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Abstract: This article introduces a novel two-step fifth-order Jacobian-free iterative method aimed at
efficiently solving systems of nonlinear equations. The method leverages the benefits of Jacobian-free
approaches, utilizing divided differences to circumvent the computationally intensive calculation of
Jacobian matrices. This adaptation significantly reduces computational overhead and simplifies the
implementation process while maintaining high convergence rates. We demonstrate that this method
achieves fifth-order convergence under specific parameter settings, with a broad applicability across
various types of nonlinear systems. The effectiveness of the proposed method is validated through a
series of numerical experiments which confirm its superior performance in terms of accuracy and
computational efficiency compared to existing methods.
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1. Introduction

Let F(x) = 0 be a nonlinear system of equations, F : D ⊂ Rn → Rn, and the functions fi for
i = 1, 2, . . . , n, are the coordinate components of F, expressed as F(x) = ( f1(x), f2(x), . . . , fn(x))T .
Solving nonlinear systems is generally challenging, and solutions ξ are typically found by linearizing
the problem or employing a fixed-point iteration function G : D ⊂ Rn → Rn, leading to an iterative
fixed-point method. Among the various root-finding techniques for nonlinear systems, Newton’s
method is the most well-known, which follows the second-order iterative procedure:

x(k+1) = x(k) − [F′(x(k))]−1F(x(k)), k = 0, 1, . . . ,

being F′(x(k)) the Jacobian matrix of F at the k-th iterate.
Recenty, many researchers have focused on developing iterative methods that outperform

Newton’s method in terms of both efficiency and order of convergence. Numerous approaches need
the computation of F′ at different points along each iteration. Nevertheless, calculating the Jacobian
poses significant challenges, particularly in high-dimensional problems, where its computation can be
costly or even impractical. In some instances, the Jacobian may not exist at all.

To address this issue, alternative approaches have been proposed, such as replacing the Jacobian
matrix with a divided difference operator. One of the simplest alternatives is the multidimensional
version of Steffensen’s method, attributed to Samanskii [1,2], which substitutes the Jacobian in
Newton’s procedure with a first-order operator of divided differences:

x(k+1) = x(k) − [x(k), z(k); F]−1F(x(k)), k = 0, 1, . . . ,

being z(k) = x(k) + F(x(k)), and [·, ·; F] : Ω × Ω ⊂ Rn × Rn → L(Rn) is the operator of divided
differences related to F [3],

[y, x; F](y − x) = F(y)− F(x) for any x, y ∈ Ω.
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This substitution retains the 2-nd order of convergence while bypassing the calculation of the F′.
Although both Steffensen and Newton methods exhibit quadratic convergence, it has been shown

that Steffensen’s scheme is less stable than Newton’s method, with stability depending more on the
initial guess. This has been thoroughly analyzed in [4] and [5], where it was found that, for scalar
cases f (x) = 0, derivative-free iterative methods become more stable when selecting z = x + α f (x) for
small real values of α.

However, substituting the Jacobian with divided differences can result in lower convergence order
for some iterative methods. For example, the multidimensional version of Ostrowski’s fourth-order
method (see [6], [13]):

y(k) = x(k) − [F′(x(k))]−1F(x(k)),

x(k+1) = y(k) −
[
2[y(k), x(k); F]− F′(x(k))

]−1
F(y(k)), k = 0, 1, . . . ,

achieves only cubic convergence if F′(x) is replaced by [y, x; F], as follows:

y(k) = x(k) − [x(k) + F(x(k)), x(k); F]−1F(x(k)), k = 0, 1, . . . ,

x(k+1) = y(k) −
[
2[y(k), x(k); F]− [x(k) + F(x(k)), x(k); F]

]−1
F(y(k)).

Other fourth-order methods also loose their convergence order when the Jacobian is replaced
with divided differences, such as Jarratt’s scheme [7], Sharma’s method [8], Montazeri’s method [9],
Ostrowski’s vectorial extension ([13],[15]), and Sharma-Arora’s fifth-order scheme [10]. In all these
cases, Jacobian-free versions of the methods reduce to lower orders of convergence.

Nevertheless, Amiri et al. [11] demonstrated that using a specialized divided difference operator
of the form [x, x + G(x); F], where G(x) = ( f1(x)m, f2(x)m, . . . , fn(x)m)T , m ∈ N, as an approximation
of the Jacobian matrix, may preserve the convergence order. By selecting an appropriate parameter m,
the original fourth-order convergence of these methods can be maintained.

Despite the reduction in performance observed in some Jacobian-free methods, it is important to
highlight that there are iterative methods that are successfully modified in their iterative expressions
to preserve the order of convergence, even after fully transitioning to Jacobian-free formulations. This
is the case of a combination of the Traub-Steffensen family of methods and a second step with divided
differences operators, proposed by Behl et al. in [12]

y(k) = x(k) −
[
u(k), x(k); F

]−1
F(x(k)), k = 0, 1, 2, . . .

x(k+1) = y(k) −
[
y(k), x(k); F

]−1 [
u(k), x(k); F

] [
u(k), y(k); F

]−1
F(y(k)),

(1)

where u(k) = x(k) + βF(x(k)), β ∈ R. The iterative schemes have a fourth order of convergence for
every β, β ̸= 0, for our purposes we choose β = 1 and this be called Traub − Ste.

