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Abstract: We provide representations for the generalized Drazin inverse of an anti-triangular matrix of the form

a b
( Lo ) in a Banach algebra A, under the condition that ab = ba. Specifically, we present the representation of

Drazin inverse for these types of anti-triangular matrices in Banach algebras.
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1. Introduction

Let A be an is a Banach algebra with identity 1. An element a € A has generalized Drazin inverse
(g-Drazin inverse) if there exists x € A such that

ax*> = x,ax = xa,a — xa’> € A

gnil .

If such an x exists, it is unique and is denoted by a. Here, A7 = {x € A | 1+ Ax €

A is invertible forall A € C}. It is well known that x € A% if and only if lim x| = 0. 1If
n—oo

we replace the quasinilpotent set A7 with the set of all nilpotent elements in A, we refer to the
unique x as the Drazin inverse of 4, and denote it by aP. Both the Drazin and g-Drazin inverses play
significant roles in ring and matrix theory (see [5]).

It is intriguing to investigate the Drazin and g-Drazin inverses of the anti-triangular matrix
M = ‘; g € M;(A). One motivation for exploring this problem is the quest for a closed-
form solution to systems of second-order linear differential equations, which can be expressed in
the following vector-valued form: Ax(t) + Bx(t) + Cx(t) = 0 where A, B,C € C"*" (with A being
potentially singular) and x is an C"-valued function. Clearly, the solutions to singular systems of
differential equations are determined by the Drazin inverse of the aforementioned anti-triangular
matrix M (see [2,3]). Although the Drazin and g-Drazin inverses of anti-triangular matrices are
valuable tools in the context of differential equations, finding representations for such generalized
inverses remains a challenging task.

In 2005, Castro-Gonzalez and Dopazo gave the representations of the Drazin inverse for a class of

F
I o ) (see [9] [Theorem 3.3]).

complex matrix (

F
In 2011, Bu et al. investigated the Drazin inverse of the complex matrix ( ) under the

I 0
condition EF = FE (see [2] [Theorem 3.3]).

In 2013, Xu, Song and Zhang studied an expression of the Drazin inverse of the operator matrix
< If I(; ) € M,(B(X)) under the same condition, where B(X) is the Banach algebra of bounded
linear operators on a complex Banach space X (see [16] [Theorem 3.8]).

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.
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In 2016, Yu, Wang and Deng characterized the Drazin invertibility of the anti-triangular operator
E F

matrix [ ) € M (B(H)) under the conditions F*EFP = 0, FTEF = F"FE, where B(H) is the
Banach algebra of bounded linear operators on a complex Hilbert space H (see [18] [Theorem 4.1]).

Recently, many authors have explored various conditions under which representations of the
Drazin (g-Drazin) inverse of such anti-triangular matrices can be established. For additional references,
we direct the reader to [10,11,19-21,23].

The motivation of this paper is to further investigate the representation of the g-Drazin inverse

of the anti-triangular matrix M = in a Banach algebra A. We begin by examining the

a b
10
solvability of a quadratic equation in the Banach algebra .4 using Catalan numbers C,,. Next, we study
the representation of M under the conditions ab = ba,a € A is invertible, b € A7"!. We then employ
the ring of Morita context and the Pierce representation of a Banach algebra element as tools to extend
the previous special case to the more general condition ab = ba,a,b € A%. Consequently, the known
results are extended to a broader context within a Banach algebra.

Throughout this paper, all Banach algebras are considered to be complex and possess an identity
element. Let M;(.A) be the Banach algebra of all 2 x 2 matrices over the Banach algebra A. We
use A~1, AP and A7 to stand for the sets of all invertible, Drazin invertible and g-Drazin invertible
elements in A, respectively. For a € A%, we define a™ = 1 —aa?. Leta,p?> = p € A. Then a has
the Pierce decomposition given by pap + pap™ + p™ap + p™ap”™, which we denote in matrix form as

pap  pap™
prap ptap™ |
2. key Lemmas
In this section, we present some necessary lemmas which will be used in the sequel. We start by

