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Abstract: Diabetic retinopathy, a common complication of diabetes, is further exacerbated by factors such as
hypertension and obesity. This study introduces the Diabetic Retinopathy Convolutional Transformer (DRCT)
model, which combines convolutional and transformer techniques to enhance the classification of retinal
images. The DRCT model achieved an impressive average F1 score of 0.97, reflecting its high accuracy in
detecting true positives while minimizing false positives. Throughout 100 training epochs, the model exhibited
strong generalization capabilities, achieving superior validation accuracy with minimal overfitting. On a newly
evaluated dataset, the model attained precision and recall scores of 96.93% and 98.89%, respectively, indicating
a well-balanced handling of false positives and false negatives. The model's ability to classify retinal images
into five distinct diabetic retinopathy categories demonstrates its potential to significantly improve automated
diagnosis and aid in clinical decision-making.
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1. Introduction

Diabetes is a widespread metabolic condition that leads to multiple vascular complications
throughout the body. The likelihood of eye-related problems escalates when diabetes is present
alongside other health conditions like hypertension, obesity, and elevated cholesterol levels. learning
(ML) techniques to enhance the detection and classification of DR. This condition harms the tiny
blood vessels in the retina, resulting in a condition called diabetic retinopathy (DR). This frequent
complication progressively damages these blood vessels, disrupting the retina's normal function. The
damage can cause fluid to leak and blood vessels to become blocked, leading to significant vision loss
or even blindness if left untreated. Diabetic retinopathy is the leading cause of global blindness,
making early detection crucial. Emerging technologies, particularly artificial intelligence (Al), offer
promising alternatives for cost-effective and efficient DR screening. Recent research [1]has focused
on leveraging machine A study that reviewed various ML methods for DR detection highlighted the
importance of early intervention and the potential of Al in providing scalable screening solutions.
Figure 1 depicts a retinal fundus exam highlighting key features of diabetic retinopathy (DR). Visible
are microaneurysms, small bulges within the retinal vessels, along with hemorrhages and exudates —
indicators of bleeding and protein deposits. These findings are characteristic of non-proliferative
diabetic retinopathy (NPDR), an early stage of the condition. DR is progressive, making early
detection and treatment crucial to avoid significant vision loss. If left untreated, the disease may
advance to proliferative diabetic retinopathy (PDR), marked by abnormal blood vessel growth.
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Figure 1. Diabetic Retinopathy: Key Features.

The study conducted a bibliometric analysis using data from Scopus and Web of Science to
explore different ML styles used in DR diagnosis, combining quantitative and qualitative analyses to
offer insights into image segmentation methods, datasets, and ML approaches, including traditional
and deep learning techniques.Advances in artificial intelligence (AI) present new ways to enhance
disease detection and management. A 178 reviewed studies [2] on DR screening systems using Al
techniques, highlighting the urgent need for automated, reliable solutions due to the global rise in
DR patients. The review spans publications from January 2014 to June 2022, discussing various Al,
machine learning (ML), and deep learning (DL) tools used for DR detection. A key focus is on the
comparison between custom-built convolutional neural networks (CNNs) and those employing
transfer learning with established architectures like VGG, ResNet, or AlexNet. While creating a CNN
from scratch requires significant time and resources, transfer learning offers a quicker alternative.
However, studies indicate that custom CNN architectures often outperform those using existing
structures. This distinction warrants further research. The survey also explores feature extraction
techniques, which enhance model performance by reducing feature vector size and computational
effort. Publicly available datasets are analyzed, along with performance metrics crucial for evaluating
the accuracy and effectiveness of DR detection systems. The review identifies a gap in technologies
capable of predicting all DR stages and detecting various lesions, highlighting the need for advanced
solutions to improve patient outcomes and prevent vision loss. Future research should consider
emerging concepts like transfer learning, ensemble learning, explainable Al, multi-task learning, and
domain adaptation to enhance early DR detection.

Recent developments in Deep Learning, especially with Vision Transformers (ViTs), have
demonstrated significant potential in the field of medical imaging. The number of publications on
ViTs surged to 19 by the end of 2022, underscoring their ability to enhance medical image analysis
[3]. ViTs improve both the accuracy and speed of analyzing retinal images, which is crucial for early
diagnosis and timely intervention. Our project leverages these advancements by incorporating ViTs
into our Al tools for detecting and managing diabetic retinopathy. This strategy aims to equip
healthcare professionals with advanced tools for more effective diagnosis and treatment of diabetic
retinopathy, ultimately aiding in the preservation of patients' vision.
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Figure 2. Trends in Medical Imaging Research: Modalities and Fields [3].

Our project introduces a novel Al model based on Tronsformer for detecting diabetic
retinopathy, focusing on overcoming challenges such as human subjectivity and limited access to
traditional screening methods. With the rise in diabetes globally, early detection and management of
diabetic retinopathy are crucial to prevent severe complications and vision loss. To address this need,
we are developing a platform in collaboration with Pixemantic and doctors that integrates advanced
Al models to enhance the detection of different stages of the disease. This project simulates retinal
images under controlled conditions to evaluate the effectiveness of these AI models.

