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Abstract: Metabolomics studies require a deep understanding of enzyme dynamics and their responses to
environmental disturbances within a complex metabolic network. This paper presents a novel approach to
modeling enzyme activity as a dynamic topological manifold, where each enzyme is represented as a node,
and their interactions are described by differential equations. These equations account for both compensatory
interactions and external perturbations, simulating how enzymes dynamically stabilize their activities in
response to varying conditions. We explore the application of this model to visualize enzyme interactions,
using graph theory to represent the network structure and color gradients to illustrate interaction intensities.
Multiple disturbances are introduced to analyze the network’s resilience and adaptability over time. The results
provide insights into the compensatory mechanisms within enzymatic networks, offering a comprehensive
visualization through both static and dynamic representations. Our approach allows for a better understanding
of how enzymatic systems buffer against mutations and environmental stressors, contributing to the broader
field of systems biology and metabolomics.

Keywords: Enzyme dynamics; Metabolomics; Topological manifold; Differential equations;
Network modeling; Environmental disturbances; Systems biology; Enzyme interactions;
Compensatory mechanisms

Section 1. Introduction

Metabolomics, the comprehensive study of metabolites within a biological system, provides
profound insights into cellular processes, disease mechanisms, and responses to environmental
changes. As a key component of systems biology, metabolomics focuses on the dynamic interplay
between enzymes and metabolites, highlighting how enzymatic activities are modulated by various
internal and external factors. Understanding enzyme dynamics is crucial for elucidating the stability
of metabolic networks, especially under fluctuating environmental conditions that may induce
perturbations or mutations in the system. Recent advances in computational modeling have allowed
researchers to explore these dynamics using network-based approaches, offering a more nuanced
view of enzyme interactions and their compensatory mechanisms in maintaining metabolic stability
(Sauer et al., 2014).

One of the fundamental challenges in metabolomics is characterizing how enzymes, as biological
catalysts, adapt to environmental disturbances. Enzymes do not function in isolation; they operate
within highly interconnected networks where their activities are influenced by substrate availability,
allosteric regulation, post-translational modifications, and cellular context. Thus, modeling these
dynamics requires not only understanding the biochemical pathways but also the topological
structures governing enzyme interactions. In recent years, the application of graph theory and
topological data analysis has emerged as a powerful tool for visualizing and analyzing complex

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202409.0342.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 September 2024 d0i:10.20944/preprints202409.0342.v1

biochemical networks, such as metabolic and protein-protein interaction networks (Barabasi and
Oltvai, 2004).

A topological manifold, a mathematical concept used to describe shapes and spaces that can
deform without tearing or gluing, provides an innovative framework for modeling enzyme dynamics
in metabolomics. In this context, a topological manifold is composed of nodes (enzymes) and edges
(interactions), governed by differential equations that describe how the system compensates for
environmental stimuli until a point of breakage. The Laplacian operator, a standard tool in differential
geometry and network analysis, is often used to model these compensatory dynamics, allowing the
system to distribute “stress” or “tension” across the network to maintain stability (Chung and Lu, 2006).
This approach has been applied in various biological networks to study processes such as signal
transduction, gene regulation, and metabolic flux, where the network must adapt to fluctuating
conditions to sustain normal cellular functions (Karlebach and Shamir, 2008).

Modeling enzyme networks using topological manifolds has several advantages. First, it allows
for the visualization of dynamic interactions within the network, highlighting how specific enzymes
adapt their activity in response to changes in the network’s state or environmental conditions. For
example, enzymes involved in primary metabolism, such as glycolysis and the citric acid cycle, are
known to exhibit robust control mechanisms that buffer against fluctuations in metabolite
concentrations (Newsholme andStart, 1973). By simulating these processes using differential
equations that capture both compensatory interactions and disturbances, researchers can better
understand how metabolic networks achieve homeostasis and what factors contribute to their
resilience or vulnerability.

Second, this modeling approach facilitates the exploration of network motifs and structural
properties that underlie metabolic stability. In systems biology, network motifs—recurrent and
statistically significant patterns of interconnections—play critical roles in defining the functional
capabilities of biological networks (Alon, 2007). For instance, feedback loops and feedforward motifs
are essential for regulating enzyme activities and ensuring that metabolic fluxes are appropriately
adjusted under varying conditions. By incorporating these motifs into the topological manifold
framework, one can study the emergent properties of the enzyme network and identify key nodes or
edges that are critical for maintaining metabolic balance.

