
Article Not peer-reviewed version

Towards Evaluating the Diagnostic

Ability of LLMs

Peter Sarvari * and Zaid Al-fagih

Posted Date: 7 March 2025

doi: 10.20944/preprints202409.0688.v4

Keywords: generative AI; LLM; GPT‐4; RAG; clinical medicine; diagnosis

Preprints.org is a free multidisciplinary platform providing preprint service

that is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0

license, which permit the free download, distribution, and reuse, provided that the author

and preprint are cited in any reuse.

https://sciprofiles.com/profile/3812912
https://sciprofiles.com/profile/3818209


 

 

Article 

Towards Evaluating the Diagnostic Ability of LLMs 
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*  Correspondence: peter@rhazes.ai 

Abstract. On average, one in ten patients die because of a diagnostic error and medical errors are the 

third  largest  cause  of  death  in  the US. While  LLMs  have  been  proposed  to  help  doctors with 

diagnoses, no  research  results have been published on  comparing  the diagnostic ability of many 

popular LLMs on an openly accessible real‐patient cohort.  In  this study, we compare LLMs  from 

Google, OpenAI, Meta, Mistral, Cohere and Anthropic using a previously established  evaluation 

methodology and explore improving their accuracy with RAG. We found that GPT‐4o from OpenAI 

and Claude Sonnet 3.5  from Anthropic were  the  top performers with  them only missing 0.5% of 

ground truth conditions that were clearly inferable from the available data; RAG further improved 

this error rate  to 0.2%. While the results are promising, more diverse datasets, hospital pilots and 

close collaboration with physicians are needed to get a better understanding of the diagnostic ability 

of these models. 
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1. Introduction 

In the United States alone, medical errors are the third largest cause of death [1], and within that, 

diagnostic errors kill or permanently disable 800,000 people each year [2]. Research by The National 

Academy of Medicine as well as Newman‐Toker et al. estimated that diagnostic errors are responsible 

for  approximately  10%  of  patient  deaths  [3,4]  and  6‐17%  of  hospital  complications  [3].  75%  of 

diagnostic errors are cognitive errors [5] most commonly caused by premature closure, the failure to 

consider  alternatives  after  an  initial  diagnosis  has  been  established.  Cognitive  errors  are  also 

naturally linked to the overload and stress physicians have been experiencing with current burnout 

rates reaching the highest ever levels recorded [6]. Given the recent progress in Artificial Intelligence, 

large  language models  (LLMs) have been proposed  to help with various aspects of clinical work, 

including  diagnosis  [7].  GPT‐4,  a  LLM  developed  by  OpenAI  has  shown  promise  in  medical 

applications with its ability to pass medical board exams in multiple countries and languages [8–11]. 

Only a handful number of studies have attempted to compare the diagnostic ability of LLMs 

mostly on (1) clinical vignettes, (2) case records directly from clinics and (3) case reports, such as the 

New England Journal of Medicine (NEJM) Case Challenges. The latter are more complex than clinical 

vignettes and contain red herrings and other distractors to truly challenge a physician [12]. Khan et 

al. [12] used 10 case challenges, and compared diagnoses from GPT‐3.5, GPT‐4 (Bing) and Gemini 1.5 

with the help of 10 physicians who filled out a grading rubric. Chiu et al. [13] used 102 case records 

from the Massachusetts General Hospital and showed that GPT‐4 outperformed Bard and Claude 2 

in its diagnostic accuracy based on the ICD‐10 hierarchy. Shieh et al. [14] asked GPT‐3.5 and GPT‐4 

to analyze 109 USMLE Step 2 clinical knowledge practice questions  (vignettes) as well as 63 case 

reports from various  journals. The researchers concluded that while GPT‐4 was 87.2% accurate on 

the vignettes, it was only able to create a shortlist of differential diagnoses for 47 of the case reports 

(75%). Others scholars have assessed the capabilities of various LLMs within a given specialty, such 

as otolaryngology [15] and radiology [16]. 

