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Article 

Predictive Analytics for Thyroid Cancer Recurrence: 

A Machine Learning Approach 

Elizabeth Clark, Samantha Price, Theresa Lucena, Bailey Haberlein, Abdullah Wahbeh  

and Raed Seetan 

* Correspondence: abdullah.wahbeh@sru.edu 

Abstract: Differentiated thyroid cancer (DTC), comprising of papillary and follicular thyroid cancers, is the 

most prevalent type of thyroid malignancy. Accurate prediction of DTC is crucial for improving patient 

outcomes. Machine learning (ML) offers a promising approach to analyze risk factors and predict cancer 

recurrence. In this study, we aimed to develop predictive models to identify patients at an elevated risk of DTC 

recurrence based on 16 risk factors. We developed six ML models and applied them to a DTC dataset. We 

evaluated the ML models using Synthetic Minority Over-Sampling Technique (SMOTE) and with 

hyperparameter tuning. We measured the models’ performance using precision, recall, F1 score, and accuracy. 

Results showed that Random Forest consistently outperformed the other investigated models (KNN, SVM, 

Decision Tree, AdaBoost, and XGBoost) across all scenarios, demonstrating high accuracy and balanced 

precision and recall. The application of SMOTE improved model performance and hyperparameter tuning 

enhanced overall model effectiveness. 

Keywords: differentiated thyroid cancer; SMOTE; machine learning; predictive analytics; random forest 

classifier 

 

1. Introduction 

Differentiated thyroid carcinoma (DTC), which encompasses both papillary and follicular 

thyroid cancers, represents the most prevalent type of thyroid malignancies [1]. The recurrence risk 

is influenced by many factors, necessitating accurate predictive models to enhance patient outcomes. 

Over the past two decades, incidence of thyroid cancers has increased internationally, however rate 

of mortality has stayed consistent [2]. This lack of increased relative mortality is thought to be 

associated with contemporary advancements in diagnosis and treatment approaches that emphasize 

the importance of accurate risk assessment in predicting recurrence and tailoring early interventions.  

Traditional non-technical approaches to monitor for and detect recurrence rely heavily on 

evaluation of risk assessment data, including biological markers, genetic factors, imaging, and 

comorbidities, however assessment of all these factors in combination is a challenge in a busy medical 

environment. In recent years, research into and use of machine learning (ML) has become increasingly 

attractive for this purpose to assess complex data sets consisting of patient risk factors and use this 

analysis to predict risk for cancer occurrence and recurrence. Although these methods are promising, 

they are not yet widely used. 

More research on this topic with larger and more diverse datasets are needed to thoroughly 

demonstrate the importance of ML in the healthcare setting regarding recurrent cancer. The aim of 

this study is to enrich existing literature by developing predictive models to identify patients at an 

elevated risk for recurrence of DTC based on 16 commonly accepted risk factors, including patient 

data, treatment types, and personal histories. More specifically, we aim to develop six machine 

learning algorithms and determine which one among them can provide the most accurate predictions 

of thyroid cancer recurrence.  

We aim to utilize a dataset comprising 383 instances and 16 features, sourced from the 

Differentiated Thyroid Cancer Recurrence dataset in the UC Irvine Repository database [3]. This 
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dataset includes various factors such as age, gender, smoking status, history of radiotherapy, thyroid 

functioning, adenopathy status, pathology category, risk category, focality, primary tumor (T), 

regional lymph nodes (N), distant metastasis (M), cancer stage, and response to treatment. 

Supervised learning and ensemble learning algorithms will be employed to analyze the data and 

predict the risk of recurrence. The performance of each model will be evaluated using precision, 

recall, F1 score, and accuracy. This study aims to contribute to this critical area by developing robust 

predictive models to enhance the management and prognosis of patients with DTC. 

2. Background and Related Work 

2.1. Overview of DTC and Thyroid Cancer 

The thyroid is an organ in the neck that produces hormones that are key for body functions, the 

most important of which is thyroid hormone. Thyroid hormone, which is segmented into two 

configurations, thyroxine (T4) and triiodothyronine (T3), is particularly important for cell 

proliferation and differentiation as well as cellular metabolic processes (Bhattacharya et al., [5]). High 

levels of TSH are well established to be related to thyroid malignancy, but recent studies also find 

that T3 and T4 may also be involved in thyroid cancer development. Sasson et al., [4] found that high 

levels of FT4 were directly associated with DTC malignancy and a high FT4/FT3 ratio also 

significantly increased risk of malignancy. Additionally, heightened levels of thyroid stimulating 

hormone (TSH) are also known to be associated with increased likelihood of nodule malignancy [4]. 