Now, we consider several efficient vectorial iterative schemes existing in the literature to transform
them in their Jacobian-free versions following the idea of Amiri et al. [11]. In the following sections,
we compare these later schemes with our proposed procedures, in terms of efficiency and numerical
performance. The first one is the vectorial extension of Ostrowski’s scheme (see [13], [14] and [15], for
instance),

y(k) = x(k) −
[

F′(x(k))
]−1

F(x(k)),

x(k+1) = y(k) −
[
2
[
y(k), x(k); F

]
− F′(x(k))

]−1
F(y(k)),

(2)
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whose Jacobian-free version obtained by substituting the Jacobian matrix by the divided difference
operator (with Amiri et al. approach [11], m = 2) is

y(k) = x(k) −
[
u(k), x(k); F

]−1
F(x(k)),

x(k+1) = y(k) −
[
2
[
y(k), x(k); F

]
−
[
u(k), x(k); F

]]−1
F(y(k)),

(3)

where
[
u(k), x(k), F

]
≈ F′(x(k)), and u(k) = x(k) + αG(x(k)) (with m = 2), α ∈ R. We denote this

method as Ostro01.
Another fourth-order method proposed by Sharma in [16] using Jacobian matrices is

y(k) = x(k) −
[

F′(x(k))
]−1

F(x(k)),

x(k+1) = y(k) −
[

3I − 2
[

F′(x(k))
]−1

[y(k), x(k); F]
] [

F′(x(k))
]−1

F(y(k)),
(4)

to which we apply the same Amiri’s procedure performed for (2), getting its Jacobian-free partner

y(k) = x(k) −
[
u(k), x(k); F

]−1
F(x(k)),

x(k+1) = y(k) −
[

3I − 2
[
u(k), x(k); F

]−1
[y(k), x(k); F]

] [
u(k), x(k); F

]−1
F(y(k)),

(5)

that we denote by M4,3, where
[
u(k), x(k), F

]
≈ F′(x(k)) and u(k) = x(k) + αG(x(k)), m = 2, firstly

appeared in [11].
We finish with a sixth-order scheme [16], which is obtained by adding a step to the previous

method (4),

y(k) = x(k) −
[

F′(x(k))
]−1

F(x(k)), k = 0, 1, . . . ,

z(k) = y(k) −
[

3I − 2
[

F′(x(k))
]−1

[y(k), x(k); F]
] [

F′(x(k))
]−1

F(y(k)),

x(k+1) = z(k) −
[

3I − 2
[

F′(x(k))
]−1

[y(k), x(k); F]
] [

F′(x(k))
]−1

F(z(k)).

(6)

Similarly, its Jacobian-free version was constructed in [11] and denoted by M6,3,

y(k) = x(k) −
[
u(k), x(k); F

]−1
F(x(k)), k = 0, 1, . . . ,

z(k) = y(k) −
[

3I − 2
[
u(k), x(k); F

]−1
[y(k), x(k); F]

] [
u(k), x(k); F

]−1
F(y(k)),

x(k+1) = z(k) −
[

3I − 2
[
u(k), x(k); F

]−1
[y(k), x(k); F]

] [
u(k), x(k); F

]−1
F(z(k)).

(7)

where again
[
u(k), x(k), F

]
≈ F′(x(k)) and u(k) = x(k) + αG(x(k)), m = 2. It should be noticed that in

schemes (3), (5) and (7), we employed a quadratic element-by-element power of F(x(k)) in the divided
differences. This adjustment was essential for preserving the convergence order of the original method
(see [11]). However, in our proposal, the order of convergence of the original schemes is held avoiding
the computational cost of this element-by-element power.

Therefore, to avoid the calculation of Jacobian matrices, which can be a bottleneck in terms
of computational efficiency especially for large systems, this article presents a two-step fifth-order
efficient Jacobian-free iterative method that addresses these challenges by eliminating the need for
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direct Jacobian computation. Our approach is grounded in the use of divided differences and scalar
accelerators recently developed in some very efficient schemes (using Jacobian matrices), [17,18]. This
not only reduces the computational costs, but also accelerates the convergence with simpler iterative
expressions. The proposed method’s design and theoretical underpinnings are discussed, emphasizing
its ability to achieve high-order convergence without the Jacobian calculations typically required.

In the Section 2, we develop a new parametric class of Jacobian-free iterative methods using
scalar accelerators and demonstrate its theoretical order of convergence, depending on the values
of the parameters involved. Subsequently, in Section 3 we carry out an efficiency analysis in which
we compare our proposed method with the Jacobian-free versions of others previously cited in the
literature. Finally, Section 4 presents practical results of these iterative methods applied to different
nonlinear systems of equations.

2. Construction and Convergence of New Jacobian-Free Iterative Method

In 2023, Singh, Sharma and Kumar [18] proposed a family of iterative methods,

w(k) = x(k) − F′(x(k))−1F(x(k)), k = 0, 1, 2, . . .

x(k+1) = w(k) −
(

p1 + p2
F(w(k))T F(w(k))

F(x(k))T F(x(k))

)
F′(w(k))−1F(w(k)),

(8)

where
F(y(k))

T
F(y(k))

F(x(k))
T

F(x(k))
is a scalar accelerator that can be interpreted as F(y(k))T F(y(k)) = ∥F(y(k))∥2,

and F(x(k))T F(x(k)) = ∥F(x(k))∥2, respectively. The real parameters p1 and p2 make the order of
convergence of the method five if p1=p2 = 1, order four if p1 = 1 and p2 arbitrary and order two
if p1 ̸= 1 and p2 arbitrary. It is known that in many practical applications, computing the Jacobian
matrix can be very resource-intensive and time-consuming, therefore, Jacobian-free methods are often
preferred.

Making a modification to the scheme (8) by replacing the Jacobian matrices by specific divided
differences, we obtain the following family:

y(k) = x(k) −
[
u(k)

x , x(k), F
]−1

F(x(k)), k = 0, 1, 2, . . .

x(k+1) = y(k) −
(

p1 + p2
F(y(k))T F(y(k))
F(x(k))T F(x(k))

) [
u(k)

y , y(k), F
]−1

F(y(k)),
(9)

where
[
u(k)

x , x(k); F
]
≈ F′(x(k)),

[
u(k)

y , y(k); F
]
≈ F′(y(k)), u(k)

x = x(k) + αF(x(k)) and u(k)
y = y(k) +

αF(y(k)). From now on, we will refer to our modified scheme as MS(p1, p2).
The following result shows the error equations arising from method (9) for the possible parameter

values, thereby demonstrating that the convergence results of the family (8) hold.

Theorem 1. Let F be a differentiable enough function F : Ω ⊆ Rn → Rn defined in the open convex
neighbourhood Ω of ξ, solution of F(x) = 0. Let us also consider an initial seed x(0) near enough to ξ and let
F′(x) be continuous and invertible at ξ. Then, the parametric class of iterative schemes presented in (9) locally
converges for all α ∈ R, with the order of convergence given by:

(a) Fifth-order convergence if p1 = p2 = 1, being the corresponding error equation

x(k+1) − ξ = (M4 − A2(M2M1 + M1M2)− (C1 + C2)M2 − ((M2
1 + M1)M2 + M2M1

− P−1M2
1Q)M1)e(k)

5
+ O(e(k)

6
).

