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Abstract: Diabetic retinopathy, a common complication of diabetes, is further exacerbated by factors such as 

hypertension and obesity. This study introduces the Diabetic Retinopathy Convolutional Transformer (DRCT) 

model, which combines convolutional and transformer techniques to enhance the classification of retinal 

images. The DRCT model achieved an impressive average F1 score of 0.97, reflecting its high accuracy in 

detecting true positives while minimizing false positives. Throughout 100 training epochs, the model exhibited 

strong generalization capabilities, achieving superior validation accuracy with minimal overfitting. On a newly 

evaluated dataset, the model attained precision and recall scores of 96.93% and 98.89%, respectively, indicating 

a well-balanced handling of false positives and false negatives. The model's ability to classify retinal images 

into five distinct diabetic retinopathy categories demonstrates its potential to significantly improve automated 

diagnosis and aid in clinical decision-making. 
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1. Introduction 

Diabetes is a widespread metabolic condition that leads to multiple vascular complications 

throughout the body. The likelihood of eye-related problems escalates when diabetes is present 

alongside other health conditions like hypertension, obesity, and elevated cholesterol levels. learning 

(ML) techniques to enhance the detection and classification of DR. This condition harms the tiny 

blood vessels in the retina, resulting in a condition called diabetic retinopathy (DR). This frequent 

complication progressively damages these blood vessels, disrupting the retina's normal function. The 

damage can cause fluid to leak and blood vessels to become blocked, leading to significant vision loss 

or even blindness if left untreated. Diabetic retinopathy is the leading cause of global blindness, 

making early detection crucial. Emerging technologies, particularly artificial intelligence (AI), offer 

promising alternatives for cost-effective and efficient DR screening. Recent research [1]has focused 

on leveraging machine A study that reviewed various ML methods for DR detection highlighted the 

importance of early intervention and the potential of AI in providing scalable screening solutions. 

Figure 1 depicts a retinal fundus exam highlighting key features of diabetic retinopathy (DR). Visible 

are microaneurysms, small bulges within the retinal vessels, along with hemorrhages and exudates—

indicators of bleeding and protein deposits. These findings are characteristic of non-proliferative 

diabetic retinopathy (NPDR), an early stage of the condition. DR is progressive, making early 

detection and treatment crucial to avoid significant vision loss. If left untreated, the disease may 

advance to proliferative diabetic retinopathy (PDR), marked by abnormal blood vessel growth. 
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Figure 1. Diabetic Retinopathy: Key Features. 

The study conducted a bibliometric analysis using data from Scopus and Web of Science to 

explore different ML styles used in DR diagnosis, combining quantitative and qualitative analyses to 

offer insights into image segmentation methods, datasets, and ML approaches, including traditional 

and deep learning techniques.Advances in artificial intelligence (AI) present new ways to enhance 

disease detection and management. A 178 reviewed studies [2] on DR screening systems using AI 

techniques, highlighting the urgent need for automated, reliable solutions due to the global rise in 

DR patients. The review spans publications from January 2014 to June 2022, discussing various AI, 

machine learning (ML), and deep learning (DL) tools used for DR detection. A key focus is on the 

comparison between custom-built convolutional neural networks (CNNs) and those employing 

transfer learning with established architectures like VGG, ResNet, or AlexNet. While creating a CNN 

from scratch requires significant time and resources, transfer learning offers a quicker alternative. 

However, studies indicate that custom CNN architectures often outperform those using existing 

structures. This distinction warrants further research. The survey also explores feature extraction 

techniques, which enhance model performance by reducing feature vector size and computational 

effort. Publicly available datasets are analyzed, along with performance metrics crucial for evaluating 

the accuracy and effectiveness of DR detection systems. The review identifies a gap in technologies 

capable of predicting all DR stages and detecting various lesions, highlighting the need for advanced 

solutions to improve patient outcomes and prevent vision loss. Future research should consider 

emerging concepts like transfer learning, ensemble learning, explainable AI, multi-task learning, and 

domain adaptation to enhance early DR detection. 

Recent developments in Deep Learning, especially with Vision Transformers (ViTs), have 

demonstrated significant potential in the field of medical imaging. The number of publications on 

ViTs surged to 19 by the end of 2022, underscoring their ability to enhance medical image analysis 

[3]. ViTs improve both the accuracy and speed of analyzing retinal images, which is crucial for early 

diagnosis and timely intervention. Our project leverages these advancements by incorporating ViTs 

into our AI tools for detecting and managing diabetic retinopathy. This strategy aims to equip 

healthcare professionals with advanced tools for more effective diagnosis and treatment of diabetic 

retinopathy, ultimately aiding in the preservation of patients' vision. 
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Figure 2. Trends in Medical Imaging Research: Modalities and Fields [3]. 

Our project introduces a novel AI model based on Tronsformer for detecting diabetic 

retinopathy, focusing on overcoming challenges such as human subjectivity and limited access to 

traditional screening methods. With the rise in diabetes globally, early detection and management of 

diabetic retinopathy are crucial to prevent severe complications and vision loss. To address this need, 

we are developing a platform in collaboration with Pixemantic and doctors that integrates advanced 

AI models to enhance the detection of different stages of the disease. This project simulates retinal 

images under controlled conditions to evaluate the effectiveness of these AI models. 

2. Literature Review 

In recent years, the demand for precise diagnosis of Diabetic Retinopathy (DR) has received 

considerable attention, prompting the development of numerous Computer-Aided Diagnosis (CAD) 

methods designed to aid clinicians in interpreting fundus images. Deep learning algorithms have 

particularly stood out due to their exceptional ability to automatically extract and classify features. 

For example, Sheikh and Qidwai [4] applied the MobileNetV2 architecture on a different dataset, 

utilizing transfer learning to achieve a remarkable 90.8% accuracy in diagnosing DR and 92.3% 

accuracy in identifying referable diabetic retinopathy (RDR) casesIn [5], the researchers tackled the 

problem as a binary classification task, attaining an impressive 91.1% accuracy on the Messidor 

Dataset and 90.5% on the EyPacs Database. These results underscore the method's strong potential 

for application in clinical environments. Moreover, the study in [6] proposed a multi-channel 

Generative Adversarial Network (GAN) with semi-supervised learning for assessing diabetic 

retinopathy (DR). The model tackles the issue of mismatched labeled data in diabetic retinopathy 

(DR) classification through three primary mechanisms: a multi-channel generative approach to 

produce sub-field images, a multi-channel Generative Adversarial Network (GAN) with semi-

supervised learning to effectively utilize both labeled and unlabeled data, and a DR feature extractor 

designed to capture representative features from high-resolution fundus images. In their study [4], 

Touati et al. began the retinopathy workflow by converting images into a hierarchical data format, 

which included steps such as pre-processing, data augmentation, and training. The Otsu method was 

employed for image cropping, specifically to isolate the circular-colored retinal regions. 

