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Abstract: As the adoption of deep learning models continues to surge across various applications, the need
for efficient deployment architectures becomes increasingly critical. This paper presents a novel approach to
enhance the deployment of deep learning models by leveraging serverless architecture. Serverless computing
has been popular for its auto-scaling, cost-effectiveness, and simplified management characteristics. However,
the intense resource demands of deep learning models pose challenges in maintaining low response times and
effective load balancing within serverless environments. The proposed architecture addresses these challenges by
integrating principles from both deep learning model optimization and serverless computing. Through systematic
experimentation and analysis, we demonstrate that by appropriately designing and tuning the deployment
architecture, significant improvements in response time, performance, resource utilization, and load distribution

can be achieved.
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1. Introduction

In today’s digital age, the reliance on facial recognition technology has become increasingly
prevalent across many applications, from unlocking our smartphones to enhancing security in critical
infrastructure and public spaces. However, as facial recognition systems have gained prominence, so
too have concerns regarding their vulnerability to spoof attacks. In a world where identity theft and
data breaches emerge as significant threats, developing robust face anti-spoofing detection models is
really important.

Face anti-spoofing detection models serve as the first line of defense against malicious actors
seeking to deceive facial recognition systems through various means, such as presenting photographs,
masks, or even 3D-printed replicas. These attacks not only compromise security but also raise privacy
and ethical concerns. As such, research and advancements in face anti-spoofing detection models
have gained considerable attention from the scientific community, security experts, and policymakers.
Developing a facial anti-spoofing system with improved recognition performance, faster response
times, and greater resilience is crucial.

These types of fraud detection systems that use deep learning models can be developed using
Azure Functions, which is a serverless concept of cloud computing that allows a piece of code to
be deployed and executed without needing server infrastructure, web server, or any configurations.
Serverless architecture represents a groundbreaking approach to cloud computing, offering an excep-
tionally efficient and scalable solution for deploying deep learning models. This innovative paradigm
eliminates the need for managing servers, allowing developers to concentrate exclusively on their code
and applications. Serverless computing delivers a multitude of advantages that make it an ideal choice
for deep learning deployment. First and foremost, it excels in cost-efficiency, as organizations pay only
for the computing resources they use, thereby reducing operational expenses. Furthermore, serverless
platforms provide a remarkable degree of scalability, automatically adapting to varying workloads
and large datasets, all without the necessity for manual intervention. Moreover, serverless architecture
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simplifies management by removing the burden of server maintenance and provisioning. It also
ensures low-latency responses, vital for real-time deep learning applications. Additionally, it offers
developers the flexibility to work with their preferred deep learning frameworks and tools. Serverless
architecture’s parallel processing capabilities speed up model training and inference, and its automatic
scaling handles unpredictable workloads. This architecture’s fault tolerance, easy integration with
other services, and rapid deployment capabilities further enhance its appeal as an invaluable tool for
deploying deep learning models in an agile, cost-effective, and scalable manner.

2. Literature Survey

[1] Serverless computing is an emerging cloud paradigm that provides transparent resource
management and scaling for users, making it attractive for ML design and training developers.
Function-as-a-Service (FaaS) and Container-as-a-Service (CaaS) are widely-realized forms of serverless
computing that offer fine-grained resource management and flexible billing models. They have been
studied for ML model serving and training, showcasing benefits such as scalability and cost efficiency.
ML workflows with continuous learning and training can benefit from dynamic resource allocation for
performance and cost optimizations. However, the communication overhead and resource limitations
in serverless platforms can affect the feasibility of training large-scale models. Hybrid storage solutions,
combining fast storage mediums like in-memory key-value stores with cloud-based object stores, have
been found to scale well for large ML models. They can satisfy latency-sensitive demands and strike a
balance between performance and cost.

[2] This paper introduced an operational classification and a four-layered structure for deploying
digital health models in the cloud. The four layers encompass containerized microservices for ease
of maintenance, a serverless architecture for enhanced scalability, function as a service for enhanced
portability, and FHIR schema for improved discoverability. This customized architecture proves highly
effective for applications intended for use by downstream systems like EMRs and visualization tools.
They presented a taxonomy centered around workflows to support the practical implementation of this
approach. Recognizing FHIR as a burgeoning standard for healthcare interoperability, the proposal
suggests employing FHIR schema for seamlessly integrating ML application programming interfaces
(APIs) into existing health information systems.