2. Literature Review

In recent years, the demand for precise diagnosis of Diabetic Retinopathy (DR) has received
considerable attention, prompting the development of numerous Computer-Aided Diagnosis (CAD)
methods designed to aid clinicians in interpreting fundus images. Deep learning algorithms have
particularly stood out due to their exceptional ability to automatically extract and classify features.
For example, Sheikh and Qidwai [4] applied the MobileNetV2 architecture on a different dataset,
utilizing transfer learning to achieve a remarkable 90.8% accuracy in diagnosing DR and 92.3%
accuracy in identifying referable diabetic retinopathy (RDR) casesIn [5], the researchers tackled the
problem as a binary classification task, attaining an impressive 91.1% accuracy on the Messidor
Dataset and 90.5% on the EyPacs Database. These results underscore the method's strong potential
for application in clinical environments. Moreover, the study in [6] proposed a multi-channel
Generative Adversarial Network (GAN) with semi-supervised learning for assessing diabetic
retinopathy (DR). The model tackles the issue of mismatched labeled data in diabetic retinopathy
(DR) classification through three primary mechanisms: a multi-channel generative approach to
produce sub-field images, a multi-channel Generative Adversarial Network (GAN) with semi-
supervised learning to effectively utilize both labeled and unlabeled data, and a DR feature extractor
designed to capture representative features from high-resolution fundus images. In their study [4],
Touati et al. began the retinopathy workflow by converting images into a hierarchical data format,
which included steps such as pre-processing, data augmentation, and training. The Otsu method was
employed for image cropping, specifically to isolate the circular-colored retinal regions.
Normalization was then applied, where the minimum pixel intensity was subtracted, and the result
was divided by the average pixel intensity, bringing the pixel values into the 0 to 1 range. Contrast
enhancement was accomplished using adaptive histogram equalization filtering, specifically with
CLAHE. In [7], M. Touati et al. presented an approach that combines image processing with transfer
learning techniques. The advanced image processing steps are designed to extract richer features,
improving the quality of subsequent analysis. Transfer learning, using the Xception model, speeds
up the training process by utilizing pre-existing knowledge.These combined techniques resulted in
high training accuracy (92%) and test accuracy (88%), demonstrating the effectiveness of the
proposed method. In a separate study, Yaakoob et al. [8] developed a method for detecting and
grading diabetic retinopathy by merging ResNet-50 features with a Random Forest classifier. This
approach leverages features from ResNet-50’s average pooling layer and highlights the role of
specific layers in improving performance. ResNet helps overcome issues like vanishing gradients,
enabling effective training of deeper networks. In article [9], researchers used feature extraction to
identify anomalies in retinal images, allowing for quick diabetic retinopathy (DR) detection on a scale
of 0 to 4. Various classification algorithms were tested, with the Naive Bayes Classifier achieving 83%
accuracy.In [10], Toledo-Cortés et al. presented DLGP-DR, an advanced deep learning model that
improved classification and ranking of diabetic retinopathy (DR) using a Gaussian process. DLGP-
DR outperformed previous models in accuracy and AUC scores, providing enhanced insights into
misclassifications [11]. Experiments on the Messidor dataset demonstrated that the proposed model
outperforms other notable models [11,12], in terms of accuracy, AUC, sensitivity, and overall
performance, even with only 100 labeled samples. The approach utilizes deep learning with a CNN
and attention network, achieving Kappa scores of 0.857 and 0.849, and sensitivity rates of 0.978 and
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0. 960.In [13], TOUATI et al. introduced a ResNet50 model integrated with attention mechanisms,
marking a significant advancement in diabetic retinopathy (DR) detection. The model achieved a
training accuracy of 98.24% and an F1 Score of 95%, demonstrating superior performance compared
to existing methods. The approach described in [14], named TaNet, leverages transfer learning for
classification and has shown excellent results on datasets such as Messidor-2, EYEPACS-1, and
APTOS 2019. The model achieved impressive metrics, including 98.75% precision, 98.89% F1-score,
and 97.89% recall, outperforming current methods in terms of accuracy and prediction performance.
In [15], four scenarios using the APTOS dataset were tested with HIST, CLAHE, and ESRGAN. The
CLAHE and ESRGAN combination achieved the highest accuracy of 97.83% with a CNN, matching
experienced ophthalmologists. This underscores the value of advanced preprocessing in improving
DR detection and suggests further research on larger datasets could be beneficial. In a manner similar
to [17], which introduced a novel ViT model for predicting diabetic retinopathy severity using the
FGADR dataset, [16] underscores the potential of Vision Transformers in advancing diagnostic
accuracy and performance in medical imaging tasks. The study in [18] presents DR-CCTNet, a
modified transformer model designed to improve automated DR diagnosis. Tested on diverse fundus
images from five datasets with varying resolutions and qualities, the model utilized advanced image
processing and augmentation techniques on a large dataset of 154,882 images. The compact
convolutional transformer was found to be the most effective, achieving 90.17% accuracy even with
low-pixel images. Key contributions include a robust dataset, innovative augmentation methods,
improved image quality through pre-processing, and model optimization for better performance
with smaller images.In [19], a new deep learning model, Residual-Dense System (RDS-DR), was
developed for early diabetic retinopathy (DR) diagnosis. This model combines residual and dense
blocks to effectively extract and integrate features from retinal images. Trained on 5,000 images, RDS-
DR achieved a high accuracy of 97% in classifying DR severity. It outperformed leading models like
VGG16, VGGI19, Xception, and InceptionV3 in both accuracy and computational efficiency. Beraber
[20] presents a novel approach for detecting and classifying diabetic retinopathy using fundus
images. The method employs a feature extraction technique known as "Uniform LocalBinary Pattern
Encoded Zeroes" (ULBPEZ), which reduces feature size to 3.5% of its original size for more compact
representation. Preprocessing includes histogram matching for brightness standardization, median
filtering for noise reduction, adaptive histogram equalization for contrast enhancement, and unsharp
masking for detail sharpening. Nafseh Ghafar et al. [22] emphasize that deep learning (DL)
algorithms excel in medical image analysis, especially for fusion, segmentation, registration, and
classification tasks. Among machine learning (ML) and deep learning (DL) techniques, support
vector machines (SVM) and convolutional neural networks (CNN) are particularly noted for their
effectiveness.Yasashvini R et al. [21] investigated the use of convolutional neural networks (CNN)
and hybrid CNNSs for diabetic retinopathy classification. They developed several models, including
a standard CNN, a hybrid CNN with ResNet, and a hybrid CNN with DenseNet. The models
achieved accuracy rates of 96.22%, 93.18%, and 75.61%, respectively. The study found that the hybrid
CNN with DenseNet was the most effective for automated diabetic retinopathy classification. Nafseh
Ghafar et al. [22] highlight that healthcare's vast data is ideal for Deep Learning (DL) and Machine
Learning (ML) advancements. Medical images from various sources are key for improving analysis.
To enhance image quality for CAD systems in diabetes detection, techniques like denoising,
normalization, bias field correction, and data balancing are used. These methods reduce noise,
standardize intensity, correct intensity variations, and address class imbalances, respectively, to
improve image analysis. Yaoming Yang et al. [23] examined the advancement of Transformers in
NLP and CV, highlighting the 2017 introduction of the Transformer, which improved NLP by
capturing long-range text dependencies. Their machine learning process involves resizing retinal
images to 448 x 448 pixels, normalizing them, and dividing them into 16 x 16-pixel patches with
random masks. These patches are processed by a pre-trained Vision Transformer (ViT) to extract
features, which are then decoded, reconstructed, and used by a classifier to detect diabetic
retinopathy (DR). The study found that using Vision Transformers (ViT) with Masked Autoencoders
(MAE) for pre-training on over 100,000 retinal images resulted in better DR detection than pre-
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training with ImageNet, achieving 93.42% accuracy, 0.9853 AUC, 0.973 sensitivity, and 0.9539
specificity.More recently, in 2021, Nikhil Sathya et al. [24] introduced an innovative approach by
combining Vision Transformers (ViT) with convolutional neural networks (CNNs) for medical image
analysis. Jianfang Wu et al. [25] highlighted the importance of attention mechanisms in natural
language processing, noting that transformers, which eschew traditional convolutional layers for
multi-head attention, offer advanced capabilities. [28] Although CNN have proven effective in
grading diabetic retinopathy by efficiently extracting pixel-level features, the emergence of
transformers offers potential benefits in this field. Integrating CNNs with Vision Transformers (ViTs)
has shown to be more effective than relying solely on pure ViTs, as CNNs are limited in handling
distant pixel relationships, while ViTs perform exceptionally well in complex tasks like dense
prediction and detecting tiny objects. However, ViTs are still considered a black box due to their
opaque internal processes, highlighting the need for further research to create explainable ViT models
or hybrid CNN-ViT models for diabetic retinopathy classification and similar applications.

