasts referred to three picking types, e.g., picking of individual units,
picking of a cardboard collective packagings and picking of shrink-wrap collective packagings. In the
other distribution network, the logistics operator provides services to a manufacturer of household
appliances (Manufacturer 2), for whom the forecasts are generated for two main distribution
channels, i.e., e-commerce and brick-and-mortar stores, divided into four main picking methods
(picking of individual units from the mezzanine, picking of individual units from the racks, picking
of cardboard boxes for e-commerce and picking of cardboard boxes for brick-and-mortar stores). The
general data characteristics for the individual manufacturers is presented in Table 2.

Table 2. General data characteristics for the analyzed distribution networks.

Picking method for which Designation of the

Distribution channel and the General data
Manufacturer the release volumes were . . . . ..
channel picking method in  characteristics
forecast
the paper

Picking of individual units Channel_01

. Picking of cardboard boxes Channel 02
Hospitals 5 f  shrink- 182 days of dail

1 icking  of  shrink-wrap Channel_03 ays of daily

packagings forecast history

Wholesalers Picking of individual units Channel 04

Picking of cardboard boxes Channel 05
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P1ck1ng of shnnk—wrapchamel_%
packagings

Picking of individual units

. Channel_07
from the mezzanine

e-commerce Picking of individual units 96 days of daily

Channel_08 .
forecast history

from the racks

Picking of cardboard boxes Channel 09

Retail stores Picking of cardboard boxes Channel 10

Various picking methods define different use of resources for warehousing works relating to
SKU releases from specific perspectives. For this reason, accurate forecasts facilitate the components
relating to resource planning in the warehouse. The paper analyses series of forecasting errors
collected in the forecasting tool implemented by the logistic operator. The paper contains two
research hypotheses (Figure 2).

Logistics
»  operator » Recipient
(3PL)

Manufacturer

H2

Demand forecasting
tool 4

Errors time series

Ex-post errors for
picking and
distirbution channels
forecasts

H1

Figure 2. Hypotheses verified in the paper.
The hypotheses are as follows:

H1. In the forecasting errors for different picking systems, it is possible to find certain regularities allowing to
decompose them in terms of seasonality and trend.

H2. The analysis of the forecasting error series may improve the operation of the current forecasting tool in
terms of the generated forecasts’ reliability.

The first hypothesis refers to the attempt at detecting the regularity of e.g., seasonality or the
deterministic constituent in the series of forecasting errors relating to different picking methods. The
verification of this hypothesis will provide the answer to the question of whether the forecasting tool
operation has any regularities relating to the errors of the forecasts. The second hypothesis is to verify
if the analysis may affect the tool operation and improve the reliability of forecasts generated by it.

The error series was analyzed in the R environment (R Core Team, 2022), including but not
limited to the “forecast” package (Hyndman et al., 2023). A significance level of 0.05 was adopted for
statistical inference. The error series randomness was analyzed using a “randtests” package (Caeiro
F, Mateus A, 2022). The hypothesis concerning trend presence was verified using the functionalities
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from the “funtimes” package (Lyubchich V., Gel Y., Vishwakarma S., 2023). Seasonality was analyzed
by means of the “seastest” package (Ollech D., 2021).

Additionally, H1 hypothesis was verified using the procedure described in the reference work
(Wolny 2023). The systematic components of seasonality and trend were identified by means of the
STL decomposition (Cleveland et al., 1990). The strength of the error seasonality and trend presence
was assessed using the following measures (Wang et al., 2006):

Var(R;)

Fr =max|(0,1— , 3

T = max Var(T, + Ry) ®
B Var(R,)

F¢ = max (0, 1- m); 4)

where T: is the smoothed trend component, St is the seasonal component and R: is a remainder
component. Equation (3) describes the strength of the trend component, whereas equation (4) the
strength of the seasonal component.

The R package functionalities used for error analysis are presented in Table 3. The detailed
assumptions concerning the functionalities employed are presented in the column called
“Functionalities employed”. The default values for the functionality are the values of the other, non-
specified, parameters.