(10)
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(b) Fourth-order convergence if p1 = 1, p2 ̸= 1, being the corresponding error equation

x(k+1) − ξ = (−A2M2
1 + C1M1 − p2M3

1)e
(k)4

+ (M4 − p1(A2(M2M1 + M1M2)− (C1 + C2)M2)− (p2((M2
1 + M1)M2

+ M2M1 − P−1M2
1Q)M1)e(k)

5
+ O(e(k)

6
).

(11)

(c) Second-order convergence if p1 ̸= 1, p2 arbitrary, being the corresponding error equation

x(k+1) − ξ = M1(1 − p1)e(k)
2
+ M2(1 − p1)e(k)

3

+ (M3(1 − p1)− p1 A2M2
1 + p1C1M1 − p2M3

1)e
(k)4

+ (M4 − p1(A2(M2M1 + M1M2)− (C1 + C2)M2)− (p2((M2
1 + M1)M2

+ M2M1 − P−1M2
1Q)M1)e(k)

5
+ O(e(k)

6
),

(12)

being Aj =
1
j! [F

′(ξ)]−1 F(j)(ξ), j = 2, 3, . . ., and Ci, Mi, i = 1, 2, . . ., are combinations of Aj, and denoting

the error at iteration k by e(k) = x(k) − ξ.

Proof. Let e(k) = x(k) − ξ be the error at the k-th iteration and let ξ ∈ Rn be a solution of F(x) = 0.
Then, expanding F(x(k)) in the neighborhood of ξ, we have

F(x(k)) = F′(ξ)
[
e(k) + A2e(k)

2
+ A3e(k)

3
+ A4e(k)

4
+ A5e(k)

5
+ A6e(k)

6
+ O

(
e(k)

7
)]

,

F′(x(k)) = F′(ξ)
[

I + 2A2e(k) + 3A3e(k)
2
+ 4A4e(k)

3
+ 5A5e(k)

4
+ 6A6e(k)

5
+ O

(
e(k)

6
)]

,

F′′(x(k)) = F′(ξ)
[
2A2 + 6A3e(k) + 12A4e(k)

2
+ 20A5e(k)

3
+ 30A6e(k)

4
+ O

(
e(k)

5
)]

,

F′′′(x(k)) = F′(ξ)
[
6A3 + 24A4e(k) + 60A5e(k)

2
+ 120A6e(k)

3
+ O

(
e(k)

4
)]

,

F(iv)(x(k)) = F′(ξ)
[
24A4 + 120A5e(k) + 360A6e(k)

2
+ O

(
e(k)

3
)]

,

F(v)(x(k)) = F′(ξ)
[
120A5 + 720A6e(k) + O

(
e(k)

2
)]

,

F(vi)(x(k)) = F′(ξ)
[
720A6 + O

(
e(k)
)]

.

(13)

Then, based on the formula of Genochi and Hermite (see [3]) we have[
u(k)

x , x(k); F
]
= F′(x(k)) +

1
2!

F′′(x(k))(u(k)
x − x(k)) +

1
3!

F′′′(x(k))(u(k)
x − x(k))2 +

1
4!

F(iv)(x(k))(u(k)
x − x(k))3

+
1
5!

F(v)(x(k))(u(k)
x − x(k))4 +

1
6!

F(vi)(x(k))(u(k)
x − x(k))5 + O((ux(k) − x(k))6).

(14)
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Taking into account that u(k)
x − x(k) = αF(x(k)), and performing a series expansion up to fifth-order,

we get

α2(F(x(k)))2 = α2(F′(ξ))2e(k)
2
+ α[(F′(ξ))2 A2 + F′(ξ)A2F′(ξ)]e(k)

3

+ α2[(F′(ξ))2 A3 + F′(ξ)A2F′(ξ)A2 + F′(ξ)A3F′(ξ)]e(k)
4

+ α2[(F′(ξ))2 A4 + F′(ξ)A2F′(ξ)A3 + F′(ξ)A3F′(ξ)A2 + F′(ξ)A4F′(ξ)]e(k)
5
+ O(e(k)

6
),

α3(F(x(k)))3 = α3(F′(ξ))3e(k)
3
+ α3[(F′(ξ))3 A2 + (F′(ξ))2 A2F′(ξ) + F′(ξ)A2(F′(ξ))2]e(k)

4

+ α3[(F′(ξ))3 A3 + (F′(ξ))2 A2F′(ξ)A2 + F′(ξ)A2(F′(ξ))2 A2 + (F′(ξ))2 A3F′(ξ)

+ F′(ξ)A2F′(ξ)A2F′(ξ) + F′(ξ)A3(F′(ξ))2]e(k)
5
+ O(e(k)

6
),

α4(F(x(k)))4 = α4(F′(ξ))4e(k)
4
+ α4[(F′(ξ))4 A2 + (F′(ξ))3 A2F′(ξ)

+ (F′(ξ))2 A2(F′(ξ))2 + F′(ξ)A2((F′(ξ))3]e(k)
5
+ O(ek6

),

α5(F(x(k)))5 = α(F′(ξ))5e(k)
5
+ O(e(k)

6
).