Lemma 2.1. Leta,b € A% Ifab=0,thena+0b € A? and

(Ll -I—b)d — Z(ad)i-‘rlbibn + Zﬂian(bd)i—H.
i=0 i=0

Proof. See [5] [Lemma 15.2.2]. O

Lemma 2.2. Leta, b € A4, Ifab2 =0and aba =0, thena+b e A% and

(a+b) = i(bd)i+1aian+ § bib™ (ad) L 4 E bib™ (a)+2p
i=0 i=0 i=0
+ Y (bd)i+3ai+1a”b — gy — (bd)Zaadb.
i=0

Proof. See [17] [Theorem 2.1] and [5] [Corollary 15.2.4]. O
N 0 or b ¢
\c b 0 a
o a0 oF ooz
Lz o) 0 at )’

wherez = Y. (b)) 2cala™ + Y. b'b™c(a?)*2 — bca.
i=0 i=0

Lemma 2.3. Let

Then
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Proof. See [5] [Lemma 15.2.1]. O

Lemma 2.4. Let A be a Banach algebra and a € A~',b € A9 If ab = ba, then the equation ax + x> = b
has a solution x such that a + bx € A=, x e A,

Proof. Let x = ¥ c;a%b'™!, where ¢; € C,«; € Z. Choose a; = —(2i 4 1), Since ab = ba, we have
i=0

00 . [e] ) (e8] .
ax+x2 = Y Ciaai+1bz+l + [Z Ciaaibz+1][z Ciaﬂéibl+1]
i=0 i=0 i=0

coa®0t1b + [cra®1tl 4 c2a2%0]p2

4 [CzaleJrl —|—c0c1a”‘0+”‘1 —|—C1C0a“1+“0]b3
+ [eza® ! 4 cocpa® 2 - cicat i 4 cpcpat2 o] bt
= cob+ [c1 + c§la2b* + [c2 + cocq + c1c0]a b3
+  [e3 + coca + cye1 + cacplaTOb* 4 - - -
= b’
hence, we choose
co=1,c1=-1,c0=2,c3=-5,c4 =14,c5 = —42,---

¢ = —(coci—1+c1ci 2+ +ci1c0)(i € N).

Let {C,, } be the series of Catalan numbers, i.e.,

CO = 1,C1 = 1,62 = 2,C3 = 5,C4 = 14,C5 =42,---,
Cn=CoCy1+---+Cy1Co(n €N).

Then ¢g = Cy,c1 = —Cj. By induction, we claim that ¢z, = Cay, 241 = —Copr1(n > 0). Hence,
|cn] = Cu(n > 1). By using the asymptotic expression of the Catalan numbers C,, we have

411
lim Cn/(73) =1.
n—co \/E(Tl)f
Therefore A
lim {/|cy| = lim ——— =4.
n—oo n—oo ﬂ:.ﬂ({[/ﬁ)j

Since b € A7, we have lim | b" ||%: 0. Since
n—oo

1 ena= @ 0pmt | < el a2 410 ) 0 |,

tim /]| caa~ @m0 | = 0.

n—oo

we deduce that

This implies that Y c;a~ (21 pi+1 absolutely converges.
i=0
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oo . .
Accordingly, the equation ax + x> = b has a solution x = ¥ ¢;a~@+V)pi*+1 where ¢y = 1, ¢4 =
i=0

k
— Y. cick_i(k > 0). Moreover, we verify that
i=0
en = (—1)"Cu = (1)
X = [)05 cia~ 2+ pip e Al
i=0
a+x=a[l —alx] e AL

This completes the proof. [

Lemma 2.5. Let A be a Banach algebra and M = ( 10

a b ) witha € A=1,b € A Ifab = ba, then

M € My(A) and
M (a+x)"'—xy (a+x)"1x—xyx
y yx '

where x = i}o(—l)iZ.!((izi)l!)!a_(ﬁ*l)bi*l,y = gjo(—l)i(a + x) 72

Proof. Inview of Lemma 2.4, the equation ax + x2 = bhasasolution x such thata +x € A=, x € A,
Here,

v i @)Y i)
x_l;,( Ty b

It is easy to verify that

1 —x at+x 0 1 x
M= .
o) ) )
Since x € A7 and a + x € A~L. Then ( a —; * 2 > has g-Drazin inverse. Therefore M has g-Drazin

inverse. Exactly, we have

1 —x a+x 0 ! 1 x
L 1 —x) (0 1)
(1 —x \ [ (a+x)! o><1 x)
0 1 y o)lo1
_ (a+x)"1—xy (a+x)_1xxyx>
- y yx '
where y = EO(—I)i(a +x)7 2% O
i=