Normalization was then applied, where the minimum pixel intensity was subtracted, and the result 

was divided by the average pixel intensity, bringing the pixel values into the 0 to 1 range. Contrast 

enhancement was accomplished using adaptive histogram equalization filtering, specifically with 

CLAHE. In [7], M. Touati et al. presented an approach that combines image processing with transfer 

learning techniques. The advanced image processing steps are designed to extract richer features, 

improving the quality of subsequent analysis. Transfer learning, using the Xception model, speeds 

up the training process by utilizing pre-existing knowledge.These combined techniques resulted in 

high training accuracy (92%) and test accuracy (88%), demonstrating the effectiveness of the 

proposed method. In a separate study, Yaakoob et al. [8] developed a method for detecting and 

grading diabetic retinopathy by merging ResNet-50 features with a Random Forest classifier. This 

approach leverages features from ResNet-50’s average pooling layer and highlights the role of 

specific layers in improving performance. ResNet helps overcome issues like vanishing gradients, 

enabling effective training of deeper networks. In article [9], researchers used feature extraction to 

identify anomalies in retinal images, allowing for quick diabetic retinopathy (DR) detection on a scale 

of 0 to 4. Various classification algorithms were tested, with the Naïve Bayes Classifier achieving 83% 

accuracy.In [10], Toledo-Cortés et al. presented DLGP-DR, an advanced deep learning model that 

improved classification and ranking of diabetic retinopathy (DR) using a Gaussian process. DLGP-

DR outperformed previous models in accuracy and AUC scores, providing enhanced insights into 

misclassifications [11]. Experiments on the Messidor dataset demonstrated that the proposed model 

outperforms other notable models [11,12], in terms of accuracy, AUC, sensitivity, and overall 

performance, even with only 100 labeled samples. The approach utilizes deep learning with a CNN 

and attention network, achieving Kappa scores of 0.857 and 0.849, and sensitivity rates of 0.978 and 
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0. 960.In [13], TOUATI et al. introduced a ResNet50 model integrated with attention mechanisms, 

marking a significant advancement in diabetic retinopathy (DR) detection. The model achieved a 

training accuracy of 98.24% and an F1 Score of 95%, demonstrating superior performance compared 

to existing methods. The approach described in [14], named TaNet, leverages transfer learning for 

classification and has shown excellent results on datasets such as Messidor-2, EYEPACS-1, and 

APTOS 2019. The model achieved impressive metrics, including 98.75% precision, 98.89% F1-score, 

and 97.89% recall, outperforming current methods in terms of accuracy and prediction performance. 

In [15], four scenarios using the APTOS dataset were tested with HIST, CLAHE, and ESRGAN. The 

CLAHE and ESRGAN combination achieved the highest accuracy of 97.83% with a CNN, matching 

experienced ophthalmologists. This underscores the value of advanced preprocessing in improving 

DR detection and suggests further research on larger datasets could be beneficial. In a manner similar 

to [17], which introduced a novel ViT model for predicting diabetic retinopathy severity using the 

FGADR dataset, [16] underscores the potential of Vision Transformers in advancing diagnostic 

accuracy and performance in medical imaging tasks. The study in [18] presents DR-CCTNet, a 

modified transformer model designed to improve automated DR diagnosis. Tested on diverse fundus 

images from five datasets with varying resolutions and qualities, the model utilized advanced image 

processing and augmentation techniques on a large dataset of 154,882 images. The compact 

convolutional transformer was found to be the most effective, achieving 90.17% accuracy even with 

low-pixel images. Key contributions include a robust dataset, innovative augmentation methods, 

improved image quality through pre-processing, and model optimization for better performance 

with smaller images.In [19], a new deep learning model, Residual-Dense System (RDS-DR), was 

developed for early diabetic retinopathy (DR) diagnosis. This model combines residual and dense 

blocks to effectively extract and integrate features from retinal images. Trained on 5,000 images, RDS-

DR achieved a high accuracy of 97% in classifying DR severity. It outperformed leading models like 

VGG16, VGG19, Xception, and InceptionV3 in both accuracy and computational efficiency. Beraber 

[20] presents a novel approach for detecting and classifying diabetic retinopathy using fundus 

images. The method employs a feature extraction technique known as "Uniform LocalBinary Pattern 

Encoded Zeroes" (ULBPEZ), which reduces feature size to 3.5% of its original size for more compact 

representation. Preprocessing includes histogram matching for brightness standardization, median 

filtering for noise reduction, adaptive histogram equalization for contrast enhancement, and unsharp 

masking for detail sharpening. Nafseh Ghafar et al. [22] emphasize that deep learning (DL) 

algorithms excel in medical image analysis, especially for fusion, segmentation, registration, and 

classification tasks. Among machine learning (ML) and deep learning (DL) techniques, support 

vector machines (SVM) and convolutional neural networks (CNN) are particularly noted for their 

effectiveness.Yasashvini R et al. [21] investigated the use of convolutional neural networks (CNN) 

and hybrid CNNs for diabetic retinopathy classification. They developed several models, including 

a standard CNN, a hybrid CNN with ResNet, and a hybrid CNN with DenseNet. The models 

achieved accuracy rates of 96.22%, 93.18%, and 75.61%, respectively. The study found that the hybrid 

CNN with DenseNet was the most effective for automated diabetic retinopathy classification. Nafseh 

Ghafar et al. [22] highlight that healthcare's vast data is ideal for Deep Learning (DL) and Machine 

Learning (ML) advancements. Medical images from various sources are key for improving analysis. 