Although there are several types of thyroid cancers, DTC, which consists of both papillary and 

follicular cancers of the thyroid, is by far the most prevalent kind of thyroid cancer, making up greater 

than 90% of all diagnoses [5]. Disease recurrence associated with DTC affects roughly 30% of patients 

within 10 years of initial diagnosis, making DTC dangerous in the long-term as well as short [1]. 

Papillary thyroid cancer (PTC) is the most prevalent form of thyroid cancer, and is characterized by 

slow growth, but often spreads to surrounding lymph nodes in the neck [6]. Follicular thyroid cancer 

(FTC), which represents approximately 10-15% of all thyroid cancers, is also characterized by slow 

growth, however it is also associated with a higher rate of metastasis to distant parts of the body due 

to invasion of the blood vessels [5]. When dissecting the two subcategories of DTC, it is apparent that 

though DTC is very treatable, it also poses significant concerns for recurrence due to its subcategories’ 

proclivity for metastasis. 

2.2. Current Methods for Monitoring Recurrence 

DTC is most commonly recurrent in regional or cervical lymph nodes, making them prone to 

increased metastasis and mortality [1]. Classification systems are an important part of both treating 

DTC as well as predicting likelihood of recurrence in the future. The most widely used of these 

classification systems in clinics today include the American Thyroid Association (ATA) risk 

classification system and tumor node metastasis (TNM) staging. The ATA risk classification 

categorizes DTC into high, intermediate, and low risk of recurrence based on biological factors such 

as histological subtype, size and extent of the primary tumor, and presence of distant metastasis [7]. 

Staging, on the other hand, is the process of predicting prognosis of cancer patients. This has 

traditionally been done through TNM staging, which takes into consideration factors regarding the 

tumor characteristics, lymph node involvement, and metastasis of the cancer. Staging in this way is 

useful to plan current treatments and determine progression over time, however TNM staging is 

criticized for lacking important biological characteristics of malignant tumors [8]. 

2.3. Current Research on Machine Learning in Thyroid Cancer 

In recent years, artificial intelligence (AI) has gained popularity for its potential uses in medicine, 

with cancer being a particularly prospective area of involvement. Cancers in general are highly 

multifactorial, in that various genetic, epigenetic, proteomic, and transcriptome changes can affect an 

individuals’ likelihood of developing any number of different cancers, therefore multiple complex 

factors must be considered at the same time to predict outcomes and create best treatments [5]. This 

kind of complexity is consistent in thyroid cancers, which are likely associated with genetic factors 
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and environmental ones. Although it is very difficult to consider so many factors simultaneously and 

on an individual basis with non-technological means, AI can be used as a tool to do exactly that. By 

analyzing complex multi-omics data in an efficient way, AI has the potential to help diagnose current 

cancers, predict prognosis, discover new biomarkers for cancer, identify underlying mechanisms, and 

develop personalized treatments to more effectively eliminate thyroid cancer [5,9]. 

One of the most promising and currently implemented uses for Machine Learning (ML) in 

thyroid cancer healthcare is its use in diagnostics and screening. Classic ML algorithms are currently 

used in the computer-aided diagnosis (CAD) systems to improve accuracy of diagnosis and to reduce 

time required for image interpretation, though ultimately determination about diagnosis is still solely 

determined by the medical professional [10].  

Thyroid Imaging Reporting and Data System (TI-RAD) is a commonly used method for 

categorizing biopsied thyroid nodules today [11]. These categories are labelled 1-5, with TR1 being 

benign and TR5 being highly suspicious and are based on a points scale determined through nodule 

factors, such as composition, echogenicity, shape, margin, and echogenic foci. Gu et al., [9] 

constructed a classification model for thyroid cancer based on risk factors as well as a prediction 

model for metastasis based on risk factors. Authors argue that TI-RADS, though a useful screening 

tool, are not as accurate at determining malignancy and metastasis as it could be. They utilized ML 

to predict both malignancy and metastasis of 1,735 patients, aiming to improve early diagnosis and 

treatment by analyzing risk factors. Results showed that XGBoost achieved the highest performance, 

suggesting that ML can significantly aid in early diagnosis and treatment decisions compared to TI-

RADS. 