Furthermore, the inclusion of environmental disturbances in the model allows for a
comprehensive analysis of enzyme dynamics under stress conditions. Environmental factors such as
temperature, pH, nutrient availability, and the presence of inhibitors or activators can significantly
affect enzyme activity. Perturbations in these factors often lead to transient states where the system
must dynamically adjust to restore equilibrium. In this study, multiple disturbances are introduced
to the enzyme network to examine how different parts of the network compensate for these changes
and how these compensatory mechanisms prevent or delay the point of “breakage,” where enzyme
functions become irreversibly altered (Cornish-Bowden, 2012). This approach is particularly relevant
in the study of diseases where metabolic dysregulation occurs, such as cancer, diabetes, and
neurodegenerative disorders (DeBerardinis and Thompson, 2012).

The graphical representation of enzyme networks using color gradients to illustrate the strength
and type of interactions adds another layer of interpretability to the model. Visualizations that
capture the dynamic changes in enzyme interactions provide intuitive insights into the system’s
behavior, making it easier to identify critical points of regulation or failure. For example, in a network
where certain enzymes act as “hubs” with multiple connections, changes in their activity can have a
ripple effect across the entire network, amplifying or mitigating disturbances (Jeong et al., 2000). By
using color gradients to depict these variations, one can visually assess the impact of different
disturbances and the overall stability of the network.

In summary, modeling enzyme dynamics in metabolomics using a topological manifold
approach offers a robust framework for understanding the complex interaction of biochemical
reactions in a dynamic environment. This study contributes to the field by presenting a novel method
for visualizing enzyme interactions and network stability under varying conditions. Through the
integration of graph theory, differential equations, and visual analytics, we provide new perspectives
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on the resilience and adaptability of metabolic networks. Future research can build on these findings
by incorporating more detailed biochemical data, exploring different types of network topologies,
and applying this framework to other biological systems.

Section 2. Methodology

Mathematical Model of Enzyme Dynamics in Metabolomics

Consider a system of n enzymes represented as nodes on a network. Each enzyme’s activity
level can be modeled dynamically based on interactions with neighboring enzymes and external
disturbances. The dynamics are described by a set of coupled differential equations that capture both
compensatory interactions and the effects of environmental disturbances.

Differential Equations for Enzyme Dynamics

Let y;(t) denote the activity level of enzyme i at time t. The change in the activity level of
enzyme i over time is governed by the following differential equation:

dy; C .
YO s (O + i (©) — 23(0) + Z D;(t) - sin (£) - sgn(y;(£)])
j=1

dt
where:

1. Compensatory Interaction Term:

k(yi-1(®) + yi+1(6) — 2y:(t))

e k is the compensation factor (a positive constant) that determines the strength of interaction
between neighboring enzymes.

o v 1(t) and y;41(t) are the activity levels of the neighboring enzymes to the left and right of
enzyme i. For boundary conditions, we assume periodic boundaries, so y,(t) = ¥,(t) and
Yn+1(t) = y1(t).

o The term (¥;—1(t) + ¥i11(t) — 2y;(t)) represents the Laplacian-like interaction, which aims to
stabilize enzyme i ‘s activity level by balancing it with its neighbors.

2. Disturbance Effects Term:
m
D D0 sin (©) - sgn(i(©)
=1

e D;(t) represents the amplitude of the j-th disturbance at time t. Each disturbance occurs within
a specific time window.

e sin (t) is a sinusoidal function modeling oscillatory effects typical of environmental fluctuations
or signaling pathways.

o sgn(y;(t)) is the sign function, which ensures that the disturbance affects the enzyme activity
proportionally to its current state.

Explanation of the Model

e Equation (1) represents the rate of change of enzyme i ‘s activity. It combines both local
compensatory dynamics and external disturbances.

e  Equation (2) models the compensatory effect, which is a standard form of a discrete Laplacian
operator often used in diffusion and stability models. This term promotes balance by averaging
the activity with its neighbors.

e  Equation (3) models the impact of external disturbances that can vary in magnitude and time,
capturing the complex and dynamic environmental effects enzymes face in a metabolic network.

The system is solved numerically over a specified time period, allowing us to observe how the
enzymes dynamically respond to disturbances and attempt to return to a stable state through
compensatory interactions.

