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Abstract: Parkinson’s disease (PD) is the second most common neurodegenerative disorder, entailing several
motor-related symptoms that contribute to a reduced quality of life in affected subjects. Recent advances in
wearable technologies and computing resources have shown great potential for the assessment of PD-related
symptoms. However, the potential applications (e.g., early diagnosis, prognosis and monitoring) and key features
of digital biomarkers for motor symptoms of PD (DB-MS-PD) have not been comprehensively studied. This study
aims to provide a state-of-the-art review of current digital biomarker definitions for PD, focusing on the use
of wearable devices. This review systematically examines research articles from 2012 to 2024, focusing on key
features and recent technologies in PD research. A total of 22 studies were included and thoroughly analyzed.
Results indicate that DB-MS-PD can accurately distinguish patients with PD (PwPD) from healthy controls (HC),
assess disease severity or treatment response, and detect motor symptoms. Large sample sizes, proper validation,
non-invasive devices, and ecological monitoring make DB-MS-PD promising for improving PD management.
Challenges include sample and method heterogeneity and lack of public datasets. Future studies can leverage

evidence of the current literature to provide more effective and ready-to-use digital tools for monitoring PD.

Keywords: Parkinson’s disease; digital biomarkers; motor symptoms; wearables; body-worn sensors; machine

learning

1. Introduction

Parkinson’s disease (PD) is a chronic neurological disorder caused by the progressive loss of
dopamine-producing cells. Dopamine is a neurotransmitter involved, among other things, in the
organisation of movement and whose effect is to strenghten muscular activation [1,2]. PD is the second
most common neurodegenerative disease after Alzheimer’s dementia and mainly affects elderly
people. The increasingly elderly population has led to an increase in the number of subjects affected
by PD, reaching 8.5 million patients in 2019 [3]. Moreover, projections indicate a substantial increase,
with the global patient population anticipated to 12 million in 2040 [4].

PD include motor symptoms such as tremor, bradykinesia, rigidity, or postural instability; and
non-motor symptoms such as as loss of smell, constipation, fatigue, anxiety, depression, and REM
sleep behavior disorder, which can occur years before the diagnosis [5-7]. These symptoms vary from
patient to patient, as well as over the course of the disease [8], gradually reducing patients” quality of
life [9].
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The diagnosis of PD is complex, as there is no pathognomonic sign or biomarker to confirm the
disease [2]. Instead, the diagnosis is based on a combination of medical history, clinical examination
and the presence of specific motor and non-motor symptoms [10]. The diagnosis process involves an
evaluation by neurologists, and may be difficult especially in the early stages of the disease, when
symptoms may be mild or non-specific. Therefore, it is important to monitor symptoms regularly to
appropriately adjust the treatment plan [11].

Currently, there is no cure that can stop or reverse the disease progression. Instead, several
symptomatic therapies are available, which can guarantee a good control of the disease for several
years. The most common options are drug treatment or, in severe cases, surgical interventions (HIFU,
intracranial implants or duodenal pumps, among others) [12]. The most widely used drug is Levodopa,
a metabolic precursor of dopamine [13], which is effective in controlling symptoms during the first
years of treatment. However, after several years of Levodopa treatment, motor complications such
as dyskinesias (i.e., involuntary movements) and motor fluctuations may occur, and the patient may
switch between periods of adequate and poor control of the disease [14].

At present, the most commonly used scale for evaluating PD progression is the Movement Disor-
der Society-Sponsored Revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS) [15].
This scale is designed to evaluate both motor and non-motor symptoms during a clinical examination,
using a series of questions and guided exercises performed by the patient.

The fluctuating nature of PD symptoms during the day [16] and the infrequent clinical consul-
tations (6-9 months apart [17]) make it difficult to accurately assess the disease. Furthermore, the
correct application and interpretation of this scale depend on the doctor’s experience. The combination
of these variables complicates the accuracy of therapeutic and pharmacological adjustments, often
leading to complications derived from over- or under-medication [18].

In recent years, the emergence of new technologies, such as wearable sensors, has gained sig-
nificant attention in the management of PD. These devices offer the potential to monitor various
aspects of PD symptoms and motor function [19]. Wearable sensors enable continuous, objective, and
long-term data collection and monitoring in a variety of contexts, including clinical and free-living
environments [20].

Wearable devices can collect a large amount of data, which could give rise to digital biomarkers
(i.e., quantitative and sensitive measurements of disease progression) for PD assessment, providing a
wealth of data that traditional clinical assessments cannot capture. This extensive data collection can
enable better understanding and management of the disease, facilitate personalized treatment, and
support large-scale studies that contribute to the development of new therapies and interventions [21].

1.1. Review Objectives

This article aims to provide the reader with a summary of the trends and techniques used by the
scientific community in the use of wearable technologies to acquire data and define digital biomarkers
for motor symptoms, thus providing a review of the current status of the defined digital biomarkers.

Recent reviews have investigated the potential of digital biomarkers in PD, providing useful
insights from different perspectives. A summary of biomarkers (speech, gait, handwriting) with
potential clinical applications in PD was provided in [22], with a particular focus on validation,
regulatory approval, ethical, legal, and social aspects. In [23], the potential of biomarkers extracted
from facial expression analysis and eye tracking were investigated for early diagnosis and assessment
of cognitive decline. Nevertheless, to the best of our knowledge, no review studies have focused on
digital biomarkers for motor symptoms of PD (DB-MS-PD) obtained through wearable devices, as
well as their key features, encompassing sensor settings, experimental procedures, and data analysis
methods.

This study reviews relevant research articles published between 2012 and 2024, focusing on
digital biomarkers defined for PD through motion analysis using data collected through wearable
devices. In specific, the objective of this study is to provide a comprehensive overview of sensors’
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settings, experimental procedures and data analysis methods that allow the extraction of relevant
DB-MS-PD. Ultimately, comparative analysis of various studies can facilitate the identification of
promising and minimally invasive systems (both hardware and software) for the supervised and
unsupervised assessment of PD.

The remainder of the document is organized as follows. Section 2 presents an overview of the
wearable devices and digital biomarkers. Section 3 describes the methodology used for the systematic
review, including the search strategy used to find relevant articles. Section 4 presents the results of this
literature review. Section 5 provides a discussion of the main findings in the analyzed articles. Finally,
the conclusions of this work are given in Section 6.

2. Background

2.1. Wearable Devices

The term wearable devices (wearables) refers to compact electronic devices as well as wireless-
enabled computers that are seamlessly integrated into gadgets, accessories, or clothing designed to be
worn on the human body. It also includes more invasive devices such as microchips or smart tattoos,
or commercial and widespread devices including smart glasses, smartphones, smartwatches, smart
clothing, and smart shoes, among others [24,25].

