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Abstract: Vehicle logo detection plays a crucial role in various computer vision applications, such as vehicle 
classification and detection. In this research, we propose an improved vehicle logo detection method leveraging 
the MAMBA structure. The MAMBA structure integrates multiple aĴention mechanisms and bidirectional 
feature aggregation to enhance the discriminative power of the detection model. Specifically, we introduce the 
Multi-Head AĴention for Multi-Scale Feature Fusion (MHAMFF) module to capture multi-scale contextual 
information effectively. Moreover, we incorporate the Bidirectional Aggregation Mechanism (BAM) to facilitate 
information exchange between different layers of the detection network. Experimental results on a benchmark 
dataset (VLD-45 dataset) demonstrate that our proposed method outperforms baseline models in terms of both 
detection accuracy and efficiency. Furthermore, extensive ablation studies validate the effectiveness of each 
component in the MAMBA structure. Overall, the proposed MAMBA-based vehicle logo detection approach 
shows promising potential for real-world applications in intelligent transportation systems. 

Keywords: vehicle logo detection; Mamba; multi-head aĴention; multi-scale feature fusion 
 

1. Introduction 
Recently, the detection of small objects has become an important research topic in the field of 

computer vision and intelligent perception technology, particularly in Intelligent Transportation 
System (ITS), where it is required for tasks such as pedestrian detection, vehicle identification and 
abnormal event monitoring. Among these, vehicle logo detection has emerged as a crucial task for 
identifying vehicles, calculating brand exposure, and advancing small object detection research. 
However, previous research has overlooked the importance of extracting detailed features from small 
objects, which has severely limited the accuracy and generalization of vehicle logo detection. 
Consequently, effective extraction and constructed the features from small size objects are crucial 
method to solve the vehicle logo detection task. 

In recent years, deep learning-based detection methods have encountered challenges in feature 
extraction and representation tasks [1–3]. Deep residual networks [4] are not effective in extracting 
detailed texture features, which can negatively impact the detection accuracy. Moreover, the absence 
of a feature monitoring mechanism in the network often leads to difficulty in achieving the desired 
detection results. Therefore, we focus on constructing robust feature extraction models based on self-
aĴention networks, which can enable correlation feature learning in pixel areas and obtain beĴer 
object texture information. Our work specifically aims to develop a self-aĴention network-based 
detection method for achieving the small size objects due to three primary reasons: 
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Figure 1. Example of proportion of vehicle logo. The proportion of small objects in this paper is: ±0.2% 

Firstly, our proposed model addresses the challenges in small size object detection, including 
the impact of complex background noise on text signs and the sensitivity of vehicle logos to lighting 
and weather conditions. Text signs, such as HAVAL and Jeep, are particularly vulnerable to the 
influence of the external environment. The feature descriptors from neural networks are unable to 
effectively learn content with small differences in relevant regional characteristics. Furthermore, 
vehicle logos are not fixed in a particular position, such as the front of the radiator and car cover. 

Secondly, the proposed model tackles the challenges in vehicle logo detection caused by 
different lighting and weather conditions. These challenges confuse the logo with the characteristics 
of other objects and cause color deviation due to the sensitivity of the logo’s material to light. To 
address these challenges, our feature extraction network is designed with generalization in mind 
during the training process. 

Thirdly, the balance between accuracy and speed puzzles the practical application of depth 
learning-based detectors. The deepening of the network and the application of the visual method 
based on the transformer mechanism result in a significant reduction in the detection speed. 
Therefore, our model aims to reduce the memory consumption of network models and improve 
computing efficiency, improving the overall effectiveness of object detection methods.  

In this paper, we focus on developing a feature extraction network based on self-aĴention and a 
detection head for small size objects in vehicle logo. For the feature extraction network, we designed 
a multi feature fusion residual convolution with pixel aĴention layer, which can effectively learn the 
related relationship surrounding the vehicle logo, considering the challenges posed by complex 
background noise and varying lighting and weather conditions. To achieve smooth sampling of the 
object and reduce feature loss in the down-sampling process, we cascade multiple residual 
convolutions. For the detection head, we utilize cross-layer fusion for supporting the multi-scale 
prediction layer, which can improve the locating and classification accuracy of small size objects. The 
contributions of our model can be summarized as follows: 

A) We propose a balanced object detection method based on self-aĴention networks, which 
achieves real-time and higher detection precision for vehicle logos. 

