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Article

Convergence Rate Analysis of Non-i.i.d. SplitFed
Learning with Partial Worker Participation and
Auxiliary Networks

Amirreza Talebi

The Ohio State University, Columbus, OH, USA; talebi.14@osu.edu

Abstract: In conventional Federated Learning (FL), clients work together to train a model managed by a central

server, intending to speed up the learning process. However, this approach imposes significant computational

and communication burdens on clients, particularly with complex models. Additionally, while FL strives to

protect client privacy, the server’s access to local and global models raises security concerns. To address these

challenges, Split Learning (SL) separates the model into parts handled by the client and the server, though it

suffers from inefficiencies due to sequential client participation. To overcome these issues, SplitFed Learning

(SFL) was proposed, which combines the parallelism of FL with the model-splitting strategy of SL, enabling

simultaneous training by multiple clients. Our main contribution is the theoretical analysis of SFL, which, for the

first time, includes non-i.i.d. datasets, non-convex loss functions, and both full and partial client participation.

We provide convergence proofs for a state-of-the-art SFL algorithm based on conventional convergence analysis

assumptions for FL. Our results prove that we can recover the linear convergence rate of conventional FL for

the SFL algorithm with the distinction that increasing the number of local steps or clients may not speed up the

convergence in SFL.

Keywords: SplitFed Learning; Convergence Theory; Federated Learning; Auxiliary Networks; Machine Learning

1. Introduction

In the conventional Federated Learning (FL), several clients in parallel, train a model jointly
particularly leading to speed-up in the learning process under the supervision of a server [1]. Hence,
given a central server and N clients as participants in the training, an optimization problem of the
below form is solved by FL:

min
x̃∈Rd̃

f (x̃) ∆
= min

x̃∈Rd̃

1
m

m−1

∑
i=0

Fi(x̃) (1)

In which, Fi(x̃)
∆
= Eξ∼Di [Fi(x̃, ξ)] can be a non-convex loss function and ξ corresponds to a random

sample of local dataset of the client i, Di. In the FL training, there are m clients training on their local
datasets. However, FL encounters the challenge that clients must train the entire model, placing a
considerable computational burden, particularly with complex and large-scale models. Additionally,
gathering all client data and broadcasting the aggregated model at each round can result in substantial
communication overhead. While one of the principal aims of FL is to safeguard clients’ privacy, the
server retains access to both the client’s local and global models, prompting security concerns [2]. To
address the computational limitations and further safeguard the privacy of the client-side model, [3]
pioneered SL, dividing the ML model into two parts. The client trains one portion of the model, while
the server trains the remaining portion. However, according to [2], this method incurs notable training
time overhead, as only one client can engage in split learning (SL) at any given time, leaving others
idle. To address this issue, they proposed SplitFed Learning (SFL), which integrates both the parallel
computational capabilities of clients from FL and the benefits of split models from SL. In particular, the
convergence theory of the SFL framework has not been thoroughly explored in the existing literature.

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting 
from any ideas, methods, instructions, or products referred to in the content.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 4 September 2024 doi:10.20944/preprints202409.0335.v1

©  2024 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202409.0335.v1
http://creativecommons.org/licenses/by/4.0/


2 of 27

Our primary contribution lies in establishing the theoretical underpinnings for SFL, incorporating
the general assumptions of traditional FL, non-convex loss functions, non-identically independently
distributed (non-i.i.d.) datasets, and addressing both full and partial client participation in the SFL
training process. Our proof is for the state-of-the-art algorithm for SFL developed by [4] based on
conventional assumptions in FL settings. We demonstrate that the SFL can still recover the linear
convergence rate of conventional FL. However, changes in the number of clients and local steps cannot
speed up the convergence.

2. Related work

1. SL and FL

The reference [5] introduces a personalized SL framework to address issues like data leakage
and non-iid datasets in decentralized learning. It proposes an optimal cut layer selection method
using multiplayer bargaining and the Kalai-Smorodinsky bargaining solution (KSBS). This
approach efficiently balances the time of training, usage of energy, and privacy of data. Each
device tailors its model for non-i.i.d. datasets while they have a common server-side model which
ensures robustness by generalization. Simulation results validate the framework’s effectiveness
in achieving optimal utility and addressing decentralized learning challenges. However, they
do not address the communication overhead caused by transmitting the forward-propagation
results at each local step. The reference [6] provides convergence analysis for Sequential Split
Learning (SSL), a variant of SL in which the model training process is conducted sequentially,
with each client trained one after the other, on heterogeneous data. It compares SSL with
Federated Averaging (FedAvg) showing SSL’s superiority on extremely heterogeneous data.
However, in practice, if the heterogeneity of data is mild, FedAvg outperforms SSL. Also, SSL
still suffers from large communication overheads between the server and clients.

2. SplitFed learning
The reference [7] presents AdaSFL, a method designed to optimize model training efficiency
by controlling local update frequency and batch size. The theoretical analysis demonstrates
convergence rates, which facilitate the creation of an adaptive algorithm for adjusting update
frequency and batch sizes tailored to heterogeneous workers. However, clients must obtain
back-propagation results from the server at each local update. Meanwhile, [8] recommends
updating client and server-side models concurrently, utilizing local-loss-based training and
auxiliary networks designed specifically for split learning. This parallel training approach
effectively reduces latency and eliminates the need for server-to-client communication. The
paper includes latency analysis for optimal model partitioning and offers guidelines for model
splitting. Specifically, [4] developed a communication and storage-efficient SFL approach. In this
method, each client trains a portion of the model and calculates its local loss function using an
auxiliary network, leading to reduced communication overhead. Furthermore, the server model
is trained based on the sequence of forward propagation results from the clients, ensuring that
only one copy of the server model is maintained at any given time. Additionally, [8] suggested
a similar framework, albeit with a key difference that each client possesses its separate server
model, and these models are aggregated to construct the global server model.

3. Auxiliary networks

Neural network training with back-propagation is hindered by inefficiencies arising from the
update locking issue, where layers must await the complete propagation of signals through the
network before updating [9]. To address this, [9] proposed Decoupled Greedy Learning (DGL), a
more straightforward training approach that relaxes the joint training objective greedily, showing
significant effectiveness for CNNs in large-scale image classification. This method optimizes the
training objective using auxiliary modules or replay buffers to reduce communication delays
caused by waiting for backward propagation. [10] addressed the backward update lock constraint
by introducing a model that decouples modules through predictions of future computations
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within the network graph. These models use local information to predict the outcomes of
subgraphs, particularly focusing on error gradients. By using synthetic gradients instead of true
backpropagated gradients, subgraphs can update independently and asynchronously, realizing
decoupled neural interfaces. A similar approach has been adopted for training in SFL by [4,8].
Indeed, they use an auxiliary model to replace the server model. The mentioned research
demonstrates that an auxiliary model with a relatively smaller dimension compared to the server
model performs sufficiently well in serving as a replacement.

3. SplitFed Learning Scenario

In this section, we introduce the SFL framework, encompassing both client and server-side models.
Additionally, we present the CSE-SFL algorithm designed by [4] to mitigate communication overhead.
Accordingly, we split the model as x̃ := (xC, xS) where xC denotes the client-side model, and xS
indicates the server-side model. We introduce x := (xC, xA) as a client-side model including the
auxiliary network where xA indicates the model for the auxiliary network.

The client-side non-convex loss function in the SFL setting is given by:

Fc
i (x)

∆
= Eξ∼Di

[
Fc

i (x; ξ)
]

(2)

Also, the non-convex loss function in the SFL setting is defined by:

Fs(xS; z f , y) ∆
=

1
m

m−1

∑
i=0

Fs
i (xS; z f ,i, yi) (3)

We denote z f ,i(xC; ξ) as the output of the forward propagation of the client i’s model, xC,i, on its
local random data sample, ξ ∈ Di, which is intended to be transmitted to the server at specific intervals
including the true labels yi corresponding to the local random data sample. Note that the sampled
data at the client is not shared with the server but the true labels. Similarly, zb,i(xS; z f ,i, yi) indicates
the backward propagation model of the server for client i. Accordingly, ẑb,i(xA; z f ,i, yi) corresponds
to the backward propagation results obtained by the auxiliary network. In more detail, the client i
performs forward propagation up to the splitting layer and transmits the output of this layer, along
with the true labels, to the server. The server then continues forward propagation through to the final
layer and computes the loss function. Subsequently, the server performs backward propagation of
the error and sends the gradients of its first layer back to the client. We consider x̄t

C as the aggregated
model at each global round t ∈ [T] where [T] = {0, ..., T − 1} and x̄t

C = 1
m ∑i xt

C. Throughout this
paper, [S] = {0, ..., m− 1} identifies the clients’ set which is indexed by i. We employ two strategies
for client participation. The first strategy entails all clients participating in the learning process. The
second strategy involves the server randomly sampling a subset of size n of clients with replacement,
[St], following a uniform distribution. We assume that Dis are non-i.i.d. The derivative of local loss
function of client i in SFL setting with respect to xC and xA are indicated by ∇Fc

i (xC) and ∇Fc
i (xA)

respectively. As for the server-side model, the derivative of the loss function is ∇Fs(xS) which is with
respect to xS. The stochastic gradients of each of the aforementioned gradients will be distinguished by
a ∇̃ sign, e.g., ∇̃Fc

i (xC) = ∇Fc
i (xC; ξ) where ξ ∼ Di is a random sample from client i dataset. Note that

µL, and µ are the learning rates of client-side and server-side models respectively. Client i trains xC,i on
its local dataset and renders the forward propagation results, z f ,i, to the auxiliary network at each local
step k and it receives the ẑb,i in response. Note that k ∈ [K] indexes the local steps. Additionally, the
client sends the z f ,i to the server at each global round t such that t ≡ 0 mod l where l is a parameter
determining the frequency of this process. We have one server performing the model aggregation at
each global round, completing the forward propagation of clients, and updating the server model at
specific global rounds. Algorithm 1 illustrates the proposed procedure by [4] in detail.
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Algorithm 1 CSE-SFL [4]

1: At Server
2: Initialize x0

C, x0
A and x0

S
3: for t = 0, 1, ..., T − 1 do
4: Sample a subset St of n clients out of m clients
5: Receive xt

C,i, xt
A,i ∀i ∈ [St]

6: Let x̄t
C ← 1

m ∑i∈[St ] xt
C,i and x̄t

A ← 1
m ∑i∈[St ] xt

A,i
7: Broadcast x̄t

C and x̄t
A to clients

8: if t ≡ 0 mod l, and t ̸= 0 then
9: for each client i ∈ [St] in sequence do

10: z f ,i, yi ← Client(i, z f , y)
11: Complete forward propagation with z f ,i, and x0