In recent years, wearable devices have shown the potential to overcome certain limitations
of the traditional healthcare and medical assessments by harnessing digital and mobile health (m-
health) technologies to progress towards efficient and personalized healthcare [26]. Moreover, these
devices can facilitate long-term monitoring outside clinical settings, offering a discreet and comfortable
solution [27].

Wearable devices have the ability to collect comprehensive health information while functioning
as they were originally designed, like fashion or productivity devices. The collected data can be
analysed using standard protocols by artificial intelligence, with the aim of identifying possible
predictions of health problems [28], as well as recognising activities and detecting the context in which
these activities are performed [29,30].

In the realm of monitoring and management of neurological disorders, wearable devices have
emerged as a highly effective tool [31]. These devices allow for continuous and non-invasive mon-
itoring of a range of physiological and behavioral parameters, both in medical consultation and in
free-living conditions [32-34]. Wearables have the possibility to provide an abundance of data that
can support tasks such as early detection, optimization of treatment, and management of neurological
disorders [35]. However, it is important to acknowledge that despite the potential advantages of this
technology, their application should be complemented by professional medical supervision and should
complement traditional clinical evaluations [36].

In PD, wearable devices have been used to assess various symptoms. In [37], commercial devices
used for PD management were evaluated, considering their validation process and clinical applications
along with the strengths and weaknesses of each. In [38] the authors explored the wearable devices
used for PD in hospitals, concluding that the most common types of wearable devices include inertial
measurement units and smartwatches. In [39] a comprehensive review was performed on how
wearable sensors can support tasks such as early diagnosis, human motion analysis, motor fluctuations,
and home and long-term monitoring for PwPD. However, although wearable devices hold promise
for improving PD management, their adoption in the clinical setting is limited by problems such as
inadequate technical and clinical validation [40].

2.2. Digital Biomarkers

The term biomarker refers to objective medical signs that can be accurately and reproducibly mea-
sured outside the patient. In contrast, medical symptoms are health or disease indications perceived by
patients [41]. Biomarkers can be defined as characteristics that are objectively measured and evaluated
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as indicators of normal biological processes, pathogenic processes, or pharmacological responses to
therapeutic interventions [42]. Biomarkers can include any substance, structure, or process that can be
measured from the body and can influence or predict the incidence of the outcome or disease. They
can be diverse, from gait cadence and pulse measurements to complex laboratory tests of blood and
other tissues [43]. However, the main objective of a biomarker remains to establish the connection
between measurable parameters and relevant clinical endpoints [41].

The type of biomarkers studied in this work are known as digital biomarkers. According to the U.S.
Food and Drug Administration (FDA), a digital biomarker is a feature or group of features obtained
from digital health technologies that are measured to indicate normal biological processes, pathogenic
processes, or reactions to exposure or intervention, such as therapeutic interventions [44,45]. Digital
biomarkers are rapidly developing frontier enabled by the availability of sensors and personal devices
that can assimilate information about an individual’s psychological state, exercise level, cognitive
abilities, eating patterns, movement, and tremor [46]. These data are largely derived from sources such
as smartphones and portable electronic devices [47].

Although many additional studies are needed to link digital phenotypes and endpoints with
traditional measurements, digital biomarkers have the potential to introduce novel measurements
for phenomena that are already in use [48]. Depending on the applications of biomarkers, several
types can be identified, such as diagnostic biomarkers (to confirm the presence of a certain disease),
monitoring biomarkers (to determine the progression of a disease), pharmacodynamic/response
biomarkers (to check the response to certain therapies), predictive biomarkers (to know the response to
certain medical products) and prognostic biomarkers (to identify the possibility of suffering a certain
disease). [49].

Extracting digital biomarkers involves collecting and analyzing data from digital devices or plat-
forms that can provide insights into physiological, behavioral and cognitive states. These biomarkers
can be derived from various sources such as smartphones, wearables, social media, and other digital
interactions. The information defined in the biomarker must be meticulously processed and extracted,
as raw data is influenced by numerous processes that obscure the underlying signals. To achieve
this, various techniques in digital signal processing, statistical analysis, and artificial intelligence are
employed to extract and refine the data into a coherent biomarker. Ultimately, these biomarkers un-
dergo validation through clinical studies to ensure their accuracy and reliability in reflecting predicted
physiological, behavioral, or cognitive states.

3. Methods

3.1. Research Questions

The aim of this review is to collect, analyze, and evaluate studies concerning the identification of
DB-MS-PD. To achieve this objective, the following research questions were formulated:

RQ-1 What type of wearables is commonly used to capture DB-MS-PD?

RQ-2 Are there specific digital biomarkers that are commonly measured or tracked using wear-
ables in PD?

RQ-3 How reliable and accurate are the digital biomarkers captured by these wearables?

RQ-4 What are the main challenges or limitations associated with using wearables for capturing
DB-MS-PD?

3.2. Search Strategy

On 14 February 2024, a literature search was conducted on the PubMed, Scopus, IEEE and Web
of Science databases for all the returned results. The search string included keywords related to the
disease under investigation, the type of biomarker searched and the devices used to collect the data. In
more detail, the following Boolean search string was used:

((Parkinson) OR (Motor symptoms)) AND (Biomarker) AND (Digital) AND (Wearable).
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No additional filters were applied in the literature search. All retrieved studies were systematically
identified and screened, and the data were extracted for relevant information following the PRISMA
guidelines [50].

3.3. Inclusion and Exclusion Criteria

The topic of this review concerns the definition of digital biomarkers of PD obtained from wearable
devices. Journal articles published between January 2012 and February 2024 and written in English
were included. Furthermore, the exclusion criteria were as follows:

i Zamll

1. Papers without peer review, books, book chapters, or published as “letter”, “comments”, "per-
spective" “case reports”, "surveys" or "reviews".

Literature not written in English.

Studies related to diseases other than PD.

Studies that did not use any wearable devices or portable sensors for data acquisition.

Studies showing the results of a challenge, competition or programme.

Studies primarily focused on activities not related to motor symptoms in PD.

Studies that do not include humans.

Al

3.4. Data Extraction

Four authors (C.PF, L.S,, L.B., and I.P.) independently selected candidate studies by reviewing the
title and abstract and repeated the process until they reached a consensus. The same procedure was
performed for the selection based on the full-text evaluation. Finally, candidate studies that met the
eligibility criteria were selected for inclusion in the review. The following information was included in
the data extraction procedure:

Identification of study data, including authors, title and citation.

Type of test performed.

Characteristics of the participants in the study.

Type, number, and location of the wearable sensors and devices used for data acquisition.
Objective of the study.

End points.

0 N T

4. Results

4.1. Systematic Review

Based on the search criteria, 59 articles were retrieved from PubMed, 172 from Scopus, 16 from
Web of Science and 8 from IEEE, for a total of 255 publications. After removing duplicates (57), 198
publications were examined for titles and abstracts. Then 143 articles were excluded according to the
exclusion criteria. Of the 55 remaining records, 9 studies were excluded due to the unavailability of
the full text. Consequently, a total of 46 full texts were screened for eligibility, and 24 records were
excluded according to the exclusion criteria. Finally, 22 research studies were included and reviewed.
The PRISMA flow chart used for the literature search and selection is shown in Figure 1.
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Figure 1. PRISMA flow diagram of literature search and selection process showing the number of
studies identified, screened, and included in the review.