B) We construct a related feature learning model based on the theory of visual transformer and 
convolution. It utilizes cross-layer fusion and related pixel learning to improve the representational 
model for small size objects.  

C) We build a multi-scale prediction detector by fusing shallow layers with deep layers, which 
takes shallow texture features as important information for locating objects. Experimental evaluation 
on the VLD-45 datasets proves that our detector has robustness and superiority in detecting small 
size objects. 

The remainder of our research is organized as follows: Section 2 introduces related work on 
object detection based on deep learning. Section 3 describes the detailed model for our VLD-
Transformer method. Section 4 presents the experimental results with comparable methods and 
ablation analysis. Finally, Section 5 concludes the conclusion and research project. 
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2. Related Work 
With the standardization of dataset, vehicle logo detection task has become a hot topic in 

computer vision research. Vehicle log detection methods have evolved from traditional manual 
feature-based to the depth feature, achieving improved detection performance. In this section, we 
will briefly review these methods from three different aspects: the dataset, traditional detection 
method and deep learning-based method. 

A. VLD Dataset 
Although the vehicle logo detection task has been studied for many years, there are few public 

datasets available for the computer vision community. XMU [5] and HFUT-VL [6] datasets contain 
image data obtained from real-time road cameras. However, these datasets lack a division into 
training, validation, and test sets, and don’t have a uniform image size. The VLD-30 [7] and VLR-40 
[8] datasets have contributed to establishing classification standards and reconstructing the dataset 
division for vehicle logos. Nevertheless, there are still some issues with vehicle logos, such as low 
image resolution and a lack of real-world scenarios. The VLD-45 [9] dataset provides a large amount 
of data for vehicle logo detection tasks, consisting of 45,000 images and 45 classes from real-world 
and Internet acquisitions. In this paper, we use the VLD-45 to evaluate the precision of our method. 

B. Traditional Detection Method 
Previous research on vehicle logo detection focused on predicting the bounding box and 

classification using manually designed feature extraction models. Commonly used methods include 
Scale-Invariant Feature Transform (SIFT operator) and Histograms of Oriented Gradients (HOG) for 
feature representation methods [10,11]. Support Vector Machine (SVM) was used to combine HOG 
and predict the candidate region from the images [12,13]. Psyllos et al [14] proposed feature matching 
method for vehicle logo based on SIFT features, which realizes the 94% recognition accuracy with 10 
categories. Peng et al [15] used the Statistical Random Sparse Distribution (SRSD) for vehicle logo 
recognition, which improves the low-resolution image feature extraction. Sun et al [16] combined the 
HOG features with SIFT features, which uses the SVM classifier to predict the classes of vehicle logo. 
In addition, most methods use manually designed feature extractors to complete the vehicle logo 
representation. This method is combined to achieve object location and classification by training 
strong and weak classifiers [17]. However, these methods have limited ability to handle large 
amounts of data, resulting in lower generalization for the detector. 

C. Deep Learning-Based Detection Method 
Deep learning-based method has become the mainstream algorithm for detecting small-sized 

objects, such as vehicle logos. The deep features obtained through Convolutional Neural Network 
(CNN) training have beĴer target representation ability. In addition, the learning method through 
adaptive learning is also beĴer than the manually set feature matching template. Pan et al [18] 
proposed the vehicle logo recognition method with the CNN, which compared the performance of 
CNN and SIFT. The experiments proved the accuracy of CNN greater than SIFT model. Li et al [19] 
combined the Hough transform with deep neural network to detect the vehicle logo. It used the Deep 
Belief Networks (DBNs) for completing the logo classification. Foo Chong Soon et al [20] designed a 
CNN model based on automatically searching method, which hoped to construct the optimal target 
feature extractor. Liu et al [21] used the ResNeXt network for improving the performance of matching 
restricted region extraction. Nguyen et al [22] proposed a multi-scale feature fusion framework for 
achieving the efficient feature extraction. Thus, extracting the detailed texture features of vehicle logo 
is still one of the important problems to improve the accuracy of object detection.  