10

L (0 1
M <b‘1 b 1a )

Lemma 2.6. Let A be a Banach algebra and M = < a b > witha € A,b € A~L. Then M € My(A)~!

and

Proof. Straightforward. [
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Let p2 = p € Aand let A = pAp, Ay = p™Ap™. Let T be the ring of Morita context

(A1, Az, 0,1), e,
T — ( Ai M;(pAp™) )
M 7T
2 Ap) A (o)

with the bimodule homomorphisms of the form

¢ Ma(pAp™) x Mp(p™ Ap) — Ay,
P My (p™ Ap) x Mp(pAp™) — As.

Then we have a natural isomorphism of rings given by

p:Mz(A) %‘T,
payp papp o panp”  papp”
ap ap panp paxp ' panp™ panp”
= T Tl 1 e T 7 T T
az1 A pranp prapp o praup”  pranp
pranp ptapp | ptanp™ ptanp™ )

Lemma 2.7. Let A be a Banach algebra and M = <

M € My(A)? and

with z;; are formulated by

z1 = (ab™+x)"t -y,
zip = bb 4 (ab™ +x)"1x — xyx,
= b,
zpp = —ab+y+yx,
where
x = igo(i )11'((12_:_)1)' (21+1)b1+1b7'[,
y o= Y (=1)i(ab™ +x) "2,

i=0

Proof. Let p = bb?. Since ab = ba, we have

Then ‘
ai 0 bl 0
0 a 0 bz
M= |ty eM
270 00 2(A)
0 p™ ' 0 0

Hence, we have

where
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Claim 1. My € My(A;)?. Clearly, a; = abb?, by = b?b? € Afl. By Lemma 2.6, we have

0 bv?
d _ ap-1 _
My = M, < b;l —bflal )

Claim 2. M, € My (A»)%. Clearly, ay = ab™ € .Afl, by, =bb™ € Ag”ﬂ. By virtue of Lemma 2.5, we
have

M — (aa+x)"'—xy (a2 +x)"1x —xyx
2 = 7
Yy yx

where x = E (—1)ii!((izi)l!)!az_(ziﬁ)béﬂ,y = ozoj (—=1)i(az + x)~"~2x'. Therefore p(M) € T% and

i=0 i=0
0 bt 0 0
byt —bilay ! 00
M= | T T e
(M) 00 : (i +x)"V—xy (ap+x)"tx —xyx
|
00 y y (o)
Therefore M € My (A)?. Furthermore, we have
0 0 . bb? 0
i~ |0 (@) -xy 10 (m+x) Ty —ayx
bytoo | —b;la; 0
0 O ‘ y yx
_ Zn 12
Z1 72
with z;; are formulated by
zi1 = (ab™+x)"t -y,
zip = bb 4 (ab™ +x)"1x — xyx,
= b
zp = —ab®+y+yx,
where
o . Y] . .
x = igo(_l)z i!((izi)i)!af(zwl)bwlbn,
y = E (—1)H(ab™ + x) 2«
i=0

This completes the proof. [

Lemma 2.8. Let A be a Banach algebra and M = ( a b ) witha € A" b € A% If ab = ba, then

1 0

M € My(A)? and
g _( 0 b
M"= ( b —abd |
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0 bp?

Proof. Let X = ( b i

> . One directly verify that

a b 0 bbl
Mx = 10><bd —abd>
(5

—abd )
MX2 :
d
o (T 200
- 11__:5 gad > € My( )i,

Therefore M has g-Drazin inverse and M? = X, as desired. [J

3. Main Results

We now present the main results of this paper, which extend [16] [Theorem 3.8] and [18] [Theorem
4.1] to anti-triangular matrices in Banach algebras.

a b
1 0

(B
(5 0)

Theorem 3.1. Let A be a Banach algebra and M = ( ) witha,b € A% Ifab = ba, then M € M, (A)?

and

with «, B, 7y, 6 are formulated by

v = (a2 +x)71—xy,
B = aa®bb? + (a%a®b™ + x)"'x — xyx +a”bl",
v = aa®b? +a7be,
5 = —a%ab! +y+yx —aa™b?,
where -
x = ¥ (_1)1‘i'((izi)l!)'afmadbﬁlbn,
i=0 R
y = Y (—l)i(azadb"—i—x)*i*zxi