S
12: Compute ŷi, the prediction of yi
13: Compute loss function Fs

i (x
0
S; z f ,i, yi)

14: Complete backward-propagation
15: Send zb,i to the client
16: Update server model: x0

S ← x0
S −

µ
m∇Fs

i (x
0
S; z f ,i, yi)

17: end for
18: end if
19: end for
20: Concatenate xC and xS
21: At Clients :
22: for all clients i ∈ [St] in parallel at round t do
23: x0

C,i,← Server(x̄t
C)

24: if t ≡ 0 mod l, and t ̸= 0 then
25: z f ,i ← ForwardPass(x0

C,i; ξ)
26: Send z f ,i and yi to the server
27: zt

b,i,← Server(zt
b)

28: Complete backward-propagation with zt
b,i

29: Client update: x1
C,i ← x0

C,i − µL∇Fc
i (x

0
C,i)

30: Auxiliary update: x1
A,i ← x0

A,i
31: for local step k = 1, .., K− 1 do
32: Compute forward propagation with xk

C,i and xt
A

33: Compute local loss Fc
i (x

k
i ; ξk)

34: Client update: xk+1
C,i ← xk

C,i − µL∇Fc
i (x

k
C,i)

35: Auxiliary update: xk+1
A,i ← xk

A,i − µL∇Fc
i (x

k
A,i)

36: end for
37: else
38: for local step k = 0, .., K− 1 do
39: Compute forward propagation with xk

C,i and xt
A

40: Compute local loss Fc
i (x

k
i ; ξk)

41: Client update: xk+1
C,i ← xk

C,i − µL∇Fc
i (x

k
C,i)

42: Auxiliary update: xk+1
A,i ← xk

A,i − µL∇Fc
i (x

k
A,i)

43: end for
44: end if
45: Return xK

C,i to the server
46: end for

4. Convergence rate analysis

The following assumptions for the convergence rate evaluation have been made:

Assumption 1. (L-Lipschitz continuous gradient) Both client and server-side models are L−smooth non-convex
functions, i.e., there is a constant L > 0 such that ∀xC, yC ∈ Rdc , and ∀xS, yS ∈ Rds :

∥∇Fc(xC)−∇Fc(yC)∥ ≤ L∥xC − yC∥ and ∥∇Fs(xS)−∇Fs(yS)∥ ≤ L∥xS − yS∥

Assumption 2. (Unbiased local gradient estimator) We assume that ∀i ∈ [S],

Eξ∈Di

[
∇Fc

i (xC; ξ)
]
= ∇Fc

i (xC)
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that is the local gradient estimator of the client-side model is unbiased. The expectation is over all the local
datasets of the client. Note that we have a similar assumption for the server-side model as follows ∀i ∈ [S]:

Eξ∈Di

[
∇Fs

i (xS; z f ,i(xC; ξ))
]
= ∇Fs

i (xS)

Assumption 3. (Bounded local and global variance) We have bounded variance of the stochastic gradients
locally and globally for both server-side and client-side models, i.e., there exist positive constants σL and σG such
that

E
[
∥∇Fc

i (xC; ξ)−∇Fc
i (xC)

2∥
]
≤ σ2

L and E
[
∥∇Fc

i (xC)−∇Fc(xC)
2∥
]
≤ σ2

G

E
[
∥∇Fs

i (xS; ξ)−∇Fs
i (xS)

2∥
]
≤ σ2

L and E
[
∥∇Fs

i (xS)−∇Fs(xS)
2∥
]
≤ σ2

G

Assumptions 1, 2, and 3 are natural assumptions applied in non-convex optimization and FL, e.g.,
see [7,11–15]. Figure 1 gives an overview of the communication and storage of efficient federated split
learning (CSE-FSL) algorithm in an illustrative way.

Assumption 2. (Unbiased local gradient estimator) We assume that ∀i ∈ [S],135

Eξ∈Di

[
∇F c

i (xC ; ξ)
]
= ∇F c

i (xC)

that is the local gradient estimator of the client-side model is unbiased. The expectation is over all136

the local datasets of the client. Note that we have a similar assumption for the server-side model as137

follows ∀i ∈ [S]:138

Eξ∈Di

[
∇F s

i (xS ; zf,i(xC ; ξ))
]
= ∇F s

i (xS)

Assumption 3. (Bounded local and global variance) We have bounded variance of the stochastic139

gradients locally and globally for both server-side and client-side models, i.e., there exist positive140

constants σL and σG such that141

E
[
∥∇F c

i (xC ; ξ)−∇F c
i (xC)∥2

]
≤ σ2

L and E
[
∥∇F c

i (xC)−∇F c(xC)∥2
]
≤ σ2

G

E
[
∥∇F s

i (xS ; ξ)−∇F s
i (xS)∥2

]
≤ σ2

L and E
[
∥∇F s

i (xS)−∇F s(xS)∥2
]
≤ σ2

G

Assumptions 1, 2, and 3 are natural assumptions applied in non-convex optimization and FL, e.g.,142

see [2, 6, 9, 12, 13, 15]. Figure 1 gives an overview of the communication and storage of efficient143

federated split learning (CSE-FSL) algorithm in an illustrative way.144

Client 1

Client 2

Client m

Client ModelAuxiliary Model

Server

Server

Auxiliary Model Client Model

Auxiliary Model Client Model

If k = K

If t ≡ 0 mod l

∀ k at all rounds

zt
b,m ẑt,k

b,m

zt,k
f,m

xt
C , xt

A

yt
1 , z

t
f,1

yt
2 , z

t
f,2

yt
m , z

t
f,m

xt
C,m, xt

A,m

ẑt,k
b,2

zt,k
f,2

ẑt,k
b,1

zt,k
f,1

zt
b,2

zt
b,1

xt
C,2, xt

A,2

xt
C,1, xt

A,1

xt
C , xt

A

xt
C , xt

A

Figure 1: CSE-FSL pipeline

4.1 client-side model convergence145

We examine the convergence rate when t ≡ 0 mod l because it is during these rounds that the146

server-side model is also updated. This will let us study the impact of l on the convergence rate and147

communication overhead.148

Theorem 1. Under Assumptions 1, 2, 3, and full participation of clients, if µL ≤ 1
lLK21.15l+1.85 , and149

t ≡ 0 mod l, in Algorithm 1, the convergence rate of client model of Algorithm 1 satisfies:150

min
t∈[T ]

E
[∥∥∇F c(x̄t

C)
∥∥2
]
≤ 2

(
F c(x̄0

C)− F c(x̄∗
C)
)

(1− Γλ2)µLKT
+Φ1 +

Γλ1

1− Γλ2

5

Figure 1. CSE-FSL pipeline

4.1. Client-Side Model Convergence

We examine the convergence rate when t ≡ 0 mod l because it is during these rounds that the
server-side model is also updated. This will let us study the impact of l on the convergence rate and
communication overhead.

Theorem 1. Under Assumptions 1, 2, 3, and full participation of clients, if µL ≤ 1
lLK21.15l+1.85 , and t ≡ 0

mod l, in Algorithm 1, the convergence rate of client model of Algorithm 1 satisfies:

min
t∈[T]

E
[
∥∇Fc(x̄t

C)
2∥
]
≤ 2

(
Fc(x̄0

C)− Fc(x̄∗C)
)

(1− Γλ2)µLKT
+ Φ1 +

Γλ1

1− Γλ2

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 4 September 2024 doi:10.20944/preprints202409.0335.v1

https://doi.org/10.20944/preprints202409.0335.v1


6 of 27

Where,

Φ1 =
5Kµ2

LL2(σ2
L + 6Kσ2

G))

1− Γλ2
+

4LµL + 4µ2
LKL2(l − 1)

1− Γλ2

((
Kl + 5L2K2lµ2

L

)
σ2

L +
(

Kl + 30L2K3lµ2
L

)
σ2

G

)

λ1 = B
l−1

∑
j=0

Aj − 1
A− 1

, λ2 =
Al − 1
A− 1

,

B = 8L2µ2
L

((
K2 + 5L2K3µ2

L

)
σ2

L +
(

K2 + 30L2K4µ2
L

)
σ2

G

)
,

A = 8L2µ2
L
(
K2 + 30L2K3µ2

L
)
+ 2,

Γ = 4
(

LµL + µ2
LKL2(l − 1)

)(
K + 30L2K2µ2

L

)
+ 30K2µ2

LL2
)

, and

x̄∗C = argmin
x̄t

C ,t∈[T]
E
[
∥∇Fc(x̄t

C)
2∥
]

Corollary 1. Let µL ≤ 1
lLK21.15l+1.85

√
T

. Then, the convergence rate of the client-side model in Algorithm 1 is

min
t∈[T]

E
[
∥∇ f c(x̄t

C)
2∥
]
≤ O

( l√
T
+

1
T
√

T

)
. (4)

Theorem 2. Under Assumptions 1, 2, 3, and partial participation of clients due to strategy one, if µL ≤
1

lLK21.15l+1.85 , and t ≡ 0 mod l, in Algorithm 1, the convergence rate of client model of Algorithm 1 satisfies:

min
t∈[T]

E∥∇Fc(x̄t
C)

2∥ ≤ 2
(

Fc(x̄0
C)− Fc(x̄∗C)

)

µLKT
+

(
5Kµ2

LL2 + 4µ2
LL2
(

K2l2 + 5L2K3l2µ2
L

)
+ LµL

( 1
n
+ 15K2L2µ2

L

))
σ2

L+

(
30K2µ2

LL2 + LµL

(
90K3L2µ2

L + 3K
)
+ 4µ2

LL2
(

K2l2 + 30L2K4l2µ2
L

))
σ2

G+

Γ′λ1

1− Γ′λ2

Where

Γ′ = 4µ2
LL2
(

K2l + 30L2K3lµ2
L

)
+

LµL
l

(
90lK3L2µ2

L + 3K
)
+ 30K2µ2

LL2

and,

x̄∗C = argmin
x̄t

C ,t∈[T]
E
[
∥∇Fc(x̄t

C)
2∥
]

Corollary 2. Let µL ≤ 1
lLK21.15l+1.85

√
T

. Then, the convergence rate of the client-side model in Algorithm 1 is

min
t∈[T]

E
[
∥∇ f c(x̄t

C)
2∥
]
≤ O

( l√
T
+

1
T
√

T

)
. (5)
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4.2. Server-Side Model Convergence

Theorem 3. Under Assumptions 1, 2, 3, and full participation of clients, if µ ≤ 1
2L , and t ≡ 0 mod l, the

convergence rate of the server model of Algorithm 1 satisfies:

min
t∈[T]

E∥∇Fs(xt
S)

2∥ ≤
2l
(

Fs(x0
S)− Fs(x∗S)

)

µ(2m− 3)T
+

Lµm2

2m− 3

(
9.2σ2

L + 13.2σ2
G

)

Where x∗S = argminxt
S ,t∈[T] E∥∇Fs(xt

S, zt
f )

2∥.

