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Abstract: Plant growth-promoting rhizobacteria (PGPR) are beneficial bacteria that play a crucial
role in sustainable agriculture by enhancing plant growth through various mechanisms. This review
examines the contributions of PGPR in improving nutrient availability, producing phytohormones,
providing biocontrol against pathogens, and enhancing abiotic stress tolerance. By reducing the
necessity for chemical fertilizers and pesticides, PGPR mitigate environmental impacts, enhance soil
health, and support long-term agricultural productivity. However, challenges such as inconsistent
performance across various soils, regulatory barriers, and limited farmer awareness hinder their
widespread adoption. Recent advancements in nano-encapsulation technology, genetic
engineering, and bioinformatics present promising solutions for overcoming these obstacles and
enhancing PGPR efficacy. The incorporation of PGPR into biofertilizers, biopesticides, and
integrated pest management (IPM) strategies offers a sustainable resolution to global agricultural
challenges. This review addresses the current state of PGPR research, applications, and future
directions for optimizing their use in promoting sustainable agriculture.
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1. Introduction

Plant growth-promoting rhizobacteria (PGPR) are beneficial bacteria residing in the
rhizosphere, the soil region contacted by plant roots [1]. These bacteria play a vital role in promoting
plant growth and health through various mechanisms, making them a key component of sustainable
agriculture [2,3]. PGPR can promote plant growth directly by improving nutrient acquisition and
producing growth-mediating hormones (phytohormones) or indirectly by protecting plants from
pathogens (biotic stresses) and mitigating abiotic stresses (such as drought and salinity) [4-6].

Different PGPR have different mechanisms of action. Among them, conserved mechanisms are
nutrient solubilization and fixation [7,8], phytohormone production [4,6], biocontrol of pathogens [4—
6], and abiotic stress tolerance [5]. Specifically, PGPR enhance nutrient availability by solubilizing
phosphorus and fixing atmospheric nitrogen, thus reducing the need for chemical fertilizers, which
are not sustainable [9,10]. PGPR produce phytohormones such as auxins, gibberellins, and cytokinins,
which stimulate root and shoot development, enhancing overall plant growth [5,6,11,12]. PGPR
protect plants from pathogens by producing antimicrobial compounds, competing for resources, and
inducing systemic resistance in plants, which can reduce the reliance on chemical pesticides [4,6,9].
These bacteria also help plants withstand abiotic stresses like drought and salinity by enhancing
stress response mechanisms and detoxifying harmful substances [4,5,9].

The need for sustainable agricultural practices has become increasingly urgent due to the
environmental and health concerns associated with conventional farming methods. Traditional
agriculture often relies heavily on synthetic fertilizers and pesticides, which can lead to soil
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degradation, water pollution, and the development of resistant pest strains. These conventional
practices contribute to environmental issues such as eutrophication and biodiversity loss, posing
significant threats to ecosystems and human health [9,13]. By integrating PGPR into agricultural
practices, farmers can achieve higher crop yields and quality while reducing the environmental
impact of farming. This approach aligns with the goals of sustainable agriculture, promoting
ecological balance and long-term productivity [9,11].

PGPR are increasingly recognized as a sustainable alternative to conventional agricultural
practices. Their ability to enhance crop productivity while minimizing environmental impacts makes
them a promising solution for future agricultural challenges. As research advances, the development
of more effective PGPR strains and application methods is expected to further their roles in
sustainable agriculture [14].

The integration of PGPR in agricultural practices offers several benefits: 1) Reduced chemical
inputs: By improving nutrient availability and providing natural pest control, PGPR reduce the need
for synthetic fertilizers and pesticides, contributing to more sustainable agricultural practices [9,10].
2) Improved soil health: PGPR enhance soil fertility and structure, supporting long-term agricultural
productivity and sustainability [9]. 3) Environmental benefits: The reduction in chemical inputs leads
to lower environmental pollution and a smaller carbon footprint, aligning with the goals of
sustainable agriculture [11,15]. 4) Additionally, PGPR play a pivotal role in augmenting soil fertility
and structure by promoting organic matter breakdown and nutrient cycling, thereby fostering overall
soil health [7,9,15].