[3] The presented work addresses the challenges of deploying deep neural network models in
real-time, emphasizing the contrast between the time-consuming training phase and the stringent
throughput and latency requirements during model inference. While high-performance clusters are
traditionally used for inference, their maintenance cost can be prohibitive. The paper introduces
serverless computing as a cost-effective alternative, where the pricing model is based on execution
time, abstracting away infrastructure management complexities. The serverless approach is discussed
in the context of deploying machine learning and deep learning applications, focusing on its benefits
such as cost-effectiveness, ease of scalability, and abstraction of infrastructure management. However,
the authors highlight that serverless architecture might not be universally applicable, necessitating
developers to optimize its use based on specific application requirements.

The work proposes a methodology for migrating vision algorithm-based applications, particularly
those containing a suite of models, from on-premise deployment to a serverless architecture. The study
evaluates the cost and performance of serverless architecture compared to on-premise deployment and
virtual machine instances on the cloud. Additionally, the authors explore the impact of using multiple
cloud services on the performance of Function-as-a-Service (FaaS) for implementing large models.The
paper presents optimizations to overcome serverless architecture constraints, including trimming
TensorFlow framework, loading input data efficiently, and leveraging Elastic File System (EFS) for
storing large models. The experimental results demonstrate the performance and cost implications of
serverless computing, comparing it with on-premise and virtual machine deployments. The study
includes an in-depth analysis of factors such as response time, throughput, cold start effects, memory
size influence, and cost considerations.
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[4] The paper proposes a novel architecture for serving deep learning models through APIs via a
SaaS platform. The architecture aims to provide a scalable and efficient solution for deploying and
serving deep learning models in a cloud-based environment. The authors highlight the importance
of APIs in enabling easy access and integration of deep learning models into various applications.
The proposed architecture leverages the benefits of a SaaS platform to provide a seamless and user-
friendly experience for developers and users. The authors discuss the challenges and considerations in
designing such an architecture, including scalability, security, and performance. The paper presents a
detailed technical overview of the architecture, including the components and their functionalities.
The authors also provide experimental results to demonstrate the effectiveness and efficiency of the
proposed architecture.

[5] This paper explores the serverless paradigm and introduces the notion of Function as a Service
(FaaS) as an innovative framework for developing applications and services. It introduces the Apache
OpenWhisk, a distributed serverless platform driven by events, as a means to implement Machine
Learning Functions as a Service (ML-FaaS) and construct pipelines for machine learning applications.
The proposed approach leverages the Apache OpenWhisk serverless platform to create a custom-made
chain of functions for building serverless applications. These functions address specific machine
learning tasks, including data pre-processing and training ML classifiers. The paper presents a two-
phase hybrid ML-FaaS approach, consisting of an offline phase and an online phase. The offline phase
involves building a pipeline of functions in a serverless ecosystem, while the online phase handles the
processing of new data through the pipeline. The paper highlights the need for new frameworks and
functionalities in serverless environments to optimize resource management, scalability, parallelism,
cost-effectiveness, and latency issues. It emphasizes the potential of serverless models in enabling
flexible extensions and dynamic workflows for analytics tasks. The assessment results of the suggested
methodology encompass the response time of the executed pipeline upon the initiation of a request.
The approach showecases its efficiency in handling data and delivering outcomes within a matter of
milliseconds.

[6] This paper discusses the evolution of cloud computing over the last decade, emphasizing its
impact on virtualized computing and the emergence of service delivery models such as laaS, PaaS,
and FaaS. The focus shifts to FaaS, exemplified by AWS Lambda and Azure Functions, highlighting its
event-driven execution capabilities and advantages over traditional IaaS offerings. The integration of
lightweight virtualization technologies, including Linux containers, Docker, and Container Orches-
tration Platforms like Kubernetes, paved the way for serverless computing. The paper addresses the
limitations of current public cloud serverless offerings for scientific computing, leading to the develop-
ment of an open-source platform supporting hybrid data processing workflows across on-premises
and public cloud environments. A smart city use case involving video surveillance and face mask
detection illustrates the platform’s efficiency, with experiments demonstrating the cost-effectiveness of
offloading computing-intensive tasks to AWS Lambda. The survey concludes with insights into future
work, emphasizing dynamic resource orchestration across the Cloud-to-Things continuum and the
adaptation of serverless computing for edge devices and IoT.