Recently, visual transformer has been applied for feature extraction based on deep learning, 
which uses self-aĴention networks to learn the regional feature relationships. The backbone has beĴer 
feature extraction capability for local context information from the images. However, the memory 
consumption and computation increase exponentially with the deepening of the network. Thus, the 
focus of this paper is to explore how to integrate transformer mechanisms into feature extraction 
networks.  
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3. Method 
In this section, we will introduce the detailed pipeline of our proposed method, VLD-

Transformer. Our method consists of three sub-modules based on a deep learning object detector: 
AĴention Feature Extraction Network, Detection Head and Training Policy. By constructing the 
network block with aĴention and residual blocks for the backbone, we can create a robust 
representational model for texture feature extraction for small-sized objects.  

A. Overview 
As shown in Figure 2, our method takes RGB images as input data and reseizes them to 640×640 

pixels. The backbone consists of 5 convolutional blocks and 1 Spatial Pyramid Pooling (SPP) network. 
We incorporate 2 aĴention blocks in the shallow layers to learn related relationship features and use 
the SPP network to fuse features of different scales, thus improving the utilization of shallow layers. 
Through supervision and self-aĴention mechanisms, our model enhances the extraction of texture 
information and reduces feature loss during the detection and location process for small size objects. 

For the detection head, we employ a feature sharing learning method to perform multi-scale 
object prediction. We use the concat layer to merge the feature map from the deep layer with the 
shallow layer. In our opinion, we can complete the target positioning task at different scales, which 
can provide important reference for small size objects. The predicted layer is refined from blocks 1 to 
4, providing many detailed features to assist object location. Furthermore, we balance the 
classification and location loss during training process to ensure the prediction accuracy of the 
detector for the location bounding box. The detailed structure of the method will be described in this 
section for our method of VLD-Transformer. 

 
Figure 2. The pipeline of VLD-Transformer. It includes the down-sampling feature extraction network with 
aĴention and multi-scale fusion detection head. 

B. AĴention Feature Extraction Network 
In our research, we analyzed and identified the limitations of traditional convolution networks 

that prioritize global feature representation while lacking the ability to extract local features. Especial 
for the vehicle logo, the ratio of object to the whole map is usually ±0.2 %. It will cause most features 
to be deleted during feature extraction processing. At the same time, we need to consider extracting 
more detailed local texture features for keeping the detection precision.  

From the Visual Transformer, it can learn the global representations and construct the aĴention 
between the local pixels or regions. Our feature extraction network is designed to gather information 
around the object based on self-aĴention. In addition, pixel-level feature extraction allows us to 
complete feature fusion at different scales, which can make up for feature loss during down- 
sampling process. Thus, we reconstruct the feature extraction network based on self-aĴention and 
convolution. Our backbone includes 5 blocks, includes 2 layers of aĴention convolution and 3 layers 
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of residual convolution. The SPP layer includes 3 scales for feature fusion, 16×, 8× and 4×, which 
provides a beĴer receptive field for small target feature extraction. 

From the Figure 3, it shows the aĴention residual block. It uses the 3×3 kernels for down 
sampling the images. Meanwhile, we design the local aĴention model for learning the related features 
from the pixel correlation regions. The local aĴention model consists of one-dimension convolutional 
network, which can calculate the characteristics of pixel related information and output it to the 
following convolution layer. According to different input pixels, we define them as 1×1× 𝑛 
dimensional matrices. For the smoothing the gradient descent, we use the Mish function as the 
activation of residual feature extraction block. The Mish function is: 

𝑀𝑖𝑠ℎ = 𝑥 ∙ tanh (ln (1 + 𝑒௫))          (1) 
where 𝑥 represents the output from the convolution. And tanh represents the hyperbolic 
tangent function. This function can ensure that the range of [-4,0] is not truncated for the 
activation, which can reduce the gradient saturation problem. However, we only use this 
function in the local aĴention models. It can help update the weights of multiple residual 
networks in the process of reverse network propagation. 

 
Figure 3. Example of structure for aĴention residual block. It helps the feature extraction network to establish 
local texture feature monitoring mechanism. 

 
Figure 4. Example of structure for feature fusion convolution block. 