Table 3. Main methods and functionalities of R employed in the forecasting error analysis.

Functionality Functionalities used

Analysis of the forecasting error . .
y & bartels.rank.test(),runs.test(),cox.stuart.test(),difference.sign.test()

randomness
Stationarity analysis adf.test() (Trapletti, Hornik, 2023)
Autocorrelation analysis acf(), Box.test()
STL decomposition of timestl(t.window = length(number_of_errors), s.window =
series length(number_of_errors))
notrend_test(tests = “t”),
Trend presence analysis notrend_test(tests = “MK”),
notrend_test(tests = “WAVK”) (Lyubchich V. et al. 2023)
Seasonality component

presence analysis combined_test(), qs(), fried(), kw.p(), seasdum(), welch() (Olech, 2021)

4. Results

The first step of the analysis was the visual assessment of the forecasting error series. The visual
analysis of the forecasting error time series consists in plotting those errors on the timeline. Such
diagrams may reveal the existing patterns, including cyclicality, seasonality or the trend, which were
not visible in the analysis of the forecast value time series. For example, if the series of forecasting
errors display regular fluctuations in specific periods of time, this may suggest that the forecasting
model has difficulties predicting certain seasonal patterns. The behavior of the analyzed time series
is presented in Figure 3.
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Figure 3. Time series of forecasting errors for the considered channels.

The visual analysis of the forecasting error times series is an important stage of the forecasting
model analysis. By means of the reliable understanding of error series patterns and properties, the
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researchers and analysts may identify significant relationships and aspects which are worth
analyzing further and in more detail. Such an approach allows to understand the forecasting error
dynamics and potential model-related problems better. Following the visual analysis, it is possible to
carry out a more advanced statistical analysis. Calculations of the basic parameters of the forecasting
error distribution, including the mean value, standard deviation or skewness, may provide
information on the error characteristics and asymmetry. Moreover, the STL decomposition (Seasonal
and Trend decomposition using Loess) allows to determine the components of the trend, seasonality
and the remainder which may help to identify the major sources of errors in the forecasts. Statistical
hypothesis testing plays an important role in the analysis. Determination of the p-value for the tests
with the hypothesis concerning the absence of any trend or seasonality allows to find out whether
there are any statistically significant deviations from those assumptions. The basic numerical
characteristics of the analyzed error time series are presented in Table 4.

Table 4. The basic parameters of the forecasting error distribution for the analyzed channels.

Channel Channel Channel Channel Channel Channel Channel Channel Channel Channel

o1 02 03 04 0 06 07 08 09 10
Mean 176 245 0 574 126 25 1387 706 -1583  -228
Std.Dev 1095 2268 174 5665 1017 52 2822 1602 2969 420
Min 3249 13376  -786 -18267 3160  -118 7773  -4455 -9193  -1388
Q1 581 752 97 2221  -416 3 2806 -1981 -4357  -532
Median 172 507 155 297 149 295 687  -175 732 -147
Q3 916 1419 84 3571 765 57 629 545 863 21
Max 388 8508 740 22774 3151 202 2901 2436 2918 681
MAD 1103 1559 145 4340 859 45 2423 1634 2950 397
IOR 1476 2117 1795 5653 117125 59 3435 2526 5220 553
v 6212 9272 - 9876 8040 2079 -2.034 2268 -1.875 -1.843
i’kewnes 0.037 -1.606 -0201 0279 -0278 -0.161 -0.715 -0354 -0.531 -0.288
iiikew 0229 0219 0219 0222 0235 0219 0245 0245 0245 0.245
Kurtosis ~ 0.954 11280 4387 2270 1330 0567 -0487 -0.774 -0.726 -0.354
N.Valid 111 122 122 119 106 122 97 97 97 97