To enhance image quality for CAD systems in diabetes detection, techniques like denoising, 

normalization, bias field correction, and data balancing are used. These methods reduce noise, 

standardize intensity, correct intensity variations, and address class imbalances, respectively, to 

improve image analysis. Yaoming Yang et al. [23] examined the advancement of Transformers in 

NLP and CV, highlighting the 2017 introduction of the Transformer, which improved NLP by 

capturing long-range text dependencies. Their machine learning process involves resizing retinal 

images to 448 x 448 pixels, normalizing them, and dividing them into 16 x 16-pixel patches with 

random masks. These patches are processed by a pre-trained Vision Transformer (ViT) to extract 

features, which are then decoded, reconstructed, and used by a classifier to detect diabetic 

retinopathy (DR). The study found that using Vision Transformers (ViT) with Masked Autoencoders 

(MAE) for pre-training on over 100,000 retinal images resulted in better DR detection than pre-
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training with ImageNet, achieving 93.42% accuracy, 0.9853 AUC, 0.973 sensitivity, and 0.9539 

specificity.More recently, in 2021, Nikhil Sathya et al. [24] introduced an innovative approach by 

combining Vision Transformers (ViT) with convolutional neural networks (CNNs) for medical image 

analysis. Jianfang Wu et al. [25] highlighted the importance of attention mechanisms in natural 

language processing, noting that transformers, which eschew traditional convolutional layers for 

multi-head attention, offer advanced capabilities. [28] Although CNN have proven effective in 

grading diabetic retinopathy by efficiently extracting pixel-level features, the emergence of 

transformers offers potential benefits in this field. Integrating CNNs with Vision Transformers (ViTs) 

has shown to be more effective than relying solely on pure ViTs, as CNNs are limited in handling 

distant pixel relationships, while ViTs perform exceptionally well in complex tasks like dense 

prediction and detecting tiny objects. However, ViTs are still considered a black box due to their 

opaque internal processes, highlighting the need for further research to create explainable ViT models 

or hybrid CNN-ViT models for diabetic retinopathy classification and similar applications.  

3. Transformer  

Transformers are increasingly used in natural language processing and medical imaging due to 

their ability to capture contextual information and long-term relationships. Transformers have been 

extensively integrated into various fields, including natural language processing and medical 

imaging. Their ability to capture contextual information and long-term relationships is particularly 

beneficial for applications such as image segmentation, classification, and disease detection, 

enhancing diagnostic accuracy and facilitating medical decision automation. According to Shamshad 

et al. [3], Figure 9 shows a notable increase in research publications on Vision Transformers (ViT) 

applied to medical imaging. Since January 2020, there has been a significant rise in publications, 

reaching 19 by the end of 2022. This trend reflects growing interest in ViTs and their revolutionary 

potential in medical image analysis. ViTs have diverse applications in medicine, including image 

segmentation, reconstruction, and classification. 

3.1. ViT: Challenging CNNs and RNNs in Image Classification 

 The Vision Transformer (ViT) represents a significant breakthrough in artificial intelligence 

applied to image recognition, emerging as a promising alternative to convolutional neural networks 

(CNNs) and recurrent neural networks (RNNs) in image classification tasks. Developed by 

researchers at Google Brain, the ViT takes an innovative approach by segmenting images into patches 

and processing them through a transformer-based encoding architecture. This allows the model to 

effectively capture global dependencies using self-attention mechanisms. Unlike CNNs, which focus 

on local patterns in a hierarchical manner, and RNNs, which handle sequential information, the ViT 

processes local features within patches while simultaneously considering the entire image, thus 

offering a global receptive field. This approach surpasses the local and sequential processing 

capabilities of CNNs and RNNs. Additionally, the parallelizable nature of the transformer's 

architecture enhances the scalability of ViT, giving it an edge over other models whose scalability is 

constrained by their sequential data processing methods. 

As shown in Table 1, ViT architectures have outperformed CNNs in complex tasks such as dense 

prediction and tiny object detection by utilizing advanced internal representations of visual data. 

Despite these advancements, the internal representations of ViTs are often opaque, treating the model 

as a "black box." To improve the understanding and interpretation of ViT models, especially in 

medical image analysis and classification, developing new visualization layers is essential. This 

research aims to enhance the explainability of vision transformers for more effective applications in 

medical imaging [29]. 

Table 1. Comparison of Neural Network Architectures: CNNs, RNNs, and ViTs. 

Aspect 
 

CNNs RNNs ViTs 
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Architecture 
 

Convolutional 

layers 
 

Sequential 

recurrent layers 
 

Transformer 

Encoder with self-

attention 
 

Data Processing Local patterns, 

spatial hierarchies 
 

Sequential 

information 
 

Dependencies, 

global integration 
 

Feature Learning Local features, 

sequential 

learning 
 

Global features, 

entire sequence 
 

Local integration 

into patches, 

global integration 
 

Receptive Field Local Local (sequential) 
 

Global 

Feature 

Engineering 
More manual, 

learns from data 
 

More manual, 

learns from data 
 

Less manual, 

learns from data 
 

Scalability 
 

Average Low (sequential 

processing) 

High (parallel 

processing) 

3.2. Main Components of a Vision Transformer 

The Vision Transformer (ViT) is a specialized adaptation of the original Transformer architecture 

designed for image classification tasks. It starts by dividing an image into a grid of 2D patches, each 

with a specific resolution. These patches are then flattened and projected into a higher-dimensional 

space to create "patch embeddings." To capture the spatial relationships between patches, ViT 

includes learnable token embeddings, akin to the [CLS] tokens used in BERT, which represent the 

entire image context. Positional encodings are added to preserve the spatial arrangement of the 

patches [26]. ViT functions as a traditional transformer encoder, processing sequences of these 

embeddings through self-attention and feedforward layers. The final output from the encoder is then 

passed through a multi-layer perceptron (MLP) head for classification. This structure allows ViT to 

effectively analyze and classify images by considering the contextual relationships among the 

patches. This section explores the fundamental concepts of ViT, focusing on its attention mechanism 

and the various functional blocks depicted in the Figures 3 

 

Figure 3. Transformer Encoder Block in Vision Transformer with Multi-Head Self-Attention 

Module. 

3.2.1. Transformer Encoder  

The Vision Transformer (ViT) encoder is composed of alternating layers of Multi-Head Attention 

(MHA) blocks and Multi-Layer Perceptron (MLP) blocks. Before each transformation block, layer 

normalization is applied, and residual connections are added after each block. These residual 

connections (also known as "skip connections") provide alternate pathways for data, allowing it to 

bypass certain layers and reach deeper parts of the model more directly. Layer normalization is a 

technique used to standardize the distribution of inputs to each layer of the model, improving 

learning speed and generalization accuracy. It involves centering and rescaling the input vector 

representation to ensure consistency in the input size for the normalization layer. Unlike traditional 
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Transformer blocks that have both encoding and decoding layers, the Vision Transformer only has 

an encoding layer. The output of the transformer encoder is then sent to the MLP head, which 

performs class classification based on the image representations learned from the class labels in the 

final layer [26]. 

