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Abstract: We provide representations for the generalized Drazin inverse of an anti-triangular matrix of the form

REPRESENTATIONS OF THE G-DRAZIN INVERSE FOR
CERTAIN ANTI-TRIANGULAR MATRICES

HUANYIN CHEN

Abstract. We provide representations for the generalized Drazin inverse

of an anti-triangular matrix of the form

(
a b
1 0

)
in a Banach algebra A,

under the condition that ab = ba. Specifically, we present the representa-
tion of Drazin inverse for these types of anti-triangular matrices in Banach
algebras.

1. Introduction

Let A be an is a Banach algebra with identity 1. An element a ∈ A has
generalized Drazin inverse (g-Drazin inverse) if there exists x ∈ A such that

ax2 = x, ax = xa, a− xa2 ∈ Aqnil.
If such an x exists, it is unique and is denoted by ad. Here, Aqnil = {x ∈
A | 1 + λx ∈ A is invertible for all λ ∈ C}. It is well known that x ∈ Aqnil
if and only if lim

n→∞
||xn|| 1n = 0. If we replace the quasinilpotent set Aqnil with

the set of all nilpotent elements in A, we refer to the unique x as the Drazin
inverse of a, and denote it by aD. Both the Drazin and g-Drazin inverses play
significant roles in ring and matrix theory (see [5]).

It is intriguing to investigate the Drazin and g-Drazin inverses of the anti-

triangular matrix M =

(
a b
1 0

)
∈ M2(A). One motivation for exploring

this problem is the quest for a closed-form solution to systems of second-order
linear differential equations, which can be expressed in the following vector-
valued form: Ax(t) +Bx(t) +Cx(t) = 0 where A,B,C ∈ Cn×n (with A being
potentially singular) and x is an Cn-valued function. Clearly, the solutions
to singular systems of differential equations are determined by the Drazin in-
verse of the aforementioned anti-triangular matrix M (see [2, 3]). Although
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1. Introduction

Let A be an is a Banach algebra with identity 1. An element a ∈ A has generalized Drazin inverse
(g-Drazin inverse) if there exists x ∈ A such that

ax2 = x, ax = xa, a − xa2 ∈ Aqnil .

If such an x exists, it is unique and is denoted by ad. Here, Aqnil = {x ∈ A | 1 + λx ∈
A is invertible for all λ ∈ C}. It is well known that x ∈ Aqnil if and only if lim

n→∞
||xn|| 1

n = 0. If

we replace the quasinilpotent set Aqnil with the set of all nilpotent elements in A, we refer to the
unique x as the Drazin inverse of a, and denote it by aD. Both the Drazin and g-Drazin inverses play
significant roles in ring and matrix theory (see [5]).

It is intriguing to investigate the Drazin and g-Drazin inverses of the anti-triangular matrix

M =

(
a b
1 0

)
∈ M2(A). One motivation for exploring this problem is the quest for a closed-

form solution to systems of second-order linear differential equations, which can be expressed in
the following vector-valued form: Ax(t) + Bx(t) + Cx(t) = 0 where A, B, C ∈ Cn×n (with A being
potentially singular) and x is an Cn-valued function. Clearly, the solutions to singular systems of
differential equations are determined by the Drazin inverse of the aforementioned anti-triangular
matrix M (see [2,3]). Although the Drazin and g-Drazin inverses of anti-triangular matrices are
valuable tools in the context of differential equations, finding representations for such generalized
inverses remains a challenging task.

In 2005, Castro-González and Dopazo gave the representations of the Drazin inverse for a class of

complex matrix

(
I F
I 0

)
(see [9] [Theorem 3.3]).