Fine-needle aspiration biopsy (FNAB) is often used for suspicious thyroid nodules found via 

ultrasound. However, up to 30% of these may be classified as indeterminate thyroid nodules (ITN), 

often necessitating further surgery to determine malignancy [12]. To develop a cost-effective, non-

invasive ML model, Luong et al., [12] analyzed electronic health record data from 355 nodules 

classified as indeterminate by FNAB. They found that a random forest classifier had the best 

performance. Findings demonstrated the potential of ML models to aid in early clinical decision-

making and reduce unnecessary procedures.  

Ballester et al., [13] conducted a retrospective analysis of 5,351 thyroid tumors, investigating 

pathologic upstaging, where the final pathologic stage exceeds the initial clinical stage. They reported 

upstaging rates of 17.5% for tumor stage, 18% for nodal stage, and 10.9% for summary stage, 

identifying factors like Asian race, older age, and lymph vascular invasion as contributors to 

upstaging. This study underscores the importance of recognizing factors that contribute to upstaging 

for improved management and counseling of thyroid cancer patients.  

Distant metastasis often indicates poor prognosis, as metastasis to other body parts can be more 

challenging to find and treat. Mao et al., [14] studied 5,809 patients to evaluate ML models for 

predicting distant metastasis in follicular thyroid carcinoma (FTC). They found that the XGBoost 

model had the best performance, with diagnosis age, race, extrathyroidal extension, and lymph node 

invasion being significant risk factors.  

In a retrospective analysis, Medas et al., [15] investigated factors influencing recurrence in 579 

DTC patients. They found a recurrence rate of 6.2% and a five-year disease-free survival rate of 94.1%. 

Multivariate analysis identified lymph node metastasis as a strong predictor of recurrence, with 

multifocality and extrathyroidal extension also associated with increased risk. Conversely, 

microcarcinoma (tumor size ≤ 1cm) was an independent protective factor, emphasizing the need for 

risk stratification in personalizing treatment plans. Findings suggest that high-risk patients may 

benefit from more aggressive follow-up and treatment to better prevent recurrence.  

Jin et al., [16] developed an overall survival (OS) prognostic model for participants with 

differentiated thyroid cancer with distant metastasis. Nine variables were introduced to build a 

machine learning model, receiver operating characteristic (ROC) was used to evaluate the recognition 

ability of the model, calibration plots were used to obtain prediction accuracy, and decision curve 

analysis (DCA) was used to estimate clinical benefit. The proposed was found to have good 

discriminative ability and high clinical value in its 10-year survival predictions. 
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Tang et al., [17] developed a nomogram to predict cancer-specific survival (CSS) in patients with 

PTC. They utilized the Surveillance, Epidemiology, and End Results (SEER) database to procure 

participants for the study. COX regression analysis demonstrated that age, gender, marriage, tumor 

grade, TNM stage, surgery, radiotherapy, chemotherapy, and tumor size were significantly 

associated with CSS in middle-aged patients with PTC. These ten variables were then used to develop 

a prediction model that could predict and affect the CSS of middle-aged PTC. This tool was found to 

have good accuracy and discrimination, and better overall clinical value than traditional TNM staging 

for this population. Park and Lee [18] utilized five ML models to determine which best predicted 

recurrence of PTC in a cohort of 1040 patients. Results showed that the Decision Tree (DT) model 

achieved the best accuracy at 95% and the lightGBM and stacking models together achieved 93% 

accuracy. 

Wang et al., [19] used five ML models to predict structural recurrence in papillary thyroid cancer 

(PTC) patients, analyzing electronic medical records from 2,244 patients. The auhtors utilized the 

least absolute shrinkage and selection operator (LASSO) method to select nine variables for 

developing the prediction models, which included thyroglobulin (TG), lymph node (LN) variables 

(LN dissection, number of LNs dissected, lymph node metastasis ratio (LNR), and N stage), 

comorbidities and metabolic-related variables (comorbidity of hypertension, comorbidity of diabetes, 

BMI, and low-density lipoprotein (LDL)). Variable importance analysis showed that the most 

important variables across all models were TG, LNR, and N stage. The top performing models were 

SVM, XGBoost, and Rrandom Fforest (RF) models, all of which showed better discrimination than 

the ATA risk stratification according to the AUC values and corresponding indices. Furthermore, 

their RF model was found to have the most consistent calibration, as well as good discrimination and 

interpretability. Findings suggest that patients with recurrent disease are more likely to be older, 

male, cigarette smokers, alcohol drinkers, and have various comorbidities, highlighting the potential 

of ML in enhancing current risk stratification methods and assisting in personalized patient 

management.  