3.2.2. Patch Embedding  

To address memory constraints, images are divided into smaller patches for sequential 

processing. Each patch is converted into a feature vector, drawing on the embedding concept used in 

Vision Transformers (ViT)[27]. These vectors are visualized in an embedding space, where similar 

features group together, aiding in classification. Figure 3 (a part )demonstrates this process, with 

embedding layers being refined during training. This approach, particularly in retinal imaging, 

combines positional encoding with feature embedding to ensure accurate feature selection. 

3.2.3. Position Encoding 

In architectures that use patch embedding, a key challenge is the limited knowledge of each 

patch's position, making it difficult to establish relationships between them. Transformers address 

this issue with positional embedding, which preserves the positional information of tokens within a 

sequence. This is particularly important in fields like medical imaging, where precise feature 

identification is critical. Unlike traditional methods, transformers use positional embeddings, which 

are learned during training, to incorporate positional information. In vision transformers, these 

embeddings are essential because image patches do not naturally contain spatial information. 

Positional embeddings are combined with patch embeddings to encode the location of each patch in 

the image, linking feature vectors to their positions in the sequence. Positional encoding is usually 

implemented with sine and cosine functions at different frequencies for each embedding dimension. 

These values are then merged with feature vectors to create a new vector that represents both the 

feature and its position. 

3.2.4. Attention Mechanism  

Attention mechanisms, inspired by human visual focus, improve deep learning models by 

emphasizing the most relevant parts of an image. This selective emphasis helps the model capture 

crucial contextual information while ignoring noise, enhancing the accuracy and efficiency of tasks 

like image classification, object detection, and semantic segmentation. There are two main types of 

attention mechanisms: self-attention, which analyzes relationships within a sequence, and multi-

head attention, which applies self-attention across multiple subspaces. The core function of attention 

mechanisms is to capture dependencies between elements in a sequence, regardless of their position. 

3.2.4. Self-Attention   

The self-attention mechanism is fundamental to the Transformer's architecture, enabling it to 

model long-term dependencies in a sequence. It generates a representation for each sequence element 

by considering the influence of all other elements. This is done by calculating similarity scores 

between pairs of elements, which are then converted into attention weights using a softmax function. 

These weights help create a weighted sum of the original element representations, capturing the 

sequence's global context. The self-attention mechanism involves three key components: the query 

(Q), the key (K), and the value (V). The query is the element being contextualized, the key is used to 

determine relevance, and the value is the element weighted by the attention score to produce the final 

output. 

3.2.5. Multi-Head Self-Attention Mechanism 

The multi-head attention mechanism in Transformers uses multiple parallel self-attention 

"heads," each focusing on different data aspects. These heads apply distinct transformations to the 

input, highlighting unique features. Their outputs are then combined and further processed to 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 4 September 2024 doi:10.20944/preprints202409.0303.v1

https://doi.org/10.20944/preprints202409.0303.v1


 8 

 

enhance the model's understanding of the data. The classification head in the Vision Transformer 

converts the encoder's output into class probabilities. It typically involves a multi-layer perceptron 

(MLP) or a linear layer, which processes and flattens the patch embeddings, applies dropout to avoid 

overfitting, and then predicts the image class. 

3.3. Compact Convolutional Network 

In our study, we introduce the Compact Convolutional Transformer (CCT) as a highly efficient 

model for classifying and detecting the stages of diabetic retinopathy. Unlike other transformer-based 

models, CCT excels in performance in the work of [29] on smaller datasets while also significantly 

reducing computational costs and memory usage. This efficiency challenges the conventional notion 

that transformers require vast computational resources, making them accessible even in resource-

limited settings. The CCT's ability to operate effectively with limited data highlights its potential for 

broader application in various scientific domains where data availability is often constrained, thereby 

extending the reach and impact of machine learning research. 

3.4.1. Convolutional Tokenization 

Convolutional tokenization serves as the initial step in the CCT architecture defined in the Figure 

4, where regions of interest within retinal images are segmented using convolutional layers. These 

layers are configured with specific parameters such as kernel size, stride, and padding, which dictate 

how the images are divided into patches.For an image with height 112, width 112, and number of 

channels 3, convolutional tokenization is employed to extract features from each patch. The process 

can be represented by the following sequential operation: 

x0 = AveragePool(ReLU(conv2D(x))) (1) 

In the DRCCT (Diabetic Retinopathy Compact Convolutional Transformer) model, four 

different filters—16, 32, 64, and 128—are used within the CCT tokenizer. These filters determine the 

number of output channels or feature maps produced by the convolutional layer. By adjusting the 

size and quantity of patches through the use of various filters, the model achieves a balance between 

the detail within patches and the overall sequence length generated. 

 

Figure 4. Compact Convolutional Network Architecture. 

The Compact Convolutional Transformers (CCT) architecture combines a convolutional 

tokenizer, SeqPool, and a transformer encoder. CCT variants are denoted by the number of 

transformer encoder layers and convolutional layers, such as CCT-7/3x2, which signifies a model 

with 7 transformer encoder layers and a 2-layer convolutional tokenizer with a 3×3 kernel size[29]. 

3.4.2. Transformer Encoder 

Following convolutional tokenization, the sequences are processed through a series of 

transformer blocks in the CCT architecture. Each transformer block includes two main components: 

a Multi-Head Attention (MHA) layer and a Multi-Layer Perceptron (MLP) block. The patches are 

encoded using layer normalization, MHA, and MLPs with ReLU activation and dropout. Key 

parameters such as the number of transformer layers, output channels, hidden units, and dropout 

rates are carefully defined to optimize the model’s performance. Stochastic depth is employed as a 

regularization method, which involves applying residual branches from transformer blocks before 

the residual connections during training. This technique reduces the network's effective depth, 

improving generalization and reducing the risk of overfitting. The output of the transformer encoder 
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is a tensor containing encoded patch features, which is then prepared for further processing and 

classification. 

3.4.3. Sequence Pooling 

In traditional transformer models like ViT and BERT, global average pooling is used to condense 

the output token sequence into a single class index. The newer "sequence pooling" approach, 

however, employs an attention-based mechanism to retain essential information from various parts 

of the input image. This method enhances model performance without extra parameters and slightly 

reduces computational demand. The sequence pooling process begins by transforming the output 

sequence of the transformer encoder: 

xL= f (x0) ∈ Rb,n,d  (2) 

where 𝑥𝐿is the output from layer LLL of the transformer encoder, bbb is the batch size, nnn is the 

sequence length, and d is the total embedding dimension. This output is then processed through a 

linear layer: 

x′ = softmax(g (xL)T) ∈ Rb,1,d  (3) 

where x′ contains the importance weights for the tokens. These weights are applied to the output 

sequence to produce the final weighted output: 

z = xL ⊙ x′     (4) 

The result, z, is a weighted and flattened output used for classification purposes. 