4.2. Study Characteristics

A summary of the findings of the 22 reviewed articles is given in Table 1. The information in each
article was harmonized to facilitate comparability and analysis among studies.
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Reference Study Design Participants Device, sensors, Number (device, sen- Aim End point
sor), Body location
[51] Gait PwPD: Pressure insoles Gait monitoring Gait features that impact the pre-
(Physionet database) N =90 (34F; 56 M) VGREF sensors dicted TUG scores are gait speed-
HC: N =(1,16) based features (percentiles, mean,
N = 62 (34F; 28M) Foot (8 each) and kurtosis), with 84,8% accuracy.
[52] Gait PwPD: IMU (Opals by APDM) Classification PwWPD- Turning and gait indicators discrim-
N =29 (12F; 17M) 3-axial accelerometer, 3-axial gyroscope HC inate PwPD from HC (Turn angle,
HC: and 3-axial magnetometer swing time variability adn stride
N =27 (14F; 13M) N=(3,3) length with AUC = 0,87 - 0,89).
Foot (1 each) and lower back
[53] Finger Tapping PwPD: Tablet (IMFT and IFT) and Biometrics Therapy  response The IFT features (total taps, bivari-
- Index and middle finger tap- N = 20 (6F; 14M) (TIFT) monitoring and Clas- ate contour ellipse area, spatial er-
ping (IMFT) Pixel Coordinates (IMFT and IFT) and  sification of subjects ror, velocity changes, intertap inter-
- Alternate index finger tap- Goniometer (TIFT) with therapy and vals) provides the best performance
ping (IFT) N=(2,2) placebo in estimating MDS-UPDRS III, with
- Thumb index finger tapping Front of participant (IMFT and IFT) and p <0,001.
(TIFT) hand (TIFT)
[54] Gait PwPD: IMU (Opals by APDM) Classification PwPD- Gait measures (gait speed, stride
N =29 (12F; 17M) 3-axial accelerometer, 3-axial gyroscope HC length) could be used to classify
HC: and 3-axial magnetometer PwPD from HC, with AUC > 0,8.
N =20 (8F; 2M) N=(3,3)
Foot (1 each) and lower back.
[55] Gait PwPD: IMU (RehaGait) (clinical assessment) Gait monitoring and  Gait speed could be used to control

Activities of daily living

N =27 (11F; 16M)

and IMU (Physilog® 5) (home assess-
ment)

3-axial accelerometer and 3-axial gyro-
scope (clinical assessment), and 3-axial
accelerometer, 3-axial gyroscope, and
barometrer (home assessment)

N=(3,3)

Foot (1 each in clinical assessment) (only
1 in home assessment)

treatment detection

of medication intake in PD.
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Reference Study Design Participants Device, sensors, Number (device, sen- Aim End point
sor), Body location
[56] Gait PwPD: IMU (Axivity AX3) Classification PwPD- The sample entropy of the gait signal
N=5 3-axial accelerometer HC of PwPD are higher than HC partici-
HC: N=(1,1) pants.
N=5 Lower back
[57] Gait PwPD: Smartphone Classification PwWPD- Tapping positions (Centered tapping
Balance Task N = 1057 (359F; 3-axial accelerometer (gait and balance) HC coordinates) are the most relevant
Finger Tapping 698M) and pixel coordinates (tapping) data (AUC = 0,935) for PD detection.
(Mpower database) HC: N=(1,2)
N = 5343 (1014F; Pocket (gait and balance) and front of
4329M) participant (tapping)
[58] Gait PwPD: Pressure insoles Gait monitoring and  Gait parameters (stride time, step
(Physionet database) N =93 (35F; 58M) VGREF sensors classification PwPD- time, stance time, swing time, ca-
HC: N=(1,16) HC dence, step length, stride length, gait
N =73 (33F; 40M) Foot (8 each) speed) differentiate PD severity and
HC with 98,65% accuracy.
[59] Gait PwPD: Pressure insoles Gait monitoring and  Gait parameters (step length, force
(Physionet database) N =93 (35F; 58M) VGREF sensors classification PwPD- variations at heel strike, centre of
HC: N=(1,16) HC pressure variability, swing stance ra-
N =72 (32F; 40M) Foot (8 each) tio, and double support phase) are

able to detect PwPD with 99,9% ac-
curacy and its severity shows R? =
98,7%.
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Reference Study Design Participants Device, sensors, Number (device, sen- Aim End point
sor), Body location
[60] Gait PwPD: Smartphone Classification PwPD- Tapping features (inter-tap inter-
Balance Task N =610 (211F; 399M) 3-axial accelerometer (gait and balance) HC val (range, maximum value and
Finger Tapping (gait), 612 (211F; and pixel coordinates (tapping) Teager-Kaiser energy operator) de-
(Mpower database) 401M) (balance), N=(1,2) tect PwPD with AUC =0,74.
970 (340F; 630M) Pocket (gait and balance) and front of
(tapping) participant (tapping)
HC:
N = 787 (147F; 640M)
(gait), 803 (150F;
653M) (balance),
1257 (239F; 1018M)
(tapping)
[61] Finger Tapping PwPD: Smartphone Classification PwWPD- Tapping features (total taps, tap in-
Pronation-supination N =11 (3F; 8M) Pixel coordinates HC and ON-OFF terval, and tap accuracy) can detect
HC: N=(1,1) states monitoring PwPD with p <0,0005 and detect
N =11 (6F; 5M) Front of participant ON/OFF state with AUC 0,82
[62] Pronation-supination PwPD: IMU (Movit G1) Prognosis (motor A correlation was found between
Leg Agility N =36 (9F; 27M) 3-axial accelerometer and 3-axial gyro- symptoms) and motor symptoms progression and
Toe Tapping scope therapy response some features (toe tapping ampli-
TUG test N=(14,2) monitoring tude decrement, velocity of arms
Postural stability Lower back, upper back, forearm (1 and legs, sit-to-stand time, p <0,01).
Postural Tremor each), arm (1 each), upper leg (1 each),
Rest Tremor lower leg (1 each), hand (1 each), foot (1
each)
[63] Balance Task PwPD: Smartphone Clasification PwPD- Postural tremor (mean squared en-

Gait

Finger tapping
Reaction time
Rest tremor
Postural tremor

N = 334 (125F; 209M)
HC:

N = 84 (17F; 67M)
iRBD (idiopathic
REM sleep behavior
disorder):

N =104 (88F; 16M)

3-axial accelerometer (Balance, gait, rest
tremor and postural tremor) and pixel
coordinates (Tapping and reaction time)
N=(1,2)