2. Mechanisms of Action
2.1. Nutrient Solubilization and Fixation

PGPR play a crucial role in enhancing plant nutrition by solubilizing phosphorus and fixing
atmospheric nitrogen, making these essential nutrients more available to plants. Phosphorus is a vital
nutrient for plant growth, but it often exists in forms that are not readily accessible to plants. Some
PGPR can solubilize these insoluble phosphates through the production of organic acids like gluconic
acid and citric acid, which lower the pH and chelate cations bound to phosphate group, thereby
releasing it into a form that plants can absorb [16]. This process is facilitated by enzymes like phytases
and phosphatases, which further aid in the mineralization of organic phosphorus compounds [17].
Recent studies have highlighted the effectiveness of PGPR strains from genera such as Bacillus,
Pseudomonas, and Enterobacter in solubilizing phosphate and promoting plant growth [18].

In addition to phosphorus solubilization, PGPR are instrumental in fixing atmospheric nitrogen,
a process that converts inert nitrogen gas into ammonia, which plants can incorporate. This biological
nitrogen fixation is primarily carried out by diazotrophic bacteria, which possess the nitrogenase
enzyme complex capable of reducing atmospheric nitrogen to ammonia [19]. PGPR such as
Azospirillum and Rhizobium are well-known for their nitrogen-fixing capabilities, particularly in
association with leguminous plants where they form symbiotic relationships in root nodules [20].
These interactions not only enhance nitrogen availability but also improve soil fertility and reduce
the necessity for chemical nitrogen fertilizers, contributing to more sustainable agricultural practices
[19].

2.2. Phytohormone Production

PGPR are known for their ability to produce phytohormones such as auxins, gibberellins, and
cytokinins, which play a crucial role in enhancing plant growth and development. Auxins,
particularly indole-3-acetic acid (IAA), are among the most studied phytohormones produced by
PGPR [4,5]. IAA is primarily produced in the rhizosphere and is instrumental in promoting root
elongation, root hair formation, and lateral root development, which collectively enhance the plant’s
ability to absorb water and nutrients [21,22]. This hormone is produced by various PGPR species,
including Azospirillum, Pseudomonas, and Agrobacterium. IAA’s production is also considered a key
mechanism through which PGPR facilitate plant growth [23].
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Gibberellins (GAs) are another group of phytohormones produced by PGPR that significantly
influence plant growth. These hormones are involved in promoting seed germination, stem
elongation, and flowering. PGPR such as Bacillus and Pseudomonas species have been reported to
produce gibberellins, which can enhance plant growth even under stressful conditions [24,25]. The
application of PGPR that produce gibberellins can be particularly beneficial in improving crop yield
and resilience to unfavorable stresses, making them a valuable component of sustainable agricultural
practices [26].

Cytokinins are another class of phytohormones produced by PGPR that play a vital role in cell
division, shoot initiation, and leaf expansion. These phytohormones interact with auxins to regulate
various aspects of plant growth and development, including delaying leaf senescence and enhancing
chlorophyll production [27,28]. The production of cytokinins by PGPR can lead to improved plant
vigor and productivity, as demonstrated in studies involving Bacillus megaterium and other cytokinin-
producing rhizobacteria [29].

2.3. Biocontrol of Pathogens

PGPR protect plants from pathogens through several mechanisms, including the production of
antimicrobial compounds and competition for resources. These bacteria reside in the rhizosphere and
play a pivotal role in enhancing plant health by naturally suppressing plant diseases. One of the
primary mechanisms by which PGPR exert their protective effects is through the production of
antimicrobial compounds like antibiotics, siderophores, and enzymes that degrade pathogen cell
walls [4,6]. For instance, PGPR like Pseudomonas and Bacillus species produce antibiotics that inhibit
the growth of harmful pathogens, thereby reducing disease incidence in plants [30].

In addition to producing antimicrobial compounds, PGPR compete with pathogens for nutrients
and ecological niches, effectively limiting the resources available to harmful microbes [31]. This
competition is crucial in the rhizosphere, where nutrients can be scarce, and the ability of PGPR to
efficiently utilize these resources can outcompete and suppress pathogenic organisms [32]. By rapidly
colonizing plant roots and establishing themselves in the rhizosphere, PGPR can effectively prevent
the colonization and proliferation of pathogens, thereby acting as a natural biocontrol agent [33].