(15)

By combining formulas (13), (15) in the Taylor series expansion (14) we obtain:[
u(k)

x , x(k); F
]
= F′(ξ)

[
I + B1ek + B2e(k)

2
+ B3e(k)

3
+ B4e(k)

4
+ B5e(k)

5
+ O(e(k)

6
)
]

, (16)

where

B1 = 2A2 + αA2F′(ξ),

B2 = 3A3 + αA2F′(ξ)A2 + 3αA3F′(ξ) + α2 A3(F′(ξ))2,

B3 = 4A4 + αA2F′(ξ)A3 + 3αA3F′(ξ)A2 + 6αA4F′(ξ) + α2 A3(F′(ξ))2 A2 + α2 A3F′(ξ)A2F′(ξ)

+ α24A4(F′(ξ))2 + α3 A4(F′(ξ))3,

B4 = 5A5 + αA2F′(ξ)A4 + 3αA3F′(ξ)A3 + 6αA4F′(ξ)A2 + 10αA5F′(ξ) + α2 A3(F′(ξ))2

+ α2 A3F′(ξ)A2F′(ξ)A2 + α2 A3F′(ξ)A3F′(ξ) + 4α2 A4(F′(ξ))2 A2 + 4α2 A4F′(ξ)A2F′(ξ)

+ 10α2 A5(F′(ξ))2 + α3 A4(F′(ξ))3 A2 + α3 A4(F′(ξ))2 A2F′(ξ) + α3 A4F′(ξ)A2(F′(ξ))2

+ 5α3 A5(F′(ξ))3 + α4 A5(F′(ξ))4,

and

B5 = 6A6 + αA2F′(ξ)A5 + 3αA3F′(ξ)A4 + 6αA4F′(ξ)A3 + 10αA5F′(ξ)A2 + 15αA6F′(ξ)

+ α2 A3(F′(ξ))2 A4 + α2 A3F′(ξ)A2F′(ξ)A3 + α2 A3F′(ξ)A3F′(ξ)A2 + α2 A3F′(ξ)A4F′(ξ)

+ 4α2 A4(F′(ξ))2 A3 + 4α2 A4F′(ξ)A2F′(ξ)A2 + 4α2 A4F′(ξ)A3F′(ξ) + 10α2 A5(F′(ξ))2 A2

+ 10α2 A5F′(ξ)A2F′(ξ) + 20α2 A6(F′(ξ))2 + α3 A4(F′(ξ))3 A3 + α3 A4(F′(ξ))2 A2F′(ξ))A2

+ α3 A4F′(ξ)A2(F′(ξ))2 A2 + α3 A4(F′(ξ))2 A3F′(ξ) + α3 A4F′(ξ)A2F′(ξ)A2F′(ξ)

+ α3 A4F′(ξ)A3(F′(ξ))2 + 5α3 A5(F′(ξ))3 A2 + 5α3 A5(F′(ξ))2 A2F′(ξ) + 5α3 A5F′(ξ)A2(F′(ξ))2

+ 15α3 A6(F′(ξ))3 + α4 A5(F′(ξ))4 A2 + α4 A5(F′(ξ))3 A2F′(ξ) + α4 A5(F′(ξ))2 A2(F′(ξ))2

+ α4 A5F′(ξ)A2(F′(ξ))3 + 6α4 A6(F′(ξ))4 + α5 A6(F′(ξ))5.
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Next, we expand the inverse of the divided difference operator
[
u(k)

x , x(k); F
]
, forcing it to satisfy[

u(k)
x , x(k); F

]−1 [
u(k)

x , x(k); F
]
= I,

[
u(k)

x , x(k); F
]−1

=
[

I + X2ek + X3e(k)
2
+ X4e(k)

3
+ X5e(k)

4
+ O(e(k)

5
)
] (

F′(ξ)
)−1 , (17)

where
X2 = −B1,

X3 = B2
1 − B2,

X4 = B1B2 + B2B1 − B3
1 − B3,

X5 = B1B3 + B3B1 + B4
1 − B4 − B2

1 + B2
2 − B1B2B1 − B2B2

1.

(18)

By using the Taylor expansions of F(x(k)) defined in (13) and
[
u(k)

x , x(k), F
]−1

obtained in (17), we
get the error equation for the first step:

y(k) − ξ = M1e(k)
2
+ M2e(k)

3
+ M3e(k)

4
+ M4e(k)

5
+ O(e(k)

6
), (19)

where
M1 = −(X2 + A2),

M2 = −(A3 + X2 A2 + X3),

M3 = −(A4 + X2 A3 + X3 A2 + X4),

M4 = −(A5 + X2 A4 + X3 A3 + X4 A2 + X5).

(20)

Now, we find the error equation for the second step,

F(y(k)) = F′(ξ)
[
e(k)y + A2e(k)

2

y + O(e(k)
3

y )
]

,

F′(y(k)) = F′(ξ)
[

I + 2A2e(k)y + 3A3e(k)
2

y + O(e(k)
3

y )
]

,

F′′(y(k)) = F′(ξ)
[
2A2 + 6A3e(k)y + 12A4e(k)

2

y + O(e(k)
3

y )
]

,

F′′′(y(k)) = F′(ξ)
[
6A3 + O(e(k)y )

]
,

(21)

from which arises

F(y(k)) = F′(ξ)
[

M1e(k)
2
+ M2e(k)

3
+ (M3 + A2 M2

1)e
(k)4

+ A2(M2 M1 + M1 M2)e(k)
5
+ O(e(k)

6
)
]

,

F′(y(k)) = F′(ξ)
[

I + 2A2 M1e(k)
2
+ 2A2 M2e(k)

3
+ (2A2 M3 + 3A3 M2

1)e
(k)4

+(2A2 M4 + 3A3(M1 M2 + M2 M1))e(k)
5
+ O(e(k)

6
)
]

,

F′′(y(k)) = F′(ξ)
[
2A2 + 6A3 M1e(k)

2
+ 6A3 M3e(k)

3
+ O(e(k)

4
)
]

,

F′′′(y(k)) = F′(ξ)
[
6A3 + O(e(k))

]
.