3.4.4. Classification Tasks 

In the final stage of the CCT model, dense layers are employed for the classification of diabetic 

retinopathy stages. The final dense layer typically outputs class probabilities for multi-class 

classification tasks or a single value for binary classification. Dense neural networks are particularly 

effective at learning complex patterns from input data, making them a popular choice in machine 

learning and deep learning applications, especially for tasks involving image classification. 

4. Work Done 

4.1. Data Undestading  

The data used in this study comes from Kaggle, a well-known platform for data science research 

and competitions. Specifically, we utilized the diabetic retinopathy dataset, which contains five 

categories of images for fundus imaging. Our dataset consists of 6399 images, which we divided into 

80% for training and 20% for testing. Each image is labeled with the severity level of the disease: 

No_DR, Mild, Moderate, Severe, and Proliferated. Although information such as the patient's age is 

not included, the samples are individual color (RGB) images of 176 x 208 pixels. Table 2 shows the 

distribution of the dataset, indicating the number of images per category.  

The data used in this study comes from Kaggle, a well-known platform for data science research 

and competitions. Specifically, we utilized the diabetic retinopathy dataset, which contains five 

categories of images for fundus imaging. Our dataset consists of 6399 images, which we divided into 

80% for training and 20% for testing. Each image is labeled with the severity level of the disease: 

No_DR, Mild, Moderate, Severe, and Proliferate_DR. Although information such as the patient's age 

is not included, the samples are individual color (RGB) images of 176 x 208 pixels. Table 2 shows the 

distribution of the dataset, indicating the number of images per category.  

Table 2. Distribution of the DR dataset. 

Classes Train set  Test set  

No DR 2192 549 
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Mild 592 148 

Moderate 1518 380 

Proliferative DR 472 118 

Severe 284 72 

4.2. Image Preprocessing  

4.2.1. feature Extraction  

In image preprocessing, we ensured data quality and consistency by extracting images while 

preserving visual details. We applied resizing and pixel normalization for uniform scaling and 

effective data management. To enhance image representation and feature extraction, we used 

convolution and resizing techniques to emphasize key patterns and structures in retinal images 

presented in the Figure 5. Convolutional layers in our model were crucial for automatically detecting 

important visual patterns, which aids in precise feature extraction and accurate diabetic retinopathy 

analysis. Additionally, these layers helped reduce dimensionality, providing a more informative and 

compact data representation. 

 

Figure 5. Diabetic Retinopathy Classes. 

4.2.1. Noise Reduction 

Image preprocessing plays a crucial role in enhancing the quality and effectiveness of diabetic 

retinopathy (DR) detection. The process begins with grayscale conversion, which simplifies the 

image data by reducing it from RGB to a single channel of intensity values. This step is essential for 

focusing on the critical features necessary for DR detection, achieved through the formula (5): 

𝐼gray = 0.2989 × 𝑅 + 0.5870 × 𝐺 + 0.1140 × 𝐵     (5) 

The result is a single-channel image that minimizes computational complexity while retaining 

key visual information. Following this, CLAHE (Contrast Limited Adaptive Histogram Equalization) 

is applied to the grayscale image. CLAHE enhances the local contrast of the image, making subtle DR 

features, such as microaneurysms, more visible. This technique improves local contrast without 

amplifying noise, thereby highlighting critical features more effectively. 

To further refine the image, Gaussian smoothing is employed. This technique involves applying 

a Gaussian filter to the CLAHE-enhanced image to reduce noise while preserving important edges. 

The Gaussian filter is represented by the formula (6): 

𝐼𝑚𝑒𝑑𝑖𝑎𝑛 = 𝐼𝐶𝐿𝐴𝐻𝐸 ∗ 𝐺𝜎                     (6) 

where  Gσ denotes the Gaussian kernel with standard deviation σ. This results in a smoothed image 

that facilitates better feature detection and segmentation. Finally, median filtering is used to address 

any remaining noise, particularly salt-and-pepper noise, while maintaining edge integrity. By 

applying a median filter (7) to the smoothed image: 

𝐼𝑚𝑒𝑑𝑖𝑎𝑛 = MedianFilter(𝐼𝑠𝑚𝑜𝑡ℎ ).                     (7) 

The outcome is a further noise-reduced image that preserves fine details and edges, thereby 

enhancing the accuracy of subsequent feature extraction. Together, these preprocessing steps ensure 
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that the image is optimally prepared for the detection of diabetic retinopathy, enhancing both feature 

visibility and overall model performance. 

4.2.3. Data Augmentation 

This project aimed to enhance a diabetic retinopathy detection model by addressing the 

challenges posed by limited, imbalanced, and noisy fundus image datasets. We used data 

augmentation methods such as rotation, resizing, flipping, cropping, shifting, and noise addition to 

increase the quantity, diversity, and quality of the data. By providing more varied and realistic data, 

we aimed to enhance the model's generalization, reduce overfitting, and boost its ability to accurately 

detect diabetic retinopathy. 

 

 

Figure 6. Data Augmentation Operation. 

4.2.4. Data Balancing 

To ensure fair and accurate diabetic retinopathy classification, it's crucial to address class 

imbalance. When certain classes dominate the dataset, models can become biased, performing well 

on majority classes but poorly on minority ones. By using techniques like the RandomOverSampler 

from the imbalanced-learn library, as mentioned in the figure below, we can balance the dataset by 

duplicating samples from minority classes. This process ensures each class has an equal number of 

samples : 2805 allowing the model to learn and predict across all categories with greater accuracy and 

fairness. 

 

Figure 7. Capture of data Balancing Result. 
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4.3. Modeling Bulding  

 The DRCCT model leverages a sophisticated multi-step pipeline to achieve high classification 

accuracy for diabetic retinopathy. It begins with the collection and preprocessing of retinal images, 

employing median filtering and CLAHE to enhance image quality. To address class imbalance, 

RandomOverSampler is used to balance the dataset to 2805 samples per class, complemented by 

extensive data augmentation using nine transformations. 

  

Figure 8. Our DRCCT Workflow. 

The model incorporates convolutional tokenization with four different filter sizes (16, 32, 64, 128) 

to generate patch sequences. Positional embeddings are added to maintain spatial information. The 

architecture includes the following components: 

Input Layer: (None, 112, 112, 3) — Accepts retinal images of size 112x112 with 3 color channels. 