3. Transformer

Transformers are increasingly used in natural language processing and medical imaging due to
their ability to capture contextual information and long-term relationships. Transformers have been
extensively integrated into various fields, including natural language processing and medical
imaging. Their ability to capture contextual information and long-term relationships is particularly
beneficial for applications such as image segmentation, classification, and disease detection,
enhancing diagnostic accuracy and facilitating medical decision automation. According to Shamshad
et al. [3], Figure 9 shows a notable increase in research publications on Vision Transformers (ViT)
applied to medical imaging. Since January 2020, there has been a significant rise in publications,
reaching 19 by the end of 2022. This trend reflects growing interest in ViTs and their revolutionary
potential in medical image analysis. ViTs have diverse applications in medicine, including image
segmentation, reconstruction, and classification.

3.1. ViT: Challenging CNNs and RNNs in Image Classification

The Vision Transformer (ViT) represents a significant breakthrough in artificial intelligence
applied to image recognition, emerging as a promising alternative to convolutional neural networks
(CNNs) and recurrent neural networks (RNNSs) in image classification tasks. Developed by
researchers at Google Brain, the ViT takes an innovative approach by segmenting images into patches
and processing them through a transformer-based encoding architecture. This allows the model to
effectively capture global dependencies using self-attention mechanisms. Unlike CNNs, which focus
on local patterns in a hierarchical manner, and RNNs, which handle sequential information, the ViT
processes local features within patches while simultaneously considering the entire image, thus
offering a global receptive field. This approach surpasses the local and sequential processing
capabilities of CNNs and RNNs. Additionally, the parallelizable nature of the transformer's
architecture enhances the scalability of ViT, giving it an edge over other models whose scalability is
constrained by their sequential data processing methods.

As shown in Table 1, ViT architectures have outperformed CNNs in complex tasks such as dense
prediction and tiny object detection by utilizing advanced internal representations of visual data.
Despite these advancements, the internal representations of ViT's are often opaque, treating the model
as a "black box." To improve the understanding and interpretation of ViT models, especially in
medical image analysis and classification, developing new visualization layers is essential. This
research aims to enhance the explainability of vision transformers for more effective applications in
medical imaging [29].

Table 1. Comparison of Neural Network Architectures: CNNs, RNNs, and ViTs.

Aspect CNNs RNNs ViTs
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6
Architecture Convolutional Sequential Transformer
layers recurrent layers Encoder with self-
attention
Data Processing Local patterns,  Sequential Dependencies,
spatial hierarchies  information global integration
Feature Learning Local features, Global features, Local integration
sequential entire sequence into patches,
learning global integration
Receptive Field Local Local (sequential) Global
Feature More manual, More manual, Less manual,
Engineering learns from data learns from data learns from data
Scalability Average Low (sequential High (parallel
processing) processing)

3.2. Main Components of a Vision Transformer

The Vision Transformer (ViT) is a specialized adaptation of the original Transformer architecture
designed for image classification tasks. It starts by dividing an image into a grid of 2D patches, each
with a specific resolution. These patches are then flattened and projected into a higher-dimensional
space to create "patch embeddings." To capture the spatial relationships between patches, ViT
includes learnable token embeddings, akin to the [CLS] tokens used in BERT, which represent the
entire image context. Positional encodings are added to preserve the spatial arrangement of the
patches [26]. ViT functions as a traditional transformer encoder, processing sequences of these
embeddings through self-attention and feedforward layers. The final output from the encoder is then
passed through a multi-layer perceptron (MLP) head for classification. This structure allows ViT to
effectively analyze and classify images by considering the contextual relationships among the
patches. This section explores the fundamental concepts of ViT, focusing on its attention mechanism
and the various functional blocks depicted in the Figures 3
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Figure 3. Transformer Encoder Block in Vision Transformer with Multi-Head Self-Attention
Module.

3.2.1. Transformer Encoder

The Vision Transformer (ViT) encoder is composed of alternating layers of Multi-Head Attention
(MHA) blocks and Multi-Layer Perceptron (MLP) blocks. Before each transformation block, layer
normalization is applied, and residual connections are added after each block. These residual
connections (also known as "skip connections") provide alternate pathways for data, allowing it to
bypass certain layers and reach deeper parts of the model more directly. Layer normalization is a
technique used to standardize the distribution of inputs to each layer of the model, improving
learning speed and generalization accuracy. It involves centering and rescaling the input vector
representation to ensure consistency in the input size for the normalization layer. Unlike traditional
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Transformer blocks that have both encoding and decoding layers, the Vision Transformer only has
an encoding layer. The output of the transformer encoder is then sent to the MLP head, which
performs class classification based on the image representations learned from the class labels in the
final layer [26].

3.2.2. Patch Embedding

To address memory constraints, images are divided into smaller patches for sequential
processing. Each patch is converted into a feature vector, drawing on the embedding concept used in
Vision Transformers (ViT)[27]. These vectors are visualized in an embedding space, where similar
features group together, aiding in classification. Figure 3 (a part )Jdemonstrates this process, with
embedding layers being refined during training. This approach, particularly in retinal imaging,
combines positional encoding with feature embedding to ensure accurate feature selection.

3.2.3. Position Encoding

In architectures that use patch embedding, a key challenge is the limited knowledge of each
patch's position, making it difficult to establish relationships between them. Transformers address
this issue with positional embedding, which preserves the positional information of tokens within a
sequence. This is particularly important in fields like medical imaging, where precise feature
identification is critical. Unlike traditional methods, transformers use positional embeddings, which
are learned during training, to incorporate positional information. In vision transformers, these
embeddings are essential because image patches do not naturally contain spatial information.
Positional embeddings are combined with patch embeddings to encode the location of each patch in
the image, linking feature vectors to their positions in the sequence. Positional encoding is usually
implemented with sine and cosine functions at different frequencies for each embedding dimension.
These values are then merged with feature vectors to create a new vector that represents both the
feature and its position.