Furthermore, PGPR can induce systemic resistance in plants, enhancing their innate immune
responses against a broad spectrum of pathogens [4,6]. This induced resistance is often mediated by
signaling molecules such as salicylic acid, jasmonic acid, and ethylene, which activate defense
pathways in plants, providing them with enhanced protection against future pathogen attacks [34].
The integration of PGPR into agricultural practices not only helps in reducing the reliance on
chemical pesticides but also contributes to sustainable agriculture by promoting plant health and
resilience in an environmentally friendly manner [9].

2.4. Abiotic Stress Tolerance

PGPR play a significant role in helping plants cope with abiotic stresses such as drought, salinity,
and heavy metal toxicity. These stresses are exacerbated by climate change and pose significant
challenges to agricultural productivity. PGPR mitigate these stresses through different mechanisms
such as the production of phytohormones, modulation of antioxidant systems, and enhancement of
nutrient uptake [35,36].

In the context of drought stress, PGPR enhance plant tolerance by producing phytohormones
like indole-3-acetic acid (IAA) and gibberellic acid, which promote root growth and increase water
uptake efficiency [37,38]. Additionally, PGPR can produce 1l-aminocyclopropane-1-carboxylate
deaminase (ACC), an enzyme that lowers ethylene levels in plants [4]. Since ethylene can inhibit root
growth under stress conditions, reducing its concentration helps in maintaining root growth and
function during drought [39].

For salinity stress, PGPR improve plant resilience by enhancing ionic balance and osmotic
adjustment. They achieve this by producing osmoprotectants and modulating ion transporters that
help maintain a favorable potassium to sodium ratio, which is necessary for cellular function under
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saline conditions [40,41]. PGPR also enhance the antioxidant capacity of plants, reducing oxidative
damage caused by salt-induced stress [35].

In the case of heavy metal toxicity in plants and soil, PGPR assist in phytoremediation by
secreting chelating agents and enzymes that transform metals into less toxic forms. They are also
capable of immobilizing heavy metals in the rhizosphere, which helps prevent these metals from
being absorbed by plants [42,43]. This not only protects plants from metal toxicity but also improves
soil health by reducing metal bioavailability [44].

3. Applications in Agriculture
3.1. Biofertilizers

PGPR have emerged as a promising alternative to synthetic fertilizers, offering a sustainable
approach to improve soil fertility and plant growth. These beneficial bacteria are naturally occurring
soil microorganisms that colonize plant roots (or even other parts of the plant) and promote growth
through various mechanisms. Recent studies have shown that PGPR can improve soil biological
activity [45,46]. The formulation of PGPR biofertilizers involves isolating effective strains from the
rhizosphere, mass-producing them through fermentation, and developing stable formulations such
as liquid suspensions, powders, or granules [47].

The application of PGPR biofertilizers can be tailored to different crops and farming practices.
Methods such as seed inoculation, soil drenching, foliar sprays, and root dipping are commonly used
to deliver PGPR to plants. These applications enhance root colonization, improve nutrient uptake,
and protect plants from pathogens [45,48]. PGPR biofertilizers offer several advantages over
conventional synthetic fertilizers. PGPR biofertilizers are environmentally sustainable, reducing soil
and water pollution while maintaining soil health and fertility [47]. PGPR also improve nutrient
efficiency by enhancing the availability of nitrogen, phosphorus, and other essential nutrients,
thereby reducing the need for chemical fertilizers [45].

Moreover, PGPR enhance plant resilience to abiotic stresses by producing stress-relieving
compounds like ACC-deaminase and inducing systemic resistance , contributing to healthier plant
growth [45,48].. While the initial costs of PGPR biofertilizers may be higher, they can lead to long-
term cost savings by reducing the need for chemical inputs and improving crop yields [47].