CCT Tokenizer: (None, 4, 120) — Performs convolutional tokenization, producing sequences of 

120-dimensional patches from the image. 

tf.operators_add: (None, 4, 120) — Applies element-wise addition to integrate information from 

different sources. 

Layer Normalization: (None, 4, 120) — Normalizes the tokenized sequences to stabilize training 

and improve convergence. 

Multi-head Attention (AMH): (None, 4, 120) — Utilizes multi-head attention to capture 

complex dependencies and relationships between different parts of the image. 

Stochastic Depth: (None, 4, 120) — Employs stochastic depth regularization to enhance model 

generalization by randomly dropping layers during training. 

Add: (None, 4, 120) — Combines information from previous layers or sources to refine feature 

representation. 

Layer Normalization 1: (None, 4, 120) — Further normalizes the processed sequences to ensure 

consistency and stability. 

A sequence pooling layer extracts the most informative features from the encoded patches, 

which are then fed into a fully connected dense layer for final classification. The DRCCT model, with 

2,342,326 parameters, is trained using the Adam optimizer over 100 epochs, demonstrating robust 

learning and excellent generalization capabilities. This comprehensive architecture enables the model 

to effectively analyze retinal images and classify diabetic retinopathy severity with high accuracy. 

4. Results and Discussion 

4.1. Training and Validation Performance 
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Training and Validation: The performance of the DRCCT model in terms of training and 

validation accuracy was outstanding over 100 epochs, completed in approximately 423 seconds. 

Throughout the training period, the validation accuracy consistently surpassed the training accuracy, 

suggesting that the model did not overfit the training data. This observation highlights the model's 

ability to generalize and adapt to new, previously unseen data. Figure 9 and 10 demonstrates the 

effectiveness of the DRCCT model in learning from training data and generalizing well our model. 

 

Figure 9. Model Composition. 

4.2. Model Testing and Metrics 

The following table presents the results for the entire APTOS dataset, with an 80% split for 

training and 20% for validation. We use accuracy and precision, defined by Equations (8) and (9) 

respectively, as metrics to assess the correctness of our classification model. 

𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 = (𝑻𝑷 + 𝑻𝑵)/(𝑻𝑷 + 𝑻𝑵 + 𝑭𝑷 + 𝑭𝑵)    (8) 

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 = 𝑻𝑷/(𝑻𝑷 + 𝑭𝑷)    (9) 

Accuracy measures the overall effectiveness of the model in correctly classifying both positive 

and negative instances, while precision focuses on the accuracy of the positive predictions.The F1 

score combines precision and sensitivity into a single metric. It is calculated using equation 9. 

𝑭𝟏 𝒔𝒄𝒐𝒓𝒆 = 𝟐 × (𝒑𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 × 𝒓𝒆𝒄𝒂𝒍𝒍)/(𝒑𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 + 𝒓𝒆𝒄𝒂𝒍𝒍)  (10) 

The model was tested on a new dataset to evaluate its generalization performance. It achieved 

high accuracy, with precision and recall scores of 96.93% and 98.89%, respectively. Various metrics, 

including sensitivity, specificity, precision, and F1 score, were used to assess its performance. These 

metrics confirm the model's ability to correctly classify samples across different classes, effectively 

balancing false positives and negatives.  

 

Figure 10. Model Performance. 

The close alignment between training and validation losses suggests minimal overfitting and 

robust performance, supporting the model’s high precision and recall scores across various diabetic 
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retinopathy stages. This balance between training and validation losses underscores the model's 

reliability and effectiveness in accurately classifying diabetic retinopathy. 

As shown in Figure 11, our results indicate that our model performs well, with an average F1 

score of 0.973 across all classes. This confirms that the model is effective at detecting true positives 

while minimizing false positives. 

 

Figure 11. Multi-Class Classification Performance of the Model: Metrics and Results. 

4.3. Confusion Matrix Analysis 

These metrics demonstrate that the model can balance the trade-off between avoiding false 

positives and false negatives and can capture most relevant samples for each class. Confusion Matrix: 

The confusion matrix presented in Figure 12 evaluates the performance of the classification model 

for diagnosing diabetic retinopathy. 

 

Figure 12. Confusion Metric of DRCCT. 

The confusion matrix reveals that while the DRCCT model demonstrates a strong performance 

in certain classes like No_DR, it struggles significantly with others, particularly Mild, Moderate, 

Severe, and Proliferate_DR. The high number of false positives in the Mild class and false negatives 

in the Moderate class suggest that the model may require further fine-tuning or additional data to 

better distinguish between these stages. The complete miss in the Severe and Proliferate_DR classes 

indicates a need for model refinement, especially considering the clinical importance of accurately 

detecting these advanced stages of diabetic retinopathy. 

• True Positives (TP): Correctly identified positive cases. 

• True Negatives (TN): Correctly identified negative cases. 
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• False Positives (FP): Incorrectly identified positive cases. 

• False Negatives (FN): Incorrectly identified negative cases. 

Specificity as defined by Equation 11, is sometimes known as the false positive rate (FPR). It is 

the counterpart to sensitivity and measures the model's ability to correctly identify negative samples. 

Mathematically, specificity is expressed as follows: 

𝐒𝐩𝐞𝐜𝐢𝐟𝐢𝐜𝐢𝐭𝐲 =
TP

TP+FN
             (11)  

Precision, also referred to as positive predictive value (PPV), assesses the ratio of correctly 

predicted positive results to the total number of predicted positives. It is given by Equation 12: 

𝐒𝐩𝐞𝐜𝐢𝐟𝐢𝐜𝐢𝐭𝐲 =
TN

TN+FP
             (12)  

4.4. Training and Validation Loss 

The training and validation loss values, as depicted in Figure 2, demonstrate the DRCCT model’s 

effective learning and generalization. The consistently low training loss, decreasing to around 0.03, 

indicates that the model is effectively minimizing errors on the training dataset. Similarly, the 

validation loss, stabilizing at approximately 0.04, reflects the model’s strong ability to generalize to 

new, unseen data.  

 

Figure 13. Training and validation loss. 

4.5. Advanced Optimization Strategies 

4.5.1. Optimizer 

In the DRCCT model, the AdamW optimizer was selected for its superior handling of weight 

decay, which effectively prevents overfitting by decoupling weight decay from the gradient update 

process. AdamW's adaptive learning rate mechanism adjusts for each parameter based on gradient 

moments, ensuring stable and efficient convergence. Its momentum-based updates and bias 

correction techniques further enhance training stability and speed, making it well-suited for the 

model's complex architecture, which combines convolutional networks and transformers. 