Regarding the convolution block, the Mish function is not suitable for our method. In our 
opinion, the value of the negative half axis is still helpful to the weight update and training process. 
For smaller or less complex objects, Leaky ReLU activation function is more effective in retaining 
important information compared to Mish. Besides, the single-stage detection method needs to 
acquire more feature information, and the unbounded Leaky ReLU function is less affected by the 
gradient descent saturation problem. Therefore, the composition of our convolution block still uses 
the Leaky ReLU function as the activation function, along with Batch Normalization (BN) block to 
avoid the over fiĴing problem.  

In addition, we build the feature smoothing part by using 2 of 3×3 convolutional kernels. It 
achieves the fusion of input original information and residual processing information. The smoothing 
process ensures that the size of input image features is consistent with processed features, which 
enables effective mapping of input feature details with down-sampled features, leading to beĴer 
small size objects feature extraction. This step only performs feature fusion and smooth feature 
processing without activating functions. Then, the concat layer completes the feature fusion of the 
same size image on the channels. In this pare, we think that feature fusion of the same receptive field 
on the channel is more conducive to keeping the feature invariance of the scale space. At the same 
time, it can also obtain the edge, texture and other details of small size objects for subsequent 
detection tasks. At last, we use the 3x3 convolutional kernel to realize feature down-sampling after 
information fusion. In the aĴention feature extraction network, the feature fusion convolution block 
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is used for block1, block 4 and block 5. And the aĴention residual block is used for block 2 and block 
3. 

For the SPP network, our network uses it as the feature scale fusion module. It aims to solve the 
problem of classification errors caused by the scale change of small size objects. Thus, this module 
primarily conducts fusion calculations based on the output feature maps of the deep layer. Besides, 
the number of aĴention block and convolution block for each part is 4, 8, 16, 8, 4. The overall down-
sampling rate of the aĴention feature extraction network is 32. 

C. Detection Head 
Our detection head is a typical single-stage detection framework based on anchor box 

generation, which includes three predicted layers of different scales. Additionally, we propose a 
feature fusion method that combines the shallow and deep layers. This approach enables the model 
to incorporate more detailed texture feature information, leading to improved accuracy in object 
classification and location. 

In Figure 5, it shows the predicted pipeline for object detection. The detection head takes the 
output feature map from backbone as input data. Then, according to the divided of whole input data, 
we can acquire the grid cell from the image space. For each grid cell, our model generates candidate 
object regions using the anchor box generation method. From our analysis, through the method of 
pre-seĴing anchor box, the detection network can have obvious perceptual learning on the scale of 
the objects. Especial for the small size objects, anchor box will help reduce the deviation range of 
bounding box regression calculation when training the model. However, many anchor box seĴings 
will affect the subsequent detection running rate. Meanwhile, to avoid the influence of manually 
seĴing the anchor box size on the final prediction accuracy, we use K-means clustering to calculate 
the initial size of the anchor box.  

 
Figure 5. Example of structure for our detection head. We propose the multi-scale prediction method based on 
anchor box generation. It includes anchor box from the three scales for solving the scale change problem of small 
size objects. 

For the anchor box, we build an optimization merit functions for selecting the size of box based 
on K-means method. The Intersection over Union (IoU) can represent the overlap ratio between 
targets. The distance function 𝐷() is: 

𝐷(𝑏𝑜𝑥, 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑) = 1 − 𝐼𝑂𝑈 (𝑏𝑜𝑥, 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑)     (2) 

𝑏𝑜𝑥 = 𝑤 × ℎ                   (3) 
Where 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 is the target center point. 𝑏𝑜𝑥 represents the width and height of the bounding 

box. For each bounding box (𝑤 × ℎ), we use the loss function to find the optimal cluster number 𝑘 
and bounding box size (𝑤 × ℎ). The function 𝐸(𝐷, 𝑘) is: 

𝐸(𝐷, 𝑘) =
∑ ห஽((௪೔,௛೔),௞ೕ)ห೙

೔సభ

௡
 ×  

ଵ

௞
   𝑗 ∈ 𝑘            (4) 

The formula calculates different loss results according to different 𝑘 values. Then, according to 
the best result of loss, 𝑘 is selected as the number of anchor box. Meanwhile, this method gives the 
corresponding size of (𝑤 × ℎ) for anchor box. 
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For the prediction layer, we deal with the problem of object scale change by seĴing three scale 
prediction layers. At the same time, to compensate for the feature loss in the down-sampling process, 
we integrate the shallow features with the prediction layer to improve the positioning and 
classification accuracy in single prediction. 