Many authors focused on evaluating the diagnostic ability of a single LLM: GPT‐4 was the most 

popular choice as it was generally the most accurate LLM at the time. Eriksen et al. [17] asked GPT‐4 
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to choose one from 6 diagnostic options for each of the 38 NEJM case challenges whereas Kanjee et 

al.  [18] relied on NEJM clinopathologic case conferences and  tasked GPT‐4  to  first, state  the most 

likely diagnosis and second, give a list of differentials. Manual review by the authors concluded that 

in 45 out of the 70 cases the correct answer was included in the differentials (in 27 cases it was the 

most likely diagnosis). Shea et al. [19] used GPT‐4 to diagnose 6 patients with extensive investigations 

but delayed definitive diagnoses and showed that GPT‐4 has the potential to outperform clinicians 

and alternative diagnostic tools such as Isabel DDx companion. Fabre et al. [20] took 10 NEJM cases 

and while concluded  that  the  final diagnosis was correctly  identified by  the AI  in 8 cases  (it was 

included in the list of differentials), the investigators also assessed treatment suggestions and found 

that GPT‐4 failed to suggest adequate treatment for 7 cases. Notably, some researchers focused on 

assessing  agreement  between  doctors  and  GPT‐4,  rather  than  evaluating  the  accuracy  directly: 

Hirosawa et al. [21,22], measured the Cohen’s Kappa coefficient in two different studies, relying on 

cases from the American Journal of Case Reports as well as 52 complex case reports published by the 

authors.  In  both  cases,  the  researchers  found  fair  to  good  agreement  (0.63  [21]  and  0.86  [22], 

respectively) between doctors and GPT‐4. 

These evaluation strategies work for case challenges but would not suffice for a large cohort of 

highly comorbid real patients, such as MIMIV‐IV  [23], where patients might suffer  from multiple 

conditions concurrently. To solve this, Sarvari et al. [24] outlined a methodology to use AI‐Assisted 

evaluation (“LLM‐as‐a‐judge [25]”) to quickly estimate the diagnostic accuracy of different models 

on a set of highly comorbid real hospital patients. This automated evaluation not only allows  for 

evaluating on larger datasets (we increased the sample size 10‐fold from the <100 typically seen in 

evaluations  based  on  clinical  cases  to  1000),  but  also  facilitates  quick  benchmarking  of multiple 

models, which is our goal in this study. Automated evaluation gave reliable estimates as judged by 

three medical doctors in the aforementioned study [24], and as AI models improve, we only expect 

this to become better. Moreno et al. [26] also hints at non‐human evaluation as a method to allow for 

a larger‐scale beta test and Zack et al. [27] actively employs this method to match generated diagnoses 

to ground truth ones and shares the prompt in the supplementary material. 

Despite  the recent successes,  there are subdomains where GPT‐4o  is proven  to be  inferior  to 

alternative AI methods, or human diagnosis, particularly when it comes to medical image analysis. 

GPT‐4o was found to perform poorly in detecting pneumonia from pediatric chest X‐rays compared 

to traditional CNN‐based methods [28]. Zhang et al. [29] compared GPT‐4o to 3 medical doctors in 

their abilities to diagnose 26 glaucoma cases and found using Likert scales that GPT‐4o performed 

worse than the lowest scoring doctor in the completeness category. Cai et al. [30] assessed the clinical 

utility  of GPT‐4o  in  recognizing  abnormal  blood  cell morphology,  an  important  component  of 

hematologic diagnostics  in 70  images. The LLM achieved an accuracy of only 70%  (compared  to 

95.42% accuracy of hematologists) as reviewed by two experts in the field. 

2. Methods 

2.1. Models 

We compared the following models for diagnosis in our analysis: Gemini 1 (gemini‐pro‐vision via 

Google Vertex AI API used on 2024/03/26 with temperature set to zero), Gemini 1.5 (Gemini‐1.5‐pro‐

preview‐0409 via Google Vertex AI API used 2024/05/08,  temperature  set  to zero), MedLM  (medlm‐

medium via Google Vertex AI API used 2024/05/08, temperature: 0.2, top_p: 0.8, top_k: 40), LlaMA 3.1 

(Meta‐Llama‐3.1‐405B‐Instruct deployed on Microsoft Azure used via API on 2024/08/22), Mistral 2 

(Mistral‐large‐2407 deployed  on Microsoft Azure used  via API  on  2024/08/22), Command R Plus 