3.2.4. Attention Mechanism

Attention mechanisms, inspired by human visual focus, improve deep learning models by
emphasizing the most relevant parts of an image. This selective emphasis helps the model capture
crucial contextual information while ignoring noise, enhancing the accuracy and efficiency of tasks
like image classification, object detection, and semantic segmentation. There are two main types of
attention mechanisms: self-attention, which analyzes relationships within a sequence, and multi-
head attention, which applies self-attention across multiple subspaces. The core function of attention
mechanisms is to capture dependencies between elements in a sequence, regardless of their position.

3.2.4. Self-Attention

The self-attention mechanism is fundamental to the Transformer's architecture, enabling it to
model long-term dependencies in a sequence. It generates a representation for each sequence element
by considering the influence of all other elements. This is done by calculating similarity scores
between pairs of elements, which are then converted into attention weights using a softmax function.
These weights help create a weighted sum of the original element representations, capturing the
sequence's global context. The self-attention mechanism involves three key components: the query
(Q), the key (K), and the value (V). The query is the element being contextualized, the key is used to
determine relevance, and the value is the element weighted by the attention score to produce the final
output.

3.2.5. Multi-Head Self-Attention Mechanism

The multi-head attention mechanism in Transformers uses multiple parallel self-attention
"heads," each focusing on different data aspects. These heads apply distinct transformations to the
input, highlighting unique features. Their outputs are then combined and further processed to
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enhance the model's understanding of the data. The classification head in the Vision Transformer
converts the encoder's output into class probabilities. It typically involves a multi-layer perceptron
(MLP) or a linear layer, which processes and flattens the patch embeddings, applies dropout to avoid
overfitting, and then predicts the image class.

3.3. Compact Convolutional Network

In our study, we introduce the Compact Convolutional Transformer (CCT) as a highly efficient
model for classifying and detecting the stages of diabetic retinopathy. Unlike other transformer-based
models, CCT excels in performance in the work of [29] on smaller datasets while also significantly
reducing computational costs and memory usage. This efficiency challenges the conventional notion
that transformers require vast computational resources, making them accessible even in resource-
limited settings. The CCT's ability to operate effectively with limited data highlights its potential for
broader application in various scientific domains where data availability is often constrained, thereby
extending the reach and impact of machine learning research.

3.4.1. Convolutional Tokenization

Convolutional tokenization serves as the initial step in the CCT architecture defined in the Figure
4, where regions of interest within retinal images are segmented using convolutional layers. These
layers are configured with specific parameters such as kernel size, stride, and padding, which dictate
how the images are divided into patches.For an image with height 112, width 112, and number of
channels 3, convolutional tokenization is employed to extract features from each patch. The process
can be represented by the following sequential operation:

xo0 = AveragePool(ReLU(conv2D(x))) (1)

In the DRCCT (Diabetic Retinopathy Compact Convolutional Transformer) model, four
different filters—16, 32, 64, and 128 —are used within the CCT tokenizer. These filters determine the
number of output channels or feature maps produced by the convolutional layer. By adjusting the
size and quantity of patches through the use of various filters, the model achieves a balance between
the detail within patches and the overall sequence length generated.

Convolutional Tokenization Transformer with Sequence Pooling
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Figure 4. Compact Convolutional Network Architecture.

The Compact Convolutional Transformers (CCT) architecture combines a convolutional
tokenizer, SeqPool, and a transformer encoder. CCT variants are denoted by the number of
transformer encoder layers and convolutional layers, such as CCT-7/3x2, which signifies a model
with 7 transformer encoder layers and a 2-layer convolutional tokenizer with a 3x3 kernel size[29].

3.4.2. Transformer Encoder

Following convolutional tokenization, the sequences are processed through a series of
transformer blocks in the CCT architecture. Each transformer block includes two main components:
a Multi-Head Attention (MHA) layer and a Multi-Layer Perceptron (MLP) block. The patches are
encoded using layer normalization, MHA, and MLPs with ReLU activation and dropout. Key
parameters such as the number of transformer layers, output channels, hidden units, and dropout
rates are carefully defined to optimize the model’s performance. Stochastic depth is employed as a
regularization method, which involves applying residual branches from transformer blocks before
the residual connections during training. This technique reduces the network's effective depth,
improving generalization and reducing the risk of overfitting. The output of the transformer encoder
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is a tensor containing encoded patch features, which is then prepared for further processing and
classification.

3.4.3. Sequence Pooling

In traditional transformer models like ViT and BERT, global average pooling is used to condense
the output token sequence into a single class index. The newer "sequence pooling" approach,
however, employs an attention-based mechanism to retain essential information from various parts
of the input image. This method enhances model performance without extra parameters and slightly
reduces computational demand. The sequence pooling process begins by transforming the output
sequence of the transformer encoder:

xl=f (x°) e Rbn,d (2)

where x'is the output from layer LLL of the transformer encoder, bbb is the batch size, nnn is the
sequence length, and d is the total embedding dimension. This output is then processed through a
linear layer:

x' = softmax(g (x)T) e Rb,1,d (3)

where x’ contains the importance weights for the tokens. These weights are applied to the output
sequence to produce the final weighted output:

z=x"0x" (4

The result, z, is a weighted and flattened output used for classification purposes.

3.4.4. Classification Tasks

In the final stage of the CCT model, dense layers are employed for the classification of diabetic
retinopathy stages. The final dense layer typically outputs class probabilities for multi-class
classification tasks or a single value for binary classification. Dense neural networks are particularly
effective at learning complex patterns from input data, making them a popular choice in machine
learning and deep learning applications, especially for tasks involving image classification.

4. Work Done

4.1. Data Undestading

The data used in this study comes from Kaggle, a well-known platform for data science research
and competitions. Specifically, we utilized the diabetic retinopathy dataset, which contains five
categories of images for fundus imaging. Our dataset consists of 6399 images, which we divided into
80% for training and 20% for testing. Each image is labeled with the severity level of the disease:
No_DR, Mild, Moderate, Severe, and Proliferated. Although information such as the patient's age is
not included, the samples are individual color (RGB) images of 176 x 208 pixels. Table 2 shows the
distribution of the dataset, indicating the number of images per category.