Finally, Borzooei et al., [20] conducted a prospective study using the Differentiated Thyroid 

Cancer Recurrence dataset that is also being used in our study. They trained ML models on three 

distinct combinations of features: a data set with all features excluding ATA risk score (12 features), 

another with ATA risk alone, and a third with all features combined (13 features). Authors found that 

the model that combined the clinicopathologic features with ATA risk score outperformed the other 

two models. SVM was found to be the best performing ML model. 

3. Design and Methodology 

The Differentiated Thyroid Cancer Recurrence dataset from the University of California at Irvine 

Machine Learning Repository was used in this study [3]. This dataset consists of the retrospective 

clinical data for 383 patients diagnosed with DTC, each followed for a minimum of ten years. The 

collected clinical data included 16 features: age at diagnosis, gender, current smoking status, prior 

smoking history, history of head and neck radiation therapy, thyroid function, presence of goiter, 

presence of adenopathy on physical examination, pathological subtype of cancer, focality, ATA risk 

assessment, TNM staging, initial treatment response, and recurrence status. The dataset contains 312 

females (81%) and 71 males (19%). The average age at diagnosis was 41. The pathological subtype 

breakdown was 287 Papillary (75%), 48 Micropapillary (13%), 28 Folicular (7%), and 20 Hurthel Cell 

(5%). According to the ATA risk classification, patients were classified as follows: 249 low risk (65%), 

102 intermediate risk (27%), and 32 high risk (8%). Most cases (333) were classified as Stage 1 (87%). 

208 patients had an excellent initial treatment response (54%). The remaining cases had the following 

initial treatment responses: 91 structural incomplete (24%), 61 indeterminate (16%), and 23 

biochemical incomplete (6%). In terms of recurrence, 108 patients (28%) experienced recurrence. 

Notably, this dataset contained no missing values. 

ML models were applied in this study to analyze and predict DTC recurrence. The ML models 

used were KNN, SVM, Decision Tree, Random Forest, AdaBoost, and XGBoost. KNN is a simple, 

instance-based learning algorithm that classifies data points based on the majority class among their 
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k-nearest neighbors in the feature space, using a chosen distance metric. SVM works by using a kernel 

trick to map the inputs into high-dimensional feature spaces and draw margins between the classes 

[21]. It is robust against outliers and works well with high dimensional small datasets [22]. Decision 

Tree represents choices and their results in a tree-shaped graph. The results are easy to interpret but 

can be prone to overfitting and tend to be sensitive to data changes [21,22]. Random Forest uses a 

parallel ensemble method to create multiple decision trees. It is generally more accurate than a single 

decision tree and can handle high dimensional data [23]. AdaBoost is an ensemble method that 

improves poor classifiers by learning from prior errors. It generally performs well and has better 

accuracy than other methodologies. This algorithm can be sensitive to noisy data and outliers [21,23]. 

XGBoost is an ensemble model that uses a sequential method to build multiple decision trees, and 

each future tree corrects the errors made by the previous one. It has high accuracy, efficiency, and 

can handle missing values well. It generally does require careful tuning of hyperparameters to 

perform optimally [23]. 

Python was used to run the different models. Python has a rich variety of libraries and tools 

which make python an excellent choice for implementing machine learning classification techniques. 

From data preparation and model training to evaluation and deployment, Python provides 

comprehensive support for every step of the machine learning workflow. The dataset was partitioned 

into a training set (80%) and a test set (20%). Data was run once with no modifications. Given the 

gender imbalance in this dataset, a second experiment was performed using SMOTE to address class 

imbalance. SMOTE generates synthetic samples for the minority class based on feature similarity 

with existing minority instances. This technique helps to alleviate the bias towards the majority class 

by increasing the representation of the minority class, thereby improving the performance of 

classifiers trained on imbalanced datasets. In hopes of improving ML model performance, a final run 

was conducted using hyperparameter tuning. This process involves selecting the best values for these 

parameters to achieve optimal model performance. Grid search was the method used for 

hyperparameter tuning which allows you to systematically find the best hyperparameter 

combination to optimize model performance. Hyper-parameter optimization techniques in machine 

learning encompass manual methods like trial-and-error tuning and exhaustive grid search. Random 

search efficiently explores broader spaces by random sampling [24]. 

The performance of the models was assessed using accuracy, precision, recall, and F1 score. 