Corollary 3. Let µ ≤ 1
2L
√

T
, then the convergence rate of the server-side model is:

min
t∈[T]

E∥∇Fs(xt
S)

2∥ ≤ O
( l√

T

)

Theorem 4. Under Assumptions 1, 2, 3, and partial participation of clients due to strategy one, if µ ≤ 1
8L2m2 ,

and t ≡ 0 mod l, the convergence rate of the server model of Algorithm 1 satisfies:

min
t∈[T]

E∥∇Fs(xt
S)

2∥ ≤
l
(

Fs(x0
S)− Fs(x∗S)

)

µ(m− 2)T
+

Lµm2

m− 2

(
7σ2

L + 7σ2
G

)

Where x∗S = argminxt
S
E∥∇Fs(xt

S)
2.

∥

Corollary 4. Let µ ≤ 1
L2m2

√
T

, then the convergence rate of the server-side model is:

min
t∈[T]

E∥∇Fs(xt
S)

2∥ ≤ O
( l√

T

)

5. Discussion and Conclusions

In this paper, we proposed theoretical convergence proofs for the state-of-the-art SplitFed Learning
algorithm, CSE-FSL, which is designed to improve the convergence rates of both client-side and server-
side models leveraging parallelism power of Federated Learning (FL) and reduce the storage at the
server by keeping one copy at a time policy. Our approach leverages several key assumptions that are
conventional in FL to underpin the theoretical foundations for CSE-FSL convergence. We prove the
convergence for the cases where we have non-i.i.d. datasets, and non-convex loss functions given full
and partial client participation scenarios.

5.1. Summary of Contributions

• Convergence Analysis: We clearly formulated the CSE-FSL algorithm developed by [4]. We
conducted a comprehensive convergence rate analysis under both full and partial client partic-
ipation scenarios given the non-i.i.d. dataset and non-convex loss function. The convergence
guarantees are derived under several assumptions, including L-smoothness of the objective
functions, unbiased gradient estimators, and bounded gradient variances which are natural in
conventional FL convergence analysis.

• Key Results:

– Client-Side Model: We demonstrated that, under full client participation, the client-side
model converges with a rate of O

(
l√
T
+ 1

T
√

T

)
. This result highlights the effectiveness of

the algorithm in achieving linear convergence rates while accommodating the federated
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setting’s constraints and sequential update of the server model. An increase in l, causes a
longer convergence time which is obvious as it means the server model will be updated
after more global rounds.

– Server-Side Model: For the server-side model, we established convergence rates of O
(

l√
T

)

under both full and partial client participation scenarios. This result underscores the
robustness of the algorithm in ensuring effective learning even when clients participate
partially. This also demonstrates that the number of clients and their local steps are not
effective in speeding up the convergence in contrast to FL settings.

5.2. Implications

Our findings underscore the importance of efficient communication and gradient estimation
(auxiliary networks) techniques in SplitFed Learning (SFL). The derived convergence rates demonstrate
that the CSE-FSL algorithm achieves a balance between computational efficiency and convergence
performance, making it a viable solution for practical federated learning applications where the privacy
of clients is of high importance.

The theoretical guarantees provided by our convergence analysis offer valuable insights into how
the algorithm performs under various conditions, thus guiding practitioners in optimizing federated
learning systems. Future work could extend these results to explore more complex scenarios and refine
the algorithm further for enhanced performance in real-world applications. For example, considering
stragglers, elimination of label sharing by clients, and determining the optimal cut layer seem to be
promising avenues for further research.

In summary, the CSE-FSL algorithm represents a significant advancement in FL, providing a
robust framework for effective model training leveraging the parallelism power of FL, auxiliary
networks, and sequential updates of the server-side model which helps reduce storage on the server
side. It recovers the linear convergence speed of FL while providing more privacy by only forward-
propagation and label transition between clients and servers instead of trained parameters.

Appendix A. Proofs

Appendix A.1. Client-Side Model Convergence

We examine the convergence rate when t ≡ 0 mod l because it is during these rounds that the
server-side model is also updated. This analysis allows us to investigate the influence of l on both the
convergence rate and communication overhead.

Theorem A1. Under Assumptions 1, 2, 3, and full participation of clients, if µL ≤ 1
lLK21.15l+1.85 , and t ≡ 0

mod l, in Algorithm 1, the convergence rate of client model of Algorithm 1 satisfies:

min
t∈[T]

E
[
∥∇Fc(x̄t

C)
2∥
]
≤ 2

(
Fc(x̄0

C)− Fc(x̄∗C)
)

(1− Γλ2)µLKT
+ Φ1 +

Γλ1

1− Γλ2
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Where,

Φ1 =
5Kµ2

LL2(σ2
L + 6Kσ2

G))

1− Γλ2
+

4LµL + 4µ2
LKL2(l − 1)

1− Γλ2

((
Kl + 5L2K2lµ2

L

)
σ2

L +
(

Kl + 30L2K3lµ2
L

)
σ2

G

)

λ1 = B
l−1

∑
j=0

Aj − 1
A− 1

, λ2 =
Al − 1
A− 1

,

B = 8L2µ2
L

((
K2 + 5L2K3µ2

L

)
σ2

L +
(

K2 + 30L2K4µ2
L

)
σ2

G

)
,

A = 8L2µ2
L
(
K2 + 30L2K3µ2

L
)
+ 2,

Γ = 4
(

LµL + µ2
LKL2(l − 1)

)(
K + 30L2K2µ2

L

)
+ 30K2µ2

LL2
)

, and

x̄∗C = argmin
x̄t

C ,t∈[T]
E
[
∥∇Fc(x̄t

C)
2∥
]

Corollary A1. Let µL ≤ 1
lLK21.15l+1.85

√
T

. Then, the convergence rate of the client-side model in Algorithm 1 is

min
t∈[T]

E
[
∥∇ f c(x̄t

C)
2∥
]
≤ O

( l√
T
+

1
T
√

T

)
. (A1)

Proof. In this proof, all the gradients are w.r.t. xC. Due to Assumption 1, for any x̄t+l
C and x̄t

C such that
t ∈ [T], we can write:

Fc(x̄t+l
C ) ≤ Fc(x̄t

C) +∇Fc(x̄t
C)
⊤(x̄t+l

C − x̄t
C) +

L
2
∥x̄t+l

C − x̄t
C

2∥ (A2)

Particularly, we consider the case when t ≡ 0 mod l from now on.
Also, note the global aggregation and client update rule in the Algorithm 1,

x̄t+l
C =

1
m

m−1

∑
i=0

xt+l
C,i =

1
m

m−1

∑
i=0

(
xt

C,i − µL

l−1

∑
j=0

K−1

∑
k=0
∇̃Fc

i (x
t+j,k
C,i )

)
=

x̄t
C −

µL
m

m−1

∑
i=0

l−1

∑
j=0

K−1

∑
k=0
∇̃Fc

i (x
t+j,k
C,i )

(A3)

Thus,

x̄t+l
C − x̄t

C = −µL
m

m−1

∑
i=0

l−1

∑
j=0

K−1

∑
k=0
∇̃Fc

i (x
t+j,k
C,i )

(A4)
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Taking expectation of Fc(xt+1
C ) with respect to randomness at round t+ l− 1, i.e., ¸[t+l−1] ∆

= [ξτ
i ]i∈[N],τ∈[t+l−1],

and plugging A3 into A2 note that:

E
[

Fc(x̄t+l
C )

]
≤ Fc(x̄t

C) +
〈
∇Fc(x̄t

C),E
[
x̄t+l

C − x̄t
C

]〉
+

L
2
E∥x̄t+l

C − x̄t
C

2∥

E
[

Fc(x̄t+l
C )

]
≤ Fc(x̄t

C) + µL

〈
∇Fc(x̄t

C),E
[
−1
m

m−1

∑
i=0

l−1

∑
j=0

K−1

∑
k=0

(
∇̃Fc

i (x
t+j,k
C,i )−∇Fc

i (x̄
t+j
C )

)
]〉

︸ ︷︷ ︸
A1

−µL

〈
∇Fc(x̄t

C),E
[

K
m

m−1

∑
i=0

l−1

∑
j=0
∇Fc

i (x̄
t+j
C )

]〉

︸ ︷︷ ︸
A2

+
Lµ2

L
2

E


∥ 1

m

m−1

∑
i=0

l−1

∑
j=0

K−1

∑
k=0
∇̃Fc

i (x
t+j,k
C,i )

2

∥



︸ ︷︷ ︸
A3

(A5)

We bound the term A1 as follows:

A1 =

〈
∇Fc(x̄t

C),E
[
−1
m

m−1

∑
i=0

l−1

∑
j=0

K−1

∑
k=0

(
∇̃Fc

i (x
t+j,k
C,i )−∇Fc

i (x̄
t+j
C )

)
]〉

=

〈
∇Fc(x̄t

C),E
[
−1
m

m−1

∑
i=0

l−1

∑
j=0

K−1

∑
k=0

(
∇Fc

i (x
t+j,k
C,i )−∇Fc

i (x̄
t+j
C )

)

︸ ︷︷ ︸
y1

]〉

(a1)
=

K
2
∥∇Fc(x̄t

C)
2∥+ 1

2Km2E∥
m−1

∑
i=0

l−1

∑
j=0

K−1

∑
k=0

(
∇Fc

i (x
t+j,k
C,i )−∇Fc

i (x̄
t+j
C )

)2

∥

− 1
2Km2E∥

m−1

∑
i=0

l−1

∑
j=0

K−1

∑
k=0

(
∇Fc

i (x
t+j,k
C,i )−∇Fc

i (x̄
t+j
C )

)
+ K∇Fc(x̄t

C)

2

∥

(a2)
≤ K

2
∥∇Fc(x̄t

C)
2
+

1
2Km2E∥

m−1

∑
i=0

l−1

∑
j=0

K−1

∑
k=0

(
∇Fc

i (x
t+j,k
C,i )−∇Fc

i (x̄
t+j
C )

)2

∥

(a3)
≤ K

2
∥∇Fc(x̄t

C)
2∥+ lL2

2m

m−1

∑
i=0

l−1

∑
j=0

K−1

∑
k=0

E
[
∥∇Fc

i (x
t+j,k
C,i )−∇Fc

i (x̄
t+j
C )

2
∥
]

(a4)
≤ K

2
∥∇Fc(x̄t

C)
2∥+ lL2

2m

m−1

∑
i=0

l−1

∑
j=0

K−1

∑
k=0

E
[
∥xt+j,k

C,i − x̄t+j
C

2
∥
]

︸ ︷︷ ︸
y2

(A6)

We have
〈

a, b
〉
=

1
2
(
∥a2∥+ ∥b2∥ − ∥a− b2∥

)
for any two vectors a and b. (A7)

Thus, if we put a =
√

K∇Fc(x̄t
C), and b =

1√
K

y1, it yields equality (a1). Inequality (a2)

follows from eliminating a strictly negative term. Now, due to E∥
n

∑
i

zi

2

∥ ≤ n ∑
i
E
[
∥zi

2∥
]

for any random variables zi, inequality (a3) holds. (A8)

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 4 September 2024 doi:10.20944/preprints202409.0335.v1

https://doi.org/10.20944/preprints202409.0335.v1


11 of 27

The inequality a4 follows from Assumption 1. There is an upper bound for the term y2

provided by [13]. To preserve the integrity of the work, we include it here as well.