The analysis of the forecasting error time series for different channels revealed diversified error
patterns and characteristics in those channels. Some channels tend to overestimate, whether others
to underestimate the forecast values. The differences of the standard deviation, coefficient of
variation, skewness and kurtosis indicate diverse error variation. For every channel, the analysis of
those parameters may offer valuable guidelines for further optimization and improvement of
forecasting models. For Channel_01, the mean value of error is 172, whereas the median is 176, which
suggests that most errors are below the mean value. However, the asymmetry coefficient value
indicates that there is a poor asymmetry of error distribution. However, high standard deviation
(1,095) and high value of the coefficient of variation (CV = 6.212) point to high error variation. For
Channel_02, the mean error is 245, whereas the median is 507, suggesting that the models tend to
underestimate the predicted values. High standard deviation (2,268) and kurtosis (11.280) indicate
significant variation of the error distribution. Analyzing Channel_03, a conclusion can be drawn that
the mean error is close to zero, but low median (15.5) and high standard deviation (174) indicate
diverse error characteristics. Skewness is close to zero and kurtosis (4.387) proves higher value
concentration than in the normal distribution (kurtosis is 0). For Channel_04, the mean error is 574,
whereas the median is 297, suggesting the underestimation of the predicted values. High standard
deviation (5,665) and kurtosis (2.270) indicate significant error variation and a certain degree of the
analyzed values dispersion. The distribution is right-skewed. The mean error in Channel 05 is 126
and the median is 149, suggesting small value undervaluation. High standard deviation (1,017) and


https://doi.org/10.20944/preprints202409.1003.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 September 2024

11

the coefficient of variation (8.040) indicate significant variation. The distribution is left-skewed. For
Channel_06, the mean error is 25 whereas the median is 29.5, suggesting small value
underestimation. Low standard deviation (52) and kurtosis (0.567) indicate relatively low variation
and the distribution close to normal. The distribution is left-skewed. The mean error for Channel 07
(-1,387) and the median (-687) are negative, suggesting the tendency to overestimate the predicted
values. High standard deviation (2,822) and kurtosis (-0.487) indicate significant error variation and
platykurtic distribution. The distribution is left-skewed. Channel 08 is characterized by the mean
error of -706 and the median -175, suggesting overestimation of the predicted values. High standard
deviation (1,602) and kurtosis (-0.774) indicate certain error variation and platykurtic distribution.
The distribution is left-skewed. For Channel_09, the mean error (-1,583) and the median are negative
(-732), suggesting overestimation of the predicted values. High standard deviation (2,969) and
kurtosis (-0.726) indicate significant error variation and platykurtic distribution. The distribution is
left-skewed. For Channel_10, the mean error is -228, whereas the median is -147, suggesting value
overestimation. High standard deviation (420) and kurtosis (-0.354) indicate error variation. The
distribution is left-skewed.

Generally speaking, the value of the coefficient of variation (CV = Std.Dev / Mean) indicates high
variation in the analyzed error distributions.

The subsequent analytical step was to analyze the forecasting error randomness. The results are
presented in Table 5

Table 5. Randomness (alternative hypothesis: nonrandomness).

Channel bartels.rank.test runs.test cox.stuart.test difference.sign.test
Channel 01 0.887 0.716 0.798 0.274
Channel_02 0.037* 0.029* <0.001* 0.274
Channel_03 0.545 0.716 0.443 0.530
Channel 04 0.964 0.064 0.435 0.343
Channel_05 0.227 0.172 0.583 0.402
Channel_06 0.270 0.338 >0.999 0.513
Channel 07 0.026* 0.412 0.312 <0.001*
Channel 08 0.664 1.000 0.059 0.080
Channel_09 0.117 0.218 0.006* 0.162
Channel 10 0.009* 0.305 0.029* 0.726

The analysis of the forecasting error randomness indicates that each analyzed series can be
considered random (in the sense of one of the tests used and alpha = 0.05). Moreover, low p-values
for Channel_02, Channel_07, Channel_09 and Channel_10 in some tests may suggest the presence of
certain irregularities in the error behavior.

The analysis of the stationarity of the analyzed error series using ADF (Augmented Dickey-
Fuller test) indicates that the series may be considered stationary (p-value <= 0.01 for every series).
The results of the series autocorrelation analysis are not homogeneous and may point to irregularities.
The detailed values of coefficients and critical significances (p-values) for the first seven delays are
presented in Table 6. For the test, the values of ACF coefficients and Ljung-Box test were used.