In 2011, Bu et al. investigated the Drazin inverse of the complex matrix

(
E F
I 0

)
under the

condition EF = FE (see [2] [Theorem 3.3]).
In 2013, Xu, Song and Zhang studied an expression of the Drazin inverse of the operator matrix(

E F
I 0

)
∈ M2

(
B(X)

)
under the same condition, where B(X) is the Banach algebra of bounded

linear operators on a complex Banach space X (see [16] [Theorem 3.8]).
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In 2016, Yu, Wang and Deng characterized the Drazin invertibility of the anti-triangular operator

matrix

(
E F
I 0

)
∈ M2

(
B(H)

)
under the conditions FπEFD = 0, FπEF = Fπ FE, where B(H) is the

Banach algebra of bounded linear operators on a complex Hilbert space H (see [18] [Theorem 4.1]).
Recently, many authors have explored various conditions under which representations of the

Drazin (g-Drazin) inverse of such anti-triangular matrices can be established. For additional references,
we direct the reader to [10,11,19–21,23].

The motivation of this paper is to further investigate the representation of the g-Drazin inverse

of the anti-triangular matrix M =

(
a b
1 0

)
in a Banach algebra A. We begin by examining the

solvability of a quadratic equation in the Banach algebra A using Catalan numbers Cn. Next, we study
the representation of M under the conditions ab = ba, a ∈ A is invertible, b ∈ Aqnil . We then employ
the ring of Morita context and the Pierce representation of a Banach algebra element as tools to extend
the previous special case to the more general condition ab = ba, a, b ∈ Ad. Consequently, the known
results are extended to a broader context within a Banach algebra.

Throughout this paper, all Banach algebras are considered to be complex and possess an identity
element. Let M2(A) be the Banach algebra of all 2 × 2 matrices over the Banach algebra A. We
use A−1,AD and Ad to stand for the sets of all invertible, Drazin invertible and g-Drazin invertible
elements in A, respectively. For a ∈ Ad, we define aπ = 1 − aad. Let a, p2 = p ∈ A. Then a has
the Pierce decomposition given by pap + papπ + pπap + pπapπ , which we denote in matrix form as(

pap papπ

pπap pπapπ

)

p

.

2. key Lemmas

In this section, we present some necessary lemmas which will be used in the sequel. We start by

Lemma 2.1. Let a, b ∈ Ad. If ab = 0, then a + b ∈ Ad and

(a + b)d =
∞

∑
i=0

(ad)i+1bibπ +
∞

∑
i=0

aiaπ(bd)i+1.

Proof. See [5] [Lemma 15.2.2].

Lemma 2.2. Let a, b ∈ Ad. If ab2 = 0 and aba = 0, then a + b ∈ Ad and

(a + b)d =
∞
∑

i=0
(bd)i+1aiaπ +

∞
∑

i=0
bibπ(ad)i+1 +

∞
∑

i=0
bibπ(ad)i+2b

+
∞
∑

i=0
(bd)i+3ai+1aπb − bdadb − (bd)2aadb.

Proof. See [17] [Theorem 2.1] and [5] [Corollary 15.2.4].

Lemma 2.3. Let

x =

(
a 0
c b

)
or

(
b c
0 a

)

Then

xd =

(
ad 0
z bd

)
, or

(
bd z
0 ad

)
,

where z =
∞
∑

i=0
(bd)i+2caiaπ +

∞
∑

i=0
bibπc(ad)i+2 − bdcad.
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Proof. See [5] [Lemma 15.2.1].

Lemma 2.4. Let A be a Banach algebra and a ∈ A−1, b ∈ Aqnil . If ab = ba, then the equation ax + x2 = b
has a solution x such that a + bx ∈ A−1, x ∈ Aqnil .

Proof. Let x =
∞
∑

i=0
ciaαi bi+1, where ci ∈ C, αi ∈ Z. Choose αi = −(2i + 1), Since ab = ba, we have

ax + x2 =
∞
∑

i=0
ciaαi+1bi+1 + [

∞
∑

i=0
ciaαi bi+1][

∞
∑

i=0
ciaαi bi+1]

= c0aα0+1b + [c1aα1+1 + c2
0a2α0 ]b2

+ [c2aα2+1 + c0c1aα0+α1 + c1c0aα1+α0 ]b3

+ [c3aα3+1 + c0c2aα0+α2 + c1c1aα1+α1 + c2c0aα2+α0 ]b4

+ · · ·
= c0b + [c1 + c2

0]a
−2b2 + [c2 + c0c1 + c1c0]α

−4b3

+ [c3 + c0c2 + c1c1 + c2c0]a−6b4 + · · ·
= b,

hence, we choose

c0 = 1, c1 = −1, c2 = 2, c3 = −5, c4 = 14, c5 = −42, · · ·
ci = −(c0ci−1 + c1ci−2 + · · ·+ ci−1c0)(i ∈ N).