3.2. Seed Treatments and Soil Amendments

PGPR are applied to crops through various methods, each tailored to optimize their effectiveness
in different environments and crop types. One common method is seed inoculation, where seeds are
coated with PGPR before planting. This technique promotes early root colonization, leading to
improved seedling vigor and nutrient uptake. Seed inoculation has been shown to be particularly
effective in enhancing the growth of crops like maize and cowpea, as it facilitates the establishment
of healthy soil microbiome [49].

Another effective method is soil amendment, which involves incorporating PGPR into the soil
to improve its fertility and structure. This approach enhances nutrient availability and promotes root
growth, making it suitable for various crops, including lettuce and poplar. Recent studies have
demonstrated that soil amendments with PGPR can significantly improve plant growth and yield by
enhancing nutrient uptake and reducing the need for chemical fertilizers [50].

Additionally, PGPR can be applied through foliar sprays and root dipping, which are
particularly useful in environments where soil conditions are suboptimal or where rapid microbial
colonization is needed [49].

The effectiveness of PGPR applications varies depending on the crop and environmental
conditions. For instance, in hydroponic systems, PGPR have been used to reduce mineral fertilizer
use while maintaining or even improving crop yield and quality. This is particularly beneficial in
regions where mineral fertilizers are costly or difficult to obtain [51].

4. Challenges and Limitations


https://doi.org/10.20944/preprints202409.0781.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 September 2024 d0i:10.20944/preprints202409.0781.v1

4.1. Consistency and Survival

The inconsistent performance of PGPR in different soils and environmental conditions presents
a significant challenge to their widespread adoption in sustainable agriculture. One of the primary
reasons for this variability is the complex interaction between PGPR and native soil microbiome.
These interactions can influence the colonization and efficacy of PGPR, as native microbes often
compete with introduced strains for resources and niches [52]. Additionally, the physiochemical
properties of the soil, such as pH, nutrient content, and moisture levels, can affect the survival and
activity of PGPR. This makes it difficult to predict their performance across different environments
[53].

Another factor contributing to the inconsistent performance of PGPR is the specificity of plant-
microbe interactions. Different plant species and even cultivars within a species can exhibit varying
responses to the same PGPR strains. This host specificity can result in variable plant growth
promotion and disease resistance outcomes, depending on the plant genotype and the PGPR strain
used [9]. Moreover, environmental stressors such as temperature fluctuations can further complicate
the effectiveness of PGPR, as these conditions can alter plant physiology and microbial community
dynamics in the rhizosphere [54].

To address these challenges, several strategies have been proposed, with one being to select
robust PGPR strains that are adaptable to local environmental conditions and compatible with
specific crops is crucial. This involves screening for PGPR that can withstand stress factors and that
have shown effectiveness with local plant species [54]. Additionally, developing advanced
formulations that enhance the viability and stability of PGPR during storage, transport, and
application can improve their persistence in the soil [53]. Utilizing consortia of different PGPR strains
that have synergistic effects can also enhance nutrient acquisition, disease suppression, and stress
tolerance [55].

4.2. Compatibility and Interaction

The compatibility of PGPR with target crops and indigenous soil microbiomeis crucial for their
successful application in sustainable agriculture. This compatibility ensures that PGPR can effectively
colonize plant roots, promote growth, and provide protection against pathogens. One of the primary
challenges in achieving this compatibility is the strain specificity of PGPR, as certain strains may only
benefit specific plants or perform optimally under particular environmental conditions [51]. This
specificity necessitates careful selection of PGPR strains that are well-suited to the target crop and its
unique growing environment.

The interactions between PGPR and native soil microbiome also play a significant role in
determining the effectiveness of PGPR applications. Indigenous microorganisms can compete with
introduced PGPR strains for resources and ecological niches, potentially limiting their colonization
and persistence in the rhizosphere [52]. It is essential to understand these interactions, as they can
influence the overall efficacy of PGPR in promoting plant growth and health. For example, PGPR
must be able to survive and proliferate in the presence of native soil microbes to exert their beneficial
effects [33].

To address these challenges, it is important to select PGPR strains that are not only effective with
the target crop but also compatible with the existing soil microbiome. This involves screening for
strains that can thrive in the specific soil conditions and that have demonstrated positive interactions
with the target plant species [55]. Additionally, developing formulations that enhance the stability
and viability of PGPR during storage and application can improve their performance in diverse
environments [56].