Table 6. ACF coefficient values with their critical significance and p-values for Ljung-Box test. The
values refer to the first seven delays.

Chalnne ACEF (coefficient) ACEF (p-value) Ljung-Box test (p-value)
Channe -0.175, -0.235, 0.153, 0.053, 0.01, 0.091, 0.376, 0.548,0.050, 0.005, 0.003, 0.006,
1.01  -0.080, 0.054, -0.166, 0.057 0.067, 0.529 0.011, 0.005, 0.008

Channe 0.088, 0.118, 0.21, 0.139, 0.235,0.33, 0.193, 0.021, 0.126, 0.009,0.324, 0.256, 0.04, 0.029, 0.003,
102  0.086,0.157 0.341, 0.083 0.004, 0.002
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Channe-0.109, -0.243, 0.096, 0.229, 0.007, 0.287, 0.087, 0.286,0.223, 0.012, 0.018, 0.01, 0.013,
1. 03  -0.155,-0.097, 0.019, -0.026 0.83, 0.776 0.025, 0.043
Channe-0.001, -0.257, -0.006, -0.009,0.988, 0.005, 0.945, 0.921, 0.168,0.988, 0.017, 0.044, 0.087,
104 0.126,0.047,0.013 0.607, 0.89 0.071, 0.108, 0.165
Channe 0.087, -0.201, -0.011, 0.051,0.369, 0.039, 0.909, 0.602, 0.545,0.362, 0.072, 0.153, 0.234,
1.05 0.059, -0.069, -0.143 0.474, 0.141 0.311, 0.369, 0.262
Channe 0.099, -0.314, -0.116, 0.109, 0.05,0.297, 0.001, 0.223, 0.253, 0.599,0.29, 0.002, 0.003, 0.004, 0.008,
106 -0.107,-0.004 0.261, 0.967 0.009, 0.017
Channe 0.273, -0.009, -0.147, -0.128, -0.007, 0.932, 0.147, 0.208, 0.538,0.006, 0.024, 0.021, 0.022,
1.07 0.062,0.131,0.4 0.197,0,0.11 0.038, 0.034, <0.001
Channe 0.011, 0.023, -0.01, -0.066, -0.084,0.914, 0.821, 0.921, 0.514, 0.407,0.912, 0.968, 0.995, 0.971,
1 08  0.203,0.375 0.045, 0, 0.321 0.938, 0.466, 0.004
Channe 0.132, -0.055, 0.037, 0.07, 0.219,0.193, 0.587, 0.715, 0.488, 0.031,0.187, 0.358, 0.533, 0.608,
109 0.071,0.245 0.487, 0.016 0.173, 0.221, 0.041
Channe 0.275, -0.155, -0.041, -0.086, -0.007, 0.126, 0.684, 0.395, 0.292,0.006, 0.007, 0.017, 0.027,
110 0.107,0.131, 0.444 0.197, 0, 0.766 0.033, 0.031

According to the initial analyses, the regularities may refer to each analyzed series. In every
analyzed case, the autocorrelation is present for the first seven rows.
The results of the analysis of the forecasting error time series are presented in Tables 7-9.

Table 7. The results of the analysis of the forecasting error series relating to STL decomposition.

Channel Trend_stl Season_stl MAE_error MAPE_error Remainder MAE_stl Quotient_stl

Channel 03 0.007 0.021 125 0.593 124 0.994
Channel_02 0.158 0.030 46 0.608 36 0.775
Channel_06 0.006 0.037 861 29.518 816 0.947
Channel 01 0.000 0.045 1500 0.425 1433 0.955
Channel_04 0.029 0.049 4129 5.095 4009 0.971
Channel_05 0.010 0.053 768 16.901 735 0.957
Channel 09 0.145 0.128 109 0.455 90 0.828
Channel 07 0.099 0.230 1010 0.341 779 0.771
Channel_08 0.130 0.276 1363 0.279 984 0.722
Channel_10 0.092 0.380 366 0.268 226 0.617