Let {Cn} be the series of Catalan numbers, i.e.,

C0 = 1, C1 = 1, c2 = 2, c3 = 5, c4 = 14, c5 = 42, · · · ,
Cn = C0Cn−1 + · · ·+ Cn−1C0(n ∈ N).

Then c0 = C0, c1 = −C1. By induction, we claim that c2n = C2n, c2n+1 = −C2n+1(n ≥ 0). Hence,
|cn| = Cn(n ≥ 1). By using the asymptotic expression of the Catalan numbers Cn, we have

lim
n→∞

Cn/
( 4n

√
π(n)

3
2

)
= 1.

Therefore
lim

n→∞
n
√
|cn| = lim

n→∞

4

π
1

2n ( n
√

n)
3
2
= 4.

Since b ∈ Aqnil , we have lim
n→∞

∥ bn ∥ 1
n = 0. Since

n
√
∥ cna−(2n+1)bn+1 ∥ ≤ n

√
|cn| ∥ a−1 ∥2+ 1

n n
√
∥ b ∥ ∥ bn ∥ 1

n ,

we deduce that
lim

n→∞
n
√
∥ cna−(2n+1)bn+1 ∥ = 0.

This implies that
∞
∑

i=0
cia−(2i+1)bi+1 absolutely converges.
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Accordingly, the equation ax + x2 = b has a solution x =
∞
∑

i=0
cia−(2i+1)bi+1, where c0 = 1, ck+1 =

−
k
∑

i=0
cick−i(k ≥ 0). Moreover, we verify that

cn = (−1)nCn = (−1)n (2n)!
n!(n+1)! ,

x = [
∞
∑

i=0
cia−(2i+1)bi]b ∈ Aqnil ,

a + x = a[1 − a−1x] ∈ A−1.

This completes the proof.

Lemma 2.5. Let A be a Banach algebra and M =

(
a b
1 0

)
with a ∈ A−1, b ∈ Aqnil . If ab = ba, then

M ∈ M2(A)d and

Md =

(
(a + x)−1 − xy (a + x)−1x − xyx

y yx

)
,

where x =
∞
∑

i=0
(−1)i (2i)!

i!(i+1)! a−(2i+1)bi+1, y =
∞
∑

i=0
(−1)i(a + x)−i−2xi.

Proof. In view of Lemma 2.4, the equation ax+ x2 = b has a solution x such that a+ x ∈ A−1, x ∈ Aqnil .
Here,

x =
∞

∑
i=0

(−1)i (2i)!
i!(i + 1)!

a−(2i+1)bi+1.

It is easy to verify that

M =

(
1 −x
0 1

)(
a + x 0

1 −x

)(
1 x
0 1

)
.

Since x ∈ Aqnil and a + x ∈ A−1. Then

(
a + x 0

1 x

)
has g-Drazin inverse. Therefore M has g-Drazin

inverse. Exactly, we have

Md =

(
1 −x
0 1

)(
a + x 0

1 −x

)d(
1 x
0 1

)

=

(
1 −x
0 1

)(
(a + x)−1 0

y 0

)(
1 x
0 1

)

=

(
(a + x)−1 − xy (a + x)−1x − xyx

y yx

)
,

where y =
∞
∑

i=0
(−1)i(a + x)−i−2xi.

Lemma 2.6. Let A be a Banach algebra and M =

(
a b
1 0

)
with a ∈ A, b ∈ A−1. Then M ∈ M2(A)−1

and

M−1 =

(
0 1

b−1 −b−1a

)
.