D. Training Policy-Freezing 
Typically, we need to spend a lot of time training models. At the same time, the mini-batch 

gradient descent optimization method is affected by changes in the data itself. Thus, we propose the 
freeze training policy for the backbone to improve training efficiency and effectiveness. This method 
is implemented by adjusting the iteration steps and freezing the weights update. For our training 
policy, we divide the training iteration steps into three equal parts and freeze the training weight 
parameters in the second part. By seĴing the loss function of threshold, we can update the weight 
parameters for the third part. This method is to ensure the fast convergence of the first part and the 
optimal solution of the third part. The second part of the calculation is controlled by the loss threshold 
to improve the training efficiency. In addition, effective control of loss changes is conducive to 
improving the robustness and accuracy of our model. 

4. Experiments 
In this section, we give the experimental evaluation for our method on VLD-45 datasets. 

According to our research, we carried out multi-detector method contrast experiment, ablation 
experiment and qualitative experiment. In addition, we focus on comparing the running rate and 
accuracy of the detection model, which can achieve the optimal detection performance through 
effective parameter regulation.  

A. Datasets 
For the experimental dataset, we use the VLD-45 object detection datasets [9]. It includes 45000 

images and 50359 objects from 45 classes of vehicle logo, as shown in Figure 6 for the brand of the 
vehicle logo. According to the analysis of dataset, the proportion of the target is 0.2% in the whole 
image. Meanwhile, the average size of the object is 40×32 pixels. Thus, this dataset can be used to 
research the small size objects detection. Figure 7 shows the samples of the VLD-45. This dataset 
includes the training dataset (20025 images), valid dataset (14985 images) and testing dataset (9990 
images). We directly complete the method evaluation experiment on the original dataset. For the 
evaluation index, we use the Average Precision (AP) for giving the single class accuracy. And the 
mean Average Precision (mAP) is applied to multi-classes evaluation.  

 
Figure 6. The example of VLD-45 dataset for 45 categories. 
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Figure 7. The samples of detailed VLD-45 dataset. 

B. Parameters 
From the Figures 2 and 5, our input data is resized as 416×416 pixels (32 of sampling rate), which 

keeps the balance of memory usage and feature requirements. Meanwhile, we use the pre-training 
model from the logo classification for improving the detection training. The number of anchor box 
has 9 sizes from 3 different scales. For the threshold of Non-maximum Suppression (NMS), we unify 
set it to the value of 0.5 for the Intersection over Union (IoU). 

All of our experiments are trained and tested on the GPU of NVIDIA Tesla A8000. About the 
training optimizer, we use the AMSGrad method for completing the weight update. Our models need 
to spend 80000 iterations with the batch size of 32. 

C. Comparison Experiments 
In evaluating the detection performance, we chose mainstream detection methods for 

comparison, including Faster R-CNN [23], RefineDet [24], YOLOv3 [25], YOLOv4 [26], and Our 
Method (VLD-Transformer). To facilitate analysis, the experiments provide detection accuracy in 
terms of Average Precision (AP) for 45 categories, along with overlap ratios and running times on the 
testing data of VLD-45. The results are presented in Table 1. Analyzing the results presented in Table 
1 further emphasizes the effectiveness of our approach. The obtained Average Precision (AP) and 
mean Average Precision (mAP) for our method showcase a substantial improvement in detection 
accuracy when compared to the selected benchmark methods. This enhancement is particularly 
notable across diverse detection classes. 

Table 1. The results of detection task. 

Number Classes 
Faster 

RCNN [23] 

RefineDet 

[24] 
YOLOv3 [25] YOLOv4 [26] 

VLD-

Transformer 

0001 
BAIC 

GROUP 
0.863 0.956 0.882 0.915 0.962 

0002 Ford 0.724 0.817 0.732 0.802 0.862 

0003 SKODA 0.723 0.794 0.692 0.831 0.825 

0004 Venucia 0.914 0.914 0.893 0.929 0.948 

0005 HONDA 0.874 0.837 0.847 0.853 0.871 

0006 NISSAN 0.973 0.854 0.853 0.871 0.903 

0007 Cadillac 0.925 0.715 0.741 0.852 0.885 

0008 SUZUKI 0.945 0.783 0.842 0.834 0.934 

0009 GEELY 0.785 0.746 0.712 0.784 0.806 
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0010 Porsche 0.734 0.604 0.694 0.736 0.745 