(command‐r‐plus via Cohere API used 2024/06/24), GPT‐4‐Turbo (gpt‐4‐1106‐preview via OpenAI API 

used 2024/02/14), GPT‐4o (gpt‐4o via OpenAI API used 2024/08/29, temperature set to zero), Claude 3.5 

Sonnet (claude‐3‐5‐sonnet‐20240620 via Anthropic API used 2024/07/23, temperature set to zero). The 

automated evaluation was done by GPT‐4‐Turbo (gpt‐4‐1106‐preview via OpenAI API, temperature set 

to zero) on  the  same day when  the diagnostic models were  run. Note: when parameters are not 
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mentioned, they were not explicitly set, and their default values have been used. The reported hit 

rate is the average across all the ground truth diagnoses of the 1000 sample patients. 

GPT‐4o with  retrieval  augmented  generation  (RAG) was  implemented  via Azure Cognitive 

Search. A document  containing Laboratory Test Reference Ranges  from The American Board  of 

Internal Medicine updated January 2024 [31] was vectorized (embedded by the Ada‐002 model from 

OpenAI) and indexed to be used for RAG with default overlap and chunk size (1024). The 5 closest 

matches were retrieved using the cosine similarity metric and the output was generated on 2024/06/26 

with temperature of zero, strictness parameter of 3 and the inScope flag set to False. 

2.2. Diagnosis and Automated Evaluation 

The  MIMIC‐IV  data  sample  containing  1000  hospital  admissions  and  the  diagnostic  and 

evaluation prompts were taken from. The evaluation methodology is summarized in Figure 1. 

Our initial idea was to simply compare the predicted ICD codes to the ICD codes extracted from 

the patients’ billing  reports  (ground  truth)  and  examine what proportion was guessed  correctly. 

However,  the MIMIC‐IV data did not  contain patient history  (previous diagnoses, medications), 

patient  physical  examinations  and  other  useful measurements  such  as  ECG. Of  course, without 

medication records, we would not know if the patient is suffering from a coagulation disorder or is 

taking anticoagulants and without ECG we cannot diagnose atrial fibrillation. Hence, such diagnoses 

are not inferable from the data, and we exclude them. Further, given the lack of patient diagnostic 

history and the very specific ICD code names, it may not be possible to distinguish between diseases 

with different onsets (acute vs chronic) or between diseases with differing degrees of severity. Hence, 

we deem  the prediction  correct  if  the predicted  and  the ground  truth diagnoses  are  two  related 

diseases (e.g., caused by the same pathogen, affecting the same organ) which are indistinguishable 

given the patient data. In this case, the further tests the LLM is instructed to suggest in the prompt 

from Sarvari et al. [24] are of crucial importance to understand to exact disease pathology. There are 

also  ICD  codes  that  do  not  correspond  to  diagnoses  (e.g.,  Do  Not  Resuscitate,  homelessness, 

unemployment) and we exclude such codes from this study. We define a correct prediction as a ‘hit’, 

and the failure to predict a ground truth diagnosis as a ‘miss’. 

In terms of the evaluation metrics, we solely focus on hit rate (also called recall, true positive 

rate, sensitivity) in this study. The rationale is as follows: for every single disease in the world, the 

patient may have it or not have it. As such, when making predictions, the LLM is effectively executing 

binary classifications for every single disease. Of course, even a highly comorbid patient will not have 

99.99%+ of the possible diseases and hence the metrics related to negative selected elements, such as 

specificity are very close to 1 by default and are not meaningful to report. As a result, the meaningful 

metrics here are precision and hit rate. However, a good quantification of precision is challenging in 

this case because false positives are difficult to establish as not every single medical condition ends 

up  on  the  billing  report  of  the  patient. Hence,  it’s  unclear  and  subjective whether  certain well‐

reasoned diagnostic predictions should be marked false positives just because they did not show up 

on the patient’s billing report. As a solution, we report the hit rate while (1) indirectly constraining 

the number of predictions by limiting the LLM output tokens to 4096 and (2) ensuring explainability 

by asking the LLM to reason why it predicted certain conditions. 
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Figure 1. Summary of the evaluation methodology. 

3. Results 

The  1000  randomly  selected  patients  are  highly  comorbid with  an  average  of  14.4  distinct 

diagnostic codes per patient (min:1, max: 39, IQR: 10). The bar chart on Figure 2 shows the diagnostic 

hit rate of the models we tested in this study. 

