
Article

Not peer-reviewed version

Representations of the G-drazin Inverse for Certain Anti-triangular Matrices

[Huanyin Chen](#) *

Posted Date: 2 September 2024

doi: [10.20944/preprints202409.0090.v1](https://doi.org/10.20944/preprints202409.0090.v1)

Keywords: Drazin inverse; g-Drazin inverse; anti-triangular matrix; quadratic equation; Banach algebra

Preprints.org is a free multidiscipline platform providing preprint service that is dedicated to making early versions of research outputs permanently available and citable. Preprints posted at Preprints.org appear in Web of Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Disclaimer/Publisher's Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content.

Article

Representations of the g-Drazin Inverse for Certain Anti-Triangular Matrices

Huanyin Chen

School of Big Data, Fuzhou University of International Studies and Trade, Fuzhou 350202, China; huanyinchenzh@163.com

Abstract: We provide representations for the generalized Drazin inverse of an anti-triangular matrix of the form $\begin{pmatrix} a & b \\ 1 & 0 \end{pmatrix}$ in a Banach algebra \mathcal{A} , under the condition that $ab = ba$. Specifically, we present the representation of Drazin inverse for these types of anti-triangular matrices in Banach algebras.

Keywords: Drazin inverse; g-Drazin inverse; anti-triangular matrix; quadratic equation; Banach algebra

2020 Mathematics Subject Classification: 15A09; 39B42; 16U90

1. Introduction

Let \mathcal{A} be an is a Banach algebra with identity 1. An element $a \in \mathcal{A}$ has generalized Drazin inverse (g-Drazin inverse) if there exists $x \in \mathcal{A}$ such that

$$ax^2 = x, ax = xa, a - xa^2 \in \mathcal{A}^{qnil}.$$

If such an x exists, it is unique and is denoted by a^d . Here, $\mathcal{A}^{qnil} = \{x \in \mathcal{A} \mid 1 + \lambda x \in \mathcal{A} \text{ is invertible for all } \lambda \in \mathbb{C}\}$. It is well known that $x \in \mathcal{A}^{qnil}$ if and only if $\lim_{n \rightarrow \infty} \|x^n\|^{\frac{1}{n}} = 0$. If we replace the quasinilpotent set \mathcal{A}^{qnil} with the set of all nilpotent elements in \mathcal{A} , we refer to the unique x as the Drazin inverse of a , and denote it by a^D . Both the Drazin and g-Drazin inverses play significant roles in ring and matrix theory (see [5]).

It is intriguing to investigate the Drazin and g-Drazin inverses of the anti-triangular matrix $M = \begin{pmatrix} a & b \\ 1 & 0 \end{pmatrix} \in M_2(\mathcal{A})$. One motivation for exploring this problem is the quest for a closed-form solution to systems of second-order linear differential equations, which can be expressed in the following vector-valued form: $Ax(t) + Bx(t) + Cx(t) = 0$ where $A, B, C \in \mathbb{C}^{n \times n}$ (with A being potentially singular) and x is an \mathbb{C}^n -valued function. Clearly, the solutions to singular systems of differential equations are determined by the Drazin inverse of the aforementioned anti-triangular matrix M (see [2,3]). Although the Drazin and g-Drazin inverses of anti-triangular matrices are valuable tools in the context of differential equations, finding representations for such generalized inverses remains a challenging task.

In 2005, Castro-González and Dopazo gave the representations of the Drazin inverse for a class of complex matrix $\begin{pmatrix} I & F \\ I & 0 \end{pmatrix}$ (see [9] [Theorem 3.3]).

In 2011, Bu et al. investigated the Drazin inverse of the complex matrix $\begin{pmatrix} E & F \\ I & 0 \end{pmatrix}$ under the condition $EF = FE$ (see [2] [Theorem 3.3]).

In 2013, Xu, Song and Zhang studied an expression of the Drazin inverse of the operator matrix $\begin{pmatrix} E & F \\ I & 0 \end{pmatrix} \in M_2(\mathcal{B}(X))$ under the same condition, where $\mathcal{B}(X)$ is the Banach algebra of bounded linear operators on a complex Banach space X (see [16] [Theorem 3.8]).