(22)

Then, following the process seen in (14), the expansion of the second difference operator is given
by [

u(k)
y , y(k); F

]
= F′(ξ)

[
I + (2A2M1 + αA2F′(ξ)M1)e(k)

2
+ (2A2M2 + αA2F′(ξ)M2)e(k)

3

+(2A3M3 + 3αA3M2
1 + αA2F′(ξ)(M3 + A2M2

2) + 3αA3M1F′(ξ)M1

+αA3F′(ξ)M1F′(ξ)M1)e(k)
4
+ (2A2M4 + 3A3(M1M2 + M2M1)

+αA2F′(ξ)A2(M2M1 + M1M2) + 3αA3M1F′(ξ)(M2 + M1)

+αA3F′(ξ)(M1F′(ξ)M2 + M2F′(ξ)M1)
)

e(k)
5
+ O(e(k)

6
)
]

,

(23)
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that can be expressed as[
u(k)

y , y(k); F
]
= F′(ξ)

[
I + C1e(k)

2
+ C2e(k)

3
+ C3e(k)

4
+ C4e(k)

5
+ O(e(k)

6
)
]

, (24)

being

C1 = 2A2M1 + αA2F′(ξ)M1,

C2 = 2A2M2 + αA2F′(ξ)M2,

C3 = 2A3M3 + 3αA3M2
1 + αA2F′(ξ)(M3 + A2M2

2) + 3αA3M1F′(ξ)M1 + αA3F′(ξ)M1F′(ξ)M1,

C4 = 2A2M4 + 3A3(M1M2 + M2M1) + αA2F′(ξ)A2(M2M1 + M1M2) + 3αA3M1F′(ξ)(M2 + M1)

+ αA3F′(ξ)(M1F′(ξ)M2 + M2F′(ξ)M1).
(25)

Again, we get in a similar way as in (17),[
u(k)

y , y(k); F
]−1

= −C1e(k)
2 − C2e(k)

3
+ O

(
e(k)

4
)

. (26)

Now, we proceed to calculate the expansion of
[
u(k)

y , y(k); F
]−1

F
(

y(k)
)

, obtaining

[
u(k)

y , y(k); F
]−1

F
(

yk
)
=M1e(k)

2
+ M2e(k)

3
+ (M3 − A2M2

1 − C1M1)e(k)
4

+ (A2(M2M1 + M1M2)− (C1 + C2)M2)e(k)
5
+ O(e(k)

6
).

(27)

According to Theorem 1 proven by Singh, Sharma and Kurmar in [18], we have

F(y(k))T F(y(k))
F(x(k))T F(x(k))

=
Pe(k)

2

y + O(e(k)
3

y )

Pe(k)2
+ Qe(k)3

+ O(e(k)4
)

, (28)

where

P =
n

∑
i=1

miPi, with Pi = RT
i × Ri, Q =

n

∑
i=1

miQi, with Qi = RT
i Hi + HT

i Ri,

and

Ri =

(
∂ fi
∂x1

,
∂ fi
∂x2

, . . . ,
∂ fi
∂xn

)
, Hi =

1
2

(
∂2 fi

∂xj∂xr

)
n×n

.

Using (19), we get

e(k)
2

y = M2
1e(k)

4
+ (M1M2 + M2M1)e(k)

5
+ O(e(k)

6
). (29)

After substituting (29) in (28) when performing the quotient, we obtain:

F(y(k))T F(y(k))
F(x(k))T F(x(k))

= M2
1e(k)

2
+
(

M1M2 + M2M1 − P−1M2
1Q
)

e(k)
3
+ O(e(k)

4
). (30)

Finally, fitting (19), (27) and the last result obtained in (30), we have

x(k+1) − ξ = M1(1 − p1)e(k)
2
+ M2(1 − p1)e(k)

3

+ (M3(1 − p1)− p1 A2M2
1 + p1C1M1 − p2M3

1)e
(k)4

+ (M4 − p1(A2(M2M1 + M1M2)− (C1 + C2)M2)− (p2((M2
1 + M1)M2

+ M2M1 − P−1M2
1Q)M1)e(k)

5
+ O(e(k)

6
).

(31)
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In this last result, it is easy to observe that when p1 is different from one (p1 ̸= 1) the iterative method
has order of convergence equal to two, since the term e(k)

2
would not cancel out. However, when

p1 = p2 = 1 both terms with e(k)
2

and e(k)
3

cancel out while the term e(k)
4

is as follows

−A2M2
1 + C1M1 − M3

1.

Let us remember that C1 = 2A2M1 + αA2F′(ξ)M1, so that

A2M2
1 + αA2F′(ξ)M2

1 − M3
1, (32)

but since M1 = −(X2 + A2), then X2 = −B1 , so M1 = −(−B1 + A2). Also, B1 = 2A2 + αA2F′(ξ).
Given that M1 = A2 + αA2F′(ξ), replacing M1 in equation (32), we get

(A2 + αA2F′(ξ))M2
1 − M3

1 → M3
1 − M3

1 = 0,

resulting in the error equation

e(k+1) − ξ = (M4 − A2(M2M1 + M1M2)− (C1 + C2)M2 − ((M2
1 + M1)M2 + M2M1

− P−1M2
1Q)M1)e(k)

5
+ O(e(k)

6
).

(33)

From the above it is clear to see that if p1 = 1 but p2 ̸= 1 only order four is reached.

3. Efficiency Analysis

We have demonstrated the order of convergence of the proposed class of the iterative method for
the different values of the parameters p1, p2. In this section, we perform a computational effort study
considering the effort of solving the involved linear systems per iteration and the other computational
cost (functional evaluations, amount of product/quotients,...), not only for the proposed class but also
for some Jacobian-free schemes presented in the introductory section.

In order to get this aim, it is known that the needed operations (products/quotients) of solving a
n × n linear system is

1
3

n3 + n2 − 1
3

n.

However, if other linear systems with the same coefficient matrix are solved, then the cost upgrades
only in n2 operations each; for each divided difference we calculate n2 quotients; for each functional
evaluation of F at different points, a cost of n real evaluations; for each evaluation of a divided
differences, n2 − n scalar evaluations; Indeed, a matrix–vector product needs n2 product/quotients.
Based on the above, the computational cost for each method appears in Table 1. From family (9), which
we call MS(p1, p2), we consider the fifth-order member p1 = p2 = 1 and its fourth-order partner
p1 = 1, p2 = −1. They have the same computational cost, which will be reflected, along with the
others, in Table 1.

Table 1. Computational effort of new and comparison schemes

Method Complexity C

MS(p1, p2)
2
3 n3 + 6n2 − 2

3 n
Traub − Ste n3 + 10n2 − 2n

Ostro01
2
3 n3 + 6n2 + 1

3 n
M4,3

1
3 n3 + 8n2 + 2

3 n
M6,3

1
3 n3 + 11n2 + 5

3 n

The results presented in Table 1 show that the method with the highest computational cost is
Traub − Ste, while those with intermediate costs are Ostro01 and MS(p1, p2), with the latter being
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slightly better. The ones that offer the lowest cost are M4,3 and M6,3, although the latter has sixth-order
convergence, which is a factor to consider when obtaining the efficiency index.