The data used in this study comes from Kaggle, a well-known platform for data science research
and competitions. Specifically, we utilized the diabetic retinopathy dataset, which contains five
categories of images for fundus imaging. Our dataset consists of 6399 images, which we divided into
80% for training and 20% for testing. Each image is labeled with the severity level of the disease:
No_DR, Mild, Moderate, Severe, and Proliferate_DR. Although information such as the patient's age
is not included, the samples are individual color (RGB) images of 176 x 208 pixels. Table 2 shows the
distribution of the dataset, indicating the number of images per category.

Table 2. Distribution of the DR dataset.

Classes Train set Test set

No DR 2192 549
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Mild 592 148
Moderate 1518 380
Proliferative DR 472 118
Severe 284 72

4.2. Image Preprocessing

4.2.1. feature Extraction

In image preprocessing, we ensured data quality and consistency by extracting images while
preserving visual details. We applied resizing and pixel normalization for uniform scaling and
effective data management. To enhance image representation and feature extraction, we used
convolution and resizing techniques to emphasize key patterns and structures in retinal images
presented in the Figure 5. Convolutional layers in our model were crucial for automatically detecting
important visual patterns, which aids in precise feature extraction and accurate diabetic retinopathy
analysis. Additionally, these layers helped reduce dimensionality, providing a more informative and
compact data representation.

NO DR MILD DR MODERATE DR SEVERE DR PROLIFERATIVE
DR
(A) (B) (9] (D) (E)

Figure 5. Diabetic Retinopathy Classes.

4.2.1. Noise Reduction

Image preprocessing plays a crucial role in enhancing the quality and effectiveness of diabetic
retinopathy (DR) detection. The process begins with grayscale conversion, which simplifies the
image data by reducing it from RGB to a single channel of intensity values. This step is essential for
focusing on the critical features necessary for DR detection, achieved through the formula (5):

Igray = 0.2989 X R + 0.5870 X G + 0.1140 x B 6)

The result is a single-channel image that minimizes computational complexity while retaining
key visual information. Following this, CLAHE (Contrast Limited Adaptive Histogram Equalization)
is applied to the grayscale image. CLAHE enhances the local contrast of the image, making subtle DR
features, such as microaneurysms, more visible. This technique improves local contrast without
amplifying noise, thereby highlighting critical features more effectively.

To further refine the image, Gaussian smoothing is employed. This technique involves applying
a Gaussian filter to the CLAHE-enhanced image to reduce noise while preserving important edges.
The Gaussian filter is represented by the formula (6):

Lnedian = Icrane * Go (6)

where Go denotes the Gaussian kernel with standard deviation o. This results in a smoothed image
that facilitates better feature detection and segmentation. Finally, median filtering is used to address
any remaining noise, particularly salt-and-pepper noise, while maintaining edge integrity. By
applying a median filter (7) to the smoothed image:

Lnedian = MedianFilter (I, oen )- 7

The outcome is a further noise-reduced image that preserves fine details and edges, thereby
enhancing the accuracy of subsequent feature extraction. Together, these preprocessing steps ensure
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that the image is optimally prepared for the detection of diabetic retinopathy, enhancing both feature
visibility and overall model performance.

4.2.3. Data Augmentation

This project aimed to enhance a diabetic retinopathy detection model by addressing the
challenges posed by limited, imbalanced, and noisy fundus image datasets. We used data
augmentation methods such as rotation, resizing, flipping, cropping, shifting, and noise addition to
increase the quantity, diversity, and quality of the data. By providing more varied and realistic data,
we aimed to enhance the model's generalization, reduce overfitting, and boost its ability to accurately
detect diabetic retinopathy.

IMAGE AUGMENTATION 1 0 IMAGE AUGMENTATION 2

IMAGE AUGMENTATION 3 0 IMAGE AUGMENTATION 4

Figure 6. Data Augmentation Operation.

4.2.4. Data Balancing

To ensure fair and accurate diabetic retinopathy classification, it's crucial to address class
imbalance. When certain classes dominate the dataset, models can become biased, performing well
on majority classes but poorly on minority ones. By using techniques like the RandomOverSampler
from the imbalanced-learn library, as mentioned in the figure below, we can balance the dataset by
duplicating samples from minority classes. This process ensures each class has an equal number of
samples : 2805 allowing the model to learn and predict across all categories with greater accuracy and
fairness.

Number of samples in each class
No_DR: 2805

Mild: 2805
Moderate: 2805

Severe: 2805

Proliferate DR: 2805

Classes Names according to index:

{'No DR': @, 'Mild': 1, 'Moderate': 2, 'Severe': 3, 'Proliferate DR': 4}

Figure 7. Capture of data Balancing Result.
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4.3. Modeling Bulding

The DRCCT model leverages a sophisticated multi-step pipeline to achieve high classification
accuracy for diabetic retinopathy. It begins with the collection and preprocessing of retinal images,
employing median filtering and CLAHE to enhance image quality. To address class imbalance,
RandomOverSampler is used to balance the dataset to 2805 samples per class, complemented by
extensive data augmentation using nine transformations.

~ ” - Optional
reprocessing methads Positional

data e::'tracnon data augmentation Embeddings

M | RandomOverSampler [ 1 e T — [ 5 5
Encoder

step3:data

balancing

median filter
—— EE L B

Step2:Data
Stepl: Data [Preprocessing
Collection
Apply 9 types of alterations Linear Lay
Step4: DRCTT
Transformer Model
[ Encoder Block] ] [ Optimizer ]
.
Dropout Batch Size Learning Rate J‘
J [ Kernel Size ] [ Weight Decay J
Step5: Analyse

Figure 8. Our DRCCT Workflow.

[ Image Size

[ Stride Size

The model incorporates convolutional tokenization with four different filter sizes (16, 32, 64, 128)
to generate patch sequences. Positional embeddings are added to maintain spatial information. The
architecture includes the following components:

Input Layer: (None, 112, 112, 3) — Accepts retinal images of size 112x112 with 3 color channels.

CCT Tokenizer: (None, 4, 120) — Performs convolutional tokenization, producing sequences of
120-dimensional patches from the image.

tf.operators_add: (None, 4, 120) — Applies element-wise addition to integrate information from
different sources.

Layer Normalization: (None, 4, 120) — Normalizes the tokenized sequences to stabilize training
and improve convergence.

Multi-head Attention (AMH): (None, 4, 120) — Utilizes multi-head attention to capture
complex dependencies and relationships between different parts of the image.