The AdamW update rule is given by: 

𝜃t = 𝜃t−1 − 𝜂(
m̂t

√v̂t+𝜖
+ 𝜆 × 𝜃t−1)  (13) 

• θt represents the parameters at time step t, 

• η is the learning rate, 

• m̂tand v̂t are the bias-corrected first and second moment estimates, 
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• 𝜃  = 10−8 is a small constant for numerical stability, 

• λ= 0.01 is the weight decay coefficient. 

4.5.2. Cost Function 

Loss functions are crucial in guiding a model's learning process by minimizing errors and 

improving performance. The selection of a loss function depends on the specific goals and data 

characteristics. For the DRCCT model, Categorical Cross-Entropy was chosen due to its effectiveness 

in multi-class classification tasks, such as diabetic retinopathy severity classification. It measures the 

divergence between the model’s predicted probability distribution and the actual distribution of the 

classes, directly aiding in accuracy improvement. The Categorical Cross-Entropy loss function is 

defined as: 

𝐿𝑜𝑠𝑠𝐶𝐸𝐸 = − ∑ (𝑦
𝑖

log( ŷ
i
))

𝑁

𝑛=1
  (14) 

where: 

• N is the number of classes, 

• 𝑦𝑖  is the ground truth label for class i, 

• ŷi i is the predicted probability for class i. 

In cases where data imbalance is a concern, Focal Loss can be an alternative, focusing more on 

harder-to-classify examples and ensuring balanced performance across all classes. The Focal Loss 

function is given by: 

𝐿𝑜𝑠𝑠𝐶𝐸𝐸 = − ∑ (1 − ŷi)
γ(𝑦𝑖 log( ŷi))

𝑁

𝑛=1
  (8) 

Where: 

• γ is the focusing parameter that adjusts the rate at which easy examples are down-weighted. 

4.5.3. Learning Rate Adjustment  

The learning rate is one of the most crucial hyperparameters in deep learning, governing how 

quickly or slowly a model adapts to the training data. Selecting an appropriate learning rate is 

essential for effective convergence. In this work, several techniques were implemented to optimize 

the learning rate:  

Cyclical Learning Rate (CLR): CLR varies the learning rate cyclically between a minimum and 

maximum value. By allowing the learning rate to periodically increase and decrease, the model can 

escape local minima, leading to better convergence. We set the base learning rate at 1e-4 and the 

maximum at 1e-3, which helped in stabilizing the training process and achieving more robust 

performance. 

4.5.4. Regularization Techniques 

Regularization is essential to prevent overfitting, especially when dealing with a large number 

of parameters, as is common in transformer-based models like DRCCT. Several regularization 

methods were utilized: 

Dropout: To mitigate overfitting, dropout was increased in the Transformer blocks from 0.3 to 

0.4. By randomly deactivating a fraction of neurons during training, dropout forces the model to learn 

more robust features that are not reliant on specific neurons. 

L2 Regularization: Also known as weight decay, L2 regularization penalizes large weights by 

adding a regularization term to the loss function. This prevents the model from becoming overly 

complex and helps in maintaining generalization. In this study, an L2 regularization coefficient 

between 1e-4 and 5e-4 was applied. 

Label Smoothing: To further reduce overfitting and make the model more tolerant to noisy 

labels, label smoothing was employed with a smoothing factor of 0.1. This technique reduces the 

confidence of the model in its predictions, which can help in preventing the model from becoming 

too confident and overfitting to the training data. 
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4.6. Results Overview 

The DRCCT model shows consistently high performance across all metrics, effectively 

classifying diabetic retinopathy (DR) into five categories: No_DR, Mild, Moderate, Severe, and 

Proliferate_DR. Our model for classifying diabetic retinopathy (DR) across different severity levels 

demonstrates consistently high performance, with impressive metrics throughout. 

Table 3 reveals that the model demonstrates exceptional precision and recall across all diabetic 

retinopathy (DR) classes. Notably, it achieves outstanding performance in the No_DR category, with 

a precision of 0.99, recall of 0.97, and an F1-score of 0.98. Similarly, in the Severe DR category, the 

model exhibits a precision of 0.96, a perfect recall of 1.00, and an F1-score of 0.98. These results 

underscore the model's strong capability in accurately identifying both the absence and presence of 

severe DR. This high level of accuracy and the model's effectiveness in capturing true positives are 

crucial in medical diagnostics, ensuring reliable identification of DR stages. Additionally, the F1-

scores, ranging between 0.95 and 0.98 across all classes, reflect the model’s ability to balance precision 

and recall, making it dependable across various stages of DR. The DRCCT model stands out with its 

balanced performance across all DR classes, minimal overfitting, and high accuracy metrics. It is 

competitive with the latest models in the field and shows potential for practical application in medical 

diagnostics, where reliability and accuracy are critical. 

Table 3. Comprehensive Results Summary Table. 

Metri

c 

No_D

R 

Mil

d 

Moderat

e  

Sever

e 

Proliferat

e  

Micr

o 

Avg  

Macr

o Avg

  

Weighte

d Avg  

Sample

s Avg 

Recall 0.99 0.96 0.98 0.96 0.97  0.97  0.97  0.97  0.97  

Recall 0.97  0.99 0.92 1.00 0.97  0.97  0.97  0.97  0.97  

F1-Score 0.98  0.98 0.95 0.98 0.97  0.97  0.97  0.97  0.97  

Support 549 604 545 555 552  2805 2805  2805  2805 

4.7. Comparative Study of Results 

As demonstrated in Table 4, The DRCCT (our model) exhibits outstanding performance across 

several key metrics, including precision, recall, and F1-score, all achieving a value of 0.973 across all 

categories. This performance is not only significantly higher than many of the other models listed in 

related work but also shows consistent accuracy and recall across different diabetic retinopathy (DR) 

severity levels. Such consistency is particularly notable when compared to models like the ResNet-

50 with Random Forest classifier and ViT CNN, which exhibit varying performance across different 

datasets. This highlights the robustness and reliability of our model for real-world applications. 

Additionally, while models like the Xception pretrained model and Residual Block + CNN report 

high accuracy, they often lack detailed information on precision, recall, or F1-score across multiple 

classes. In contrast, our model provides comprehensive metrics that clearly indicate its balanced 

performance across all severity levels of DR. The advanced architecture of DRCCT leverages the 

strengths of both convolutional networks and transformers, particularly through the use of a 

Compact Convolutional Transformer approach. This allows the model to more effectively capture 

spatial features and relationships within retinal images, which is crucial for accurate DR 

classification.When compared to state-of-the-art systems like the Residual-Dense System and Vision 

Transformers with Masked Autoencoders (MAE), our model’s F1-score is on par or better, 

showcasing its ability to compete with more complex architectures while maintaining efficiency. 