Then
al 0 | bl 0
0 a 0 bz
M= | TS cM
p 000 2(A)
0 pm " 0O
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By using the isomorphism p between the matrix ring Mp(.A) and the the ring of Morita context
(A1, Ay, ¢, ) mentioned above, we have

M; 0
p(M) = < ) ,
0 M) w

b b
M = ( uql 01 ) S Mz(.A]),Mz = ( Zi 02 ) S MQ(.AQ).

where

Claim 1. M; € M,(A;)?. Obviously, a; € Al 1b e A‘li. In view of Lemma 2.7, we have

d__ [ %11 212
Mi =
221 222

with z;; are formulated by

z1 = (a?a%" +x)71 - xy,

zip = aa’bb? 4 (a2a®b™ + x)"1x — xyx,
21 = aabd,

zyp = —a2a'b! +y+yx,

where

x = E:O(_l)ii!((i?l!)!a—%adbi-i-lbn,
)»

l‘f

y (—1)i(a2adb” + x)’i’zxi.

i=0

y:

Claim 2. M, € M, (Ay)%. Obviously, a, € Agnil, by, € Ag. By virtue of Lemma 2.8, we derive that

0 bybd
M = 2 .
2 ( b —apbd )

Therefore p(M) € T% and

Therefore
v ( : f ) € My(A),
where
z 0
K = ( (1)1 0 ) = 211,
P
zp 0 wppd
= == bb 7
p ( 0 bzbg) 12 +4
p
vy = ( 221 % ) 2221+anbd,
0 b5
P
2722 0 d
(5 = = —_— 7Tb .
( 0 —Elzbg) Z22 aa

This completes the proof. [
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a b
10

(8
w5t

Corollary 3.2. Let A be a Banach algebra and M = < ) with a,b € AP. If ab = ba, then M €

M (A)P and

with «, B, 7y, 0 are formulated by

® (a%aPp7™ + x)_ — xy,
B = aa’bbP + (a2aPb™ + x)"1x — xyx + a"bbP,
v = aaPvP + a™pP,
s 2aPpP 4y + yx — aa”bP,
where "
ind(b)—1 . S
y = .ZO (_1)1i!((i:_)l!)!uleanHlbn,
i=
ind(b)—1 , o
y = (_1)1({12{1Dbn+x)7172x1
i=0

Proof. Evidently, z € AP if and only if z € A% and a — a?a% € Ais nilpotent. In this case, ZD = 4,

Therefore we complete the proof by Theorem 3.1. O

We are now ready to prove:

Theorem 3.3. Let A be a Banach algebra and M = ( a b ) with a,b,b™a € A% If b™ab? = 0 and

1 0
b (ab) = b™ (ba), then M € My (A)? and

2 Pl PPd Qd>l+1

b™a b™b o
P = pi =

bt 0 >' ( 0%

bbla b2 p 0 bp?
Q = b 0 )’Q v —bia

with «, B, vy, 0 are formulated by

where

=R ™R
|

where
i (2i)! _2ibﬂﬂdbi+l,

ro= ;O(*l)lﬂ(m)!”
L

(—1)i(bna2ud + x)—i—zxi
0

Proof. Write M = P 4+ Q, where

b™a b™b bbla  b2b4
P_<b” 0 )’Q_<bbd 0 >
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Step 1. P has g-Drazin inverse. By hypothesis, we verify that
(ba)(b™b) = b (ab) = b (ba) = (b™b)(b™a).

In light of Theorem 3.1, we have

with a, B, v, 6 are formulated by

v = (b"a%a+x)"1 —xy,
B = (bTa%a® + x)"lx — xyx,
¥ = 0
6 = y+yx,
where -
x = igo(il)zi!((iz_:_)ll)!a—hbnadbl—i-l,
y = OZOL (—1)(b™a%a + x) =124,

i=0

Step 2. Q has g-Drazin inverse. By virtue of Lemma 2.6,

g [ 0 b
Q(bd —vla )

Step 3. Since PQ = 0, it follows by Lemma 2.1 that

M? = (P+Q)
= i’o: (pd)i+1QiQ7r + .go Pipn(Qd)iJrl

— § PiPTf(Qd)i'H'
=0

(=)