In 2016, Yu, Wang and Deng characterized the Drazin invertibility of the anti-triangular operator matrix $\begin{pmatrix} E & F \\ I & 0 \end{pmatrix} \in M_2(\mathcal{B}(\mathcal{H}))$ under the conditions $F^\pi E F^D = 0$, $F^\pi E F = F^\pi F E$, where $\mathcal{B}(\mathcal{H})$ is the Banach algebra of bounded linear operators on a complex Hilbert space \mathcal{H} (see [18] [Theorem 4.1]).

Recently, many authors have explored various conditions under which representations of the Drazin (g-Drazin) inverse of such anti-triangular matrices can be established. For additional references, we direct the reader to [10,11,19–21,23].

The motivation of this paper is to further investigate the representation of the g-Drazin inverse of the anti-triangular matrix $M = \begin{pmatrix} a & b \\ 1 & 0 \end{pmatrix}$ in a Banach algebra \mathcal{A} . We begin by examining the solvability of a quadratic equation in the Banach algebra \mathcal{A} using Catalan numbers C_n . Next, we study the representation of M under the conditions $ab = ba, a \in \mathcal{A}$ is invertible, $b \in \mathcal{A}^{qnil}$. We then employ the ring of Morita context and the Pierce representation of a Banach algebra element as tools to extend the previous special case to the more general condition $ab = ba, a, b \in \mathcal{A}^d$. Consequently, the known results are extended to a broader context within a Banach algebra.

Throughout this paper, all Banach algebras are considered to be complex and possess an identity element. Let $M_2(\mathcal{A})$ be the Banach algebra of all 2×2 matrices over the Banach algebra \mathcal{A} . We use \mathcal{A}^{-1} , \mathcal{A}^D and \mathcal{A}^d to stand for the sets of all invertible, Drazin invertible and g-Drazin invertible elements in \mathcal{A} , respectively. For $a \in \mathcal{A}^d$, we define $a^\pi = 1 - aa^d$. Let $a, p^2 = p \in \mathcal{A}$. Then a has the Pierce decomposition given by $pap + pap^\pi + p^\pi ap + p^\pi ap^\pi$, which we denote in matrix form as $\begin{pmatrix} pap & pap^\pi \\ p^\pi ap & p^\pi ap^\pi \end{pmatrix}_p$.

2. key Lemmas

In this section, we present some necessary lemmas which will be used in the sequel. We start by

Lemma 2.1. *Let $a, b \in \mathcal{A}^d$. If $ab = 0$, then $a + b \in \mathcal{A}^d$ and*

$$(a + b)^d = \sum_{i=0}^{\infty} (a^d)^{i+1} b^i b^\pi + \sum_{i=0}^{\infty} a^i a^\pi (b^d)^{i+1}.$$

Proof. See [5] [Lemma 15.2.2]. \square

Lemma 2.2. *Let $a, b \in \mathcal{A}^d$. If $ab^2 = 0$ and $aba = 0$, then $a + b \in \mathcal{A}^d$ and*

$$\begin{aligned} (a + b)^d &= \sum_{i=0}^{\infty} (b^d)^{i+1} a^i a^\pi + \sum_{i=0}^{\infty} b^i b^\pi (a^d)^{i+1} + \sum_{i=0}^{\infty} b^i b^\pi (a^d)^{i+2} b \\ &+ \sum_{i=0}^{\infty} (b^d)^{i+3} a^{i+1} a^\pi b - b^d a^d b - (b^d)^2 a a^d b. \end{aligned}$$

Proof. See [17] [Theorem 2.1] and [5] [Corollary 15.2.4]. \square

Lemma 2.3. *Let*

$$x = \begin{pmatrix} a & 0 \\ c & b \end{pmatrix} \text{ or } \begin{pmatrix} b & c \\ 0 & a \end{pmatrix}$$

Then

$$x^d = \begin{pmatrix} a^d & 0 \\ z & b^d \end{pmatrix}, \text{ or } \begin{pmatrix} b^d & z \\ 0 & a^d \end{pmatrix},$$

where $z = \sum_{i=0}^{\infty} (b^d)^{i+2} c a^i a^\pi + \sum_{i=0}^{\infty} b^i b^\pi c (a^d)^{i+2} - b^d c a^d$.

Proof. See [5] [Lemma 15.2.1]. \square

Lemma 2.4. Let \mathcal{A} be a Banach algebra and $a \in \mathcal{A}^{-1}, b \in \mathcal{A}^{qnil}$. If $ab = ba$, then the equation $ax + x^2 = b$ has a solution x such that $a + bx \in \mathcal{A}^{-1}, x \in \mathcal{A}^{qnil}$.