0011 Jeep 0.726 0.693 0.652 0.81 0.833 

0012 BAOJUN 0.912 0.827 0.835 0.883 0.875 

0013 ROEWE 0.873 0.814 0.742 0.825 0.882 

0014 LINCOLN 0.747 0.796 0.804 0.748 0.829 

0015 TOYOTA 0.764 0.867 0.867 0.857 0.895 

0016 Buick 0.837 0.794 0.839 0.768 0.815 

0017 CHERY 0.719 0.813 0.796 0.821 0.858 

0018 KIA 0.734 0.828 0.763 0.792 0.86 

0019 HAVAL 0.572 0.574 0.525 0.622 0.734 

0020 Audi 0.862 0.864 0.843 0.823 0.893 

0021 
LAND 

ROVER 
0.432 0.405 0.354 0.514 0.606 

0022 Volkswagen 0.932 0.912 0.935 0.897 0.947 

0023 Trumpchi 0.836 0.852 0.895 0.846 0.903 

0024 CHANGAN 0.859 0.807 0.828 0.931 0.866 

0025 
Morris 

Garages 
0.875 0.916 0.879 0.938 0.948 

0026 Renault 0.792 0.894 0.905 0.869 0.913 

0027 LEXUS 0.868 0.853 0.879 0.847 0.897 

0028 BMW 0.782 0.795 0.798 0.915 0.882 

0029 MAZDA 0.879 0.841 0.864 0.849 0.895 

0030 
Mercedes- 

Benz 
0.905 0.894 0.915 0.895 0.928 

0031 HYUNDAI 0.873 0.885 0.873 0.873 0.904 

0032 Chevrolet 0.713 0.672 0.654 0.714 0.788 

0033 BYD 0.934 0.855 0.817 0.925 0.916 

0034 PEUGEOT 0.783 0.742 0.695 0.857 0.895 

0035 Citroen 0.828 0.756 0.712 0.851 0.904 
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0036 
Brilliance 

Auto  
0.897 0.915 0.902 0.9 0.927 

0037 Volovo 0.921 0.873 0.853 0.91 0.935 

0038 Mitsubishi 0.837 0.899 0.784 0.948 0.936 

0039 Subaru 0.846 0.847 0.762 0.876 0.897 

0040 GMC 0.884 0.865 0.783 0.933 0.914 

0041 Infiniti 0.879 0.833 0.865 0.915 0.875 

0042 FAW Haima 0.924 0.832 0.857 0.943 0.951 

0043 SGMW 0.886 0.886 0.874 0.937 0.927 

0044 
Soueast 

Motor 
0.802 0.793 0.775 0.784 

0.932 

0045 QOROS 0.873 0.847 0.821 0.908 0.914 

MAP 0.828 0.812 0.812 0.847 0.880 

Average Overlap (%) 87.6% 80.5% 80.5% 86.4% 89.3% 

Times (s) 1.7 0.05 0.05 0.09 0.07 

In contrast to the previous mAP result of 84.7%, our method achieves a remarkable 88.0% mAP. 
This indicates a noteworthy advancement in the model's ability to accurately identify and classify 
objects in the given dataset. Importantly, this improvement in mAP is achieved with an efficient 
processing time of only 0.07 seconds per image, highlighting the practical viability of our method in 
real-time applications. Furthermore, the exceptional performance in the overlap ratio of results, 
reaching 89.3%, underscores the robustness of our method in providing precise regional accuracy. 

The high overlap ratio signifies the model's capability to deliver consistent and reliable results, 
crucial for applications where precise object delineation is paramount. 

Notably, for challenging classes such as leĴer paĴerns (e.g., HAVAL, LAND ROVER, and Jeep), 
our method enhances detection precision by 3% to 5% in terms of AP. The experimental evaluation 
indicates that our method exhibits effective localization and classification for all categories. However, 
it's acknowledged that our method has not uniformly improved detection results across all categories, 
suggesting potential for enhancement in multi-category prediction capabilities. Hence, addressing 
the differentiation in features across multiple categories remains a key area for future research. 