E
[
∥xt+j,k

C,i − x̄t+j
C

2
∥
]
= E

[
∥xt+j,k−1

C,i − x̄t+j
C − µL∇̃Fc

i (x
t+j,k−1
C,i )

2
∥
]

= E
∥∥∥∥xt+j,k−1

C,i − x̄t+j
C − µL

(
∇̃Fc

i (x
t+j,k−1
C,i )−∇Fc

i (x
t+j,k−1
C,i ) +∇Fc

i (x
t+j,k−1
C,i )

−∇Fc
i (x̄

t+j
C ) +∇Fc

i (x̄
t+j
C )−∇Fc(x̄t+j

C ) +∇Fc(x̄t+j
C )

)∥∥∥∥
2

(a5)
≤ (1 +

1
2K− 1

)E∥xt+j,k−1
C,i − x̄t+j

C
2
∥+E∥µL

(
∇̃Fc

i (x
t+j,k−1
C,i )−∇Fc

i (x
t+j,k−1
C,i )

)2
∥+

6KE∥µL
(
∇Fc

i (x
t+j,k−1
C,i )−∇Fc

i (x̄
t+j
C )

)2
∥+ 6KE∥µL

(
∇Fc

i (x̄
t+j
C )−∇Fc(x̄t+j

C )
)2∥

+ 6KE∥µL∇Fc(x̄t+j
C )

2∥
(a6)
≤ (1 +

1
K− 1

)E∥xt+j,k−1
C,i − x̄t+j

C
2
∥+ µ2

Lσ2
L + 6Kµ2

Lσ2
G + 6Kµ2

LE∥∇Fc(x̄t+j
C )

2∥

(A9)

The inequality (a5) follows from the fact that E∥∑i zi
2∥ ≤ E

[
∑i ∥zi

2∥
]

holds true for independent

random variables zi with zero mean.

(A10)

The term (a6) is due to Assumption 3. Finally, by unrolling recursion and some simplification, we
have:

1
m

m−1

∑
i=0

E∥xt+j,k
C,i − x̄t+j

C
2
∥ ≤ 5Kµ2

L
(
σ2

L + 6Kσ2
G
)
+ 30K2µ2

LE∥∇Fc(x̄t+j
C )

2∥ (A11)

Now, we continue by substituting A11 into A6,

≤ K
2
∥∇Fc(x̄t

C)
2∥+ 5K2µ2

LlL2

2
(σ2

L + 6Kσ2
G) + 15K3µ2

LlL2
l−1

∑
j=0

E∥∇Fc(x̄t+j
C )

2∥ (A12)

The above inequality, A12, is an upper bound for the term A1. We continue with bounding A2 as
follows.

A2 = −µL

〈
∇Fc(x̄t

C),E
[

K
m

m−1

∑
i=0

l−1

∑
j=0
∇Fc

i (x̄
t+j
C )

]〉

(a7)
= −µLK

〈
∇Fc(x̄t

C),E
[

l−1

∑
j=0
∇Fc(x̄t+j

C )

]〉

= −µLK∥∇Fc(x̄t
C)

2∥ − µLK

〈
∇Fc(x̄t

C),E
[

l−1

∑
j=1
∇Fc(x̄t+j

C )

]〉

(a8)
≤ −µLK∥∇Fc(x̄t

C)
2∥ − µLK

〈
∇Fc(x̄t

C),E
[
(l − 1)∇Fc(x̄t+j∗

C )

]〉
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(a9)
= −µLK(l + 1)

2
∥∇Fc(x̄t

C)
2∥−µLK(l − 1)

2
E∥∇Fc(x̄t+j∗

C )
2

︸ ︷︷ ︸
y3

∥

+
µLK(l − 1)

2
E∥∇Fc(x̄t+j∗

C )−∇Fc(x̄t
C)

2
∥

(a10)
≤ −µLK(l + 1)

2
∥∇Fc(x̄t

C)
2∥+ µLK(l − 1)

2
E∥∇Fc(x̄t+j∗

C )−∇Fc(x̄t
C)

2
∥

(a11)
≤ −µLK(l + 1)

2
∥∇Fc(x̄t

C)
2∥+ µLKL2(l − 1)

2
E∥x̄t+j∗

C − x̄t
C

2
∥

(a12)
≤ −µLK(l + 1)

2
∥∇Fc(x̄t

C)
2∥+ µ3

LKL2(l − 1)
2

E∥ 1
m

m−1

∑
i=0

j∗

∑
j=0

K−1

∑
k=0
∇̃Fc

i (x
t+j,k
C,i )

2

∥
︸ ︷︷ ︸

y4

(A13)

(a13)
≤ −µLK(l + 1)

2
∥∇Fc(x̄t

C)
2∥+ µ3

LKL2(l − 1)
2

E∥ 1
m

m−1

∑
i=0

l−1

∑
j=0

K−1

∑
k=0
∇̃Fc

i (x
t+j,k
C,i )

2

︸ ︷︷ ︸
A3

∥ (A14)

The equality (a7) follows from definition of the global aggregation in Algorithm 1. In inequality (a8),

we assume there exists a j∗ such that j∗ = argmin1≤j≤l−1

〈
∇Fc(x̄t

C),E
[
∇Fc(x̄t+j

C )
]〉

. The equality

(a9) follows from A7, where a = ∇Fc(x̄t
C) and b = ∇Fc(x̄t+j∗

C ). The inequality (a10) is due to the fact
that the term y3 is negative. Thus, it can be eliminated safely. Due to Assumption 1, we have inequality
(a11). The inequality (a12) is due to equation A3. For the term y4 in A13, there is an upper bound when
j∗ = l − 1 due to A15. Hence, with j∗ = l − 1, inequality (a13) is achieved. We proceed with bounding
A3 as follows.

E∥ 1
m

m−1

∑
i=0

l−1

∑
j=0

K−1

∑
k=0
∇̃Fc

i (x
t+j,k
C,i )

2

∥

=
1

m2E

∥∥∥∥∥
m−1

∑
i=0

l−1

∑
j=0

K−1

∑
k=0

(
∇̃Fc

i (x
t+j,k
C,i )−∇Fc

i (x
t+j,k
C,i ) +∇Fc

i (x
t+j,k
C,i )−∇Fc

i (x̄
t+j
C )

+∇Fc
i (x̄

t+j
C )−∇Fc(x̄t+j

C ) +∇Fc(x̄t+j
C )

)∥∥∥∥∥

2

(a14)
≤ 4Kl

m

m−1

∑
i=0

l−1

∑
j=0

K−1

∑
k=0

(
E∥∇̃Fc

i (x
t+j,k
C,i )−∇Fc

i (x
t+j,k
C,i )

2
∥+E∥∇Fc

i (x
t+j,k
C,i )−∇Fc

i (x̄
t+j
C )

2
∥+

E∥∇Fc
i (x̄

t+j
C )−∇Fc(x̄t+j

C )
2∥+E∥∇Fc(x̄t+j

C )
2∥
)

(a15)
≤ 4Kl

m

m−1

∑
i=0

l−1

∑
j=0

K−1

∑
k=0

(
σ2

L + L2E∥xt+j,k
C,i − x̄t+j

C
2
∥+ σ2

G +E∥∇Fc(x̄t+j
C )

2∥
)

(a16)
≤ 4

(
K2l2 + 5L2K3l2µ2

L

)
σ2

L + 4
(

K2l2 + 30L2K4l2µ2
L

)
σ2

G + 4
(

K2l+

30L2K3lµ2
L

) l−1

∑
j=0

E∥∇Fc(x̄t+j
C )

2∥ (A15)
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The inequality (a14) holds due to A8, and inequality (a15) follows from Assumptions 2 and A3.
Due to the bound on client drift, A11, note the inequality (a16). Substituting A12, A14, and A15 into
A5, observe that:

E
[

Fc(x̄t+l
C )

]
≤ Fc(x̄t

C)

+ µL

(
K
2
∥∇Fc(x̄t

C)
2∥+ 5K2µ2

LlL2

2
(σ2

L + 6Kσ2
G) + 15K3µ2

LlL2
l−1

∑
j=0
∥∇Fc(x̄t+j

C )
2∥
)

− µLK(l + 1)
2

∥∇Fc(x̄t
C)

2∥+ 2
(

Lµ2
L + µ3

LKL2(l − 1)
)((

K2l2 + 5L2K3l2µ2
L

)
σ2

L+

(
K2l2 + 30L2K4l2µ2

L

)
σ2

G +
(

K2l + 30L2K3lµ2
L

) l−1

∑
j=0

E∥∇Fc(x̄t+j
C )

2∥
)

Rearranging and simplifying the terms,

E
[

Fc(x̄t+l
C )

]
≤ Fc(x̄t

C)−
µLKl

2
∥∇Fc(x̄t

C)
2∥+ µL

(
5K2µ2

LlL2

2
(σ2

L + 6Kσ2
G)

)
+

2
(

Lµ2
L + µ3

LKL2(l − 1)
)((

K2l2 + 5L2K3l2µ2
L

)
σ2

L +
(

K2l2 + 30L2K4l2µ2
L

)
σ2

G

)
+

(
2
(

Lµ2
L + µ3

LKL2(l − 1)
)(

K2l + 30L2K3lµ2
L

)
+ 15K3µ3

LlL2

)
l−1

∑
j=0

E∥∇Fc(x̄t+j
C )

2∥

By iterating over t, note that,

∑
t∈[T]

E
[
∥∇Fc(x̄t

C)
2∥
]
≤ 2

µLKl

(
Fc(x̄0

C)− Fc(x̄∗C)
)
+

T
l

(
5Kµ2

LL2(σ2
L + 6Kσ2

G)