Columns in Table 7 contain the following information:

“Trend_stl” — the value determined using the equation (3), informing about the strength of the
trend component in the STL decomposition (the closer it is to 1, the higher the significance of the
trend in the error is), “Season_stl” — the value determined using the equation (4), informing about the
strength of the seasonality component in the STL decomposition (similar to the preceding value, the
closer it is to 1, the higher the significance of the component in the error is), “"MAE_error” — value of
the MAE error (1) for the product, “MAPE_error” — value of the MAPE error (2) for the product,
“Remainder_MAE_stl” — “non-systematic” error understood as the MAE value for the error series,
calculated for the remainder component in the STL decomposition (the mean of the absolute values
of the remainder component in the error series), informing about MAE error excluding the systematic
components of the error series, “Quotient_stl” — relative “non-systematic” error, understood as the
quotient of “Remainder_ MAE_stl” and “MAE_error”, informing what part of the general MAE error
is taken by MAE, calculated solely based on the remainder component of STL decomposition.

The data in the table were ordered based on the non-decreasing values of the measure (4)
determining the strength of the seasonality component in the error series. In STL decomposition, the
frequency of 7 was assumed for every analyzed series as the operator works 7 days a week and the
data refers to daily values. The results in Table 7 do not show direct, strong and unambiguous
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relationships between the values. Solely, (Pearson’s) correlations between the following values can
be considered significant (alpha = 0.05):

1. Between the strength of the trend component (Trend_stl) and the strength of the seasonal
component (Season_stl), r = 0.59 (t = 2.426, p = 0.034). The more significant the trend component
is, the higher the significance of the seasonal component.

2. Between the strength of the trend component (Trend_stl) and the relative “non-systematic” error
(Quotient_stl), r = -0.69 (t = -3.163, p = 0.009). The more significant the trend component in the
errors is, the smaller the error relating to the exclusion of that component.

3. Between the strength of the seasonal component (Season_stl) and the relative “non-systematic”
error (Quotient_stl), r=-0.70 (t=-3.251, p = 0.007). The more significant the seasonal component,
the smaller the “non-systematic” error.

4. Between the “non-systematic” error (Remainder_ MAE_stl) and MAE error (MAE_error), r=0.88
(t = 6.185, p < 0.001). The higher the absolute error, the higher the absolute “non-systematic”
error. Generally speaking, this relation can be deemed obvious.

Referring to section one, attention should be paid to the fact that the maximum value of the
indicator (3) in the analyzed series is 0.158 and, generally speaking, proves small strength of the trend
component in the analyzed error series. In just two cases, the strength of the trend component is
higher than the strength of the seasonal component (Channel 02, Channel_09). In the analyzed
problem, the seasonal component of the error series is more significant.

The numerical aspects relating to the method of identifying systematic components using STL
method should be emphasized. The general determined trend is not linear and decomposition
parameter changes can be used to control trend variation. Moreover, this is closely connected with
the seasonal component with a simultaneous absence of any impact on the remainder component.
From this perspective, systematic components should be analyzed jointly. For the pre-determined
decomposition parameters, the systematic components are naturally correlated. This means that the
correlations in sections two and three should be considered natural.

Despite a general low strength of the trend component, the results of the trend presence analysis
using Student’s t-test, Mann-Kendall test, WAVK test (Lyubchich V. et al. 2023) point to an important
trend presence in most analyzed series. The detailed results are presented in Table 8.

Table 8. p-value in tests for the Null Hypothesis of no Trend.