In summary, the results affirm the robustness and efficiency of our proposed method, 
positioning it as a promising solution for accurate and real-time object detection tasks. The high mAP, 
rapid processing time, and strong overlap ratio collectively contribute to the method's practical utility 
and underline its potential for various applications in computer vision and object recognition. 

D. Ablation Experiment for Our Method 
Our exploration into the detection performance of three improved methods for the VLD-

Transformer reveals significant insights. As outlined in Section 3, we introduced three methods—
AĴention Feature Extraction Network (AFEN), Detection Head (DH), and Freezing Training Policy 
(FTP)—aimed at enhancing detection results. Rigorous validation experiments were conducted for 
each method under controlled conditions. 

The ablation results in Table 2 underscore the critical need for a robust backbone as the feature 
extraction network for VLD-Transformer. The evaluation demonstrates that compared to YOLOv4, 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 6 September 2024 doi:10.20944/preprints202409.0558.v1

https://doi.org/10.20944/preprints202409.0558.v1


 11 

 

our AFEN module achieves a baseline detection mAP of 0.855. This indicates the efficacy of AFEN in 
extracting discriminative features essential for accurate detection. 

Table 2. Ablation results on the VLD-45 dataset. 

 AFEN DH FTP mAP/% Improved 

(a)    0.855  

(b)    0.865 +0.12 

(c)    0.873 +0.08 

(d)    0.880 +0.05 

Furthermore, the improvement achieved by the detection head, coupled with the training policy, 
should not be overlooked. The amalgamation of the detection head and the freeze training policy 
results in an impressive 0.88 detection accuracy on the dataset. This highlights the synergistic effect 
of refining both the network architecture and the training strategy for enhanced performance. 

While the training policy exhibits limited performance in model improvement, it emphasizes the 
importance of a holistic optimization approach. To achieve further advancements in detection 
accuracy, emphasis should be placed on meticulous design considerations within the detection 
framework. The experimental results underscore the complexity of optimizing the feature extraction 
model and the overall detection framework for superior performance in real-world scenarios. 

E. Qualitative Results 
The Figure 8 shows the detection result for our method of VLD-45.  
The results presented in Figure 8 illustrate the detection outcomes achieved by our VLD-

Transformer method on the VLD-45 dataset. As depicted in the examples, it is evident that our 
approach yields favorable qualitative results. The qualitative analysis further supports the efficacy of 
our method in enhancing the accuracy of vehicle logo detection.  

 
Figure 8. The examples of qualitative results for VLD-Transformer on the VLD-45 dataset. 

One notable observation is the precision exhibited in the detection of vehicle logos. The VLD-
Transformer demonstrates a robust capability to accurately identify and delineate logos, even in 
complex scenarios or varied lighting conditions. This is indicative of the model's adaptability and 
resilience in real-world applications. Moreover, the qualitative results suggest that our method excels 
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in maintaining the integrity and clarity of detected logos. This is crucial for applications where precise 
logo recognition is essential, such as in autonomous driving systems or traffic monitoring. 

The analysis of Figure 8 underscores the potential practical significance of our VLD-Transformer 
method in real-world scenarios, showcasing its ability to contribute to advancements in vehicle logo 
detection accuracy and reliability. Further quantitative assessments and comparisons with existing 
methods would provide a comprehensive evaluation of its performance against diverse benchmarks. 

5. Conclusions 
In this work, we propose an end-to-end framework for the task of vehicle logo detection, called 

VLD-Transformer. Our method focusses on solving the detection of small size objects. Thus, we 
design an aĴention feature extraction network based on visual transformer, which combines multi-
scale feature fusion with aĴention blocks to achieve robust feature representation. Then, we construct 
the detection head with multi-scale prediction for improving the locating precision. For the prediction 
layer, we design the up-sampling network for learning the detection parameters. The multi-scale 
prediction layer can fuse the feature map from the shallow layer to acquire the bounding box 
regression result. The whole model method can be used for parameter learning. In addition, we use 
the freeze training policy of multi-stages for adjusting the training efficiency. According to the 
evaluation on the VLD-45 dataset, our method obtains the best detection performance on the vehicle 
logo classes of 45. Besides, the ablation results prove the effectiveness of VLD-Transformer. However, 
our model still lacks balance in detection accuracy and running rate. In the future, we will reconstruct 
the detection framework itself to achieve real-time detection performance. 
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