)
+

4T
l

(
LµL + µ2

LKL2(l − 1)
)((

Kl + 5L2K2lµ2
L

)
σ2

L +
(

Kl + 30L2K3lµ2
L

)
σ2

G

)
+

(
4
(

LµL + µ2
LKL2(l − 1)

)(
K + 30L2K2µ2

L

)
+ 30K2µ2

LL2

)

︸ ︷︷ ︸
Γ

∑
t

l−1

∑
j=0

E∥∇Fc(x̄t+j
C )

2

︸ ︷︷ ︸
y5

∥ (A16)

We bound the term y5 as follows. We start with bounding E∥∇Fc(x̄t+j
C )

2∥ for a particular t and j:

E∥∇Fc(x̄t+j
C )

2∥ = E∥∇Fc(x̄t+j
C )

2∥ −E∥∇Fc(x̄t+j−1
C )

2∥+E∥∇Fc(x̄t+j−1
C )

2∥ (A17)
(a17)
≤ 2E∥∇Fc(x̄t+j

C )−∇Fc(x̄t+j−1
C )

2∥+ 2E∥∇Fc(x̄t+j−1
C )

2∥
(a18)
≤ 2L2E∥x̄t+j

C − x̄t+j−1
C

2∥+ 2E∥∇Fc(x̄t+j−1
C )

2∥
(a19)
≤ 8L2µ2

L

((
K2 + 5L2K3µ2

L

)
σ2

L +
(

K2 + 30L2K4µ2
L

)
σ2

G

)

︸ ︷︷ ︸
B

+

(
8L2µ2

L
(
K2 + 30L2K3µ2

L
)
+ 2
)

︸ ︷︷ ︸
A

E∥∇Fc(x̄t+j−1
C )

2∥

(A18)
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The inequality (a17) is written as a consequence of having E∥a2∥ −E∥b2∥ ≤ 2E∥a− b2∥+E∥b2∥ for
any random variables a and b where a = ∇Fc(x̄t+j

C ) and b = ∇Fc(x̄t+j−1
C ) in the inequality. The term

(a18) is written based on Assumption 1. Due to A3, A15, and that l = 1 in this case, inequality (a19)

was yielded. Thus:

E∥∇Fc(x̄t+j
C )

2∥ ≤ B + AE∥∇Fc(x̄t+j−1
C )

2∥
Unrolling recursion on j, we achieve the following:

E∥∇Fc(x̄t+j
C )

2∥ ≤ B

(
Aj − 1
A− 1

)
+ AjE∥∇Fc(x̄t

C)
2∥

Iterating over j, we have:
l−1

∑
j=0

E∥∇Fc(x̄t+j
C )

2∥ ≤ B
l−1

∑
j=0

(
Aj − 1
A− 1

)

︸ ︷︷ ︸
λ1

+

(
Al − 1
A− 1

)

︸ ︷︷ ︸
λ2

E∥∇Fc(x̄t
C)

2∥ (A19)

Substituting A19 into A16:

∑
t∈[T]

E
[
∥∇Fc(x̄t

C)
2∥
]
≤ 2

µLKl

(
Fc(x̄0

C)− Fc(x̄∗C)
)
+

T
l

(
5Kµ2

LL2(σ2
L + 6Kσ2

G)

)
+

4T
l

(
LµL + µ2

LKL2(l − 1)
)((

Kl + 5L2K2lµ2
L

)
σ2

L +
(

Kl + 30L2K3lµ2
L

)
σ2

G

)
+

T
l

Γλ1 + Γλ2 ∑
t
E
[
∥∇Fc(x̄t

C)
2∥
]

(A20)

Choosing a proper µL ≤
1

lLK21.15l+1.85 , we have Γλ2 < 1. Thus:

min
t∈[T]

E
[
∥∇Fc(x̄t

C)
2∥
]
≤ 2

(
Fc(x̄0

C)− Fc(x̄∗C)
)

(1− Γλ2)µLKT
+

5Kµ2
LL2(σ2

L + 6Kσ2
G))

1− Γλ2
+

4LµL + 4µ2
LKL2(l − 1)

1− Γλ2

((
Kl + 5L2K2lµ2

L

)
σ2

L +
(

Kl + 30L2K3lµ2
L

)
σ2

G

)
+

Γλ1

1− Γλ2
(A21)

Theorem A2. Under Assumptions 1, 2, 3, and partial participation of clients due to strategy one, if µL ≤
1

lLK21.15l+1.85 , and t ≡ 0 mod l in Algorithm 1, the convergence rate of client model of Algorithm 1 satisfies:

min
t∈[T]

E∥∇Fc(x̄t
C)

2∥ ≤ 2
(

Fc(x̄0
C)− Fc(x̄∗C)

)

µLKT
+

(
5Kµ2

LL2 + 4µ2
LL2
(

K2l2 + 5L2K3l2µ2
L

)
+ LµL

( 1
n
+ 15K2L2µ2

L

))
σ2

L+

(
30K2µ2

LL2 + LµL

(
90K3L2µ2

L + 3K
)
+ 4µ2

LL2
(

K2l2 + 30L2K4l2µ2
L

))
σ2

G+

Γ′λ1

1− Γ′λ2
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Where

Γ′ = 4µ2
LL2
(

K2l + 30L2K3lµ2
L

)
+

LµL
l

(
90lK3L2µ2

L + 3K
)
+ 30K2µ2

LL2

and,

x̄∗C = argmin
x̄t

C ,t∈[T]
E
[
∥∇Fc(x̄t

C)
2∥
]

Corollary A2. Let µL ≤ 1
lLK21.15l+1.85

√
T

. Then, the convergence rate of the client-side model in Algorithm 1 is

min
t∈[T]

E
[
∥∇ f c(x̄t

C)
2∥
]
≤ O

( l√
T
+

1
T
√

T

)
. (A22)

Proof. In this proof, all the gradients are w.r.t. xC. Due to Assumption 1, for any x̄t+l
C and x̄t

C such that
t ∈ [T], we can write:

Fc(x̄t+l
C ) ≤ Fc(x̄t

C) +∇Fc(x̄t
C)
⊤(x̄t+l

C − x̄t
C) +

L
2
∥x̄t+l

C − x̄t
C

2∥ (A23)

Particularly, we consider the case when t ≡ 0 mod l from now on.
Also, note the global aggregation and client update rule in the Algorithm 1 with partial worker

participation,

x̄t+l
C =

1
n ∑

i∈[St+l ]

xt+l
C,i =

1
n ∑

i∈[St ]

xt
C,i −

µL
n

l−1

∑
j=0

∑
i∈[St+j ]

K−1

∑
k=0
∇̃Fc

i (x
t+j,k
C,i )

)
=

x̄t
C −

µL
n

l−1

∑
j=0

∑
i∈[St+j ]

K−1

∑
k=0
∇̃Fc

i (x
t+j,k
C,i )

(A24)

Thus,

x̄t+l
C − x̄t

C = −µL
n

l−1

∑
j=0

∑
i∈[St+j ]

K−1

∑
k=0
∇̃Fc

i (x
t+j,k
C,i )

(A25)

In the case of partial worker participation, there are two sources of randomness. One stems from the
stochastic gradient computation, while the other arises from randomly sampling the clients at round t.

Taking expectation of Fc(xt+1
C ) w.r.t. both types of randomness at round t + l − 1, and plugging

A24 into A23 note that:
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E
[

Fc(x̄t+l
C )

]
≤ Fc(x̄t

C) +
〈
∇Fc(x̄t

C),E
[
x̄t+l

C − x̄t
C

]〉
+

L
2
E∥x̄t+l

C − x̄t
C

2∥

E
[

Fc(x̄t+l
C )

]
≤ Fc(x̄t

C) + µL

〈
∇Fc(x̄t

C),E
[−1

n

l−1

∑
j=0

∑
i∈[St+j ]

K−1

∑
k=0

(
∇̃Fc

i (x
t+j,k
C,i )−∇Fc

i (x̄
t+j
C )

)]
〉

︸ ︷︷ ︸
A′1

−µL

〈
∇Fc(x̄t

C),E
[

K
n

l−1

∑
j=0

∑
i∈[St+j ]

∇Fc
i (x̄

t+j
C )

]〉

︸ ︷︷ ︸
A′2

+
Lµ2

L
2

E


∥ 1

n

l−1

∑
j=0

∑
i∈[St+j∥]

K−1

∑
k=0
∇̃Fc

i (x
t+j,k
C,i )

2



︸ ︷︷ ︸
A′3

(A26)

According to [15, Lemma 1], terms A′1 and A′2 will possess the same bounds as those of A1 and
A2. Thus:

A′1 ≤
K
2
∥∇Fc(x̄t

C)
2∥+ 5K2µ2

LlL2

2
(σ2

L + 6Kσ2
G) + 15K3µ2

LlL2
l−1

∑
j=0

E∥∇Fc(x̄t+j
C )

2∥ (A27)

A′2 ≤ −
µLK(l + 1)

2
∥∇Fc(x̄t

C)
2∥+ µ3

LKL2(l − 1)
2

(
4
(

K2l2 + 5L2K3l2µ2
L

)
σ2

L

+ 4
(

K2l2 + 30L2K4l2µ2
L

)
σ2

G + 4
(

K2l + 30L2K3lµ2
L

) l−1

∑
j=0

E∥∇Fc(x̄t+j
C )

2∥
)

(A28)

Note that [St] = {qt
1, ..., qt

n} is the index set demonstrating the sampled clients, which might
contain duplicate elements, as the sampling is with replacement. We now proceed to bound the term
A′3 following [15]:

A′3 = E


∥ 1

n

l−1

∑
j=0

∑
i∈[St+j ]

K−1

∑
k=0
∇̃Fc

i (x
t+j,k
C,i )

2

∥



=
1
n2E


∥

l−1

∑
j=0

n

∑
i=1

K−1

∑
k=0
∇̃Fc

qt+j
i
(xt+j,k

C,qt+j
i

)

2

∥



a′1=
1
n2E


∥

l−1

∑
j=0

n

∑
i=1

K−1

∑
k=0

(
∇̃Fc

qt+j
i
(xt+j,k

C,qt+j
i

)−∇Fc
qt+j

i
(xt+j,k

C,qt+j
i

)

)2

∥



+
1
n2E


∥

l−1

∑
j=0

n

∑
i=1

K−1

∑
k=0
∇Fc

qt+j
i
(xt+j,k

C,qt+j
i

)

2

∥



a′2≤ lKσ2
L

n
+

1
n2E


∥

l−1

∑
j=0

n

∑
i=1

K−1

∑
k=0
∇Fc

qt+j
i
(xt+j,k

C,qt+j
i

)

2

∥

 (A29)
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The equality a′1 follows from the fact that E
[
∥z2∥