Proof. Straightforward.
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Let p2 = p ∈ A and let A1 = pAp,A2 = pπApπ . Let T be the ring of Morita context
(A1,A2, φ, ψ), i.e.,

T =

(
A1 M2

(
pApπ

)

M2
(

pπAp
)

A2

)

(φ,ψ)

with the bimodule homomorphisms of the form

φ : M2
(

pApπ
)
× M2

(
pπAp

)
→ A1,

ψ : M2
(

pπAp
)
× M2

(
pApπ

)
→ A2.

Then we have a natural isomorphism of rings given by

ρ : M2(A) ∼= T,

(
a11 a12

a21 a22

)
7→




pa11 p pa12 p
pa21 p pa22 p

pa11 pπ pa12 pπ

pa21 pπ pa22 pπ

pπa11 p pπa12 p
pπa21 p pπa22 p

pπa11 pπ pπa12 pπ

pπa21 pπ pπa22 pπ




(φ,ψ)

.

Lemma 2.7. Let A be a Banach algebra and M =

(
a b
1 0

)
with a ∈ A−1, b ∈ Ad. If ab = ba, then

M ∈ M2(A)d and

Md =

(
z11 z12

z21 z22

)

with zij are formulated by
z11 = (abπ + x)−1 − xy,
z12 = bbd + (abπ + x)−1x − xyx,
z21 = bd,
z22 = −abd + y + yx,

where
x =

∞
∑

i=0
(−1)i (2i)!

i!(i+1)! a−(2i+1)bi+1bπ ,

y =
∞
∑

i=0
(−1)i(abπ + x)−i−2xi.

Proof. Let p = bbd. Since ab = ba, we have

a =

(
a1 0
0 a2

)

p

, b =

(
b1 0
0 b2

)

p

∈ A.

Then

M =




a1 0
0 a2

b1 0
0 b2

p 0
0 pπ

0 0
0 0


 ∈ M2(A).

Hence, we have

ρ(M) =

(
M1 0
0 M2

)

(φ,ψ)

,

where

M1 =

(
a1 b1

p 0

)
∈ M2(A1), M2 =

(
a2 b2

pπ 0

)
∈ M2(A2).
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Claim 1. M1 ∈ M2(A1)
d. Clearly, a1 = abbd, b1 = b2bd ∈ A−1

1 . By Lemma 2.6, we have

Md
1 = M−1

1 =

(
0 bbd

b−1
1 −b−1

1 a1

)
.

Claim 2. M2 ∈ M2(A2)
d. Clearly, a2 = abπ ∈ A−1

1 , b2 = bbπ ∈ Aqnil
2 . By virtue of Lemma 2.5, we

have

Md
2 =

(
(a2 + x)−1 − xy (a2 + x)−1x − xyx

y yx

)
,

where x =
∞
∑

i=0
(−1)i (2i)!

i!(i+1)! a−(2i+1)
2 bi+1

2 , y =
∞
∑

i=0
(−1)i(a2 + x)−i−2xi. Therefore ρ(M) ∈ Td and

[ρ(M)]d =




0 bbd

b−1
1 −b−1

1 a1

0 0
0 0

0 0
0 0

(a2 + x)−1 − xy (a2 + x)−1x − xyx
y yx




(φ,ψ)

.

Therefore M ∈ M2(A)d. Furthermore, we have

Md =




0 0
0 (a2 + x)−1 − xy

bbd 0
0 (a2 + x)−1x − xyx

b−1
1 0
0 0

−b−1
1 a1 0
y yx




=

(
z11 z12

z21 z22

)

with zij are formulated by
z11 = (abπ + x)−1 − xy,
z12 = bbd + (abπ + x)−1x − xyx,
z21 = bd,
z22 = −abd + y + yx,

where
x =

∞
∑

i=0
(−1)i (2i)!

i!(i+1)! a−(2i+1)bi+1bπ ,

y =
∞
∑

i=0
(−1)i(abπ + x)−i−2xi.

This completes the proof.