4.3. Commercialization and Adoption

The widespread adoption of PGPR technologies faces several significant barriers, including
regulatory challenges and a lack of farmer awareness. Regulatory issues are particularly daunting
because each country has its own set of regulations governing the use of microbial products in
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agriculture. These regulations can be complex and costly to navigate, often requiring significant
investment in time and resources to ensure compliance. For example, the high costs associated with
the development and registration of new biocontrol agents (BCAs) have been identified as a barrier
in countries like Australia, where regulatory frameworks demand rigorous evaluation to ensure
environmental safety and efficacy [57,58]. This complexity is compounded by the lack of
standardized international regulations, which can hinder the global commercialization of PGPR
products [33,59].

In addition to regulatory hurdles, there is a critical need to increase farmer awareness and
education regarding the benefits and application of PGPR technologies. Many farmers may be
unfamiliar with PGPR or lack the necessary knowledge to integrate these biological solutions into
their existing farming practices. This lack of awareness can lead to slow adoption rates, as farmers
may perceive chemical fertilizers and pesticides as more reliable and predictable compared to PGPR
[58]. Educational programs and workshops that demonstrate the economic and environmental
benefits of PGPR can play a crucial role in overcoming this barrier, helping farmers understand how
to effectively use PGPR to enhance crop productivity and sustainability [57,60].

Moreover, the scalability and cost-effectiveness of PGPR strategies are critical for their
widespread adoption. PGPR technologies must be adaptable to different crops, environments, and
farming practices to be effective. This adaptability requires ongoing research and development to
tailor PGPR solutions to specific agricultural contexts [55]. Additionally, efforts must be made to
reduce production costs and improve accessibility, particularly for farmers in developing countries.
Collaboration among researchers, farmers, governments, and industry stakeholders is essential to
develop cost-effective and sustainable PGPR products and practices [55].

5. Advances and Future Directions
5.1. Nano-Encapsulation Technology

Nano-encapsulation offers a promising method to increasing the efficacy and stability of PGPR
formulations, which can address some of the challenges associated with their application in
agriculture. By encapsulating PGPR in nanoparticles, it is possible to protect these beneficial microbes
from environmental stressors, such as UV radiation, desiccation, and temperature fluctuations,
thereby improving their survival and functionality [61]. This protective mechanism ensures that
PGPR can be delivered more effectively to plant roots, enhancing their colonization and promoting
better plant growth and resilience [62].

Recent studies have demonstrated the potential of various encapsulation materials, such as
alginate, silica nanoparticles, and carbon nanotubes, to improve the delivery and performance of
PGPR. For instance, the encapsulation of Pseudomonas sp. in alginate beads with salicylic acid and
zinc oxide nanoparticles has shown enhanced antifungal activity and superior plant growth-
promoting effects on rice seedlings compared to non-encapsulated strains [62]. Similarly, nano-
encapsulated Bacillus subtilis using sodium alginate, starch, and bentonite has been effective in
controlling the proliferation of Rhizoctonia solani and increasing bean vegetative growth parameters
[63].

The use of nano-encapsulation not only improves the stability and efficacy of PGPR formulations
but also allows for controlled and sustained release of the bacteria into the soil. This ensures a more
consistent and prolonged interaction between PGPR and the plant roots, which is crucial for
maximizing their growth-promoting effects [63,64]. Moreover, nano-encapsulation can enhance the
resilience of PGPR to abiotic stresses, such as drought and salinity, by providing a stable
microenvironment that supports their metabolic activity [65].

5.2. Biotechnological Approaches

The integration of genetic engineering and bioinformatics in the development of PGPR strains
holds significant promise for enhancing their effectiveness in agriculture. Genetic engineering allows
for the modification of PGPR strains to enhance desirable traits such as nutrient solubilization,
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phytohormone production, and pathogen resistance. By employing techniques such as CRISPR-Cas9,
researchers can precisely edit the genomes of PGPR to introduce or enhance specific plant growth-
promoting traits, thereby improving their efficacy under various environmental conditions [66,67].