Overall, DRCCT (2024) offers balanced and superior performance, making it a strong candidate for 

deployment in clinical settings. It not only excels in key metrics but also demonstrates the robustness 

needed for reliable DR severity classification, solidifying its position as an advanced and practical 

solution for diabetic retinopathy diagnosis. 

Table 4. This is a table. Tables should be placed in the main text near to the first time they are cited. 
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Authors  Method Performance  Our Model  

Sheikh, S., & 

Qidwai, 

(2020) 

Transfer Learning of  

MobileNetV2 

90.8% DR, 92.3% RDR Likely superior, F1-score: 

0.97 

Gao et al., 

(2019)  

DL/Efficient CNN 90.5% Accuracy  better 

Yaakoob et al. 

(2021)  

ResNet-50 with a 

Random Forest classifier 

96% on the Messidor-2 

,75.09% EyePACS 

Better than EyePACS, 

comparable to Messidor-2 

Dharmana, M 

al., (2020)  

Blob Technique and  

Naïve Bayes 

83% Accuracy Significantly better 
 

Wang, J & al., 

2020  

Deep Convolutional 

Neural Networks 

Kappa 0.8083 Likely superior based on 

F1-score 
 

Toledo-Cortés 

et al., (2020) 

Deep Learning/DLGP- 

DR, Inception-V3 

93.23% Sensitivity, 

91.73% Specificity, 

0.9769 AUC 

Comparable, slightly 

better F1-score 

Wang, S. & 

al., (2020)  

 

Deep Learning/GAN 

Discriminative model 

EyePACS: 86.13% 

Accuracy, Messidor: 

84.23% Accuracy, 

Messidor(2): 80.46% 

Accuracy 

Superior performance 

across metrics 
 

Touati, M., 

Nana, L., 

Benzarti, F. 

(2023)  

Xception pretrained 

model 

Training accuracy: 94%, 

Test accuracy: 89%, F1 

Score: 0.94 

Better F1-score: 0.97 
 

Toledo-Cortés 

et al., 2020  

 

Deep Learning/ DLGP- 

DR, Inception-V3  

93.23% Sensitivity, 

91.73% Specificity, 

0.9769 AUC  

Better in Sensiftiviy and 

Specificiy  

Z. Wang, Y. 

Yin. (2017)  

Deep 

Learning/CNN+Attention 

Network 

AUC 0.921 Acc 0.905 

for normal/abnormal  
Likely superior based on 

metrics 
 

Khan, I et al. 

(2023)  

Compact Convolution 

Network  

Acc 90.17% Significantly better, 

likely 97% accuracy 
 

M. BERBaR 

(2022) 

Residual-Dense System 97% in classifying DR 

severity 

Comparable or slightly 

better 

Nazi et a 

(2023)  

ViT CNN F1-score: 0.825, 

accuracy: 0.825, B Acc: 

0.826, AUC: 0.964, 

precision: 0.825, recall: 

0.825, specificity: 0.956. 

Significantly better, F1-

score: 0.97 

Ijaz Bashir, et 

al. (2023) 

Residual Block + CNN Accuracy of 97.5%  Comparable, accuracy 

likely around 97% 

Yasashvini R 

et al. (2022) 

hybrid CNNs ResNet, 

and a hybrid CNN with 

DenseNet 

.The models achieved 

accuracy rates of 

96.22%, 93.18%, and 

75.61%, respectively 

Better  

Yaoming 

Yang et al. 

(2024)  

 

Vision Transformers 

(ViT) combined with 

Masked Autoencoders 

(MAE)  

accuracy 93.42% ,AUC 

0.9853, sensitivity 0.973, 

specificity 0.9539 

Slightly better F1-score 
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As a researcher in LabSTICC and Pixemantic Startup, specializing in deep healthcare, a create 

cutting-edge platformis created for diabetic retinopathy detection. Pixemantic Develeopors   helped 

deploy a web application powered by our DRCCT model, which has shown remarkable accuracy, 

including in challenging left eye cases, as seen in Figure 14. This project, supported by Dr. Rabeb 

Touati’s expertise exemplifies the power of AI in advancing early diagnosis and improving patient 

care. 

 

Figure 14. Left Eye Prediction. 

5. Conclusion  

This research has effectively developed the Diabetic Retinopathy Compact Convolutional 

Transformer (DRCCT) model, demonstrating its high precision in classifying and detecting the stages 

of diabetic retinopathy. By merging convolutional layers with transformer techniques, the DRCCT 

model achieved remarkable results, including an average F1 score of 0.973, a precision of 96.93%, and 

a recall of 98.89%. The model’s strong performance, without overfitting and high validation accuracy 

across 100 training epochs, highlights its ability to accurately identify and differentiate between the 

various stages of diabetic retinopathy. It surpasses existing models such as MobileNetV2, ResNet-50 

with Random Forest classifiers, and Vision Transformers with Masked Autoencoders, offering 

superior precision and robustness in addressing class imbalance and reducing false positives. The 

successful use of advanced regularization techniques, such as dropout and stochastic depth, 

emphasizes the model’s versatility and its potential for clinical integration, where early and accurate 

detection is vital for effective treatment. 

6. Future Research  

Integrating watermarking techniques into the DRCCT model marks a significant step forward 

in enhancing data security and integrity within medical diagnostics. By embedding watermarks 

using an encoder-decoder framework, diagnostic outputs can be effectively safeguarded against 

tampering and unauthorized access. This method is particularly crucial in telemedicine, where 

medical images and diagnostic data are often transmitted over insecure networks. Watermarking not 

only protects the data but also ensures its authenticity, thus preserving trust in AI-assisted diagnoses 

and protecting sensitive medical information. Future research should aim to refine watermarking 

methods to increase their robustness and contextual relevance. Creating watermarks based on key 

diabetic retinopathy features will ensure that these security measures are both effective and tailored 

to the medical setting. Additionally, investigating predictive watermarking techniques that adapt to 

changing disease states could further enhance data integrity and reliability, offering a dynamic and 

secure framework for managing patient information and improving diagnostic accuracy. 
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Additional Perspective: As part of our future work, we plan to integrate a watermarking technique into the 

encoder side of our model. This watermarking method will serve as a security feature to protect the integrity of 

the data and enhance cryptographic measures within the encoder-decoder framework. The development of this 

method aims to ensure secure and reliable transmission and storage of sensitive medical data. 
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