Stochastic Depth: (None, 4, 120) — Employs stochastic depth regularization to enhance model
generalization by randomly dropping layers during training.

Add: (None, 4, 120) — Combines information from previous layers or sources to refine feature
representation.

Layer Normalization 1: (None, 4, 120) — Further normalizes the processed sequences to ensure
consistency and stability.

A sequence pooling layer extracts the most informative features from the encoded patches,
which are then fed into a fully connected dense layer for final classification. The DRCCT model, with
2,342,326 parameters, is trained using the Adam optimizer over 100 epochs, demonstrating robust
learning and excellent generalization capabilities. This comprehensive architecture enables the model
to effectively analyze retinal images and classify diabetic retinopathy severity with high accuracy.

4. Results and Discussion

4.1. Training and Validation Performance
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Training and Validation: The performance of the DRCCT model in terms of training and
validation accuracy was outstanding over 100 epochs, completed in approximately 423 seconds.
Throughout the training period, the validation accuracy consistently surpassed the training accuracy,
suggesting that the model did not overfit the training data. This observation highlights the model's
ability to generalize and adapt to new, previously unseen data. Figure 9 and 10 demonstrates the
effectiveness of the DRCCT model in learning from training data and generalizing well our model.

Model: "model"

cct tokenizer (CCTTokenize (None, 4, 128) 9726 ['input 1[0][0]']
r)

tf. operators .add (TFOp (None, 4, ['cct tokenizer[0][0]']
Lambda)

rmalization (Layer (None, 4, 128) 2 tf. operators .add[0][e@]']
Nori ation)

multi tention (Mult (None,
n)
ic depth (Stochast (None,

(None,

(Lay (None,

Figure 9. Model Composition.

4.2. Model Testing and Metrics

The following table presents the results for the entire APTOS dataset, with an 80% split for
training and 20% for validation. We use accuracy and precision, defined by Equations (8) and (9)
respectively, as metrics to assess the correctness of our classification model.

Accuracy = (TP +TN)/(TP+ TN +FP + FN) (8)
Precision =TP/(TP + FP) (9)

Accuracy measures the overall effectiveness of the model in correctly classifying both positive
and negative instances, while precision focuses on the accuracy of the positive predictions.The F1
score combines precision and sensitivity into a single metric. It is calculated using equation 9.

F1 score = 2 X (precision X recall)/(precision + recall) (10)

The model was tested on a new dataset to evaluate its generalization performance. It achieved
high accuracy, with precision and recall scores of 96.93% and 98.89%, respectively. Various metrics,
including sensitivity, specificity, precision, and F1 score, were used to assess its performance. These
metrics confirm the model's ability to correctly classify samples across different classes, effectively
balancing false positives and negatives.

Figure 10. Model Performance.

The close alignment between training and validation losses suggests minimal overfitting and
robust performance, supporting the model’s high precision and recall scores across various diabetic
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retinopathy stages. This balance between training and validation losses underscores the model's
reliability and effectiveness in accurately classifying diabetic retinopathy.

As shown in Figure 11, our results indicate that our model performs well, with an average F1
score of 0.973 across all classes. This confirms that the model is effective at detecting true positives

Figure 11. Multi-Class Classification Performance of the Model: Metrics and Results.

4.3. Confusion Matrix Analysis

These metrics demonstrate that the model can balance the trade-off between avoiding false
positives and false negatives and can capture most relevant samples for each class. Confusion Matrix:
The confusion matrix presented in Figure 12 evaluates the performance of the classification model
for diagnosing diabetic retinopathy.

Confusion Matrix of Model 500

o
8
g
-4

500

Mild

400

- 300

Ground Truth
Moderate

-200

Severe

-100

17

Proliferate_DR
|
=)
=]
(9

! ' ! \
No_DR Mild Moderate Severe Proliferate_DR
Predictions

Figure 12. Confusion Metric of DRCCT.

The confusion matrix reveals that while the DRCCT model demonstrates a strong performance
in certain classes like No_DR, it struggles significantly with others, particularly Mild, Moderate,
Severe, and Proliferate_DR. The high number of false positives in the Mild class and false negatives
in the Moderate class suggest that the model may require further fine-tuning or additional data to
better distinguish between these stages. The complete miss in the Severe and Proliferate_DR classes
indicates a need for model refinement, especially considering the clinical importance of accurately
detecting these advanced stages of diabetic retinopathy.

e  True Positives (TP): Correctly identified positive cases.
e  True Negatives (TN): Correctly identified negative cases.
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o  False Positives (FP): Incorrectly identified positive cases.
e  False Negatives (FN): Incorrectly identified negative cases.

Specificity as defined by Equation 11, is sometimes known as the false positive rate (FPR). It is
the counterpart to sensitivity and measures the model's ability to correctly identify negative samples.
Mathematically, specificity is expressed as follows:

TP

Specificity = TPTEN

(11)

Precision, also referred to as positive predictive value (PPV), assesses the ratio of correctly
predicted positive results to the total number of predicted positives. It is given by Equation 12:

TN
TN+FP

Specificity = (12)

4.4. Training and Validation Loss

The training and validation loss values, as depicted in Figure 2, demonstrate the DRCCT model’s
effective learning and generalization. The consistently low training loss, decreasing to around 0.03,
indicates that the model is effectively minimizing errors on the training dataset. Similarly, the
validation loss, stabilizing at approximately 0.04, reflects the model’s strong ability to generalize to
new, unseen data.

Training and Validation Loss over Epochs

0,12
0,10

0,08

Loss

0,06

0,04

0,02

0,00

Epochs

—a— Training Loss  —e— Validation Loss

Figure 13. Training and validation loss.
4.5. Advanced Optimization Strategies

4.5.1. Optimizer

In the DRCCT model, the AdamW optimizer was selected for its superior handling of weight
decay, which effectively prevents overfitting by decoupling weight decay from the gradient update
process. AdamW's adaptive learning rate mechanism adjusts for each parameter based on gradient
moments, ensuring stable and efficient convergence. Its momentum-based updates and bias
correction techniques further enhance training stability and speed, making it well-suited for the
model's complex architecture, which combines convolutional networks and transformers.

The AdamW update rule is given by:

Br= 01— (s + A% Bi) (13)

e  Otrepresents the parameters at time step t,
e 1 is the learning rate,
e m.and ¥, are the bias-corrected first and second moment estimates,
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e 6 =107% is asmall constant for numerical stability,
e  A=0.01 is the weight decay coefficient.