Proof. Let $x = \sum_{i=0}^{\infty} c_i a^{\alpha_i} b^{i+1}$, where $c_i \in \mathbb{C}, \alpha_i \in \mathbb{Z}$. Choose $\alpha_i = -(2i+1)$, Since $ab = ba$, we have

$$\begin{aligned} ax + x^2 &= \sum_{i=0}^{\infty} c_i a^{\alpha_i+1} b^{i+1} + \left[\sum_{i=0}^{\infty} c_i a^{\alpha_i} b^{i+1} \right] \left[\sum_{i=0}^{\infty} c_i a^{\alpha_i} b^{i+1} \right] \\ &= c_0 a^{\alpha_0+1} b + [c_1 a^{\alpha_1+1} + c_0^2 a^{2\alpha_0}] b^2 \\ &+ [c_2 a^{\alpha_2+1} + c_0 c_1 a^{\alpha_0+\alpha_1} + c_1 c_0 a^{\alpha_1+\alpha_0}] b^3 \\ &+ [c_3 a^{\alpha_3+1} + c_0 c_2 a^{\alpha_0+\alpha_2} + c_1 c_1 a^{\alpha_1+\alpha_1} + c_2 c_0 a^{\alpha_2+\alpha_0}] b^4 \\ &+ \dots \\ &= c_0 b + [c_1 + c_0^2] a^{-2} b^2 + [c_2 + c_0 c_1 + c_1 c_0] a^{-4} b^3 \\ &+ [c_3 + c_0 c_2 + c_1 c_1 + c_2 c_0] a^{-6} b^4 + \dots \\ &= b, \end{aligned}$$

hence, we choose

$$\begin{aligned} c_0 &= 1, c_1 = -1, c_2 = 2, c_3 = -5, c_4 = 14, c_5 = -42, \dots \\ c_i &= -(c_0 c_{i-1} + c_1 c_{i-2} + \dots + c_{i-1} c_0) (i \in \mathbb{N}). \end{aligned}$$

Let $\{C_n\}$ be the series of Catalan numbers, i.e.,

$$\begin{aligned} C_0 &= 1, C_1 = 1, C_2 = 2, C_3 = 5, C_4 = 14, C_5 = 42, \dots, \\ C_n &= C_0 C_{n-1} + \dots + C_{n-1} C_0 (n \in \mathbb{N}). \end{aligned}$$

Then $c_0 = C_0, c_1 = -C_1$. By induction, we claim that $c_{2n} = C_{2n}, c_{2n+1} = -C_{2n+1} (n \geq 0)$. Hence, $|c_n| = C_n (n \geq 1)$. By using the asymptotic expression of the Catalan numbers C_n , we have

$$\lim_{n \rightarrow \infty} C_n / \left(\frac{4^n}{\sqrt{\pi(n)^{\frac{3}{2}}}} \right) = 1.$$

Therefore

$$\lim_{n \rightarrow \infty} \sqrt[n]{|c_n|} = \lim_{n \rightarrow \infty} \frac{4}{\pi^{\frac{1}{2n}} (\sqrt[n]{n})^{\frac{3}{2}}} = 4.$$

Since $b \in \mathcal{A}^{qnil}$, we have $\lim_{n \rightarrow \infty} \|b^n\|^{\frac{1}{n}} = 0$. Since

$$\sqrt[n]{\|c_n a^{-(2n+1)} b^{n+1}\|} \leq \sqrt[n]{|c_n|} \|a^{-1}\|^{2+\frac{1}{n}} \sqrt[n]{\|b\|} \|b^n\|^{\frac{1}{n}},$$

we deduce that

$$\lim_{n \rightarrow \infty} \sqrt[n]{\|c_n a^{-(2n+1)} b^{n+1}\|} = 0.$$

This implies that $\sum_{i=0}^{\infty} c_i a^{-(2i+1)} b^{i+1}$ absolutely converges.