These metrics provide a comprehensive view of each model’s effectiveness. Accuracy shows how 

often the model was able to correctly predict if DTC recurred or not. It can be misleading at times if 

classes are imbalanced. Precision indicates how many patients predicted to have DTC recurrence 

actually had recurrence. High precision means that when the model predicts recurrence, it is likely 

to be correct. This is critical for minimizing false alarms which may cause unnecessary treatment. 

Recall shows how effectively the model predicts patients who will experience recurrence. High recall 

shows that the model will be able to predict most recurrences. This ensures that all at risk patients 

are identified. This minimizes false negatives and helps ensure that all patients receive the proper 

treatment needed to minimize their chances of recurrence. Finally, a high F1 score shows that the 

model has a good balance of precision and recall. This score can be especially helpful in cases of class 

imbalance [21]. 

4. Results 

In the initial run with no modifications (Table 1), KNN demonstrated strong overall performance 

with high accuracy (0.90) and precision (0.91). It did have a lower recall (0.81) which could mean that 

the model would miss some positive cases of recurrence. 

Table 1. Summary of results without modification. 

Model Accuracy Precision Recall F1 

KNN 0.90 0.91 0.81 0.84 

SVM 0.83 0.91 0.66 0.69 
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Decision Tree 0.92 0.89 0.91 0.90 

Random Forest 0.99 0.99 0.97 0.98 

AdaBoost 0.97 0.98 0.95 0.96 

XGBoost 0.97 0.97 0.97 0.97 

The SVM model had a lower accuracy (0.83), but still had good precision (0.91). The recall was 

low (0.66), which meant the model struggled to identify recurrence. The Decision Tree model had 

overall strong performance with high accuracy (0.92), precision (0.89), recall (0.91), and F1 score 

(0.98). A training score of 1.0 indicates there may have been overfitting to the training data. The test 

score of 0.92 indicates that the model still performs well with new data. 

The Random Forest model had the best overall performance with near-perfect accuracy (0.99), 

precision (0.99), and F1 score (0.98). The recall (0.97) was only slightly lower, which indicates that this 

model was reliable for predicting DTC recurrence. The high training and test scores also indicate 

good model generalization and minimal overfitting. 

AdaBoost also had high performance with high accuracy (0.97), precision (0.98), recall (0.95), and 

F1 score (0.96). The close training and test scores indicate that it is a robust choice. Finally, XGBoost 

also had consistently high metrics for accuracy (0.97), precision (0.97), recall (0.97), and F1 score (0.97). 

A training score of 1.0 does show the possibility of overfitting with this model. 

The data was run again with the application of SMOTE (Table 2) to address class imbalances. 

Overall, the models showed good improvement with the application of SMOTE. KNN showed 

significant improvement, achieving high accuracy (0.97), precision (0.97), recall (0.97), and F1 score 

(0.97). 

Table 2. Summary of results using SMOTE. 

Model Accuracy Precision Recall F1 

KNN 0.97 0.97 0.97 0.97 

SVM 0.94 0.94 0.94 0.94 

Decision Tree 0.94 0.94 0.94 0.94 

Random Forest 0.95 0.95 0.96 0.95 

AdaBoost 0.95 0.95 0.96 0.95 

XGBoost 0.96 0.96 0.96 0.96 

SVM greatly benefited from SMOTE, indicating that the model was likely influenced by the class 

imbalance. SVM had balanced performance with good accuracy (0.94), precision (0.94), recall (0.94), 

and F1 score (0.94). The Decision Tree model also showed improvements with consistent performance 

for accuracy (0.94), precision (0.94), recall (0.94), and F1 score (0.94). Once again, the perfect training 

score indicated that there could be a potential of overfitting with this model.  

Random Forest did see a slight decrease in performance when SMOTE was applied. This could 

indicate that there had been some overfitting to the initial model. Since Random Forest is an ensemble 

method it can typically handle some degree of class imbalance. Introducing the synthetic samples to 

the data can add noise to the data which can also explain the decreased performance.  

AdaBoost did see a slight decrease to both accuracy (0.95) and precision (0.95). Recall (0.96) did 

see some slight improvement, but the model is less apt to favor one class disproportionally. XGBoost 

saw similar results to the initial run and once again showed the potential for some overfitting with 

this model. 

The final test was conducted using hyperparameter tuning (Table 3). The purpose of running 

hyperparameter tuning was to improve each algorithm’s performance by finding the parameters 

which would ultimately maximize the performance of each algorithm. KNN had a consistent 

performance with no significant changes. 
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Table 3. Summary of results using Hyperparameter Tuning. 