  

Figure 2. The diagnostic hit rates of the tested LLM. 

The top‐performing models (without RAG) assessed in this study were GPT‐4o and Claude 3.5 

Sonnet with both achieving 99.5% hit rate. Table 1 summarizes the most common hits and misses by 

these two top‐performing LLMs. 

To boost the diagnostic hit rate of one of the best performing models, GPT‐4o, we reduced the 

errors in the predictions by plugging the knowledge gaps in the model using RAG. The 1000 patient 

EHR contained a total of 14403 ground truth diagnoses. Among the 7604 inferable diagnoses, GPT‐

4o found  the exact condition, or one deemed directly related to  it (i.e., equally reasonable to  infer 

given the patient data) in 7586 cases giving it a diagnostic hit rate (sensitivity) of 99.8%. The 7586 hits 

the model made  correspond  to 1733 unique diagnoses.  In Table 2, we display  the most  common 

correctly identified diagnoses as well as the ones that were missed more than once. 
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Table 1. Most common diagnostic hits and misses made by the best performing models, GPT‐4o and Claude 3.5 

Sonnet. 

Type  Name  Occurrence 

(GPT4o) 

Occurrence 

(Claude) 

Hit  Kidney failure, unspecified  217  216 

Hit 
Diabetes mellitus (no mention of 

complication, type II or unspecified) 
132  137 

Hit  Acidosis  129  126 

Hit  Congestive heart failure, unspecified  125  128 

Miss  Dehydration  8  5 

Miss  Diabetes  8  3 

Miss  Hypertension  4  2 

Miss  Hypotension  2  5 

Table 2. Most common diagnostic hits and misses made by GPT‐4o with RAG. 

Type  Name  Occurrence 

Hit  Kidney failure, unspecified  218 

Hit  Acidosis  129 

Hit  Congestive heart failure, unspecified  127 

Miss  Diabetes mellitus without complications  8 

Miss  Hypoxemia  2 

4. Discussion 

In  this paper we compared  the diagnostic ability of multiple  large  language models using a 

previously established method on a subset of the MIMIC‐IV dataset. The method uses the ICD codes 

from the patient record as the ground truth and (1) removes not inferable diagnoses and (2) accepts 

similar ICD diagnoses as correct predictions when there’s not enough data to infer the exact code. 

Others  have  used  ICD  chapters  [13]  and  515 CCSR  categories  and  22 CCSR  bodies  [32]  to 

compare  the diagnostic predictions  to  the ground  truth and reported accuracies at  these different 

levels. While this method is very much helpful for creating a fast and objective evaluation framework, 

it does not consider if the data available is enough to arrive to the ground truth diagnosis (or to a 

similar one within  the same CCSR category) resulting  in a more conservative reported diagnostic 

accuracy. In other words, by using this method, one assumes that the information in the data used 

(MIMIC‐III in the case of Mohammadi et al. [32]) is sufficient to make the reported ICD diagnoses. In 

addition, one major drawback of attempting to predict ICD chapters and CCSR categories is that two 

physiologically  very  different  diseases may  end  up  in  the  same  category.  For  example,  ‘Type  1 

diabetes mellitus without complications’ (ICD‐10 code: E109) and ‘Type 2 diabetes mellitus without 

complications’ (ICD‐10 code E119) belong to the same CCSR category 1 of END002. This means that 

if the LLM predicted type 1 diabetes, but the patient was suffering from type 2 diabetes, the prediction 

would be deemed correct, even though in practice this would be a serious misdiagnosis. Ironically, 

closely related conditions may end up in different CCSR categories: ‘chronic kidney disease, stage 1’ 

(ICD‐10 code N181) is in the GEN003 CCSR category whereas ‘Hypertensive chronic kidney disease 

with stage 1 through stage 4 chronic kidney disease, or unspecified chronic kidney disease’ (ICD‐10 

code I129) is in the CIR008 CCSR category. This means that we would penalize the LLM if it does not 

know that the chronic kidney disease was of hypertensive origin even if it does not have access to the 
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patient history proving  so  (note  that patient blood pressure may  appear normal  in hypertensive 

kidney disease due to medication). 