Bioinformatics plays a crucial role in this process by enabling the analysis and interpretation of
large genomic datasets, which is essential for identifying genes responsible for beneficial traits in
PGPR. Through genome mining and comparative genomics, researchers can uncover biosynthetic
gene clusters and regulatory networks that contribute to the plant growth-promoting capabilities of
PGPR [68]. This information is invaluable for designing genetically engineered strains that are more
robust and effective in promoting plant health and productivity [69].

Moreover, bioinformatics tools facilitate the prediction and modeling of PGPR interactions with
plant hosts and soil microbiome, allowing for the optimization of strain selection and application
strategies. By understanding these complex interactions, scientists can develop PGPR strains that are
better customized to given crops and environmental conditions, thereby enhancing their
performance in the field [70]. This approach not only improves the efficacy of PGPR but also supports
sustainable agriculture by lowering the need for chemical fertilizers and pesticides [71].

5.3. Integrated Pest Management (IPM)

Incorporating PGPR into Integrated Pest Management (IPM) strategies offers a comprehensive
approach to enhancing crop health and yield while reducing reliance on chemical pesticides. By
incorporating PGPR into IPM, farmers can leverage these natural processes to create more resilient
agricultural systems that are less dependent on synthetic chemicals, thereby minimizing
environmental impact and promoting sustainable practices [32].

PGPR contribute to IPM by suppressing plant diseases through various mechanisms, including
the production of pathogen-antagonizing compounds [6] and the stimulation of systemic resistance
in plants [4,6]. These actions not only help control pathogens but also enhance the plant’s innate
defense responses, making them more resistant to pest attacks [33]. For example, PGPR can produce
antibiotics and enzymes that inhibit the growth of harmful microbes, while also triggering plant
immune responses that bolster the plant’s ability to withstand pest pressures [34].

Moreover, PGPR improve nutrient uptake and root architecture, indirectly contributing to pest
management. By enhancing root growth and nutrient acquisition, PGPR help plants become more
vigorous and less susceptible to pest infestations. This improved plant health can lead to increased
tolerance to pest damage and a reduction in the need for chemical interventions [55].

6. Conclusions

The integration of PGPR into agricultural systems as biofertilizers offers a sustainable alternative
to chemical fertilizers, promoting nutrient cycling and improving plant health and yield (Figure 1A).
By solubilizing phosphorus and fixing nitrogen, PGPR enhance nutrient availability and uptake,
leading to improved plant growth and productivity [18]. Moreover, the use of PGPR can mitigate
environmental impacts associated with excessive fertilizer use, such as soil degradation and water
pollution, thereby supporting sustainable agriculture (Table 1) [16,20]. PGPR biofertilizers represent
a viable alternative to synthetic fertilizers, providing sustainable solutions for enhancing crop
productivity and soil health. Their ability to improve nutrient uptake, enhance stress tolerance, and
suppress diseases makes them an invaluable tool in the pursuit of sustainable agriculture,
particularly as the global demand for food continues to rise [45,47]. As research continues to advance,
the development of more effective PGPR strains and formulations will be crucial in maximizing their
benefits for crop production and environmental health [17].
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Figure 1. Roles of PGPR in sustainable agriculture. A. Nutrient availability. B. Phytohormone
production. Abbreviations: Indole-3-Acetic Acid (IAA); Gibberellins (GA); Abscisic Acid (ABA). C.
Biocontrol and stress tolerance. D. Soil health improvement. Created with BioRender.com.

The production of auxins, gibberellins, and cytokinins by PGPR significantly contributes to their
ability to promote plant growth and development (Table 1). These phytohormones enhance root and
shoot growth, improve nutrient uptake, and increase plant resilience to environmental stresses which
makes PGPR an integral part of modern sustainable agriculture (Figure 1B) [26,124]. As research
continues to explore the complex interactions between PGPR-produced phytohormones and plant
physiology, the potential for optimizing PGPR applications in agriculture remains promising [125].