Pocket (balance and gait), front of par-
ticipant (tapping and reaction time) and
hand (postural and rest tremor)

HC and clasification
PwPD- iRBD

ergy, azimuth, 25th quartile, mode,
radius) and rest tremor (entropy,
root mean square) were the most
discriminatory task between PD-HC-
iRBD, with 85-88% of sensitivity.
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Reference Study Design Participants Device, sensors, Number (device, sen- Aim End point
sor), Body location
[64] TUG test PwPD dataset 1: IMU (Kinesis QTUG) Fall risk prognosis The mobility parameters (speed,
N =15 (5F; 10M) 3-axial accelerometer and 3-axial gyro- and gait monitoring turn, transfers, symmetry, variabil-
PwPD dataset 2: scope ity) could be used to predict number
N =27 (9F; 17M) N=(1,2) of fall counts of PwPD (R2 = 43%)
HC: Shin
N = 1015 (671F; 344M)
[65] Gait PwPD: IMU (Axivity AX3) Clasification PwPD- Gait features (root mean square val-
N = 81 (28F; 53M) 3-axial accelerometer HC ues, power spectral density, gait
HC: N=(1,1) speed velocity, step length, step time
N =61 (27F; 34M) Lower Back and age) classify PwPD with AUC =
0,94.
[66] Gait PwPD: IMU (LEGSys) Classification PwPD-  Gait speed was significantly slower
TUG test N =10 (4F; 6M) 3-axial accelerometer, 3-axial gyroscope, PSP in PSP (p <0,001).
Sit-to-tand test PSP (Progressive  3-axial magnetometer
Supranuclear Palsy):  N=(3,3)
N =10 (4F; 6M) Shin (1 each) and lower Back
[67] Activities of daily living PwPD: IMU (Opals by APDM) Motor  symptoms RMS (amplitude) of the magni-
MDS-UPDRS task N =31 (11F; 20M) 3-axial accelerometer, 3-axial gyroscope  monitoring; Therapy- tude vector for resting tremor (p
HC: and 3-axial magnetometer response monitoring  <0,0004) and RMS (amplitude) and
N =50 (27F; 23M) N=(1,3) jerk (smoothness) of the magnitude
Wrist vector forbradykinesia (p <0,0001)
achieve agreement with clinical as-
sessment of symptom severity and
treatment-related changes in motor
states.
[68] Gait PwPD: IMU (+sMotion ) Classification motor Gait Features (velocity pace, SD
N=40 (19F; 21M) 3-axial accelerometer and 3-axial gyro- condition and Quality swing time variability, Antero-
scope of Life. posterior center of mass angle of
N=(1,2) postural control) classify UPDRS-III

Lower back

severity with p <0,001. Gait Features
(gait speed, step time rhythm, stance
time, step length) correlated with
PDQ39 with p <0,001
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Reference Study Design Participants Device, sensors, Number (device, sen- Aim End point

sor), Body location

[69] Activities of daily living PwPD: IMU (Physilog® 4), Android smart- Classification of The total power in the 0.5- to 10-
TUG test N =18 (7F; 11M) watch, Android smartphone, Empatica PwPD-HC; ON-OFF Hz band was most discriminate fea-
Abnormal Involuntary Move- HC: E4 smartwatch states monitoring ture to classify PwPD-HC (AUC =
ment Scale N =24 (11F; 13M) 3-axial accelerometer, 3-axial gyroscope, 0,76) and ON-OFF detection (AUC =
MDS-UPDRS task 3-axial magnetometer, and barometer 0,84).

Gait (IMU), 3-axial accelerometer, 3-axial gy-
roscope, barometer, and light (Android
smartwatch), 3-axial accelerometer, 3-
axial magnetometer, light, proximity,
GPS, WiFi, and cellular networks (An-
droid smartphone), and Galvanic skin
response, photoplethysmogram, skin
temperature, 3-axial accelerometer (Em-
patica)

N =(8,12)

Ankles (1 each), wrist (1 each), lower
back (IMU), wrist (Android smart-
watch), pocket (Android smartphone),
and wrist (Empatica)

[70] Finger Tapping PwPD: Tablet Classification of  All test combined classify PwPD-HC
- Two-target finger tapping N =19 Pixel coordinates PwPD-HC and  with 93.11% accuracy. Most differen-
test HC: N=(1,1) ON-OFF states moni- tiating test is reaction time (inter-tap
- Reaction time N=17 Front of participant toring interval, tap accuracy) with 83.90%
- Pronation- supination accuracy. ON-OFF state classifies

with 76,50% accuracy.

[71] Activities of Daily Living PwPD: Smartphone Classification PwPD- Tapping (inter-tap variability), rest

Rest tremor
Postural tremor
Finger tapping
Balance task
Gait

N =43 (8F; 35M)
HC:
N =35 (8F; 27M)

3-axial accelerometer, 3-axial gyroscope
and 3-axial magnetometer

N=(1,3)

Waist (balance and gait), hand (tremor)
and front of participant (tapping)

HC and Motor symp-
toms monitoring

tremor (acceleration skewness), pos-
tural tremor (total power of ac-
celerometer), balance (mean veloc-
ity), gait (turn speed) differentiated
HC from PwPD and PD abnormali-
ties (p<0.005).



https://doi.org/10.20944/preprints202409.0310.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 September 2024 d0i:10.20944/preprints202409.0310.v1

12 of 28
Table 1. Cont.
Reference Study Design Participants Device, sensors, Number (device, sen- Aim End point
sor), Body location
[72] Gait PwPD: Smartphone Classification PwPD- Tapping features (total taps, inter-
Balance Task N =610 (211F; 399M) 3-axial accelerometer (gait and balance) HC and therapy re- tap intervals, median/standard de-
Finger Tapping (gait), 612 (211F; and pixel coordinates (tapping) sponse monitoring viation absolute deviations, corre-
(Mpower database) 401M) (balance), N=(1,2) lation X-Y tap) displayed the best
970 (340F; 630M) Pocket (gait and balance) and front of performance in classify PwPD-HC
(tapping) participant (tapping) (p<0,05).
HC:

N = 807 (152F; 655M)
(gait), 823 (155F;
668M) (balance),
1674 (304F; 1370M)

(tapping)
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4.3. Study Design

The studies under investigation analyzed different sets of activities and tasks. These can be
classified into 11 different categories: activities of daily living, balance task, finger tapping, MDS-
UPDRS task, postural tremor, pronation-supination movements of the hands, reaction time, rest tremor,
timed up and go (TUG) test, gait task, and others.

Due to the diversity of exercises performed within a category, similar activities were grouped in a
more general category. Specifically, the finger tapping activity includes four types of sub-activities:
index and middle finger tapping, alternate index finger tapping, thumb-index finger tapping, and
two-target finger tapping test. Similarly, the gait includes: 2-min walk at convenient speed, 20-m
straight walk at convenient speed, 20-m straight walk at fast speed, 10-m at convenient speed, 20-m
circular walk at fast speed, 20-steps straight walk, normal walking, rhythmic auditory cued walking,
treadmill walking, and 2-min circular walk at convenient speed.