]
= E

[
∥z−E[z]2∥

]
+ ∥E

[
z
]2∥ and the inequality a′2 is

due to assumption 3 and the explanation provided in A10. Now, let’s consider tj
i = ∑K−1

k=0 ∇Fc
i (x

t+j,k
C,i ),

then:

E


∥

l−1

∑
j=0

n

∑
i=1

K−1

∑
k=0
∇Fc

qt+j
i
(xt+j,k

C,qt+j
i

)

2

∥

 = E


∥

l−1

∑
j=0

n

∑
i=1

tj

qt+j
i

2

∥



= E




l−1

∑
j=0

n

∑
i=1
∥tj

qt+j
i

2∥+
l−1

∑
j=0

∑
i ̸=z,qt+j

i ,qt+j
z ∈[St+j ]

⟨tj

qt+j
i

, tj

qt+j
z
⟩




a′3= E
[

n
l−1

∑
j=0
∥tj

qt+j
1

2∥+ n(n− 1)
l−1

∑
j=0
⟨tj

qt+j
1

, tj

qt+j
2

⟩
]

=
n
m

l−1

∑
j=0

∑
i∈[S]
∥tj

i
2∥+ n(n− 1)

m2

l−1

∑
j=0

∑
i,z∈[S]

⟨tj
i , tj

z⟩

=
n
m

l−1

∑
j=0

∑
i∈[S]
∥tj

i
2∥+ n(n− 1)

m2

l−1

∑
j=0
∥ ∑

i∈[S]
tj
i
2∥

a′4≤ n2

m

l−1

∑
j=0

∑
i∈[S]
∥tj

i
2∥

︸ ︷︷ ︸
A′4

(A30)

Note that the equality a′3 is due to independent sampling with replacement as outlined by [15] and a′4
follows from A8. Now, we bound the term A′4 as follows:

l−1

∑
j=0

∑
i∈[S]
∥tj

i
2∥ =

l−1

∑
j=0

∑
i∈[S]
∥

K−1

∑
k=0
∇Fc

i (x
t+j,k
C,i )

2

∥ a′5= K
l−1

∑
j=0

∑
i∈[S]

K−1

∑
k=0
∥∇Fc

i (x
t+j,k
C,i )

2
∥

= K
l−1

∑
j=0

∑
i∈[S]

K−1

∑
k=0
∥∇Fc

i (x
t+j,k
C,i )−∇Fc

i (x
t+j
C ) +∇Fc

i (x
t+j
C )−∇Fc(xt+j

C ) +∇Fc(xt+j
C )

2
∥

a′6≤ 3KL2
l−1

∑
j=0

∑
i∈[S]

K−1

∑
k=0
∥xt+j,k

C,i − xt+j
C

2
∥+ 3mlK2σ2

G + 3mK2
l−1

∑
j=0
∥∇Fc(xt+j

C )
2∥

a′7≤ 15mlK3L2µ2
L
(
σ2

L + 6Kσ2
G
)
+ 3mlK2σ2

G

+
(
90mlK4L2µ2

L + 3mK2) l−1

∑
j=0

E∥∇Fc(x̄t+j
C )

2∥ (A31)

The term a′5 follows from the fact A8, the term a′6 stems from the fact A8 and the assumption 1. The
term a′7 is due to A11. Now, plugging A31 into A30 and A30 into A29, we have the following bound
on A′3:

E


∥ 1

n

l−1

∑
j=0

∑
i∈[St+j ]

K−1

∑
k=0
∇̃Fc

i (x
t+j,k
C,i )

2

∥



≤
( lK

n
+ 15lK3L2µ2

L

)
σ2

L +
(

90lK4L2µ2
L + 3lK2

)
σ2

G

+
(
90lK4L2µ2

L + 3K2) l−1

∑
j=0

E∥∇Fc(x̄t+j
C )

2∥ (A32)
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Plugging A27, A28 and A32 into A23, with rearrangement and simplification, observe that:

E∥∇Fc(x̄t
C)

2∥ ≤ 2
µLKl

(
−E

[
Fc(x̄t+l

C )
]
+ Fc(x̄t

C)
)
+

(
5Kµ2

LL2 + 4µ2
LL2
(

K2l2 + 5L2K3l2µ2
L

)
+ LµL

( 1
n
+ 15K2L2µ2

L

))
σ2

L+

(
30K2µ2

LL2 + LµL

(
90K3L2µ2

L + 3K
)
+ 4µ2

LL2
(

K2l2 + 30L2K4l2µ2
L

))
σ2

G+

(
4µ2

LL2
(

K2l + 30L2K3lµ2
L

)
+

LµL
l

(
90lK3L2µ2

L + 3K
)
+ 30K2µ2

LL2
)

︸ ︷︷ ︸
Γ′

l−1

∑
j=0

E∥∇Fc(x̄t+j
C )

2∥ (A33)

By iterating over t, note that,

∑
t∈[T]

E∥∇Fc(x̄t
C)

2∥ ≤ 2
µLKl

(
−E

[
Fc(x̄∗C)

]
+ Fc(x̄0

C)
)
+

T
l

(
5Kµ2

LL2 + 4µ2
LL2
(

K2l2 + 5L2K3l2µ2
L

)
+ LµL

( 1
n
+ 15K2L2µ2

L

))
σ2

L+

T
l

(
30K2µ2

LL2 + LµL

(
90K3L2µ2

L + 3K
)
+ 4µ2

LL2
(

K2l2 + 30L2K4l2µ2
L

))
σ2

G+

Γ′∑
t

l−1

∑
j=0

E∥∇Fc(x̄t+j
C )

2∥ (A34)

Due to A19, observe that:

∑
t∈[T]

E∥∇Fc(x̄t
C)

2∥ ≤ 2
µLKl

(
−E

[
Fc(x̄∗C)

]
+ Fc(x̄0

C)
)
+

T
l

(
5Kµ2

LL2 + 4µ2
LL2
(

K2l2 + 5L2K3l2µ2
L

)
+ LµL

( 1
n
+ 15K2L2µ2

L

))
σ2

L+

T
l

(
30K2µ2

LL2 + LµL

(
90K3L2µ2

L + 3K
)
+ 4µ2

LL2
(

K2l2 + 30L2K4l2µ2
L

))
σ2

G+

T
l

Γ′λ1 + Γ′λ2 ∑
t
E
[
∥∇Fc(x̄t

C)
2∥
]

(A35)

We let µL ≤ 1
lLK21.15l+1.85 , thus:

min
t∈[T]

E∥∇Fc(x̄t
C)

2∥ ≤ 2
(

Fc(x̄0
C)− Fc(x̄∗C)

)

µLKT
+

(
5Kµ2

LL2 + 4µ2
LL2
(

K2l2 + 5L2K3l2µ2
L

)
+ LµL

( 1
n
+ 15K2L2µ2

L

))
σ2

L+

(
30K2µ2

LL2 + LµL

(
90K3L2µ2

L + 3K
)
+ 4µ2

LL2
(

K2l2 + 30L2K4l2µ2
L

))
σ2

G+

Γ′λ1

1− Γ′λ2
(A36)

This completes the proof.
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Appendix A.2. Server-Side Model Convergence

Theorem A3. Under Assumptions 1, 2, 3, and full participation of clients, if µ ≤ 1
8Lm2 , t ≡ 0 mod l, the

convergence rate of the server model of Algorithm 1 satisfies:

min
t

E∥∇Fs(xt
S)

2∥ ≤
2l
(

Fs(x0
S)− Fs(x∗S)

)

µ(2m− 3)T
+

Lµm2

2m− 3

(
9.2σ2

L + 13.2σ2
G

)

Corollary A3. Let µ ≤ 1
Lm2
√

T
, then the convergence rate of the server-side model is:

min
t∈[T]

E∥∇Fs(xt
S)

2∥ ≤ O
( l√

T

)

Proof. Due to Assumption 1, for any xt+l
S and xt

S, it can be written that:

Fs(xt+l
S ) ≤ Fs(xt

S) +∇Fs(xt
S)
⊤(xt+l

S − xt
S) +

L
2
∥xt+l

S − xt
S

2∥ (A37)

Also, note the client forward-propagation and server model update rules in the Algorithm 1,

xt
S,i+1 = xt

S,i − µ∇̃Fs
i (x

t
S,i) (A38)

Thus, putting xt
S = xt

S,0 and xt+l
S = xt

S,m, note that:

xt+l
S − xt

S = −µ
m−1

∑
i=0
∇̃Fs

i (x
t
S,i) (A39)

Taking expectation with respect to randomness at round t, i.e., ¸[t] ∆
= [ξτ

i ]i∈[N],τ∈[t], and plugging A38
into A37 note that:

E
[

Fs(xt+l
S )

]
≤ Fs(xt

S)− µ
〈
∇Fs(xt

S),E
[ m−1

∑
i=0
∇̃Fs

i (x
t
S,i)
]〉

+
Lµ2

2
E∥

m−1

∑
i=0
∇̃Fs

i (x
t
S,i)

2

∥

E
[

Fs(xt+l
S )

]
≤ Fs(xt

S)−µ

〈
∇Fs(xt

S),E
[

m−1

∑
i=0

(
∇̃Fs

i (x
t
S,i)−∇Fs

i (x
t
S)
)
]〉

︸ ︷︷ ︸
B1

−µ

〈
∇Fs(xt

S),E
[

m−1

∑
i=0
∇Fs

i (x
t
S)

]〉

︸ ︷︷ ︸
B2

+
Lµ2

2
E∥

m−1

∑
i=0
∇̃Fs

i (x
t
S,i)

2

∥
︸ ︷︷ ︸

B3

(A40)

The term B1 will be bounded as follows:
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− µ

〈
∇Fs(xt

S),E
[
E
[

m−1

∑
i=0

(
∇̃Fs

i (x
t
S,i)−∇Fs

i (x
t
S)
)
∣∣∣∣∣ξ
]]〉

(b1)
=

µ

2
E∥∇Fs(xt

S)
2∥+

µ

2
E∥

m−1

∑
i=0

(
∇Fs

i (x
t
S,i)−∇Fs

i (x
t
S)
)2

∥ − µ

2
E∥

m−1

∑
i=0

(
∇Fs

i (x
t
S,i)−∇Fs

i (x
t
S)
)
+∇Fs(xt

S)

2

∥

(b2)
≤ µ

2
E∥∇Fs(xt

S)
2∥+ µ

2
E∥

m−1

∑
i=0

(
∇Fs

i (x
t
S,i)−∇Fs

i (x
t
S)
)2

∥

(b3)
≤ µ

2
E∥∇Fs(xt

S)
2∥+ mµ

2

m−1

∑
i=0

E∥
(
∇Fs

i (x
t
S,i)−∇Fs

i (x
t
S)
)2∥

(b4)
≤ µ

2
E∥∇Fs(xt

S)
2∥+ mµL2

2

m−1

∑
i=0

E∥xt
S,i − xt

S
2∥ (A41)

The equality (b1) is due to −⟨a, b⟩ = 1
2
(
∥a2∥ + ∥b2∥ − ∥a + b2∥

)
for any two vectors a and b.