Student’s t-

. Mann-Kendall Test WAVK test (possibly non-monotonic
Channel test (linear )
(monotonic trend) trend)
trend)

Channel_01 0.927 0.690 0.052
Channel_02 <0.001* <0.001* <0.001*
Channel_03 0.426 0.415 0.041*
Channel_04 0.042* 0.067 0.498
Channel_05 0.357 0.340 0.578
Channel_06 0.396 0.524 0.257
Channel_07 0.023* 0.025* 0.071
Channel_08 0.006* 0.001* 0.729
Channel_09 <0.001* <0.001* 0.020*
Channel_10 0.119 0.090 0.600

The results presented in Table 8 point to the trend presence for the forecasting errors in
channel_02, channel 07, channel 08 and channel 09. However, the visual assessment of the
phenomenon in the function of time does not confirm any clear trend.

The following tests were used to analyze a significant seasonal component in the analyzed time
series : combined.kwr - Ollech and Webel’s combined seasonality test (Ollech, D., Webel, K., 2020), test
QS (gs.p), Friedman Rank test (fried.p), Kruskall Wallis test (kw.p), F-Test on seasonal dummies
(seasdum.p) and Welch seasonality test (welch.p).
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Table 9. p-value in tests for the Null Hypothesis of no seasonality.

Channel combined.kwr gs.p friedp  kw.p seasdum.p welch.p
Channel 01 0.293  >0.999 0.098 0.106 0.504 0.179
Channel_02 0.422  >0.999 0.905 0.729 0.760 0.723
Channel_03 0.943 >0.999 0.976 0.969 0.874 0.829
Channel 04 0.649  >0.999 0.848 0.546 0.466 0.368
Channel_05 0.570  >0.999 0.187 0.307 0.500 0.173
Channel_06 0.672  >0.999 0.638 0.553 0.684 0.629
Channel_07 <0.001 <0.001 <0.001 <0.001 0.001 <0.001
Channel 08 <0.001 0.026 0.003 0.001 <0.001 <0.001
Channel_09 0.052  >0.999 0.058 0.013 0.055 0.025
Channel 10 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

The results of the tests carried out point to clear seasonality in error series referring to
channel_10, channel_07 and channel_08. For channel_09, low p-value suggest possible presence of
significant seasonality as well. The results are consistent with those from the analysis of the strength
of seasonality (4).

Figures 4 and 5 present the visualized decompositions performed for two extreme examples.
Figure 4 presents error decomposition for channel_03 characterized by the lower share of systematic
components in the overall error. Figure 5 depicts error decomposition for channel_10 characterized
by the highest share of systematic components.
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Figure 4. The STL decomposition of channel_03 errors time series.
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Figure 5. The STL decomposition of channel_10 errors time series.

The major difference of the systematic components’ strength lies in the error scale. For
channel_03, the trend ranges from ca. -30 to ca. 10, seasonality from ca. -56 to ca. 23, whereas the
overall error from -786 to 740. For channel_10, the trend ranges from ca. -340 to ca. -23, seasonality
from ca. -457 to ca. 253, whereas the overall error from -1,388 to 681. This means that the error
decomposition visualization can also be used to assess the strength and significance of the systematic
error components. It should also be stressed that a key indicator here can be the range of individual
component changes.

5. Discussion

5.1. Verification of Research Hypotheses

In this paper, the first hypothesis (H1. In the forecasting errors for different picking systems, it
is possible to find certain regularities allowing to decompose them in terms of seasonality and trend)
was verified successfully. The forecasting error analysis indicates that there are different patterns and
characteristics of errors for individual channels. The high value of the mean, standard deviation,
coefficient of variation or skewness indicates error variation when compared to the mean value. For
some channels, clear seasonality and certain trends can be noticed. The values of the correlation
between trend and seasonality also suggest the existence of certain relationships between those
components.

The results obtained can be deemed consistent for the analytical methods used. The study of the
error randomness showed that channel 02, channel 07, channel 09 and channel_10 can be
characterized by a certain regularity. The strength analysis of individual components of the
decomposed error series indicated the importance of regularity (trend or seasonality) for channel_09
as well. For decomposition, seasonality and trend should be analyzed jointly as STL decomposition
is largely conditional on the decomposition parameters (relating to the windows of trend and
seasonality smoothing).