Section 3. Results
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Section 3.1 Enzyme Dynamics in Metabolomics with Multiple Disturbances

The first image (Figure 1) presents a time series plot showing the dynamics of five enzymes in
response to multiple environmental disturbances over time. The enzyme activity levels are modeled
using differential equations that incorporate compensatory mechanisms and external stimuli. Each
line represents a different enzyme, and their activity levels change dynamically due to their
interactions with neighboring enzymes and the effect of disturbances.

Enzyme Dynamics in Metabolomics with Multiple Disturbances
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Graph 1 .Enzyme Dynamics and compensatory interactions.

Description: The plot shows the enzyme activities of five different enzymes (Enzyme 1 to
Enzyme 5) over a time period from 0 to 60 arbitrary time units.

Observations:

At the beginning of the simulation (t = 0), there is an initial fluctuation in enzyme activities due
to the model’s initial conditions and the first external disturbance.

Enzyme 4 (represented in pink) shows a sharp rise in activity initially, followed by a rapid
decrease and subsequent fluctuations. This suggests that Enzyme 4 is highly responsive to the initial
perturbation but stabilizes after the first few time units.

Enzyme 5 (represented in blue) demonstrates a significant increase in activity around time point
40, indicating a strong compensatory mechanism activated in response to later disturbances. This
response might indicate its role as a key regulator in buffering the network against perturbations.

The other enzymes (Enzyme 1, 2, and 3) show varying responses to disturbances, with Enzyme
1 (yellow) exhibiting a more gradual return to equilibrium, suggesting different regulatory roles and
sensitivities among the enzymes.

Interpretation

The plot demonstrates that each enzyme exhibits distinct dynamic behavior in response to multiple
disturbances, reflecting the complexity of enzyme networks in metabolomics. These dynamics can provide
insights into the regulatory mechanisms and robustness of metabolic networks, where some enzymes
serve as key compensatory agents, while others stabilize more slowly.

Section 3.2 Static Representation of Enzyme Network with Colored Edges


https://doi.org/10.20944/preprints202409.0342.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 September 2024 d0i:10.20944/preprints202409.0342.v1

The second image (Figure 2) provides a series of four static graphs, each showing a snapshot of
the enzyme network at different time points (Time Index 50, 100, 150, and 200). The nodes represent
enzymes, and the edges between them are colored based on the intensity of the interactions at each
time point. Darker colors represent stronger interactions, while lighter colors indicate weaker

interactions.
Static Representation of Enzyme Network at Time Index 50 Static Representation of Enzyme Network at Time Index 100

Static Representation of Enzyme Network at Time Index 150 Static Representation of Enzyme Network at Time Index 200

Graph 2. Graphical images representing the disturbances and chances in metabolic pathways.

Each panel shows a cyclic network of five enzymes (nodes) connected by edges that represent
the interactions between them. The color of each edge varies according to the normalized enzyme
activities at four different time indices (50, 100, 150, and 200).

Panel A (Time Index 50):

Enzyme 4 (node 4) and Enzyme 0 (node 0) are connected by a dark red edge, indicating a strong
interaction at this time point. This suggests a high level of compensatory interaction between these
two enzymes.

The edges between other enzymes are lighter, showing relatively weaker interactions.

Panel B (Time Index 100):
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The strongest interaction is observed between Enzyme 1 (node 1) and Enzyme 0 (node 0), as
indicated by the dark red edge. This reflects a shift in the network’s compensatory dynamics, with a
different set of enzymes taking on the role of primary compensators.

The interaction between Enzyme 2 (node 2) and Enzyme 3 (node 3) remains weak.

Panel C (Time Index 150):

At this time point, the interaction between Enzyme 4 (node 4) and Enzyme 0 (node 0) is still
prominent, but there is a slight decrease in its intensity compared to previous time points.

The network exhibits a more balanced set of interactions, indicating a period where the enzymes
are adjusting to a new steady state.

Panel D (Time Index 200):

The network’s interactions have generally weakened, as evidenced by the lighter edges, suggesting that
the system is stabilizing. The interactions between Enzyme 1 and Enzyme 0 and between Enzyme 4 and
Enzyme 0 are still more pronounced but with less intensity than in earlier snapshots.