[7] This paper discusses the critical shift from traditional client-server architectures to serverless
architectures, particularly in the deployment of Al workloads. Standard architectures are shown to
face scalability issues, reliability compromises, and increased complexity, leading to a growing trend
towards serverless or microservices-based solutions. Serverless architectures, exemplified by platforms
like AWS Lambda, offer advantages such as automatic scalability, simplified development pipelines,
and cost savings. However, they come with constraints, especially for AI workloads, including limited
deployment package size and absence of GPU support. The paper proposes a suite of optimization
techniques addressing these constraints, encompassing the minimization of Python libraries, dynamic
loading of AI models into temporary runtime memory, a two-step ML process with ONNX formatted
models, and innovative data handling techniques. Evaluation of these techniques, using examples from
the Real-Time Flow project, demonstrates their effectiveness in transforming complex Al workloads
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for serverless deployment, particularly in predicting train delays based on large datasets. The study
emphasizes the importance of overcoming limitations in deployment environments for real-time Al
applications, providing a comprehensive overview of the proposed optimization strategies.

3. Proposed Solution

In our proposed solution, the user initiates the process by sending an image from a Biometric
Device for spoof or real testing. This image is transmitted to the API endpoint via a secure POST
request, and it is securely delivered to the Azure Functions endpoint with base64 encoding. Within the
Azure Functions, the image undergoes a series of meticulously orchestrated steps for comprehensive
facial anti-spoofing assessment.

The base64-encoded text is initially decoded, transforming it into a numpy array. This decoded
image is then subjected to an intricate process facilitated by the powerful OpenCV library, operating in
conjunction with the cutting-edge Mediapipe framework. This collaborative effort allows us to extract
predefined Facial Landmark Coordinates, enabling us to precisely locate the face within the image.

Finally, the real crux of our system comes to the forefront as the facial anti-spoofing model is
engaged for inference. This model is powered by PyTorch and adeptly runs on the CUDA framework.
During this inference step, the model delves deep into the image, effectively determining whether
the captured image portrays a genuine or fake face. The essence of our solution lies in the intelligent
amalgamation of these sophisticated technologies, enabling our system to deliver precise and robust
anti-spoofing assessments.

3.1. Model Training and Data Enhancement

Our approach hinges on the use of the ResNet-18 deep learning model, celebrated for its prowess
in feature extraction. However, it’s important to note that the choice of this model is far from arbitrary.
Instead, it’s a result of careful selection, followed by rigorous training on a diverse and extensive
dataset. This training is an iterative process where the model learns to differentiate between authentic
facial images and their deceitful, spoofed counterparts. To achieve this level of discrimination, custom
loss functions such as Similarity Loss and AdMSoftmax Loss are diligently employed to fine-tune
the model’s performance. These loss functions play a pivotal role in equipping the model with the
capability to discern the subtle nuances that distinguish real faces from fraudulent or synthetic ones.
The system is thus primed to tackle a broad spectrum of spoofing attempts, ensuring the security and
reliability of facial recognition processes.

3.2. Facial Detection and Preprocessing

At the heart of our methodology lies the inclusion of MediaPipe Face Detection, a state-of-the-art
framework recognized for its proficiency in facial detection and tracking. This integral component
is instrumental in accurately identifying the face within the provided image. What sets it apart is its
adaptive bounding box adjustment, which seamlessly encompasses essential contextual information
around the detected face. This adaptive approach significantly enhances the overall accuracy of
anti-spoofing assessments, making our system resilient to various presentation styles, occlusions, and
spoofing attempts. Once the face is precisely located, a sequence of preprocessing steps commences
to prepare the detected face for deep learning analysis. An essential step involves resizing the face
to a standardized 256x256 resolution. This preprocessing not only ensures uniformity in the model’s
input but also greatly optimizes subsequent inference processes, enabling the system to operate with
precision and speed.

3.3. Inference and Classification

The pinnacle of our system is reached in the inference stage, where the facial anti-spoofing model
takes center stage. This model, running on PyTorch and utilizing the power of the CUDA framework,
becomes the decision-maker, effectively discerning whether the captured image authentically portrays
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a real face or if it is a deceptive representation. Throughout this process, the model’s deep neural
network architecture meticulously scrutinizes the image, extracting and analyzing intricate features
and patterns. It then confidently labels the image as "Real” or ‘Spoof,” providing confidence scores
that further validate the authenticity of the determination. Our system hinges on the synergy of
these meticulous processes, providing users with a highly secure and dependable facial anti-spoofing
detection service.