4.5.2. Cost Function

Loss functions are crucial in guiding a model's learning process by minimizing errors and
improving performance. The selection of a loss function depends on the specific goals and data
characteristics. For the DRCCT model, Categorical Cross-Entropy was chosen due to its effectiveness
in multi-class classification tasks, such as diabetic retinopathy severity classification. It measures the
divergence between the model’s predicted probability distribution and the actual distribution of the
classes, directly aiding in accuracy improvement. The Categorical Cross-Entropy loss function is
defined as:

Losscgg = _Z:=1(yi log(y,)) (14)

where:
e N is the number of classes,
e y; isthe ground truth label for class i,
e §, iis the predicted probability for class i.

In cases where data imbalance is a concern, Focal Loss can be an alternative, focusing more on
harder-to-classify examples and ensuring balanced performance across all classes. The Focal Loss
function is given by:

Losscgs = — Y_ (1 =9 (v log(51)  (8)

Where:
e  vis the focusing parameter that adjusts the rate at which easy examples are down-weighted.

4.5.3. Learning Rate Adjustment

The learning rate is one of the most crucial hyperparameters in deep learning, governing how
quickly or slowly a model adapts to the training data. Selecting an appropriate learning rate is
essential for effective convergence. In this work, several techniques were implemented to optimize
the learning rate:

Cyclical Learning Rate (CLR): CLR varies the learning rate cyclically between a minimum and
maximum value. By allowing the learning rate to periodically increase and decrease, the model can
escape local minima, leading to better convergence. We set the base learning rate at le-4 and the
maximum at le-3, which helped in stabilizing the training process and achieving more robust
performance.

4.5.4. Regularization Techniques

Regularization is essential to prevent overfitting, especially when dealing with a large number
of parameters, as is common in transformer-based models like DRCCT. Several regularization
methods were utilized:

Dropout: To mitigate overfitting, dropout was increased in the Transformer blocks from 0.3 to
0.4. By randomly deactivating a fraction of neurons during training, dropout forces the model to learn
more robust features that are not reliant on specific neurons.

L2 Regularization: Also known as weight decay, L2 regularization penalizes large weights by
adding a regularization term to the loss function. This prevents the model from becoming overly
complex and helps in maintaining generalization. In this study, an L2 regularization coefficient
between le-4 and 5e-4 was applied.

Label Smoothing: To further reduce overfitting and make the model more tolerant to noisy
labels, label smoothing was employed with a smoothing factor of 0.1. This technique reduces the
confidence of the model in its predictions, which can help in preventing the model from becoming
too confident and overfitting to the training data.
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4.6. Results Overview

The DRCCT model shows consistently high performance across all metrics, effectively
classifying diabetic retinopathy (DR) into five categories: No_DR, Mild, Moderate, Severe, and
Proliferate_DR. Our model for classifying diabetic retinopathy (DR) across different severity levels
demonstrates consistently high performance, with impressive metrics throughout.

Table 3 reveals that the model demonstrates exceptional precision and recall across all diabetic
retinopathy (DR) classes. Notably, it achieves outstanding performance in the No_DR category, with
a precision of 0.99, recall of 0.97, and an F1-score of 0.98. Similarly, in the Severe DR category, the
model exhibits a precision of 0.96, a perfect recall of 1.00, and an Fl-score of 0.98. These results
underscore the model's strong capability in accurately identifying both the absence and presence of
severe DR. This high level of accuracy and the model's effectiveness in capturing true positives are
crucial in medical diagnostics, ensuring reliable identification of DR stages. Additionally, the F1-
scores, ranging between 0.95 and 0.98 across all classes, reflect the model’s ability to balance precision
and recall, making it dependable across various stages of DR. The DRCCT model stands out with its
balanced performance across all DR classes, minimal overfitting, and high accuracy metrics. It is
competitive with the latest models in the field and shows potential for practical application in medical
diagnostics, where reliability and accuracy are critical.

Table 3. Comprehensive Results Summary Table.

Metri No_D Mil Moderat Sever Proliferat Micr Macr Weighte Sample

R d e e e o o0 Avg dAvg s Avg

Avg
Recall 0.99 096 098  0.96 0.97 097 097 0.97 0.97
Recall 0.97 0.99 092 1.00 0.97 097 097 0.97 0.97
F1-Score  0.98 098 095 098 0.97 097 097 0.97 0.97
Support 549 604 545 555 552 2805 2805 2805 2805

4.7. Comparative Study of Results

As demonstrated in Table 4, The DRCCT (our model) exhibits outstanding performance across
several key metrics, including precision, recall, and F1-score, all achieving a value of 0.973 across all
categories. This performance is not only significantly higher than many of the other models listed in
related work but also shows consistent accuracy and recall across different diabetic retinopathy (DR)
severity levels. Such consistency is particularly notable when compared to models like the ResNet-
50 with Random Forest classifier and ViT CNN, which exhibit varying performance across different
datasets. This highlights the robustness and reliability of our model for real-world applications.
Additionally, while models like the Xception pretrained model and Residual Block + CNN report
high accuracy, they often lack detailed information on precision, recall, or F1-score across multiple
classes. In contrast, our model provides comprehensive metrics that clearly indicate its balanced
performance across all severity levels of DR. The advanced architecture of DRCCT leverages the
strengths of both convolutional networks and transformers, particularly through the use of a
Compact Convolutional Transformer approach. This allows the model to more effectively capture
spatial features and relationships within retinal images, which is crucial for accurate DR
classification.When compared to state-of-the-art systems like the Residual-Dense System and Vision
Transformers with Masked Autoencoders (MAE), our model’s Fl-score is on par or better,
showcasing its ability to compete with more complex architectures while maintaining efficiency.
Overall, DRCCT (2024) offers balanced and superior performance, making it a strong candidate for
deployment in clinical settings. It not only excels in key metrics but also demonstrates the robustness
needed for reliable DR severity classification, solidifying its position as an advanced and practical
solution for diabetic retinopathy diagnosis.