Figure 2 shows the distribution of the different activities evaluated in the selected studies.
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Figure 2. Distribution of the activities performed in the different studies.

A total of 52 different activities were investigated in the 22 articles analyzed. The most frequent
activity is gait (N=16, 31%), followed by finger tapping (N=8, 15%), balance task (N=5, 10%), and
TUG test (N=4, 8%). Other activities that appear less frequently include postural tremor, pronation-
supination, rest tremor, MDS-UPDRS tasks and reaction time.

Less than one third of the studies (N=6, 27%) used public datasets. In more detail, 3 studies [57,
60,72] used the mPower dataset [73] and 3 studies [51,58,59] used data from the Physionet vertical
ground reaction force (VGRF) dataset [74]. The Physionet database contains measures of gait from
93 PwPD and 73 HC. The database includes the VGREF records of subjects as they walked at their
usual, self-selected pace for approximately 2 minutes on level ground. The mPower database includes
data from more than 1000 PwPD and 4000 HC. Different activities (i.e., memory, tapping, voice and
walking) were recorded with the built-in smartphone sensors (i.e., triaxial accelerometer, microphone
and touchscreen) in unsupervised environments.
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4.4. Participant Characteristics

Of the 22 studies reviewed, 5 of them evaluated only PwPD [53,55,62,66,68], while the other 17
papers included PwPD and HC in their study. A single study [63] included people with idiopathic
REM sleep behavior disorder, while [66] also evaluated subjects with progressive supranuclear palsy.
Furthermore, in most studies (53%) the number of PwPD was higher than the number of HC.

The distribution of the number of articles according to the number of participants is shown in
Figure 3. In terms of the number of PwWPD, the mean and median values are 44 and 33 subjects,
respectively. However, it should be noted that there is a high variability, with a minimum of 5 and a
maximum of more than 1000 PwPD. More than half of the articles (n=14, 63%) presented a sample size
of 1 to 50 patients, while 14% (n=3) enrolled more than 1000 patients.

This variability can also be observed with the distribution of HC, which presents mean and
median values of 57 and 50 participants, respectively. In this case, 59% (n=13) of the studies enrolled
less than 50 controls while 18% (n=4) use a sample size of more than 1000 controls.

B Parkinson's patients
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Figure 3. Distribution of the number of articles according to the number of participants.

Regarding the gender distribution (Figure 4), 65% PwPD were male while 35% were female,
reflecting the actual gender distribution in the PD population. This difference increases in HC, where
71% of the participants were male and 29% were female.

Female Healthy

Control Male Healthy
29% Control
1%
Female
Parkinson
35% Male
Parkinson
65%

Figure 4. Gender distribution in the selected papers.
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4.5. Device, Sensor and Body Location

Regarding the type of devices used, 20 studies (91%) used a single type of device for data
recording, while [53] employed two different devices and [69] used three types of devices. In total, 25
devices were used in the 22 studies. As shown in Figure 5a, the most commonly used device is the
inertial measurement unit (IMU) (n=11 of the 25 devices, 44%) [52,54-56,62,64-69], followed by the
smartphone (n=7, 28%). [57,60,61,63,69,71,72]; pressure insoles were used in 3 cases (12%) [51,58,59],
while other devices such as tablets were used in 4 studies (16%) [53,69,70].
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Figure 5. Distribution of types of devices and sensors used.

In terms of sensor types (Figure 5b), of the 55 total sensors used, the most used sensor is the
triaxial accelerometer (n=17, 31%), followed by the triaxial gyroscope (n=11, 20%), the touch screen
(n=7, 13%), triaxial magnetometer (n=6, 11%), VGRF sensors (n=3, 5%), and barometer (n=2, 4%).
Other sensors (n=9, 16%) include the goniometer, GPS or galvanic skin response.

Figure 6a presents the distribution of the number of devices used. The most common option
involves a single device (n=14, 64%). The remaining studies used multiple sensors. Specifically, 6
papers (27%) [52-55,64,66] used between 2 and 3 devices, while the 2 remaining papers (10%) [62,69]
used more than 8 devices. Figure 6b presents the number of sensors used. The most popular choice
is to use 2 sensors (n=8, 36%). A single sensor was used in 3 articles [56,65,70] (14%), 3 sensors in 6
articles [52,54,56,66,67,71] (27%), while 5 articles (23%) use more than 10 sensors.

Figure 7 shows common positions of the sensor on the human body. The device was placed in
front of the person (e.g., smartphone, tablet) or on the foot or in the lower back in 8 articles each (18%).
In 5 cases (11%), the wearable device was placed in the pocket, in the hand in 4 papers (9%) and the
wrist in 2 cases (5%). The rest of the studies positioned the sensors in other locations like the ankle or
the waist. Half of the included articles used a single location, while the other half used more than one
body position.
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Number of devices used Number of sensors used

1
>10 14%
23%
3 2
27% 36%

Figure 6. Number of devices and sensors used.

Front of participant— 18%

Lower back — 18%

Wrist— 5%
Hand- 9% — Pocket— 11%
Others — 21% Foot — 18%

Figure 7. Distribution of the location of the sensor on the human body.

4.6. Aim

In terms of the study aims, the reviewed articles were categorized into the following primary
areas: diagnosis (i.e., classification between PwPD and HC), monitoring, and prognosis, as outlined
in [20].

Figure 8 presents a summary of the principal aims of the selected studies. Most of these studies
focused on the classification between PwPD and HC (n=12, 55%), followed by monitoring (n=6, 27%),
prognosis (n=2, 9%) and other type of classification (n=2, 9%). The six studies on PD monitoring
included the assessment of gait impairment (n=5, 38%), therapy response (n=3, 23%), ON-OFF state
(n=3, 23%) estimation, and automatic detection of motor symptoms (bradykinesia, tremor, and postural
instability) (n=2, 15%). Regarding prognosis, the studies aimed to predict the risk of falls (number of
falls) and the evolution of motor symptoms such as abnormalities in movement of the lower-limbs.
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Prognosis Other classification
8%

Motor symptom;
Monitoring 15%
25%

ON-OFF
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23%

Gait

39%

Classification
PD-HC
59%

Figure 8. Principal aims of the selected studies.