In order to show more clearly how computational cost influences the efficiency index I = p
1
C

, where p is the convergence order of the corresponding scheme (see [20]), we present Figure 1 and
Figure 2 for different sizes of the nonlinear system to be solved.

Figure 1. I indices for MS(p1, p2) and comparison methods

Figure 2. I indices for MS(p1, p2) and comparison schemes

In Figure 1, we observe that for systems with dimensions n = 2, 3, . . . , 10, the proposed class of
vectorial iterative methods (9) shows a better computational efficiency than the other schemes, for both
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members of the family. On the other hand, as the system grows to sizes n = 10, 11, . . . , 50 it becomes
apparent that methods M4,3 and M6,3 yield better results. Let us notice that for sizes of n < 11, our
method has better efficiency than M6,3, and for sizes n < 12, it has better efficiency compared to M4,3

(see Figure 2).
In the next section, we check the theoretical convergence order of our proposed method and

assess the efficiency of different schemes on nonlinear systems of various sizes.

4. Numerical Results

In this section, we test numerically that the theoretical order holds for practical purposes in the
proposed Jacobian-free class (9). Moreover, we compare it with the methods appearing in the efficiency
section to show their accuracy and computational performance.

Below we show some nonlinear problems, including one whose related nonlinear function is not
differentiable, in order to test the applicability of the methods on different kind of problems.

• We consider F1(x) =
(

f 1
1 (x), f 1

2 (x), . . . , f 1
25(x)

)T , where

f 1
i (x) = x2

i xi+1 − 1, i = 1, 2, . . . , 24,

f 1
25(x) = x2

25x1 − 1.

whose solution is ξ̄ = (1, 1, 1, . . . , 1).
• We also have F2(x) =

(
f 2
1 (x), f 2

2 (x), . . . , f 2
8 (x)

)T , where

f 2
i (x) = xi − cos

(
2xi −

8

∑
k=1

xk

)
, i = 1, 2, . . . , 8,

being ξ̄ ≈ (0.5149, 0.5149, . . . , 0.5149) its solution.
• We also consider F3(x) =

(
f 3
1 (x), f 3

2 (x), . . . , f 3
5 (x)

)T , where

f 3
i (x) =

5

∑
k=1

(xk)− xi − e(−xi), i = 1, 2, 3, 4, 5,

where the solution is ξ̄ ≈ (0.20389, 0.20389, 0.20389, . . . , 0.20389).
• We test also F4(x) =

(
f 4
1 (x), f 4

2 (x), . . . , f 4
5 (x)

)T , where

f 4
i (x) =

5

∑
k=1

(xk)− xi − e(−xi)xi, i = 1, 2, 3, 4, 5,

whose solution is ξ̄ = (0, 0, 0, . . . , 0).
• F5(x) =

(
f 5
1 (x), f 5

2 (x), . . . , f 5
10(x)

)T , where

f 5
i (x) = xi + 1 − 2 log

(
1 − xi +

10

∑
k=1

(xk)

)
, i = 1, 2, 3, . . . , 10,

being it solution ξ̄ ≈ (7.4370, 7.4370, . . . , 7.4370).
• F6(x) =

(
f 6
1 (x), f 6

2 (x), . . . , f 6
5 (x)

)T , where

f 6
i (x) = xi + 1.5 sin

(
5

∑
k=1

(xk)− xi

)
, i = 1, 2, 3, 4, 5,

and there exist two solutions, ξ̄1 ≈ (−0.3004,−0.3004, . . . ,−0.3004), and ξ̄2 ≈
(0.4579, 0.4579, . . . , 0.4579).
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• F7(x) =
(

f 7
1 (x), f 7

2 (x)
)T , where

F7
i (x) = arctan (xi) + 1 − 2

[(
2

∑
k=1

x2
k

)
− x2

i

]
= 0, i = 1, 2,

being ξ̄ ≈ (0.936, 0.936).
• We also test F8(x) =

(
f 8
1 (x), f 8

2 (x)
)T , where

f 8
1 (x) = log(|x1|) + |x2|,

f 8
2 (x) = e(x1) + x2 − 1,

with solutions ξ̄1 ≈ (−0.6275, 0.4661) and ξ̄2 ≈ (0.5122,−0.669).

Numerical results have been obtained with Matlab2022b version, using 8000 digits in variable
precision arithmetics, a processor AMD A12 − 9720P RADEON R7, 12 COMPUTE CORES 4C,
+8G-Ram, 2.70 GHz. These results are shown in Tables 2–13, including the following information,
where the appearing norms are Euclidean:

• k: amount of iterations needed ("-" appears when the scheme does not converge or it needs more
iterations than the maximum allowed).

• ξ̄: obtained solution.
• Cpu-time: average time in seconds required by the iterative method to reach the solution of the

problem when executed ten times.
• ρ: approximated computational order of convergence, ACOC, firstly appeaaring in [19]

ρ =
ln ∥x(k+1)−x(k)∥

∥x(k)−x(k−1)∥

ln ∥x(k)−x(k−1)∥
∥x(k−1)−x(k−2)∥

, k = 2, 3, . . . ,

(if ρ is not stable, then "-" appears in the table).
• ϵaprox =

∥∥∥x(k+1) − x(k)
∥∥∥.

• ϵ f =
∥∥∥F
(

x(k+1)
)∥∥∥. If ϵ f or ϵaprox are very far from zero or we get infinity or NAN, then "-"

appears in the table.

Regarding the stopping criterium, the iterative process ends when one of the following conditions
is fulfilled:

(i)
∥∥∥F
(

x(k+1)
)∥∥∥ < 10−100,

(ii)
∥∥∥x(k+1) − x(k)

∥∥∥ < 10−100,
(iii) 50 iterations are reached.