Our method uses a more subjective assessment, where we  let  the LLM agent conducting  the 

evaluation decide whether the prediction is acceptable based on its similarity to the ground truth and 

given the available data. For example, mixing up type 1 and type 2 diabetes would be considered a 

miss if there is relevant antibody and C peptide data. At the very least, the model would suggest a 

further C peptide test (as instructed via the prompt in Sarvari et al. [24]) if not already in the data, to 

confirm the diagnosis. Another advantage of our approach is that it makes the reported hit rate less 

data dependent by removing the non‐inferable diagnoses. However, in an ideal case, complete and 

detailed patient EHR data is available from multiple hospitals, locations and demographics to test 

the diagnostic ability of LLMs. While the hit rate of these LLMs on such dataset might be different, 

we would expect the relative rankings of these models to stay the same. 

Throughout our analysis, we  took care  to  report  the exact dates when  the experiments were 

conducted to account for potential silent model changes that have happened since. Note that due to 

the stochastic nature of the LLMs, the same model ran twice may give different results. However, 

repeating experiments (and the evaluation) have resulted in very similar results without a change to 

the  first number  after  the decimal point. Hence, we  chose  the  report hit  rates with one decimal 

precision. 

RAG is helpful for boosting hit rate as it allows the model to refer to up‐to‐date clinical reference 

ranges and diagnostic guidelines: whenever there’s a blood result or symptom mentioned in the text, 

the LLM receives further information on the diagnostic guidelines resulting in fewer hallucinations 

[33]  and more  consistent  output.  For  example,  using RAG  helped  the GPT‐4o model  accurately 

diagnose dehydration which was the top missed diagnosis as reported in Table 1. We presume this is 

because of the serum and plasma osmolarity reference ranges in the document used for RAG. We 

expect fine‐tuning these models with a medic‐curated dataset will further increase their diagnostic 

abilities and this is something we’re currently experimenting with. 

Finally, we would  like  to  draw  attention  to  the  shortcomings  of  this  study:  first, we  only 

considered  one  single  dataset,  coming  from  a  single  hospital.  This  dataset  didn’t  contain  all 

information that doctors normally use for diagnosing patients, resulting in excluding some important 

diagnoses from the analysis as they were deemed non‐inferable. In fact, in practice, decision making 

goes beyond  text‐based data  from  the electronic patient  record and without an AI  system  taking 

multimodal inputs sitting alongside a doctor as part of a proper hospital pilot, it’ll be very difficult 

to truly compare diagnostic ability of LLMs to that of doctors. In this study we allowed LLMs to make 

many  predictions,  however,  in  practice  doctors may  need  to  rely  on  one  single  diagnosis  and 

treatment plan, which is their current best estimate. In addition, evaluation was done by an LLM and 

has not been reviewed manually by a human, let alone a clinician. Moreover, this paper did not assess 

model biases in the predictions made by the different models, which would be an essential first step 

towards hospital deployment of LLMs. Readers looking to learn more about this topic are directed to 

Zack et al. [27]. This paper also doesn’t consider images and only takes natural language as an input; 

this is a crucial limitation especially as aforementioned studies indicated shortcomings of GPT‐4o in 

medical  image  analysis  [28–30].  It  is  also worth highlighting  that while here we  only  tested  the 

performance  of  LLMs  in  English  language,  recent  research  suggests  consistent  diagnostic 

performance of GPT‐4o across 9 different languages [34]. 

5. Conclusions 

In this study we compared the diagnostic ability of 9 different LLMs from 6 different companies 

on 1000 electronic patient records. We found that GPT‐4o from OpenAI and Claude Sonnet 3.5 from 

Anthropic were the top performers with them only missing 0.5% of ground truth conditions that were 

clearly  inferable  from  the  available data. Open‐source models,  such  as Mistral  2  and LlaMA  3.1 

performed  reasonably well,  better  than  the  closed‐source models  from Google,  but worse  than 

alternatives from Cohere, Anthropic and OpenAI. We showed how retrieval augmented generation 
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further  improved  the hit  rate of GPT‐4o and even  though  the numbers  look very promising, we 

cautioned against drawing conclusions about the diagnostic abilities of these models in a real hospital 

setting. 
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