The inequality (b2) is clear as we dropped a negative term, inequality (b3) stems from the fact that

E∥∑n
i zi

2∥ ≤ n ∑i E
[
∥zi

2∥
]

holds for any random variable zi, and the inequality (b4) is due to 1.

The term B2 will be bounded as follows:

− µ

〈
∇Fs(xt

S),E
[

m−1

∑
i=0
∇Fs

i (x
t
S)

]〉
(b5)
= −mµE∥∇Fs(xt

S)
2∥ (A42)

Note that the equality (b5) holds based on the definition 3.

The term B3 will be bounded as below:

E∥
m−1

∑
i=0
∇̃Fs

i (x
t
S,i)

2

∥
(b6)
≤ m

m−1

∑
i=0

E∥∇̃Fs
i (x

t
S,i)

2∥

= m
m−1

∑
i=0

E∥∇̃Fs
i (x

t
S,i)−∇Fs

i (x
t
S,i) +∇Fs

i (x
t
S,i)

2∥

(b7)
≤ 2m

m−1

∑
i=0

E∥∇̃Fs
i (x

t
S,i)−∇Fs

i (x
t
S,i)

2∥+ 2m
m−1

∑
i=0

E∥∇Fs
i (x

t
S,i)

2∥

(b8)
≤ 2m2σ2

L + 2m
m−1

∑
i=0

E∥∇Fs
i (x

t
S,i)−∇Fs(xt

S,i) +∇Fs(xt
S,i)−∇Fs(xt

S) +∇Fs(xt
S)

2∥

(b9)
≤ 2m2σ2

L + 6m
m−1

∑
i=0

E∥∇Fs
i (x

t
S,i)−∇Fs(xt

S,i)
2∥+ 6m

m−1

∑
i=0

E∥∇Fs(xt
S,i)−∇Fs(xt

S)
2∥+

6m
m−1

∑
i=0

E∥∇Fs(xt
S)

2∥

(b10)
≤ 2m2σ2

L + 6m2σ2
G + 6mL2

m−1

∑
i=0

E∥xt
S,i − xt

S
2

︸ ︷︷ ︸
B4

∥+ 6m2E∥∇Fs(xt
S)

2∥ (A43)
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The inequalities (b6), (b7), and (b9) due to the same reason (b3) holds above. The inequalities (b8) and
(b10) hold due to Assumptions 3. The term B4 is bounded similar to [13, Lemma 3]:

E∥xt
S,i − xt

S
2∥

(b11)
≤ E∥xt

S,i−1∥ − xt
S − µ∇̃Fs

i−1(x
t
S,i−1)

2

= E∥xt
S,i−1∥ − xt

S
2
+E∥µ∇̃Fs

i−1(x
t
S,i−1)

2∥+ 2
〈

xt
S,i−1 − xt

S,−µ∇̃Fs
i−1(x

t
S,i−1)

〉

(b12)
≤ (1 +

1
2m− 1

)E∥xt
S,i−1 − xt

S
2∥+ (1 + 2m)E∥µ∇̃Fs

i−1(x
t
S,i−1)

2∥

= (1 +
1

2m− 1
)E∥xt

S,i−1 − xt
S

2∥+ (1 + 2m)µ2E

∥∥∥∥∥∇̃Fs
i−1(x

t
S,i−1)−∇Fs

i−1(x
t
S,i−1)+

∇Fs
i−1(x

t
S,i−1)−∇Fs

i−1(x
t
S) +∇Fs

i−1(x
t
S)−∇Fs(xt

S) +∇Fs(xt
S)

∥∥∥∥∥

2

(b13)
≤ (1 +

1
2m− 1

)E∥xt
S,i−1 − xt

S
2∥+ 4(1 + 2m)µ2E∥∇̃Fs

i−1(x
t
S,i−1)−∇Fs

i−1(x
t
S,i−1)

2∥+

4(1 + 2m)µ2E∥∇Fs
i−1(x

t
S,i−1)−∇Fs

i−1(x
t
S)

2∥+ 4(1 + 2m)µ2E∥∇Fs
i−1(x

t
S∥)−∇Fs(xt

S)
2

+ 4(1 + 2m)µ2E∥∇Fs(xt
S)

2∥
(b14)
≤ (1 +

1
2m− 1

+ 4(1 + 2m)µ2L2)E∥xt
S,i−1 − xt

S
2∥+ 4(1 + 2m)µ2(σ2

L + σ2
G)+

4(1 + 2m)µ2E∥∇Fs(xt
S)

2∥

The A38 implies the inequality (b11). The inequality (b12) holds true based on 2⟨a, b⟩ ≤ 1
n−1∥a2∥+

n∥b2∥ for any two vectors a, b and positive number n. The inequality (b13) follows from the previously
mentioned fact at the inequality (b3), and the inequality (b14) is based on Assumptions 3 and 1. Given
µ ≤ 1

2L(2m+1) and by averaging over the clients, observe that:

1
m

m−1

∑
i=0

E∥xt
S,i − xt

S
2∥ ≤ (1 +

4m
4m2 − 1

)
1
m

m−1

∑
i=1

E∥xt
S,i−1 − xt

S
2∥+ 4(1 + 2m)µ2(σ2

L + σ2
G)+

4(1 + 2m)µ2E∥∇Fs(xt
S)

2∥

≤ (1 +
1

m− 1
)

1
m

m−1

∑
i=1

E∥xt
S,i−1 − xt

S
2∥+ 4(1 + 2m)µ2(σ2

L + σ2
G) + 4(1 + 2m)µ2E∥∇Fs(xt

S)
2∥

Unrolling the recursion, following [13, Lemma 3], it is inferred that:

1
m

m−1

∑
i=0

E∥xt
S,i − xt

S
2∥

≤
m−1

∑
j=0

(1 +
1

m− 1
)j
(

4(1 + 2m)µ2(σ2
L + σ2

G) + 4(1 + 2m)µ2E∥∇Fs(xt
S)

2∥
)

≤ (m− 1)×
[(

1 +
1

m− 1

)m
− 1

]
×
[

4(1 + 2m)µ2(σ2
L + σ2

G) + 4(1 + 2m)µ2E∥∇Fs(xt
S)

2∥
]

≤ 16(m + 2m2)µ2(σ2
L + σ2

G) + 16(m + 2m2)µ2E∥∇Fs(xt
S)

2∥ (A44)
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Note that in the above inequality,
(

1 + 1
m−1

)m
− 1 ≤ 4 for m > 1.

Plugging A41, A42, A43 and A44 into A40, observe that :

E
[

Fs(xt+l
S )

]
≤ Fs(xt

S) +
1
2

(
16L2µ3m3(1 + 2m) + 2Lµ2m2 + 96L3µ4m3(1 + 2m)

)
σ2

L

+
1
2

(
16L2µ3m3(1 + 2m) + 6Lµ2m2 + 96L3µ4m3(1 + 2m)

)
σ2

G+

1
2

(
− 2µm + 6Lm2µ2 + µ + 96L3µ4m3(1 + 2m) + 16L2µ3m3(1 + 2m)

)
E∥∇Fs(xt

S)
2∥

(b15)
≤ Fs(xt

S) +
µ(3− 2m)

2
E∥∇Fs(xt

S)
2∥+ Lµ2m2

2

(
9.2σ2

L + 13.2σ2
G

)

Rearranging the terms, and summing over t, observe that:

∑
t
E∥∇Fs(xt

S)
2∥ ≤

2
(

Fs(x0
S)− Fs(x∗S)

)

µ(2m− 3)
+ ∑

t

Lµm2

2m− 3

(
9.2σ2

L + 13.2σ2
G

)
(A45)

Assuming there are T global rounds overall,

min
t

E∥∇Fs(xt
S)

2∥ ≤
2l
(

Fs(x0
S)− Fs(x∗S)

)

µ(2m− 3)T
+

Lµm2

2m− 3

(
9.2σ2

L + 13.2σ2
G

)
(A46)

Theorem A4. Under Assumptions 1, 2, 3, and full participation of clients, if µ ≤ 1
8L2m2 , t ≡ 0 mod l, the

convergence rate of the server model of Algorithm 1 satisfies:

min
t

E∥∇Fs(xt
S)

2∥ ≤
l
(

Fs(x0
S)− Fs(x∗S)

)

µ(m− 2)T
+

Lµm2

m− 2

(
7σ2

L + 7σ2
G

)

Corollary A4. Let µ ≤ 1
L2m2

√
T

, then the convergence rate of the server-side model is:

min
t∈[T]

E∥∇Fs(xt
S)

2∥ ≤ O
( l√

T

)

Proof. Due to Assumption 1, for any xt+l
S and xt

S, it can be written that:

Fs(xt+l
S ) ≤ Fs(xt

S) +∇Fs(xt
S)
⊤(xt+l

S − xt
S) +

L
2
∥xt+l

S − xt
S

2∥ (A47)

Also, note the client forward-propagation and server model update rules in the Algorithm 1,

xt
S,i+1 = xt

S,i − µ∇̃Fs
i (x

t
S,i) (A48)

Thus, putting xt
S = xt

S,0 and xt+l
S = xt

S,m, note that:

xt+l
S − xt

S = −µ
m−1

∑
i=0
∇̃Fs

i (x
t
S,i) (A49)

Taking expectation for both types of randomness, i.e., randomness due to stochastic gradients and due
to sampling of clients, at round t, and plugging A48 into A47 note that:
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E
[

Fs(xt+l
S )

]
≤ Fs(xt

S)− µ
〈
∇Fs(xt

S),E
[

∑
i∈[St ]

∇̃Fs
i (x

t
S,i)
]〉

+
Lµ2

2
E∥ ∑

i∈[St ]

∇̃Fs
i (x

t
S,i)

2∥

E
[

Fs(xt+l
S )

]
≤ Fs(xt

S)−µ

〈
∇Fs(xt

S),E
[

∑
i∈[St ]

(
∇̃Fs

i (x
t
S,i)−∇Fs

i (x
t
S)
)
]〉

︸ ︷︷ ︸
B1

−µ

〈
∇Fs(xt

S),E
[

∑
i∈[St ]

∇Fs
i (x

t
S)

]〉

︸ ︷︷ ︸
B2

+
Lµ2

2
E∥ ∑

i∈[St ]

∇̃Fs
i (x

t
S,i)

2∥
︸ ︷︷ ︸

B3

(A50)