Table 2. Results for function F1, using as seed x(0) = (1.5, 1.5, 1.5, . . . , 1.5)

Iterative method k ρ ϵaprox ϵ f ξ̄ Cpu-time

MS(1,−1) 7 4.00 1.108e-51 4.624e-204 ξ̄1 191.7242
MS(1, 1) 5 4.97 4.904e-24 3.995e-117 ξ̄1 143.1027

Traub − Ste 5 4.00 1.241e-35 1.517e-140 ξ̄1 227.8747
Ostro01 - - - - - -

M4,3 6 4.00 7.338e-40 3.015e-158 ξ̄1 163.9808
M6,3 5 5.96 1.336e-47 7.876e-284 ξ̄1 142.6446

In Table 2, Ostro01 method reached the maximum number of iterations without converging to
the solution, while the most notable scheme is M6,3 in almost all aspects such as errors, iterations and
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computational time. On the other hand, although MS(1, 1) exhibits a lower computational time than
M4,3, the latter has an additional iteration, a relatively similar time, and better errors, proving that it
might even be superior in terms of efficiency.

Table 3. Numerical results for F2, x(0) = (1, 1, 1, . . . , 1)

Iterative method k ρ ϵaprox ϵ f ξ̄ Cpu-time

MS(1,−1) 8 3.99 2.794e-29 4.092e-115 ξ̄1 73.3126
MS(1, 1) 8 5.00 7.534e-74 2.162e-366 ξ̄1 72.6143

Traub − Ste 16 4.00 9.389e-68 3.459e-269 ξ̄1 317.9304
Ostro01 15 4.00 6.341e-70 1.641e-278 ξ̄1 139.3808

M4,3 7 4.00 8.510e-87 3.949e-346 ξ̄1 76.9114
M6,3 6 6.02 4.223e-47 8.063e-281 ξ̄1 79.7898

In Table 3, we observe that our proposed schemes yield the best computational times, with
MS(1, 1) method standing out for having the smallest error norm among all schemes. The M4,3 method,
while showing good overall performance in terms of errors, is more computationally expensive as
it takes one iteration longer to reach the solution to the system and slightly more time compared to
MS(p1, p2) methods, indicating that the program takes more time to generate each iteration.

Table 4. Numerical results for F3, x(0) = (0.5, 0.5, 0.5, 0.5, 0.5)

Iterative method k ρ ϵaprox ϵ f ξ̄ Cpu-time

MS(1,−1) 4 4.00 1.305e-55 2.980e-221 ξ̄1 12.8166
MS(1, 1) 4 5.00 4.997e-101 1.143e-503 ξ̄1 12.6105

Traub − Ste 4 4.00 9.461e-68 1.372e-270 ξ̄1 18.9457
Ostro01 4 4.00 1.420e-47 2.882e-189 ξ̄1 12.4768

M4,3 4 4.00 3.440e-44 1.007e-175 ξ̄1 12.8707
M6,3 3 6.07 1.482e-21 3.012e-127 ξ̄1 10.5536

Table 5. Numerical results for F4, x(0) = (0.5, 0.5, 0.5, 0.5, 0.5)

Iterative method k ρ ϵaprox ϵ f ξ̄ Cpu-time

MS(1,−1) 4 3.99 7.838e-31 4.801e-121 ξ̄1 14.6365
MS(1, 1) 4 5.00 2.864e-52 2.514e-258 ξ̄1 14.6532

Traub − Ste 4 4.00 8.656e-34 3.124e-133 ξ̄1 21.7138
Ostro01 4 4.00 2.268e-35 6.443e-140 ξ̄1 14.0140

M4,3 4 4.00 2.594e-47 9.227e-188 ξ̄1 14.8093
M6,3 3 5.32 6.593e-26 7.254e-153 ξ̄1 12.0667

The results in Tables 4-5 are very balanced, with the MS(1, 1) method showing the best errors
while the shortest computational time is achieved by the M6,3 method. However, this last one takes
more effort to generate an iteration because, despite producing one less iteration than the other iterative
methods, their execution times are very similar.

Table 6. Numerical results for F5, x(0) = (7, 7, 7, . . . , 7)

Iterative method k ρ ϵaprox ϵ f ξ̄ Cpu-time

MS(1,−1) 3 4.03 1.343e-24 1.076e-101 ξ̄1 58.6649
MS(1, 1) 3 5.03 5.715e-36 1.098e-183 ξ̄1 58.6010

Traub − Ste 4 4.00 2.252e-97 1.397e-392 ξ̄1 138.3238
Ostro01 4 4.00 1.317e-99 1.705e-401 ξ̄1 76.6871

M4,3 3 4.00 1.490e-24 2.175e-101 ξ̄1 64.3101
M6,3 3 6.01 1.565e-53 4.782e-326 ξ̄1 69.4223

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 11 September 2024 doi:10.20944/preprints202409.0876.v1

https://doi.org/10.20944/preprints202409.0876.v1


14 of 17

For Table 6, we note that the best computational times are obtained by the methods MS(p1, p2).
On the other hand, the best errors are obtained by Ostro01 scheme, which has a competitive
computational time considering it requires four iterations, similar to Traub − Ste. The latter has
shown to be the one that requires the most time to converge.

Table 7. Numerical results for F6 x(0) = (0.75, 0.75, 0.75, 0.75, 0.75)

Iterative method k ρ ϵaprox ϵ f ξ̄ Cpu-time

MS(1,−1) 6 4.00 5.425e-88 5.270e-349 ξ̄1 20.2517
MS(1, 1) 5 4.97 5.922e-39 1.965e-190 ξ̄1 16.9191

Traub − Ste 20 4.00 9.536e-99 4.618e-391 ξ̄2 154.5691
Ostro01 5 4.00 1.050e-33 2.164e-132 ξ̄1 16.5869

M4,3 10 4.01 3.127e-35 1.500e-138 ξ̄1 51.2143
M6,3 17 5.90 6.480e-23 2.076e-132 ξ̄2 105.4212

In Table 7, the best errors were obtained by MS(1,−1) and Traub − Ste, which converged to
different solutions, while in terms of performance, MS(1, 1) and Ostro01 appeared to be better.