1

This completes the proof. [

Corollary 3.4. Let A be a Banach algebra and M = ( 10

a b > with a,b,b™a € AP. Ifb"abD = 0 and

b (ab) = b™ (ba), then M € My (A)P and

ind(P) )
MD: Z PZ[I_PPD]<QD)Z+1’
i=0
where
_ b™a b7 p_ [« B
b= v oo )07 ( v 6 )'
bbPa B2\ 0 bbP
Q = bbP 0 >'Q P —bPa

with a, B, vy, 0 are formulated by

a = (b7a%aP +x)71 -y,

B = (b"a%aP +x)"'x — xyx,
v = 0,

6 = y+yx


https://doi.org/10.20944/preprints202409.0090.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 September 2024 d0i:10.20944/preprints202409.0090.v1

110f13

where "
ind(b)—1 X , , .
x = '):0 (_1)1i!((izj»)l!)!aizlbnanl+l’
=
ind(b)—1 . . )
y = Y (—1)l(b"a2aD +x)‘l_2xl.
i=0

Proof. Itis immediate from Theorem 3.3. [

It is convenient at this stage to derive the following:

Theorem 3.5. Let A be a Banach algebra and M = ( Z Z ) with a,d,bc € A%, If abc = bea, bdc = 0 and

bd?> = 0, then M € My(A)* and

Ml = T(Q)FIPI(I- PP + T QIQT(P) 4 T QU1 - QQY)(P)i2Q
i=0 i=0 i=0
+ X (Q)FPH(I - PP)Q - QTPIQ — (Q7)?PPIQ,
i=0
where
P a b\ pa_ a’a +af + Bya+ Bé w?b+pyb .
N c 0)" \ cyaa+cyB+céya+cés cyab+coyb )’
(oo (000
R =104 )9~ ( 0 dd>

with «, B, vy, 0 are formulated by

v = (a%a®(bc)™ +x)"1 —xy,
B = aa%be(bec)? + (a%a (bc)™ + x)~1x — xyx + a’be(be)?,
v = aa(bc)? +a"(bc)?,
6 = —aa®(bc)? +y +yx —aa” (bec)?,
where - '
x = ‘;O(—l)il.!((ilr)l!)!a‘ziad(bc)i“(bc)”,
y = E (—1){[a%a (bc)™ + x] 721,
i=0

0 d

d
a bc) [ a B
(15)-(5)

= (a?a®(bc)™ +x)"1 —xy,

aa’be(be)? + (aa (be)™ + x) ~1x — xyx + a’be(be)?,
= aa®(bc)? +a”(bc)?,

= —a?a¥(bc)? +y + yx — aa™ (bc)?,

Proof. Let P = ( Z (Z; ) and Q = ( 00 ) In view of Theorem 3.1, we have

with «, B, 7, 6 are formulated by

S, =R ™ R
Il
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where o
Y = ;O(_l)iﬂ((?i)ll)!a—ziad(bc)iﬂ(bc)n’
y = ¥ (-1)a2ad(be)™ 4 2],
i=0

One easily verifies that

a bc _ a b 1 0
1 0 10 0 ¢/’
a b - 10 a b
c 0 0 ¢ 1 0

By using Cline’s formula (see [14] [Theorem 2.2]), P has g-Drazin inverse and

d
10 a bc 2f a b
sz(o c>[<1 0>]<1 0)
- 10 x B ? a b
N 0 ¢ ) 10
_ a B aa+ B ab
N cy ¢b ya+6 b

aa+ af+ Bya+ ps a?b + Byb
cyaa+ cyB+céya+cdé  cyab+cdyb )

s [0 0 ~ [1 0
Q‘(o dd>’Q_<o d”)'

Obviously, we have

One easily checks that

» _ [a b 0 0\ (0 ba®)\

P = c 0 Od2>_<0 o )=
a b 0 0 a b

PQP =

Q c 0 0d)<c 0)
bdc 0

NENE

According to Lemma 2.2, we derive that

M = (P+Q)
_ ozo:(Qd)i+lPiP7r+ of: QiQT[(Pd)iJrl + ozo: QiQn(Pd)i+2Q
i=0 i=0

i=0

L E (Q4)it3pi1pTQ — Q1piQ — (Q1)2PPAQ,

i=0

as asserted. [
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