Most of the studies addressed multiple aims, as shown in Figure 9. Specifically, 59% (n = 13) of the
studies addressed more than one aim, while the remaining 41% (n = 9) addressed a single primary area
(i.e., diagnosis, monitoring, and prognosis). Three studies (15%) [61,69,70] combined ON-OFF states
monitoring with PD and HC classification, while three studies (15%) [62,67,72] combined therapy
response evaluation with PWPD/HC classification and prognosis. Two studies (10%) [64,71] combined
motor symptoms monitoring with PwPD and HC and prognosis, respectively. Two studies (10%) [58,
59] combined classification PwPD/HC with gait monitoring. Two studies (10%) [53,63] combined
other aims, such as classification of therapy/placebo subjects and therapy response monitoring, and
the classification of PD/REM sleep behaviour disorder with the classification of PwPD/HC. In [68],
the classification of motor condition was addressed, together with the assessment of the quality of life

of PWPD.
Monitoring (Therapy-response) / Monitoring
Clasification PwPD-HC, prognosis, 9%
monitoring

Monitoring (motor symptoms) /
Classification PwPD-HC, prognosis
9%

Classification PwPD-HC
27%

Classification PwPD-HC /
Gait monitoring

9%

Multiple aims
59%

Monitoring (ON-OFF states) / Other (single aim)
Classification PwPD-HC 4%

14%
Other (multiple aims)

14%

Figure 9. Distribution of the aims addressed in the selected studies.

4.7. Endpoints

DB-MS-PD were extracted by different methods (Figure 10). 7 studies (32%) assessed the potential
of single features as biomarkers. Most studies (n=14, 64%) combined multiple features and used
machine learning (ML) models to provide a robust result. Finally, only one study used raw data as
input for a deep learning (DL) model.
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features
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raw data+DL 64%
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Figure 10. Biomarker extraction methods. ML: Machine learning; DL: Deep learning.

In 11 studies (50%), different motor tasks were evaluated. The distribution of the most relevant
tasks in studies addressing multiple tasks is shown in Figure 11. In 7 studies (32%), finger tapping was
associated to different tasks, including balance, gait, rest tremor, postural tremor, pronation-supination,
leg agility and reaction time. In 6 of these (27%) studies, finger tapping performed better than the other
tasks for PD diagnosis, ON/OFF detection and PD progression. In a single study [63], resting and
postural tremor provided better results than the other tasks (including finger tapping) for the diagnosis
of PD. Gait gave better results than TUG test in 2 cases (9%) for PD detection and progression. A single
study [62] (which included neither finger tapping nor gait) found that toe tapping and TUG tasks give
better results than leg agility and hand movements for PD progression estimation. Finally, a single
study [63] concluded that postural and rest tremor get better results than balance, gait, finger tapping,
and reaction time tasks for the detection of sleep behavior disorders.

gait
18%

finger tapping
55%

others
27%

Figure 11. Most relevant tasks in studies addressing multiple tasks. TUG: timed up and go.

In half of the studies, DB-MS-PD were extracted in the laboratory/clinic, whereas in the other
half, remote home monitoring was used. In the laboratory-based studies, mostly supervised active
tasks (participants were asked to perform different tasks) were used, whereas in one study both active
and passive monitoring were used. When data were recorded at home (11 studies), active tasks were
used in 6 and passive monitoring (extraction of DB-MS-PD during daily life) in the other 5.

Focusing on the tapping task (Figure 12), of the 7 studies in which tapping was the most relevant
task, most found that, in 5 cases each (71% of the cases), statistical metrics calculated on the intervals
between taps (i.e. mean value, variability, percentiles) or on the spatial accuracy (i.e., two-dimensional
distance between tap position and target point) were the most significant DB-MS-PD. This is followed
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by total taps (n=4, 57%) and the number of on-target taps (n=2, 29%). Other characteristics include tap
duration and fatigue. The latter was calculated as the difference in tap speed between the first and last
tap. These features were highly relevant for the diagnosis of PD, the estimation of motor fluctuations,
the assessment of disease progression and the prediction of clinical motor scores.

spatial accuracy
28%

total taps
22%

on-target taps
11%

inter-tap interval
28%

Others
11%

Figure 12. Most relevant features in the finger tapping task.

Focusing on the gait task (Figure 13), of the 11 studies where gait was the primary task, most
(n=7, 63%) found gait speed and its variability to be the one of most significant DB-MS-PD in both
supervised and unsupervised contexts. This is followed by average step length and their variability
(n=4, 36%), stride length (n=3, 27%), step time (n=3, 27%), swing time (n=2, 18%), stance time (n=2,
18%), and cadence (n=2, 18%). Other characteristics include total power, center of pressure, force
variations, power spectrals and entropy. These features were found to be highly relevant for the
diagnosis of PD, the estimation of motor fluctuations and the assessment of disease progression.

gait speed
22%

others
28%

stride length
10%
stance time

6%

step length
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6% )
step time swing time
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Figure 13. Most relevant features in the gait task.
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Overall, the supervised and unsupervised finger tapping task (assessed through position and
acceleration analysis on a smartphone or tablet) and the supervised and unsupervised gait task
(assessed through inertial or force sensors) represented the most explored tasks. When comparing the
results obtained from different studies, it is evident that these two tasks provide similar performance
for PD diagnosis and treatment response assessment, as shown in Table 2. On the other hand, gait was
also explored for severity estimation, while the finger tapping task for predicting the clinical motor
score. The classification and regression results are reported in the Table 2, where the results of the
different studies are summarized using the performance range.

Table 2. Performance comparison of tasks for disease diagnosis, prognosis, and monitoring. Acc:
accuracy; r: Pearson’s correlation coefficient; MAE: mean absolute value

Task Diagnosis Treatment Severity UPDRS-III
Finger tapping AUC 0.74-0.95 Acc 0.75-0.84 - r =0.51-0.69, MAE=8
Gait AUC 0.76-0.98 AUCO0.82 AUC 0.85-0.98 -

It is worth noting that all finger tapping tasks represent active tests, in which subjects have to
actively participate in the activity. On the other hand, tapping on touch screens represents an easy
and effective activity that can be performed at home. Very good performance was obtained both in
supervised laboratory settings and in unsupervised remote settings (i.e., at home), demonstrating that
finger tapping represents an easy and effective task for the extraction of DB-MS-PD. With regard to gait,
data recorded in supervised laboratory environments performed better for PD diagnosis (accuracy
0.94-0.98) and severity estimation (accuracy 0.85-0.98), compared to unsupervised data recorded
continuously in the home environment, with an area under the curve (AUC) between 0.76-0.95.

Analyzing tremor, a sensitivity of 0.85 and a specificity of 0.88 were obtained in distinguishing
PwPD from HC; a sensitivity of 0.88 and specificity of 0.90 were obtained for the classification of PD
versus idiopatic sleep behavior disorder (iRBD) [63]. The performance of tremor detection achieved an
accuracy of 0.83 and a correlation of r = 0.97 (p<0.001) with the UPDRS tremor score (item 3.18). A
correlation of r = 0.67 (p<0.001, RMSE = 2) was obtained between the sensor measurements (amplitude
of hand movement) and the clinical bradykinesia score (sum of items 3.4-3.6) [67]. For toe tapping, a
correlation of r = 0.74 (p<0.001) was found in predicting motor progression at 30 months [62]. Finally,
the TUG test analysis provided an r = 0.55 and an RMSE of 0.33 in predicting the number of falls in
PD [64].