Note that [St] = {qt
1, ..., qt

n} is the index set demonstrating the sampled clients, which might contain
duplicate elements, as the sampling is with replacement. The term B1 will be bounded as follows:

− µ

〈
∇Fs(xt

S),E
[
E
[

∑
i∈[St ]

(
∇̃Fs

i (x
t
S,i)−∇Fs

i (x
t
S)
)
∣∣∣∣∣ξ
]]〉

(b1)
=

µ

2
E∥∇Fs(xt

S)
2∥+

µ

2
E∥ ∑

i∈[St ]

(
∇Fs

i (x
t
S,i)−∇Fs

i (x
t
S)
)2∥ − µ

2
E∥ ∑

i∈[St ]

(
∇Fs

i (x
t
S,i)−∇Fs

i (x
t
S)
)
+∇Fs(xt

S)
2∥

(b2)
≤ µ

2
E∥∇Fs(xt

S)
2∥+ µ

2
E∥ ∑

i∈[St ]

(
∇Fs

i (x
t
S,i)−∇Fs

i (x
t
S)
)2∥

(b3)
≤ µ

2
E∥∇Fs(xt

S)
2∥+ µ

2
E∥

n

∑
i=1

(
∇Fs

qt
i
(xt

S,qt
i
)−∇Fs

qt
i
(xt

S)
)2

∥

(b4)
≤ µ

2
E∥∇Fs(xt

S)
2∥+ nµL2

2

n

∑
i=1

E∥xt
S,qt

i
− xt

S
2∥ (A51)

The equality (b1) is due to −⟨a, b⟩ = 1
2
(
∥a2∥ + ∥b2∥ − ∥a + b2∥

)
for any two vectors a and b.

The inequality (b2) is clear as we dropped a negative term, inequality (b4) stems from the fact that

E∥∑n
i zi

2∥ ≤ n ∑i E
[
∥zi

2∥
]

holds for any random variable zi, and 1.
The term B2 will be bounded as follows:

− µ

〈
∇Fs(xt

S),E
[

∑
i∈[St ]

∇Fs
i (x

t
S)

]〉
(b5)
= −nµE∥∇Fs(xt

S)
2∥ (A52)

Note that equality (b5) holds based on the definition 3.

The term B3 will be bounded as below:

E∥ ∑
i∈[St ]

∇̃Fs
i (x

t
S,i)

2∥
(b6)
≤ E∥ ∑

i∈[St ]

∇Fs
i (x

t
S,i)

2∥+E∥ ∑
i∈[St ]

(
∇̃Fs

i (x
t
S,i)−∇Fs

i (x
t
S,i)
)2∥

(b7)
≤ nσ2

L +E∥
n

∑
i=1
∇Fs

qt
i
(xt

S,qt
i
)

2

∥

(A53)

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 4 September 2024 doi:10.20944/preprints202409.0335.v1

https://doi.org/10.20944/preprints202409.0335.v1


24 of 27

Now, let’s consider ti = ∇Fs
i (x

t
S,i) following the ideas of [15] for this part:

E
[
∥

n

∑
i=1
∇Fs

qt
i
(xt

S,qt
i
)

2

∥
]
= E

[
∥

n

∑
i=1

tqt
i

2

∥
]

= E




n

∑
i=1
∥tqt

i

2∥+ ∑
i ̸=z,qt

i ,q
t
z∈[St ]

⟨tqt
i
, tqt

z
⟩



b8= E
[
n∥tqt

1

2∥+ n(n− 1)⟨tqt
1
, tqt

2
⟩
]

=
n
m ∑

i∈[S]
∥ti

2∥+ n(n− 1)
m2 ∑

i,z∈[S]
⟨ti, tz⟩

=
n
m ∑

i∈[S]
∥ti

2∥+ n(n− 1)
m2 ∥ ∑

i∈[S]
ti

2∥

b9≤ n2

m ∑
i∈[S]
∥ti

2∥
︸ ︷︷ ︸

B4

(A54)

Note that the equality b8 is due to independent sampling with replacement as outlined by [15]. The
inequality b9 follows from A8. We bound the term B4 as follows:

∑
i∈[S]
∥ti

2∥ =

=
m−1

∑
i=0

E∥∇Fs
i (x

t
S,i)

2∥

=
m−1

∑
i=0

E∥∇Fs
i (x

t
S,i)−∇Fs(xt

S,i) +∇Fs(xt
S,i)−∇Fs(xt

S) +∇Fs(xt
S)

2∥

≤ 3
m−1

∑
i=0

E∥∇Fs
i (x

t
S,i)−∇Fs(xt

S,i)
2∥+ 3

m−1

∑
i=0

E∥∇Fs(xt
S,i)−∇Fs(xt

S)
2∥+

3
m−1

∑
i=0

E∥∇Fs(xt
S)

2∥

(b10)
≤ 3mσ2

G + 3L2
m−1

∑
i=0

E∥xt
S,i − xt

S
2∥

︸ ︷︷ ︸
B5

+3mE∥∇Fs(xt
S)

2∥ (A55)

The inequality (b10) holds due to Assumptions 3.
The term B5 is bounded similar to [13, Lemma 3]:

E∥xt
S,i − xt

S
2∥

(b11)
≤ E∥xt

S,i−1 − xt
S − µ∇̃Fs

i−1(x
t
S,i−1)

2∥
= E∥xt

S,i−1 − xt
S

2∥+E∥µ∇̃Fs
i−1(x

t
S,i−1)

2∥+ 2
〈

xt
S,i−1 − xt

S,−µ∇̃Fs
i−1(x

t
S,i−1)

〉
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(b12)
≤ (1 +

1
2m− 1

)E∥xt
S,i−1 − xt

S
2∥+ (1 + 2m)E∥µ∇̃Fs

i−1(x
t
S,i−1)

2∥

= (1 +
1

2m− 1
)E∥xt

S,i−1 − xt
S

2∥+ (1 + 2m)µ2E

∥∥∥∥∥∇̃Fs
i−1(x

t
S,i−1)−∇Fs

i−1(x
t
S,i−1)+

∇Fs
i−1(x

t
S,i−1)−∇Fs

i−1(x
t
S) +∇Fs

i−1(x
t
S)−∇Fs(xt

S) +∇Fs(xt
S)

∥∥∥∥∥

2

(b13)
≤ (1 +

1
2m− 1

)E∥xt
S,i−1 − xt

S
2∥+ 4(1 + 2m)µ2E∥∇̃Fs

i−1(x
t
S,i−1)−∇Fs

i−1(x
t
S,i−1)

2∥+

4(1 + 2m)µ2E∥∇Fs
i−1(x

t
S,i−1)−∇Fs

i−1(x
t
S)

2∥+ 4(1 + 2m)µ2E∥∇Fs
i−1(x

t
S∥)−∇Fs(xt

S)
2

+ 4(1 + 2m)µ2E∥∇Fs(xt
S)

2∥
(b14)
≤ (1 +

1
2m− 1

+ 4(1 + 2m)µ2L2)E∥xt
S,i−1 − xt

S
2∥+ 4(1 + 2m)µ2(σ2

L + σ2
G)+

4(1 + 2m)µ2E∥∇Fs(xt
S)

2∥

The A48 implies the inequality (b11). The inequality (b12) holds true based on 2⟨a, b⟩ ≤ 1
n−1∥a2∥+

n∥b2∥ for any two vectors a, b and positive number n. The inequality (b13) follows from the previously
mentioned fact at the inequality (b3), and the inequality (b14) is based on Assumptions 3 and 1.

Given µ ≤ 1
2L(2m+1) and by averaging over the clients, observe that:

1
m

m−1

∑
i=0

E∥xt
S,i − xt

S
2∥ ≤ (1 +

4m
4m2 − 1

)
1
m

m−1

∑
i=1

E∥xt
S,i−1 − xt

S
2∥+ 4(1 + 2m)µ2(σ2

L + σ2
G)+

4(1 + 2m)µ2E∥∇Fs(xt
S)

2∥

≤ (1 +
1

m− 1
)

1
m

m−1

∑
i=1

E∥xt
S,i−1 − xt

S
2∥+ 4(1 + 2m)µ2(σ2

L + σ2
G) + 4(1 + 2m)µ2E∥∇Fs(xt

S)
2∥ (A56)

Unrolling the recursion, following [13, Lemma 3], it is inferred that:

1
m

m−1

∑
i=0

E∥xt
S,i − xt

S
2∥

≤
m−1

∑
j=0

(1 +
1

m− 1
)j
(

4(1 + 2m)µ2(σ2
L + σ2

G) + 4(1 + 2m)µ2E∥∇Fs(xt
S)

2∥
)

≤ (m− 1)×
[(

1 +
1

m− 1

)m
− 1

]
×
[

4(1 + 2m)µ2(σ2
L + σ2

G) + 4(1 + 2m)µ2E∥∇Fs(xt
S)

2∥
]

≤ 16(m + 2m2)µ2(σ2
L + σ2

G) + 16(m + 2m2)µ2E∥∇Fs(xt
S)

2∥ (A57)

Note that in the above inequality,
(

1 + 1
m−1

)m
− 1 ≤ 4 for m > 1.

Plugging A51, A52, A55 and A57 into A50, observe that
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E
[

Fs(xt+l
S )

]
≤ Fs(xt

S) +
1
2

(
16L4(n3 + 2n4)µ3 + Lnµ2 + 48L3n2µ4(m + 2m2)

)
σ2

L

+
1
2

(
16L4(n3 + 2n4)µ3 + 3Lµ2n2 + 48L3n2µ4(m + 2m2)

)
σ2

G

+
1
2

(
µ− 2nµ + 16L4(n3 + 2n4)µ3 + 3Lµ2n2 + 48L3n2µ4(m + 2m2)

)
E∥∇Fs(xt

S)
2∥

(b15)
≤ Fs(xt

S) +
µ(4− 2m)

2
E∥∇Fs(xt

S)
2∥+ Lµm2

2

(
14σ2

L + 14σ2
G

)

(A58)

After simplifications, the inequality b15 holds as µ ≤ 1
8L2m2 . Rearranging the terms, and summing

over t, observe that:

∑
t
E∥∇Fs(xt

S)
2∥ ≤ Fs(x0

S)− Fs(x∗S)
µ(m− 2)

+ ∑
t

Lµm2

m− 2

(
7σ2

L + 7σ2
G

)
(A59)

Assuming there are T global rounds overall,

min
t

E∥∇Fs(xt
S)

2∥ ≤
l
(

Fs(x0
S)− Fs(x∗S)

)

µ(m− 2)T
+

Lµm2

m− 2

(
7σ2

L + 7σ2
G

)
(A60)

This concludes the proof.
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