Model Accuracy Precision Recall F1 Support 

KNN 0.90 0.91 0.81 0.84 77 

SVM 0.94 0.94 0.89 0.91 77 

Decision Tree 0.97 0.98 0.95 0.96 77 

Random Forest 0.99 0.99 0.97 0.98 77 

AdaBoost 0.96 0.98 0.92 0.94 77 

XGBoost 0.97 0.97 0.97 0.97 77 

Despite the hyperparameter tuning, recall remained lower (0.81), suggesting that the model 

could miss some cases of potential recurrence. SVM showed good improvement from the initial 

results, indicating hyperparameter tuning enhanced the model’s ability to predict DTC recurrence. 

Decision Tree showed marked improvement with accuracy (0.97), precision (0.98), recall (0.95), and 

F1 score (0.96). This shows that hyperparameter tuning helped the Decision Tree model reduce 

overfitting and improve generalization.  

Random Forest once again had a very high performance across the board for accuracy (0.99), 

precision (0.99), recall (0.97), and F1 score (0.98). Hyperparameter tuning helped to solidify its 

performance and make this model very reliable for predicting DTC recurrence. AdaBoost saw an 

improvement with precision (0.98) but did see a slight drop with recall (0.92).  

Finally, XGBoost showed consistent performance with accuracy (0.97), precision (0.97), recall 

(0.97), and F1 score (0.97). This demonstrates that hyperparameter tuning helps enhance this model 

allowing it to maintain high performance across all metrics. 

5. Discussion 

The goal of this study was to determine what the best method was to predict likelihood of 

recurrence of DTC. To accomplish this, six different ML models were utilized, along with three 

different sets of parameters. SMOTE was used to handle any class imbalance in the training set. In 

order to clarify its use, we chose to run the ML algorithms both without using SMOTE and then once 

again with it. The purpose of running it without it was to create a baseline performance marker for 

each of the individual algorithms. After that, hyperparameter tuning was used as a third method to 

help analyze this dataset. Hyperparameter tuning selects the best possible values for each machine 

learning model to achieve the optimal performance.  Through these three different parameters and 

six different machine learning models it was determined that the best machine learning model was 

Random Forest, which consistently outperformed or matched the other models across all three 

scenarios. 

Overall, the application of SMOTE did improve the performance of most models, particularly 

those that struggled with imbalanced data, such as KNN and SVM. Hyperparameter tuning further 

enhanced performance, especially for models like SVM and Decision Tree. Random Forest, AdaBoost, 

and XGBoost demonstrated strong performance in all scenarios, making them reliable choices for 

handling imbalanced datasets. Hyperparameter tuning further enhanced the performance of most 

models, particularly SVM, Decision Tree, and AdaBoost. In all three scenarios Random Forest seems 

to be the best and most reliable algorithm. Random Forest consistently scored higher than the other 

algorithms in each scenario and would lead to the most reliable results when determining likelihood 

of recurrence of thyroid cancer. These findings underscore the importance of addressing data 

imbalance and optimizing model parameters to achieve the best predictive performance in medical 

diagnosis tasks. Future studies should explore these models in larger and more diverse datasets to 

validate and generalize these findings. 

Results of this study imply interesting clinical applications, particularly advancements in 

personalized treatment development. This tool in combination with oversight from clinical experts 

could be utilized to better predict chances of recurrent DTC in patients following primary treatment 

methodologies. Understanding risk levels for recurrence allows clinicians to create more effective 

screening and monitoring programs at regular intervals to better detect recurrence in earlier stages 
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and to monitor more closely for distant metastasis that often increases risk of mortality in recurrent 

DTC. Overall, this study demonstrates some promising implications for clinical use, with the caveat 

that classic ML algorithms such as this one requires ongoing oversight from experts in the field to 

ascertain ongoing accuracy, particularly with application to larger and larger datasets. 

6. Conclusions and Limitations 

Random Forest is the superior algorithm when determining the recurrence of thyroid cancer.  

Whether the data is imbalanced, balanced, or ran with optimal settings, Random Forest continuously 

outperforms the other five investigated ML algorithms (KNN, SVM, Decision Tree, AdaBoost, and 

XGBoost). This study aimed to correct the imbalance that was seen in the previous study using this 

dataset. While it was corrected and proved to have a better algorithm to use in predicting recurrence 

of thyroid cancer, there still were limitations. Ideally having more data to work with would give a 

better or more accurate prediction. The recurrence of DTC is typically seen more in women than in 

men, so while the data may still be imbalanced if there was more of it, a stronger conclusion could be 

made utilizing a larger, more diverse dataset. 
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