The integration of PGPR into agricultural practices offers a sustainable approach to managing
abiotic stresses (Figure 1C). By enhancing plant growth and resilience, PGPR contribute to improved
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crop yields and stability, even under adverse environmental conditions [39,126]. PGPR offer a
promising approach to biopesticide development, providing an eco-friendly and effective means of
controlling plant diseases and pests (Figure 1C). Their ability to enhance plant resilience and promote
growth makes them an invaluable tool in the pursuit of sustainable agricultural practices [55]. As
research continues to advance, the development of more effective PGPR strains and formulations will
be crucial in maximizing their benefits for stress management in agriculture (Table 1) [127].

The application of PGPR through methods like seed inoculation and soil amendments offers a
sustainable approach to improving crop productivity and resilience (Figure 1D). By enhancing
nutrient uptake and stress tolerance, PGPR contribute to more sustainable agricultural practices,
reducing the reliance on chemical inputs and supporting global food security [9].While the
inconsistent performance of PGPR in different soils and environmental conditions poses challenges,
ongoing research and innovation in PGPR selection, formulation, and application strategies hold
promise for overcoming these obstacles.

By optimizing PGPR inoculum efficacy in field conditions, researchers and farmers can enhance
crop productivity, soil health, and environmental sustainability, contributing to more resilient
agricultural systems [9,53]. Despite those promising advancements, further research is needed to
optimize nano-encapsulation techniques and assess their long-term impacts on soil health and plant
growth. The scalability and cost-effectiveness of these technologies remain challenges that need to be
addressed to facilitate their widespread adoption in agriculture [128]. Nonetheless, the integration of
nanotechnology with PGPR formulations represents a significant step forward in developing more
efficient and sustainable agricultural practices (Table 1) [129].

Ensuring the compatibility of PGPR with target crops and indigenous soil microflora is essential
for maximizing their benefits in sustainable agriculture (Figure 2). By selecting appropriate strains
and understanding the complex interactions within the soil ecosystem, researchers and practitioners
can enhance the effectiveness of PGPR applications, leading to improved crop productivity and
resilience (Table 1) [51,52].While PGPR technologies hold significant potential for improving
sustainable agriculture, overcoming regulatory hurdles and increasing farmer awareness are crucial
for their widespread adoption. By addressing these challenges, PGPR can become a more integral
part of agricultural systems, contributing to enhanced crop productivity and environmental
sustainability [48].
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Figure 2. The plant fitness tetrahedron for sustainable agriculture. Adapted from [31]. PGPR play a
crucial role in maintaining the health and vitality of plants. Created with BioRender.com.

Despite these advancements, challenges remain in the large-scale application of genetically
engineered PGPR. Regulatory hurdles and public concerns about genetically modified organisms
(GMOs) can impede the commercialization of these strains. However, ongoing research and dialogue
among scientists, policymakers, and stakeholders are essential to address these issues and realize the
full potential of genetic engineering and bioinformatics in developing effective PGPR strains for
sustainable agriculture [130,131].

The integration of PGPR into IPM strategies requires careful selection of compatible strains that
can thrive in specific environmental conditions and work synergistically with other IPM components.
This approach not only enhances the effectiveness of pest management but also contributes to overall
crop productivity and sustainability [55]. As research continues to advance, the development of
tailored PGPR formulations and application methods will be crucial in maximizing their benefits
within IPM frameworks, ultimately leading to more resilient and productive agricultural systems
(Figure 3) [32]. PGPR protect plants from pathogens through a combination of antimicrobial
production, resource competition, and induction of systemic resistance. These mechanisms make
PGPR a valuable component of integrated pest management strategies, offering a sustainable
alternative to chemical-based disease control methods (Table 1) [133]. As research continues to
advance, the development of more effective PGPR strains and formulations will be crucial in
maximizing their benefits for crop protection and productivity [11].

Resistance

<
&
g
°
IPM with
PGPR
)
&, 5
2/ s
%, &
% \s
Exclusion

Figure 3. Integrated pest management (IPM) with PGPR. IPM has six directions: protection,
resistance, therapy, avoidance, exclusion, and eradication. Directions integrated with PGPR are
highlighted in green. Adapted from [31,132]. Created with BioRender.com.
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