5. Discussion

This article provides an updated review of the existing literature on digital biomarkers for motor
symptoms assessment in PD. This disorder represents the second most common neurodegenerative
disease in the world [3], and new digital technologies promise to significantly support the approach to
the diagnosis, prognosis and monitoring of PD.

In this review, a total of 22 articles were selected and thoroughly analyzed to provide an summary
of current DB-MS-PD in PD. As the term biomarker is very broad and the use of wearable devices
can be extended to different locations, a large heterogeneity was found among the studies examined.
Nevertheless, it was possible to identify trends and patterns in the definition of the experimental
protocols, the number of participants, the number and type of devices and sensors used, the location
of the devices on the human body, the objectives pursued and the types of DB-MS-PD proposed.

Overall, the results indicate that wearable devices have the potential to be used to define DB-
MS-PD. These can provide measurable and objective evaluations in clinical or hospital settings.
Furthermore, the indicators collected through wearable devices could contribute to the development
of remote and continuous patient monitoring systems to follow the evolution of different symptomes,
especially in unsupervised settings such as patient’s home.
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The vast majority of studies included in this review employed commercial IMUs, mostly em-
bedding at least accelerometer and gyroscope, or the touchscreen of smartphones and tablets. These
sensors allowed assessment and monitoring of a wide spectrum of motor symptoms in PD for diag-
nosis, prognosis, and monitoring purposes. Importantly, more than half studies used a single device
embedding multiple sensors. Among these, IMUs seem to represent the most promising solution
(11 of 22 studies). IMUs are widespread and used on various applications due to their versatility,
accuracy, and relatively compact form factor, thus can be used for data collection and analysis without
requiring additional dedicated hardware. They feature built-in sensors like an accelerometer, gyro-
scope, and magnetometer for comprehensive motor symptom evaluation. The results are promising,
with high diagnostic accuracy in discriminating PwPD from HC and high correlation with clinical
scores. However, smartphones (7 of 22 studies) are used on a daily basis, and are equipped with a
large number of built-in sensors such as accelerometer, gyroscope, magnetometer, touchscreen, camera,
and microphone. Smartphones were mostly used in the execution of scripted active tasks (e.g., finger
tapping, memory, walking). None of the studies evaluated the potential of smartphones for long
term, continuous monitoring in unsupervised environments. While representing technology which
subjects are familiar with, the dimension and weight of smartphones are not comparable to the small
and tiny inertial modules that can be even embedded in smart-clothes or devices. Passive continuous
monitoring through IMUs or smartphones (i.e., in the pocket) was not addressed and needs further
evaluation.

Gait and finger tapping represent the most frequent activities in the studies analyzed. Other tasks
and activities such as TUG test, balance task, and reaction times were poorly addressed and thus do
not allow to obtain robust conclusions. As previously discussed, gait and finger tapping provided
similar results in terms of discrimination capability of PwPD from HC and for therapy condition
assessment. These tasks were analysed both in supervised clinical settings and in unsupervised home
environments. Despite similar results, gait has the potential to provide a continuous passive evaluation
of disease severity, the presence of motor symptoms, and the effect of therapy. On the other hand,
finger tapping represents an active task and should be performed several times a day to accurately
estimate motor fluctuations.

In general, this review emphasizes the potential of DB-MS-PD for PD diagnosis, prognosis, and
monitoring. Data can be collected in unsupervised environments for long periods of time using
widespread commercial devices such as smartphones. Individual features or a combination of multiple
features and ML models can be used to detect symptoms, predict severity, and evaluate therapy
response. The evidences are convincing, as large sample sizes, correct validation procedures, and
robust methods were used. Ultimately, this review article is intended to provide the reader with
a comprehensive set of information that demonstrates the potential of DB-MS-PD in PD, critically
discussing current limitations and providing recommendations for future work.

5.1. Challenges

The careful analysis of the articles included in the review highlights several challenges, which
are reported below. The identification of these challenges can help design and conduct future studies
related to digital biomarkers for motor symptoms assessment in PwPD.

Most studies focused on the diagnosis of PD, alone or in combination with other objectives
(e.g. estimation of disease severity, treatment conditions). The proper evaluation of digital tools
for computerised early diagnosis should be conducted on newly diagnosed PwPD. However, some
studies have not reported any measurement of duration and/or severity of disease, which makes it
complicated to assess the potential of the proposed solution. When reported, the average duration of
the disease was in the range of 3.5-13 years and the H&Y stage was mostly equal to or greater than 2.
This means that the recruited PwPD were mostly at an advanced stage of the disease, when motor
symptoms were fully visible. This raises doubts about the usefulness of the solutions developed and
their real potential for early diagnosis. It is essential to define appropriate standardised criteria that
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provide guidelines for the recruitment process and the reporting of participant characteristics. For
example, in order to enable a proper evaluation of the PwPD, at least disease duration, H&Y and
MDS-UPDRS scores must be reported. Strict inclusion criteria with regard to disease duration (e.g.,
less than 2) and H&Y stage (e.g., less than or equal to 1) must be adopted when evaluating digital
systems for early diagnosis.

Related to the reporting of the activities and tasks performed, in some cases, the activity carried
out is very detailed, while in others it is described in a general way. For example, distance travelled,
gait trajectories to be followed, and speeds are indicated in a limited number of studies. Similarly, the
addressed tasks are sometimes referred as MDS-UPDRS tasks, without precise indication of the specific
UPDRS item. A similar phenomenon is observed in the description of the positioning of wearable
devices on the body. Some studies explicitly describe the position of the device through photographs
or diagrams, while others merely refer to general anatomical regions, such as the upper limb or lower
limb.

Regarding the evaluation of therapy condition (ON/OFF), half of the studies were conducted in
clinical, supervised settings. This raises questions about the applicability of the developed digital tools
to unsupervised remote environments. When performing at-home monitoring, passive monitoring
during activities of daily living lasted 1 hour to 1 day [55,69]. This represents rather a short period of
time for fully evaluating the performance of automatic motor condition assessment. On the other hand,
long-term monitoring of 2 weeks to 6 months [71,72] provide robust performance estimate. However,
this was achieved using active tests, involving patients to complete a scripted set of tasks. Ideally,
passive monitoring over a long period of time would be desirable, so the evolution of biomarkers over
time can be monitored without forcing patients to engage in sustained activities.