3.4. System Architecture

Our system architecture is a harmonious blend of cutting-edge technology and scalability. The
core components of the architecture include:

Azure Functions: Our face anti-spoofing detection model finds its home within Azure Functions,
a serverless computing service. This architectural choice offers multifaceted advantages. It ensures
on-demand scalability, enabling the system to seamlessly adapt to varying workloads. Automatic
resource management is another hallmark feature, eliminating the need for manual intervention in
resource allocation. Furthermore, Azure Functions align with efficient cost management practices,
guaranteeing economical utilization of cloud resources.

Deep Learning Model: The ResNet-18-based deep learning model is meticulously integrated into
the Azure Function. Whether running on a CPU or a GPU, this model is primed for efficient inference,
enabling swift and accurate anti-spoofing assessments.

MediaPipe Integration: Our system’s face detection prowess is fortified with the integration of
the MediaPipe framework. Renowned for its real-time cross-platform capabilities in facial landmark
detection and tracking, MediaPipe plays a pivotal role in ensuring the precise and comprehensive
detection of faces.

Azure Content Delivery Network (CDN) :In our application, we utilize Azure CDN to enhance
the distribution of our web-based face anti-spoofing detection service. Azure CDN is a global network
of strategically placed data centers designed to accelerate content delivery to users. By caching
static assets, such as JavaScript files, cascading style sheets, and images, at edge locations, we ensure
faster content delivery to users regardless of their geographical location. This not only optimizes the
responsiveness of our web service but also enhances its scalability, making it suitable for a global
audience while maintaining low-latency interactions.

Azure Front Door: In our application, Azure Front Door is integrated to ensure robust and highly
available access to our face anti-spoofing detection service. It serves as a traffic manager, directing
users to the nearest Azure datacenter for low-latency interactions. By intelligently routing requests and
providing redundancy, Azure Front Door guarantees the reliability and performance of our service,
even in the face of high demand or unexpected traffic spikes. Moreover, it enhances security through
Web Application Firewall (WAF) and DDoS protection, safeguarding our application from potential
threats and ensuring uninterrupted service availability.
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3.5. Web Deployment

Our solution’s accessibility is streamlined through a web-based API. Users can conveniently
submit images for anti-spoofing assessments by embedding the image within the request body. The
image is then converted into base-64 encoding format and sent to the azure function for further
processing. Finally, the user gets a reply on the screen, providing users with a clear and structured
response. This response encapsulates the predicted label ('Real” or ‘Spoof”) and confidence scores,
making the output easily interpretable and actionable.
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Figure 2. System Data Flow.

4. Results and Discussion

Our face anti-spoofing detection system underwent rigorous evaluation to ascertain its effective-
ness and reliability in distinguishing real facial images from spoofed ones. The system demonstrated a
remarkable accuracy rate in correctly identifying genuine faces and discerning them from spoofed
attempts. Our model consistently achieved a remarkable accuracy, reaffirming its robustness in making
accurate anti-spoofing determinations.

The system demonstrated robustness against a diverse set of spoofing attempts, including printed
photos and facial masks. The dynamic bounding box adjustment in face detection played a pivotal
role in ensuring robustness against various spoofing strategies.

4.1. Compiling and processing of Datasets

we used three various unique databases that contain fake and spoofed images to test with the
model so that it will be more robust and secure and work with various scenarios and is not limited a
single feature detection.

ROSE : youtu face liveness detection dataset This dataset contains a wide array of lighting
situations, various sorts of attacks and various camera models, making it an effective asset for training
anti-spoofing models that can handle different scenarios. The dataset contains 55,000 counterfeit photo
samples. It provides a diverse range of fake face images, offering a rich variety for analysis and model
development.

NUAA Photograph Imposter Database: This dataset provides a more balanced set with legit and
fake pictures. It contains 7,509 spoofed faces and 5,106 authenitc faces making a total of 12,615 images.

Large Crowd collected Face Anti-Spoofing Dataset: This one has 1,943 legitimate faces and 16,885
spoofed faces. It is more diverse and real life based because of the amount of various backgrounds and
situations of the photos taken.

OULU-NPU Face Presentation Attack Database: The inclusion of the OULU-NPU Face Presenta-
tion Attack Database significantly enhances the test dataset. It encompasses 4,950 videos depicting
genuine access instances and attacks, recorded using front cameras from six mobile devices. These
videos are further categorized into developing, training and inspecting sub datasets.
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Replay-Attack Database: The Replay-Attack Database dedicated to face spoofing comprises 1,300
video clips portraying attempts at photo and video-based attacks on 50 distinct clients. These clips
vary across diverse lighting conditions and are created in two primary ways: firstly, by genuine clients
attempting to enter a laptop using the webcamera, and secondly, by displaying a video recording of
the same client for a minimum duration of 9 seconds.