Table 8. Numerical results for F7, x(0) = (0.25, 0.25)

Iterative method k ρ ϵaprox ϵ f ξ̄ Cpu-time

MS(1,−1) 5 4.00 5.203e-41 6.322e-161 ξ̄1 3.6588
MS(1, 1) 4 5.00 5.282e-73 6.419e-362 ξ̄1 3.0030

Traub − Ste 6 4.00 6.615e-81 7.658e-321 ξ̄1 4.6891
Ostro01 - - - - - -

M4,3 6 4.00 5.613e-98 3.787e-389 ξ̄1 3.7011
M6,3 7 5.92 2.032e-32 5.723e-190 ξ̄1 4.4699

In Table 8, Ostro01 method could not converge to the solution because it reached the maximum
number of iterations, whereas the MS(p1, p2) and M4,3 methods showed better overall behavior.

Table 9. Numerical results for F8, x(0) = (0.25, 0.25)

Iterative method k ρ ϵaprox ϵ f ξ̄ Cpu-time

MS(1,−1) 4 4.00 1.139e-54 9.420e-217 ξ̄1 2.9146
MS(1, 1) 4 4.20 1.415e-72 2.272e-301 ξ̄1 2.8907

Traub − Ste 4 4.11 4.417e-48 1.391e-191 ξ̄1 3.1954
Ostro01 6 4.00 2.520e-78 1.241e-310 ξ̄1 3.4855

M4,3 7 4.02 1.401e-72 3.093e-288 ξ̄1 4.0501
M6,3 6 6.27 4.634e-58 7.902e-346 ξ̄1 3.6475

In the Table 9, MS(1, 1) method stands out with the lowest computational time, being more
efficient than the others, despite requiring a similar number of iterations and showing a convergence
order of 4.20, close to the other methods. The Traub − Ste method is less efficient, with a computational
time of 3.1954 but with a larger errors. Ostro01, is competitive only falling slightly behind in
computational time. The methods M4,3 and M6,3 are the most expensive in terms of computational
time, requiring 7 and 6 iterations respectively, with the highest time recorded for M4,3. Despite their
higher orders of convergence, both methods show lower overall efficiency compared to the MS and
Ostro01 methods.
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Table 10. Numerical results for F8, x(0) = (1.25, 1.25)

Iterative method k ρ ϵaprox ϵ f ξ̄ Cpu-time

MS(1,−1) 6 4.00 1.019e-65 6.029e-261 ξ̄1 4.1403
MS(1, 1) 5 4.05 2.474e-42 4.929e-177 ξ̄1 3.3999

Traub − Ste 6 4.00 8.946e-86 2.341e-342 ξ̄1 4.4433
Ostro01 8 4.00 2.050e-55 5.429e-219 ξ̄1 4.4246

M4,3 - - - - - -
M6,3 - - - - - -

In table 10, method MS(1, 1) stands out as the one with the lowest computational time, requiring
fewer iterations compared to the other methods and showing a convergence order of 4.05. The
Traub − Ste method, despite having the same convergence order as MS(1,−1), shows a slightly higher
computational time and larger errors in the difference between iterates. Ostro01, which requires more
iterations, falls only slightly behind in computational time but remains competitive overall. Methods
M4,3 and M6,3 do not converge to the solution, as division by zero occurred when calculating divided
differences.

Table 11. Numerical results for F8, x(0) = (2, 2)

Iterative method k ρ ϵaprox ϵ f ξ̄ Cpu-time

MS(1,−1) 10 4.00 6.679e-71 1.113e-281 ξ̄1 6.9568
MS(1, 1) 8 4.28 4.387e-77 3.113e-321 ξ̄1 5.4126

Traub − Ste 15 4.00 4.978e-100 2.442e-397 ξ̄2 10.6624
Ostro01 - - - - - -

M4,3 - - - - - -
M6,3 - - - - - -

Method MS(1, 1) stands out as the one with the lowest computational time, requiring fewer
iterations compared to the other methods and showing a convergence order of 4.28. Traub − Ste
scheme, although it has the same convergence order as MS(1,−1), shows a significantly higher
computational time but better results in terms of errors. MS(1,−1), while requiring more iterations
than MS(1, 1), still maintains a competitive time compared to Traub − Ste. Division by zero is the
reason why the other methods could not reach the solution.

Table 12. Numerical results for F8, x(0) = (2.25, 2.25)

Iterative method k ρ ϵaprox ϵ f ξ̄ Cpu-time

MS(1,−1) 16 4.00 2.821e-94 3.543e-375 ξ̄1 10.5084
MS(1, 1) 6 4.19 8.959e-45 1.550e-184 ξ̄2 4.2948

Traub − Ste - - - - - -
Ostro01 k > 50 - - - - -

M4,3 - - - - - -
M6,3 - - - - - -

In Table 12, it is observed that only the members of our proposed class converge, and they do
it to different solutions. MS(1, 1) stands out as the most efficient in terms of time and iterations,
while MS(1,−1) yields the best errors. The method Ostro01 do not converge because it exceeded the
maximum number of iterations, while the other methods could not reach the solution due to division
by zero during the computation of divided differences.
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Table 13. Numerical results for F8, x(0) = (2.5, 2.5)

Iterative method k ρ ϵaprox ϵ f ξ̄ Cpu-time

MS(1,−1) 10 4.00 2.063e-86 6.071e-344 ξ̄2 6.8361
MS(1, 1) 7 4.17 3.281e-52 6.327e-218 ξ̄1 4.7535

Traub − Ste - - - - - -
Ostro01 - - - - - -

M4,3 - - - - - -
M6,3 - - - - - -

The observations for Table 13 are the same as those in the previous one, but now method Ostro01

does not converge to the solution due to a division by zero, just like the other methods that do not
converge.

5. Conclusions

The fifth-order Jacobian-Free iterative method with scalar accelerators developed in this study
(along with its fourth-order partners) has proven to be an efficient tool for solving nonlinear systems
of equations. It preserves the convergence order of the original scheme, despite the elimination of
Jacobian matrix calculations, with low computational cost. The substitution of these matrices with
divided differences not only reduces computational complexity but also facilitates implementation,
maintaining high precision and efficiency. The numerical results highlight its superiority in terms of
performance compared to conventional methods, especially for not-so-large systems.
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