Error series decomposition can be grounds for more in-depth analyses. When there are
significant systematic components of errors, it is necessary to ask about the causes of such
irregularities. Did the forecasting model not consider the characteristics of the analyzed phenomenon
changes or this regularity stems from any qualitative factors? This can also be a premise to look for
and consider a suitable regressor not included before in the forecasting model.
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The paper failed to verify the second hypothesis (H2. The analysis of the forecasting error series
may improve the operation of the current forecasting tool in terms of the generated forecasts’
reliability), although the authors believe that it would be highly probable to verify it once a detailed
insight in the models used to generate forecasts was obtained. The statistical test results for various
channels display significant differences between forecast groups in some cases (e.g., Channel_07,
Channel_08, Channel_09, Channel_10). This suggests that the forecasting tool can be more accurate
for some than for other channels. The presence of those differences points to the ability to improve
the forecasting tool in those channels. Moreover, the analysis of such parameters as the standard
deviation, coefficient of variation or skewness allows to understand the detailed tool operation in
individual cases. This may encourage to verify the forecasting model more thoroughly and to
improve it for those specific channels. However, it was not verified empirically due to the absence of
the detailed analysis of models used for forecasting.

The error analysis presented can identify channels for which the current forecasting tool falls
short. This analysis can be automated relatively easily, revealing which forecasts (or channels) exhibit
systematic errors. Identifying systematic components in forecast errors could lead to improvements
in the forecasting model. We recommend that the logistics operator evaluates the need for alternative
forecasting tools or approaches for these channels.

5.2. Impact of the Error Time Series Analysis on the Forecasting Tool

The logistic operator uses forecasting tools to generate forecasts (Kmiecik, 2021). The analysis of
the forecasting error time series provides important information on the quality of such forecasts. The
error values, their variation and distribution characteristics indicate that the forecasts have different
reliability levels and are prone to overestimation or underestimation. The forecasting tool used by
the operator generates forecasts which frequently over- or underestimate the actual values. This
suggests the need to optimize and fine-tune the forecasting models to reduce the forecasting errors.
However, the tools available in business practice often prevent any more in-depth analysis or
modification of their operation. The insufficient knowledge and ability to modify such tool type have
been mentioned in reference works many times, e.g., by Voulgaris (2019) and Rahman et al. (2018).
The forecasting error analysis points to specific areas where the models display difficulties. The
managers may focus on improving such models further by adapting parameters, considering extra
variables or using more advanced forecasting techniques. The analysis may constitute a basis for the
development of the forecast quality improvement strategy. This may cover the development of more
advanced forecasting methods, improved collection and management of model input data and also
the use of machine learning techniques which may consider non-linear patterns better (Ryo and
Rilling, 2017; Ghosh et al., 2019). In the context of forecasting error analysis and its impact on the
efficiency of distribution channels, it is crucial to recognize how these errors can be a source of losses
or inefficiencies in the distribution process. These errors not only reduce the reliability of forecasts
but can also lead to excessive stockpiling or shortages, which in turn affects operational costs and
customer satisfaction levels. Therefore, identifying the channels where disparities between forecasted
and actual demand are greatest becomes key to focusing on optimizing forecasts for those channels.
Additionally, the analysis of forecasting errors should be complemented by examining the impact of
these errors on order fulfillment time and flexibility in responding to changing market conditions.
For instance, channels with greater demand variability may require different forecasting strategies,
such as more frequent updates of forecasting models or the integration of external data, to better
predict changes.