Interpretation

These static representations provide an overview of how the network’s interaction strengths
evolve over time in response to disturbances. The variations in edge colors highlight the dynamic
adaptability of the enzyme network, showing that different enzymes take on compensatory roles at
different times. This approach enables the identification of critical interaction pairs that may be
essential for maintaining network stability under fluctuating environmental conditions.

Section 3.3 Summary

Together, Figures 1 and 2 illustrate both the temporal dynamics of enzyme activities and the
spatial organization of enzyme interactions in a metabolic network under multiple disturbances. The
combination of dynamic and static visualizations provides a comprehensive understanding of the
system’s behavior, revealing the complexity and adaptability of enzyme networks in metabolomics.
This dual representation allows for a deeper exploration of the compensatory mechanisms and
network robustness that are critical for cellular function and metabolic stability. Future research can
leverage these insights to develop more refined models and explore potential applications in disease
modeling, synthetic biology, and metabolic engineering.

Section 4. Discussion

The dynamic modeling of enzyme networks in metabolomics, as presented in this study,
provides valuable insights into the complex interplay between enzymes and metabolites in response
to environmental disturbances. The use of a topological manifold approach to represent enzyme
dynamics offers a unique perspective on understanding how metabolic networks maintain stability
and adapt to changing conditions. This discussion will delve into the implications of our findings,
the strengths and limitations of the modeling approach, potential applications, and future research
directions.

Section 4.1 Implications of the Topological Manifold Approach

The representation of enzyme networks as topological manifolds governed by differential equations
provides a powerful tool for visualizing and analyzing dynamic biological systems. In this model, each
enzyme is treated as a node, and their interactions are represented by edges, allowing for a
comprehensive view of the compensatory mechanisms that maintain metabolic stability. The
differential equations capture the essence of these interactions, including both compensatory effects
among neighboring enzymes and the response to external disturbances. The application of the
Laplacian operator to model these dynamics highlights the diffusion-like behavior of metabolic
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processes, where “stress” or “tension” is redistributed across the network to stabilize enzyme
activities (Barabasi and Oltvai, 2004).

Our findings suggest that enzyme networks exhibit remarkable resilience to environmental perturbations,
a characteristic that is likely driven by network topology and the presence of robust feedback mechanisms. For
example, in metabolic pathways such as glycolysis and the tricarboxylic acid (TCA) cycle, key
enzymes operate within tightly regulated networks that buffer against fluctuations in substrate
concentrations and other environmental changes. The compensatory dynamics observed in our
model align with experimental findings, where metabolic networks often exhibit plasticity and
redundancy to prevent catastrophic failures in cellular functions (Sauer et al., 2014). This underscores
the importance of network motifs, such as feedback loops and bifurcations, in maintaining metabolic
stability under varying conditions (Alon, 2007).

Section 4.2 Visualization of Enzyme Interactions

The use of graphical representations, including static and dynamic network visualizations,
enhances our understanding of enzyme interactions in metabolomics. The color gradients used to
depict the strength and nature of enzyme interactions provide an intuitive way to assess the impact
of different disturbances on the network. For instance, in our static representations, we observe that
edges with darker colors indicate stronger compensatory interactions, while lighter colors represent
weaker or less significant interactions. This visual approach allows researchers to quickly identify
key nodes and edges that play crucial roles in maintaining network stability. In systems biology, such
visual analytics are invaluable for hypothesis generation and experimental design, guiding
researchers toward specific enzymes or interactions that warrant further investigation (Gehlenborg
et al., 2010).

Moreover, the dynamic network animations developed in this study provide a temporal
dimension to enzyme activity changes, showcasing how disturbances propagate through the network
and how compensatory mechanisms are activated to restore balance. This dynamic visualization can
be particularly useful for understanding transient states in metabolic networks, where enzyme
activities and metabolite concentrations rapidly change in response to stimuli. In metabolic
engineering and synthetic biology, where precise control over metabolic fluxes is required, such
models can aid in designing robust and adaptable pathways for bioproduction (Keasling, 2010).

Section 4.3 Strengths and Limitations of the Model

While the topological manifold approach offers a robust framework for modeling enzyme
dynamics in metabolomics, it is essential to recognize the strengths and limitations of this method.
One of the main strengths is its ability to capture complex interactions within a networked system
and to visualize these interactions in a manner that is both informative and accessible. The differential
equations used in this study provide a mathematically rigorous foundation for simulating enzyme
dynamics, allowing for the incorporation of various types of interactions and perturbations.