MSU-MFSD Dataset: The MSU-MFSD Dataset refers to the Mobile-Simulated Unconstrained
Multispectral Face Spoof Detection Dataset. It contains a comprehensive collection of facial images
captured in various spectral bands, including the visible and near-infrared spectrum. This dataset
is specifically designed for developing and evaluating face anti-spoofing algorithms, aiming to en-
hance the accuracy and robustness of facial recognition systems against spoof attacks in diverse
environmental conditions and illumination settings.

You can see the classification between live and spoof images for each dataset in Figure 3. it tells
you how many classes each category of a dataset has.

Dataset Classes
live spoof

OULU-NPU 1 4
MSU-MFSD 2 6
REPLAY 1 3
ATTACK

ROSE-YOUTU |1 3
LCC-FASD 1 1
NUAA 1 1

Figure 3. Comparison of Datasets.

The deployment of our model within a serverless architecture was instrumental in ensuring rapid
inference. The response times were consistently within acceptable limits for real-time applications,
thereby meeting the demands of time-sensitive scenarios.

The results of our face anti-spoofing detection system signify a significant step forward in enhanc-
ing the security of facial recognition processes. The system’s exceptional accuracy and low latency
make it well-suited for real-world applications where security is paramount. One of the key strengths
of our solution lies in the integration of MediaPipe Face Detection, which not only locates the face
but also intelligently adapts the bounding box to encompass additional contextual information. This
adaptive approach mitigates potential challenges posed by variations in presentation, facial occlusions,
or attempts at spoofing. Moreover, the serverless architecture ensures scalability, cost-efficiency, and
rapid response times, making our system suitable for deployment in a wide array of scenarios. How-
ever, it is important to acknowledge that no system is without its limitations. While our solution excels
in many aspects, there are still areas for improvement. Notably, further research and development are
required to enhance its resilience against advanced spoofing techniques and to expand its adaptability
to different cultural and demographic groups. Moreover, continuous updates and model retraining
are essential to address emerging threats in spoofing attempts. Additionally, ensuring the privacy
and ethical use of facial recognition technology is an ongoing concern, and our system is designed to
comply with privacy regulations and ethical considerations.
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5. Conclusions and Future Scope

In this research, we have presented a robust and efficient solution for facial anti-spoofing detection.
By integrating cutting-edge deep learning models within a serverless architecture and a Software
as a Service (SaaS) platform, we have successfully addressed the critical challenge of distinguishing
genuine facial images from fraudulent or spoofed attempts. Our approach leverages a carefully
trained ResNet-18 model, coupled with custom loss functions, to achieve a high degree of accuracy in
anti-spoofing assessments. The inclusion of MediaPipe Face Detection further enhances our system’s
robustness, ensuring precise face location and adaptability to diverse presentation styles. The model’s
inference phase, running on the CUDA framework, solidifies our system’s capability to make reliable
determinations regarding the authenticity of captured facial images. This research marks a significant
advancement in facial recognition security, offering a versatile solution applicable across various
domains, from access control to identity verification.

While our research has delivered a robust anti-spoofing solution, there are promising avenues for
future exploration and enhancement. Firstly, the rapid evolution of spoofing techniques necessitates
ongoing research to improve system resilience against novel threats, including deepfake technology
and 3D masks. Secondly, extending the system’s adaptability to a diverse range of demographic
groups is crucial, ensuring equitable and accurate assessments for users from different backgrounds.
Additionally, as facial recognition technology raises ethical and privacy concerns, future work must
continue to address these issues through stringent compliance with regulations and ethical guidelines.
Further refinement of the user interface and experience is essential to ensure user-friendliness and
accessibility for a broader user base. The integration of real-time monitoring and alerting systems can
provide immediate notifications in case of spoofing attempts, enhancing security. Lastly, regular model
updates and retraining are vital to keep the system up-to-date with emerging spoofing methods and
to maintain high accuracy levels. In conclusion, our research serves as a foundation for a secure and
reliable facial anti-spoofing detection system, and the future holds exciting prospects for improving
this technology to ensure its adaptability to evolving challenges and its adherence to ethical standards,
ultimately making it a cornerstone in the realm of biometric security and identity verification.
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