5.3. The Ability to Facilitate the Logistics Operator’s Operations

The analysis of the forecasting error time series is highly important for logistic operations.
Understanding error patterns, the operator may adapt their activities to respond to forecasting errors
better and to minimize their impact on the logistic operations. For example, when the forecasts are
underestimated, the operator may consider higher reserves in resource planning. This is particularly
important when the operator knows that the algorithm does not operate correctly or that the data is
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unforeseeable or turbulent enough to prevent any apt forecast. Understanding forecasting error
characteristics allows to adapt operating strategies. For example, when the forecasting models tend
to overestimate the values, certain flexibility can be introduced to resource planning or warehousing
to cope with the sudden demand surges. The analysis of various channels and characteristics of
forecasting errors allows to identify the areas most prone to errors. The managers may introduce risk
management strategies including resource reserves or manufacturing flexibility to minimize the
adverse impact of incorrect forecasts on the operations. The impact of the accurate forecasts on the
risk management by the logistics operator has been described in reference works, e.g., by Yoon et al.
(2016) and by Ben-Daya and Akram (2013), although the authors did not consider the opportunities
which may stem from the statistical analysis of errors generated by a forecasting tool. The analysis of
the forecasting error time series is not a one-off task. The managers should monitor the error
characteristics continuously, adapting the strategies when acquiring new data and experience. This
allows to adapt the company’s operations to the changing conditions.

The analysis of forecasting errors in time series plays a crucial role in streamlining the operations
of a logistics operator. Understanding and identifying the characteristics of these errors not only
allows the logistics operator to optimize internal processes but also contributes to increasing the
efficiency of the distribution system. The significance of forecasting error analysis is particularly
evident in the context of inventory management. Thanks to a deep analysis of these errors, logistics
operators can better predict demand fluctuations, which allows for more effective management of
inventory levels. Adapting operational strategies based on the analysis of forecasting errors can lead
to the creation of more integrated and flexible logistics systems in the long term. As a result, logistics
operators are able to better respond to changes in the market environment and adapt to the evolving
needs of customers, which in turn can contribute to building long-term competitive advantages.

5.4. Main Limitations and Further Study Directions

The forecasting error analysis, though significant, can be limited in terms of understanding
deeper causes of those errors. Logistic operations are usually based on numerous variables which
may influence forecast quality. Moreover, the absence of any information on the forecasting models
and input data used may prevent complete understanding of error sources. The absence of any model
knowledge is caused by the so-called black-box effect (Rudin, 2019; Papernot et al., 2017). For this
reason, efforts should be made to integrate the logistics operator better with the forecasting software
provider to ensure more in-depth understanding of its operation. The analysis of the causes of
forecast overestimations or underestimations may help to understand specific sources of errors. The
study of the impact of various forecasting models or data analysis methods on the forecast quality
may improve the forecasting results. The forecasting error analysis may inspire further studies of
specific channels, product types or seasonality. The innovative approach to modeling and forecasting
may improve the quality of forecasts and enable the companies to plan more precisely.

6. Conclusions

In this paper, the authors carried out a comprehensive analysis of the forecasting error time
series generated by the 3PL logistics operator for ten different channels. The major objective was to
identify patterns and characteristics of forecasting errors and draw conclusions aimed at improving
the forecasting capacities of the existing forecasting tools. The analysis comprised both visual studies
and statistical tests of forecasting error series. The visual analysis of the forecasting error time series
revealed various patterns and behaviors in individual channels. Some channels displayed tendency
to overestimate whereas others to underestimate the predicted values. The forecasting error
differences were emphasized further by the differences of the standard deviation, coefficient of
variation, skewness and kurtosis. Those conclusions stressed the importance of in-depth explorations
and improvements of forecasting models for every channel. Research hypotheses were verified and
similarities and differences of forecasting error distributions were shown by means of statistical tests.
The observation of trend and seasonality of forecasting errors pointed to the presence of the hidden
data patterns. The correlation between the strength of trend and the strength of seasonality confirmed
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the mutual relationships of those two components which may open up the opportunities for
improving forecast accuracy by focusing on the deterministic time series components. The results of
the forecasting error analysis showed clearly the important role of error analysis when improving
forecasting models. The analysis identified strengths and weaknesses of the existing forecasting tools
providing the basis for its improvement.

The studies described in this paper emphasized valuable conclusions which can be drawn from
the analysis of time series forecasting errors in the context of logistic operations. The findings
indicated the need for an adapted approach to forecasting for each and every channel, the importance
of improving the forecasting tool and the potential to optimize the forecast accuracy by focusing on
the trend and seasonality. For this reason, the analysis is an important input into the theory and
practice relating to demand forecasting by logistics operators in distribution networks.
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