However, the model also has limitations that must be addressed. First, the simplification of
enzyme interactions to linear differential equations may not fully capture the non-linearities and
allosteric regulations inherent in biological systems. Real-world enzyme kinetics often involve
cooperative binding, substrate inhibition, and multi-enzyme complexes that add layers of complexity
to the network (Chen and Nielsen, 2013). To enhance the accuracy of the model, future iterations
could incorporate non-linear terms or more sophisticated kinetic models, such as Michaelis-Menten
or Hill equations, to better represent enzyme behaviors under different conditions (Montgomery,
2024).

Second, the current model assumes that enzyme interactions are static and time-invariant,
whereas, in reality, enzyme activities and their interactions with other enzymes and metabolites can
change dynamically due to gene expression regulation, post-translational modifications, and other
factors. Incorporating dynamic changes in enzyme levels and network topology could provide a
more realistic representation of metabolic networks, particularly in response to chronic or long-term
environmental changes (Palsson, 2015).
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Another limitation is the assumption of a homogenous environment where all enzymes
experience the same external disturbances. In a biological context, cells and tissues often experience
heterogeneous environments, with localized variations in pH, temperature, and metabolite
concentrations. Future models could benefit from incorporating spatial heterogeneity and
compartmentalization to simulate more realistic cellular environments, where localized disturbances
may lead to different compensatory mechanisms (Nielsen, 2017).

Section 4.4 Potential Applications in Disease Modeling and Metabolic Engineering

The insights gained from modeling enzyme dynamics using a topological manifold approach
have several potential applications in fields such as disease modeling, metabolic engineering, and
synthetic biology. For example, in cancer metabolism, where metabolic rewiring is a hallmark of
tumor progression, understanding how enzyme networks compensate for metabolic perturbations
could reveal potential therapeutic targets. Metabolic bottlenecks, often regulated by key enzymes in
glycolysis or the TCA cycle, can be targeted to disrupt the metabolic homeostasis of cancer cells,
thereby inhibiting their growth (Vaquez et al., 2016). Our model could be extended to simulate
cancer-specific metabolic networks, incorporating known mutations and altered enzyme activities to
predict the network’s response to therapeutic interventions.

In metabolic engineering, where optimizing metabolic pathways for the production of
biochemicals, biofuels, or pharmaceuticals is a primary goal, understanding the robustness of
enzyme networks is crucial. By applying the topological manifold model, researchers can identify
critical enzymes or interactions that, when manipulated, could enhance the flux towards desired
products while minimizing by-product formation. This approach could be particularly valuable in
the context of designing microbial cell factories, where stability and efficiency under varying
production conditions are key considerations (Lee et al., 2012).

Section 4.5 Future Research Directions

Building on the findings of this study, several avenues for future research can be explored to
further advance our understanding of enzyme dynamics in metabolomics. One potential direction is
the integration of multi-omics data, including transcriptomics and proteomics, to create more
comprehensive models that capture the interplay between different biological layers. By
incorporating gene expression data and protein-protein interactions, models could provide a more
holistic view of how enzymes and metabolites co-regulate each other in response to environmental
changes (Haas et al., 2017).

Another promising direction is the development of machine learning algorithms to predict
enzyme network behavior based on large-scale experimental datasets. By training models on high-
throughput screening data, researchers could identify novel network motifs or regulatory circuits
that confer stability or adaptability to metabolic networks. These computational models could then
be used to guide experimental validation and inform the design of synthetic biological systems
(Zampieri et al., 2019).

Finally, the application of this topological approach to other biological systems, such as signal
transduction pathways, gene regulatory networks, and protein interaction networks, could provide
valuable insights into the universal principles governing biological robustness and adaptability. By
exploring how different types of networks—metabolic, signaling, or genetic—respond to
perturbations, we can gain a deeper understanding of the common strategies that life employs to
maintain homeostasis in the face of uncertainty (Kitano, 2004).

Section 5. Conclusion

The application of a topological manifold approach to model enzyme dynamics in metabolomics
represents a significant advancement in our understanding of complex biological systems. This study
has demonstrated the power of integrating mathematical modeling, network theory, and visual
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analytics to elucidate the intricate compensatory mechanisms that maintain metabolic stability in the
face of environmental perturbations.