A comprehensive reporting of performance metrics is essential to fully evaluate the potential of
the prediction system and to fairly compare similar studies. Focusing on diagnosis, almost half of the
studies reported classification performance in terms of area under the curve (AUC). This allows the
diagnostic ability of DB-MS-PD to be assessed regardless of the selected classification threshold and
serves as a summary of the overall model performance. However, AUC was not reported in the other
half of the studies, where accuracy or the combination of sensitivity and specificity were preferred.
With regard to regression metrics, the performance evaluation is rather heterogeneous across studies.
A substantial number of studies reported the correlation coefficient alone or a single error measure (i.e.,
MAE, RMSE). Furthermore, test-retest reliability was assessed in a single study using the intra-class
correlation coefficient. Finally, inter-rater variability was not studied.

Overall, the heterogeneity of the performance metrics hinders a fair comparison with similar
work and does not allow a comprehensive evaluation of performance. Again, some guidelines are
needed to suggest the minimum set of performance metrics to be reported. These may include at least
the receiver operating characteristic-ROC curve and AUC value in classification problems and the
correlation coefficient, the associated p-value and a measure of error (i.e., MAE, RMSE or MSE) for
regression tasks. In the latter case, test-retest reliability and inter-rater variability are essential to assess
the consistency of multiple measurements and multiple clinical raters, respectively [75,76].

Above all, the definition of biomarkers is heterogeneous in the evaluated studies, with no common
report structure. Some studies used single features as DB-MS-PD and assessed their classification
or regression performance. Other studies extracted multiple features from the data and combined
them using an ML model. In this case, if adequately described, the aggregation of features and the
ML model can represent a DB-MS-PD. In most of these studies, the contribution of each feature to
final performance was assessed using regression metrics or statistical tests between groups of subjects,
conditions, or treatments. This is useful as it is possible to identify the most important feature for the
specific purpose.

Reproducibility is a key aspect to allow for repeatable experiments ready-to-use solutions. How-
ever, methods and implementation details were not always exhaustively reported. Relevant infor-
mation such as sensor characteristics and specific positioning on the body, signal pre-processing and
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conditioning steps, and ML models’ parameters should be carefully described. In addition, most of
the evaluated studies used proprietary datasets that were not made publicly available. Although the
diversity between the different datasets provides new perspectives and enrich the current body of
knowledge, proprietary datasets hinder reproducibility of the experiments and results, and limits the
advance in scientific research.

The recent significant technological advances in wearable technology allows for a wide range
of data measurement modality. This is obviously a great advantage, as a large spectrum of physical
and physiological parameters can be easily extracted from on-body sensors. However, it is worth
considering that the number of devices, their wearability and comfort are of utmost importance
when designing systems for long-term unsupervised monitoring. PwPD often suffer from non-
motor symptoms such as sleep disorders, anxiety, and depression. Thus, cognitive load and patient
compliance are essential aspects to consider when developing digital solutions.

Additionally, regarding the number of participants, the sample size significantly varies. Two clear
trends are observed, 14 studies with a number of PWPD between 5 and 42, and 8 works with more than
80 participants (3 studies with more than 1000). Furthermore, studies tend to have a higher number of
HC than PwPD (of the articles that are clearly specified, 77% of the total participants are HC). It would
be interesting for a correct definition of DB-MS-PD that these are defined from a significant number of
PwPD registries, close to 50% of the total. In addition, another factor that should be taken into account
is the gender balance of the participants, as, for HC and PwPD, the percentage of male participants is
high compared to female participants (71% HC, 65% PD).

5.2. Limitations of this Study

This review has some limitations. First, despite extensive search on several digital journals, only
22 studies were finally included and fully evaluated. Considering the heterogeneity in the sample
size, objective, methods and results, a direct and comprehensive comparison of similar studies is not
always possible. This is particularly evident for studies focusing on activities different from gait and
finger tapping, for which it is not possible to provide robust conclusions. In addition, the distribution
of study objectives is very unbalanced, with most studies focusing of diagnosis and therapy condition
estimation, while the severity of motor symptoms and overall motor condition were poorly addressed.
Finally, this review focused specifically on DB-MS-PD. This led to consider motor symptoms such as
gait impairment, postural instability, tremor, bradykinesia, and dyskinesia. Other motor symptoms
such as rigidity, fatigue, and hypomimia were not addressed in the investigated studies.

Another limitation that may be encountered is the replicability, as each study uses a different
wearable device with its own sampling frequency and filtering techniques (not all of which are
indicated), using a wide variety of devices.

A high percentage of the assessed studies (84.8%, n=168 of the 198 articles screened) are from
2020 or later. Furthermore, the observable trend in recent years has been that more articles are being
produced each year, so it can be deduced that the definition of biomarkers using wearable technology
is a subject on which numerous research projects are being carried out and that new results and
DB-MS-PD will be published in the coming years. Therefore, this work can be a reference to know the
current trends and future literature reviews on this topic can expand the information shown and know
in further detail the way to the definition of DB-MS-PD.

In addition, 6 of the 22 articles use public databases, therefore, the variability in the results is
conditioned to a certain extent, since the results of these databases are similar. It would be interesting
to extend the results obtained by using other different databases or by proposing new activities or
measures.

6. Conclusions

This article present the proposed biomarkers for the assessment of motor symptoms related to
PD, extracted through wearable sensors. As shown in the review, wearable devices have the potential
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to assess motor symptoms of PD. A wide variety of devices and models have been shown to be able to
extract useful information about a patient’s condition.

The use of these types of devices can generate many advantages for traditional clinical monitoring
and assessment, as they can generate a high volume of data in a relatively short time, provide objective
opinions on the patient’s actual condition, or be able to assess or account for aspects that traditionally
have not been possible, such as falls or freezing. In addition, they introduce an unexploited aspect,
such as the possibility of monitoring a patient in a home environment without the pressure of feeling
observed by the neurologist.

However, in order to develop remote patient monitoring systems, several issues identified in
the review need to be addressed. One of the most interesting challenges may be the standardization
of data collection, analysis, processing, evaluation, and reporting of DB-MS-PD in order to facilitate
comparability and replicability of results. In the absence of general guidelines for experimental
development, each trial may be conducted in a different way and managed differently. This idea of
standardization has been pursued in other fields such as neuroimaging in Alzeihemer [77] or in the
use of public tools for database publication [78].

The review highlighted multiple issues and constraints within the included studies, offering
suggestions for future research to overcome these limitations and improve PD assessment. Rapid
progress in sensing and data analysis technologies is expected to significantly expedite the integration
of wearable devices in this field. These DB-MS-PD can be used to obtain objective and measurable
information on the status of certain disease symptoms and could be used in continuous patient
monitoring systems.
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DB-MS-PD Digital Biomarkers for Motor Symptoms of Parkinson’s Disease

PD Parkinson’s Disease

PwPD Patients with Parkinson’s Disease
HC Healthy Control

ML Machine Learning

DL Deep Learning

AUC Area Under the Curve

MAE Mean Absolute Value

IMU Inertial Measurement Unit

VGRF Vertical Ground Reaction Force
TUG Timed Up and Go

MDS-UPDRS  Movement Disorder Society-Sponsored Revision of the Unified Parkinson’s Disease
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