Table 4. This is a table. Tables should be placed in the main text near to the first time they are cited.
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Authors Method Performance Our Model
Sheikh, S., & Transfer Learning of 90.8% DR, 92.3% RDR  Likely superior, F1-score:
Qidwai, MobileNetV2 0.97
(2020)
Gao et al,, DL/Efficient CNN 90.5% Accuracy better
(2019)
Yaakoob et al. ResNet-50 with a 96% on the Messidor-2 Better than EyePACS,
(2021) Random Forest classifier ,75.09% EyePACS comparable to Messidor-2
Dharmana, M Blob Technique and 83% Accuracy Significantly better
al., (2020) Naive Bayes
Wang, | & al., Deep Convolutional Kappa 0.8083 Likely superior based on
2020 Neural Networks Fl-score
Toledo-Cortés  Deep Learning/DLGP- 93.23% Sensitivity, Comparable, slightly
et al., (2020) DR, Inception-V3 91.73% Specificity, better F1-score
0.9769 AUC
Wang, S. & Deep Learning/GAN EyePACS: 86.13% Superior performance
al., (2020) Discriminative model Accuracy, Messidor: across metrics
84.23% Accuracy,
Messidor(2): 80.46%
Accuracy
Touati, M., Xception pretrained Training accuracy: 94%, Better F1-score: 0.97
Nana, L., model Test accuracy: 89%, F1
Benzarti, F. Score: 0.94
(2023)
Toledo-Cortés ~ Deep Learning/ DLGP- 93.23% Sensitivity, Better in Sensiftiviy and
et al., 2020 DR, Inception-V3 91.73% Specificity, Specificiy
0.9769 AUC
Z.Wang, Y. Deep AUC 0.921 Acc 0.905 Likely superior based on
Yin. (2017) Learning/CNN+Attention  for normal/abnormal metrics
Network
Khan, I et al. Compact Convolution Acc90.17% Significantly better,
(2023) Network likely 97% accuracy
M. BERBaR Residual-Dense System 97% in classifying DR Comparable or slightly
(2022) severity better
Nazi et a ViT CNN F1-score: 0.825, Significantly better, F1-
(2023) accuracy: 0.825, B Acc: score: 0.97
0.826, AUC: 0.964,
precision: 0.825, recall:
0.825, specificity: 0.956.
Ijaz Bashir, et Residual Block + CNN Accuracy of 97.5% Comparable, accuracy
al. (2023) likely around 97%
Yasashvini R hybrid CNNs ResNet, .The models achieved Better
et al. (2022) and a hybrid CNN with accuracy rates of
DenseNet 96.22%, 93.18%, and
75.61%, respectively
Yaoming Vision Transformers accuracy 93.42% ,AUC Slightly better F1-score
Yang et al. (ViT) combined with 0.9853, sensitivity 0.973,
(2024) Masked Autoencoders specificity 0.9539

(MAE)
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As a researcher in LabSTICC and Pixemantic Startup, specializing in deep healthcare, a create
cutting-edge platformis created for diabetic retinopathy detection. Pixemantic Develeopors  helped
deploy a web application powered by our DRCCT model, which has shown remarkable accuracy,
including in challenging left eye cases, as seen in Figure 14. This project, supported by Dr. Rabeb
Touati’s expertise exemplifies the power of Al in advancing early diagnosis and improving patient
care.

Upload Left Eye Image: Upload Right Eye Image:

‘ Choisir un fichier | fac399455195.png ‘ ‘ Choisir un fichier | Aucun fichier choisi ‘

LEFT EYE Prediction: Moderate

Figure 14. Left Eye Prediction.

5. Conclusion

This research has effectively developed the Diabetic Retinopathy Compact Convolutional
Transformer (DRCCT) model, demonstrating its high precision in classifying and detecting the stages
of diabetic retinopathy. By merging convolutional layers with transformer techniques, the DRCCT
model achieved remarkable results, including an average F1 score of 0.973, a precision of 96.93%, and
a recall of 98.89%. The model’s strong performance, without overfitting and high validation accuracy
across 100 training epochs, highlights its ability to accurately identify and differentiate between the
various stages of diabetic retinopathy. It surpasses existing models such as MobileNetV2, ResNet-50
with Random Forest classifiers, and Vision Transformers with Masked Autoencoders, offering
superior precision and robustness in addressing class imbalance and reducing false positives. The
successful use of advanced regularization techniques, such as dropout and stochastic depth,
emphasizes the model’s versatility and its potential for clinical integration, where early and accurate
detection is vital for effective treatment.

6. Future Research

Integrating watermarking techniques into the DRCCT model marks a significant step forward
in enhancing data security and integrity within medical diagnostics. By embedding watermarks
using an encoder-decoder framework, diagnostic outputs can be effectively safeguarded against
tampering and unauthorized access. This method is particularly crucial in telemedicine, where
medical images and diagnostic data are often transmitted over insecure networks. Watermarking not
only protects the data but also ensures its authenticity, thus preserving trust in Al-assisted diagnoses
and protecting sensitive medical information. Future research should aim to refine watermarking
methods to increase their robustness and contextual relevance. Creating watermarks based on key
diabetic retinopathy features will ensure that these security measures are both effective and tailored
to the medical setting. Additionally, investigating predictive watermarking techniques that adapt to
changing disease states could further enhance data integrity and reliability, offering a dynamic and
secure framework for managing patient information and improving diagnostic accuracy.

Author Contributions: For the research article, the following contributions were made by the authors:
Conceptualization: Mohamed Touati and Rabeb Touati. Methodology: Mohamed Touati. Software: Mohamed
Touati. Validation: Laurent Nana, Rabeb Touati, and Faouzi Benzarti. Formal Analysis: Mohamed Touati.


https://doi.org/10.20944/preprints202409.0303.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 September 2024 d0i:10.20944/preprints202409.0303.v1

20

Investigation: Mohamed Touati and Rabeb Touati. Resources: Faouzi Benzarti. Data Curation: Mohamed
Touati Writing—Original Draft Preparation: Mohamed Touati. Writing—Review & Editing: Rabeb Touati
and Laurent Nana. Visualization: Mohamed Touati and Sadok Ben Yahia Supervision: Faouzi Benzarti Laurent
Nana, Rabeb Touati and Sadok Ben Yahia Project Administration: Laurent Nana. Funding Acquisition: Not
applicable. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.
Institutional Review Board Statement: Not applicable, as the study did not involve humans or animals.
Informed Consent Statement: Not applicable, as the study did not involve humans.

Data Availability Statement: The data supporting the findings of this study are available from the
corresponding author upon reasonable request.

Acknowledgments: We acknowledge the support from the University of Western Brittany (UBO), Lab-STICC,
University of Tunis, and the Faculty of Medicine of Tunis. Special thanks to all technical staff involved in this
research.

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or in the decision to
publish the results.

Additional Perspective: As part of our future work, we plan to integrate a watermarking technique into the
encoder side of our model. This watermarking method will serve as a security feature to protect the integrity of
the data and enhance cryptographic measures within the encoder-decoder framework. The development of this
method aims to ensure secure and reliable transmission and storage of sensitive medical data.
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