Our findings highlight the remarkable resilience of enzyme networks, underpinned by their
topological structure and robust feedback mechanisms. The visualization techniques employed,
particularly the use of color gradients and dynamic network animations, have provided intuitive
insights into the strength and nature of enzyme interactions, as well as the propagation of
disturbances through metabolic networks. These tools not only enhance our comprehension of
metabolic processes but also guide future experimental designs and hypothesis generation in systems
biology.

While the model presents limitations, such as the simplification of enzyme kinetics and the
assumption of homogeneous environments, it nonetheless offers a solid foundation for future
refinements. The incorporation of non-linear interactions, spatiotemporal dynamics, and multi-omics
data will further increase the model’s fidelity to biological reality.

The potential applications of this approach extend far beyond theoretical biology. In the realm
of disease modeling, particularly in cancer metabolism, our model could inform the identification of
therapeutic targets by predicting how altered enzyme networks respond to perturbations. In
metabolic engineering, this approach could optimize pathways for the production of valuable
biochemicals, enhancing the design of microbial cell factories.

Looking ahead, the integration of machine learning algorithms with this topological approach
promises to unlock new insights from large-scale experimental datasets. Furthermore, the extension
of this methodology to other biological networks may reveal universal principles of biological
robustness and adaptability.

In conclusion, this study marks a significant step forward in our ability to model and understand
the complex dynamics of enzyme networks in metabolomics. By bridging the gap between theoretical
modeling and practical applications, it paves the way for innovative approaches in systems biology,
personalized medicine, and biotechnology. As we continue to refine these models and integrate them
with emerging technologies, we move closer to a comprehensive, systems-level understanding of
cellular metabolism and its role in health, disease, and biotechnological applications.

Conflicts of Interest: *The Author Claims no Conflicts of interest.

Section 6. Attachments

Python Codes
import numpy as np
import matplotlib.pyplot as plt
import networkx as nx

from matplotlib.colors import Normalize

# Initialize parameters for the enzyme network

num_enzymes=>5 # Number of enzymes (nodes)

# Generate random enzyme activity data for demonstration purposes
np.random.seed(0)
enzyme_activity_data = np.random.rand(num_enzymes, 400) # Mock data for enzyme activities

over time

# Normalize enzyme activity data for edge coloring
final_activities = enzyme_activity_data[:, -1] # Use enzyme activities at the final time point as edge

weights
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norm = Normalize(vmin=np.min(final_activities), vmax=np.max(final_activities))

# Define positions for the nodes in a circular layout
G =nx.cycle_graph(num_enzymes) # Create a cycle graph to represent the network

pos = nx.circular_layout(G)

# Generate edge colors based on normalized enzyme activities

edge_colors = [plt.cm.coolwarm(norm(enzyme_activity_datali, -1])) for i in range(num_enzymes)]

# Plot the static enzyme network graph with colored edges
plt.figure(figsize=(8, 8))
nx.draw(
G, pos,
with_labels=True,
node_color="skyblue’,
edge_color=edge_colors,
width=2,
node_size=700,
font_weight="bold'
)
plt.title('Static Representation of Enzyme Network with Colored Edges')
plt.show()
# Generate more static images with different enzyme activity states to show varying nuances in edge

colors

fig, axes = plt.subplots(2, 2, figsize=(16, 16))

# Select different valid time points to illustrate variations

time_indices =[50, 100, 150, 200] # Valid time points within the range of enzyme activity data

for idx, ax in enumerate(axes.flatten()):

# Adjust edge weights for the current time point

enzyme_activities = enzyme_activity_data[:, time_indices[idx]] # Example using specific
enzyme activities

norm_edge_weights = (enzyme_activities - np.min(enzyme_activities)) /
(np.max(enzyme_activities) - np.min(enzyme_activities))

edge_colors = plt.cm.coolwarm(norm_edge_weights)

# Draw the static network graph with colored edges for the specific time point
nx.draw(

G,

pos,

ax=ax,
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with_labels=True,
node_color="skyblue’,
edge_color=edge_colors,
width=2,
node_size=700,
font_weight="bold'

)

ax.set_title(f'Static Representation of Enzyme Network at Time Index {time_indices[idx]}")

plt.tight_layout()
plt.show()
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