Lemma 2.8. Let A be a Banach algebra and M =

(
a b
1 0

)
with a ∈ Aqnil , b ∈ Ad. If ab = ba, then

M ∈ M2(A)d and

Md =

(
0 bbd

bd −abd

)
.
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Proof. Let X =

(
0 bbd

bd −abd

)
. One directly verify that

MX =

(
a b
1 0

)(
0 bbd

bd −abd

)

=

(
bbd 0
0 bbd

)

=

(
0 bbd

bd −abd

)(
a b
1 0

)

= XM,
MX2 = (MX)X = X,

M − (MX)M =

(
a b
1 0

)
−
(

bbd 0
0 bbd

)(
a b
1 0

)

=

(
a(1 − bbd) b − b2bd

1 − bbd 0

)
∈ M2(A)qnil .

Therefore M has g-Drazin inverse and Md = X, as desired.

3. Main Results

We now present the main results of this paper, which extend [16] [Theorem 3.8] and [18] [Theorem
4.1] to anti-triangular matrices in Banach algebras.

Theorem 3.1. Let A be a Banach algebra and M =

(
a b
1 0

)
with a, b ∈ Ad. If ab = ba, then M ∈ M2(A)d

and

Md =

(
α β

γ δ

)

with α, β, γ, δ are formulated by

α = (a2adbπ + x)−1 − xy,
β = aadbbd + (a2adbπ + x)−1x − xyx + aπbbd,
γ = aadbd + aπbd,
δ = −a2adbd + y + yx − aaπbd,

where
x =

∞
∑

i=0
(−1)i (2i)!

i!(i+1)! a−2iadbi+1bπ ,

y =
∞
∑

i=0
(−1)i(a2adbπ + x)−i−2xi.

Proof. Let q = aad. Since ab = ba, we have

a =

(
a1 0
0 a2

)

q

, b =

(
b1 0
0 b2

)

q

.

Then

M =




a1 0
0 a2

b1 0
0 b2

p 0
0 pπ

0 0
0 0


 ∈ M2(A).
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By using the isomorphism ρ between the matrix ring M2(A) and the the ring of Morita context
(A1,A2, φ, ψ) mentioned above, we have

ρ(M) =

(
M1 0
0 M2

)

(φ,ψ)

,

where

M1 =

(
a1 b1

q 0

)
∈ M2(A1), M2 =

(
a2 b2

qπ 0

)
∈ M2(A2).

Claim 1. M1 ∈ M2(A1)
d. Obviously, a1 ∈ A−1

1 , b1 ∈ Ad
1. In view of Lemma 2.7, we have

Md
1 =

(
z11 z12

z21 z22

)

with zij are formulated by

z11 = (a2adbπ + x)−1 − xy,
z12 = aadbbd + (a2adbπ + x)−1x − xyx,
z21 = aadbd,
z22 = −a2adbd + y + yx,

where
x =

∞
∑

i=0
(−1)i (2i)!

i!(i+1)! a−2iadbi+1bπ ,

y =
∞
∑

i=0
(−1)i(a2adbπ + x)−i−2xi.

Claim 2. M2 ∈ M2(A2)
d. Obviously, a2 ∈ Aqnil

2 , b2 ∈ Ad
2. By virtue of Lemma 2.8, we derive that

Md
2 =

(
0 b2bd

2
bd

2 −a2bd
2

)
.

Therefore ρ(M) ∈ Td and

[ρ(M)]d =

(
Md

1 0
0 Md

2

)

(φ,ψ)

.

Therefore

Md =

(
α β

γ δ

)
∈ M2(A),

where

α =

(
z11 0
0 0

)

p

= z11,

β =

(
z12 0
0 b2bd

2

)

p

= z12 + aπbbd,

γ =

(
z21 0
0 bd

2

)

p

= z21 + aπbd,

δ =

(
z22 0
0 −a2bd

2

)

p

= z22 − aaπbd.

This completes the proof.
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Corollary 3.2. Let A be a Banach algebra and M =

(
a b
1 0

)
with a, b ∈ AD. If ab = ba, then M ∈

M2(A)D and

MD =

(
α β

γ δ

)

with α, β, γ, δ are formulated by

α = (a2aDbπ + x)−1 − xy,
β = aadbbD + (a2aDbπ + x)−1x − xyx + aπbbD,
γ = aaDbD + aπbD,
δ = −a2aDbD + y + yx − aaπbD,

where

x =
ind(b)−1

∑
i=0

(−1)i (2i)!
i!(i+1)! a−2iaDbi+1bπ ,

y =
ind(b)−1

∑
i=0

(−1)i(a2aDbπ + x)−i−2xi.

Proof. Evidently, z ∈ AD if and only if z ∈ Ad and a − a2ad ∈ A is nilpotent. In this case, zD = zd.
Therefore we complete the proof by Theorem 3.1.

We are now ready to prove:

Theorem 3.3. Let A be a Banach algebra and M =

(
a b
1 0

)
with a, b, bπa ∈ Ad. If bπabd = 0 and

bπ(ab) = bπ(ba), then M ∈ M2(A)d and

Md =
∞

∑
i=0

Pi[I − PPd](Qd)i+1,

where

P =

(
bπa bπb
bπ 0

)
, Pd =

(
α β

γ δ

)
,

Q =

(
bbda b2bd

bbd 0

)
, Qd =

(
0 bbd

bd −bda

)

with α, β, γ, δ are formulated by

α = (bπa2ad + x)−1 − xy,
β = (bπa2ad + x)−1x − xyx,
γ = 0,
δ = y + yx,

where
x =

∞
∑

i=0
(−1)i (2i)!

i!(i+1)! a−2ibπadbi+1,

y =
∞
∑

i=0
(−1)i(bπa2ad + x)−i−2xi.

Proof. Write M = P + Q, where

P =

(
bπa bπb
bπ 0

)
, Q =

(
bbda b2bd

bbd 0

)
.
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Step 1. P has g-Drazin inverse. By hypothesis, we verify that

(bπa)(bπb) = bπ(ab) = bπ(ba) = (bπb)(bπa).

In light of Theorem 3.1, we have

Pd =

(
α β

γ δ

)

with α, β, γ, δ are formulated by

α = (bπa2ad + x)−1 − xy,
β = (bπa2ad + x)−1x − xyx,
γ = 0,
δ = y + yx,

where
x =

∞
∑

i=0
(−1)i (2i)!

i!(i+1)! a−2ibπadbi+1,

y =
∞
∑

i=0
(−1)i(bπa2ad + x)−i−2xi.

Step 2. Q has g-Drazin inverse. By virtue of Lemma 2.6,

Qd =

(
0 bbd

bd −bda

)
.

Step 3. Since PQ = 0, it follows by Lemma 2.1 that

Md = (P + Q)d

=
∞
∑

i=0
(Pd)i+1QiQπ +

∞
∑

i=0
PiPπ(Qd)i+1

=
∞
∑

i=0
PiPπ(Qd)i+1.

This completes the proof.

Corollary 3.4. Let A be a Banach algebra and M =

(
a b
1 0

)
with a, b, bπa ∈ AD. If bπabD = 0 and

bπ(ab) = bπ(ba), then M ∈ M2(A)D and

MD =
ind(P)

∑
i=0

Pi[I − PPD](QD)i+1,

where

P =

(
bπa bπb
bπ 0

)
, PD =

(
α β

γ δ

)
,

Q =

(
bbDa b2bD

bbD 0

)
, QD =

(
0 bbD

bD −bDa

)

with α, β, γ, δ are formulated by

α = (bπa2aD + x)−1 − xy,
β = (bπa2aD + x)−1x − xyx,
γ = 0,
δ = y + yx,

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 September 2024 doi:10.20944/preprints202409.0090.v1

https://doi.org/10.20944/preprints202409.0090.v1


11 of 13

where

x =
ind(b)−1

∑
i=0

(−1)i (2i)!
i!(i+1)! a−2ibπaDbi+1,

y =
ind(b)−1

∑
i=0

(−1)i(bπa2aD + x)−i−2xi.

Proof. It is immediate from Theorem 3.3.

It is convenient at this stage to derive the following:

Theorem 3.5. Let A be a Banach algebra and M =

(
a b
c d

)
with a, d, bc ∈ Ad. If abc = bca, bdc = 0 and

bd2 = 0, then M ∈ M2(A)d and

Md =
∞
∑

i=0
(Qd)i+1Pi(I − PPd) +

∞
∑

i=0
QiQπ(Pd)i+1 +

∞
∑

i=0
Qi(I − QQd)(Pd)i+2Q

+
∞
∑

i=0
(Qd)i+3Pi+1(I − PPd)Q − QdPdQ − (Qd)2PPdQ,

where

P =

(
a b
c 0

)
, Pd =

(
α2a + αβ + βγa + βδ α2b + βγb

cγαa + cγβ + cδγa + cδδ cγαb + cδγb

)
;

Q =

(
0 0
0 d

)
, Qd =

(
0 0
0 dd

)

with α, β, γ, δ are formulated by

α = (a2ad(bc)π + x)−1 − xy,
β = aadbc(bc)d + (a2ad(bc)π + x)−1x − xyx + aπbc(bc)d,
γ = aad(bc)d + aπ(bc)d,
δ = −a2ad(bc)d + y + yx − aaπ(bc)d,

where
x =

∞
∑

i=0
(−1)i (2i)!

i!(i+1)! a−2iad(bc)i+1(bc)π ,

y =
∞
∑

i=0
(−1)i[a2ad(bc)π + x]−i−2xi.

Proof. Let P =

(
a b
c 0

)
and Q =

(
0 0
0 d

)
. In view of Theorem 3.1, we have

(
a bc
1 0

)d

=

(
α β

γ δ

)

with α, β, γ, δ are formulated by

α = (a2ad(bc)π + x)−1 − xy,
β = aadbc(bc)d + (a2ad(bc)π + x)−1x − xyx + aπbc(bc)d,
γ = aad(bc)d + aπ(bc)d,
δ = −a2ad(bc)d + y + yx − aaπ(bc)d,
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where
x =

∞
∑

i=0
(−1)i (2i)!

i!(i+1)! a−2iad(bc)i+1(bc)π ,

y =
∞
∑

i=0
(−1)i[a2ad(bc)π + x]−i−2xi.

One easily verifies that

(
a bc
1 0

)
=

(
a b
1 0

)(
1 0
0 c

)
,

(
a b
c 0

)
=

(
1 0
0 c

)(
a b
1 0

)
.

By using Cline’s formula (see [14] [Theorem 2.2]), P has g-Drazin inverse and

Pd =

(
1 0
0 c

)
[
(

a bc
1 0

)d]2
(

a b
1 0

)

=

(
1 0
0 c

)(
α β

γ δ

)2(
a b
1 0

)

=

(
α β

cγ cδ

)(
αa + β αb
γa + δ γb

)

=

(
α2a + αβ + βγa + βδ α2b + βγb

cγαa + cγβ + cδγa + cδδ cγαb + cδγb

)
.

Obviously, we have

Qd =

(
0 0
0 dd

)
, Qπ =

(
1 0
0 dπ

)
.

One easily checks that

PQ2 =

(
a b
c 0

)(
0 0
0 d2

)
=

(
0 bd2

0 0

)
= 0,

PQP =

(
a b
c 0

)(
0 0
0 d

)(
a b
c 0

)

=

(
bdc 0
0 0

)
= 0.

According to Lemma 2.2, we derive that

Md = (P + Q)d

=
∞
∑

i=0
(Qd)i+1PiPπ +

∞
∑

i=0
QiQπ(Pd)i+1 +

∞
∑

i=0
QiQπ(Pd)i+2Q

+
∞
∑

i=0
(Qd)i+3Pi+1PπQ − QdPdQ − (Qd)2PPdQ,

as asserted.
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