Accordingly, the equation $ax + x^2 = b$ has a solution $x = \sum_{i=0}^{\infty} c_i a^{-(2i+1)} b^{i+1}$, where $c_0 = 1, c_{k+1} = -\sum_{i=0}^k c_i c_{k-i}$ ($k \geq 0$). Moreover, we verify that

$$\begin{aligned} c_n &= (-1)^n C_n = (-1)^n \frac{(2n)!}{n!(n+1)!}, \\ x &= [\sum_{i=0}^{\infty} c_i a^{-(2i+1)} b^i] b \in \mathcal{A}^{qnil}, \\ a + x &= a[1 - a^{-1}x] \in \mathcal{A}^{-1}. \end{aligned}$$

This completes the proof. \square

Lemma 2.5. Let \mathcal{A} be a Banach algebra and $M = \begin{pmatrix} a & b \\ 1 & 0 \end{pmatrix}$ with $a \in \mathcal{A}^{-1}, b \in \mathcal{A}^{qnil}$. If $ab = ba$, then $M \in M_2(\mathcal{A})^d$ and

$$M^d = \begin{pmatrix} (a+x)^{-1} - xy & (a+x)^{-1}x - xyx \\ y & yx \end{pmatrix},$$

$$\text{where } x = \sum_{i=0}^{\infty} (-1)^i \frac{(2i)!}{i!(i+1)!} a^{-(2i+1)} b^{i+1}, y = \sum_{i=0}^{\infty} (-1)^i (a+x)^{-i-2} x^i.$$

Proof. In view of Lemma 2.4, the equation $ax + x^2 = b$ has a solution x such that $a + x \in \mathcal{A}^{-1}, x \in \mathcal{A}^{qnil}$. Here,

$$x = \sum_{i=0}^{\infty} (-1)^i \frac{(2i)!}{i!(i+1)!} a^{-(2i+1)} b^{i+1}.$$

It is easy to verify that

$$M = \begin{pmatrix} 1 & -x \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a+x & 0 \\ 1 & -x \end{pmatrix} \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}.$$

Since $x \in \mathcal{A}^{qnil}$ and $a + x \in \mathcal{A}^{-1}$. Then $\begin{pmatrix} a+x & 0 \\ 1 & -x \end{pmatrix}$ has g-Drazin inverse. Therefore M has g-Drazin inverse. Exactly, we have

$$\begin{aligned} M^d &= \begin{pmatrix} 1 & -x \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a+x & 0 \\ 1 & -x \end{pmatrix}^d \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} \\ &= \begin{pmatrix} 1 & -x \\ 0 & 1 \end{pmatrix} \begin{pmatrix} (a+x)^{-1} & 0 \\ y & 0 \end{pmatrix} \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} \\ &= \begin{pmatrix} (a+x)^{-1} - xy & (a+x)^{-1}x - xyx \\ y & yx \end{pmatrix}, \end{aligned}$$

$$\text{where } y = \sum_{i=0}^{\infty} (-1)^i (a+x)^{-i-2} x^i. \quad \square$$

Lemma 2.6. Let \mathcal{A} be a Banach algebra and $M = \begin{pmatrix} a & b \\ 1 & 0 \end{pmatrix}$ with $a \in \mathcal{A}, b \in \mathcal{A}^{-1}$. Then $M \in M_2(\mathcal{A})^{-1}$ and

$$M^{-1} = \begin{pmatrix} 0 & 1 \\ b^{-1} & -b^{-1}a \end{pmatrix}.$$

Proof. Straightforward. \square

Let $p^2 = p \in \mathcal{A}$ and let $\mathcal{A}_1 = p\mathcal{A}p, \mathcal{A}_2 = p^\pi\mathcal{A}p^\pi$. Let T be the ring of Morita context $(\mathcal{A}_1, \mathcal{A}_2, \varphi, \psi)$, i.e.,

$$T = \begin{pmatrix} \mathcal{A}_1 & M_2(p\mathcal{A}p^\pi) \\ M_2(p^\pi\mathcal{A}p) & \mathcal{A}_2 \end{pmatrix}_{(\varphi, \psi)}$$

with the bimodule homomorphisms of the form

$$\begin{aligned} \varphi : M_2(p\mathcal{A}p^\pi) \times M_2(p^\pi\mathcal{A}p) &\rightarrow \mathcal{A}_1, \\ \psi : M_2(p^\pi\mathcal{A}p) \times M_2(p\mathcal{A}p^\pi) &\rightarrow \mathcal{A}_2. \end{aligned}$$

Then we have a natural isomorphism of rings given by

$$\begin{aligned} \rho : M_2(\mathcal{A}) &\cong T, \\ \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} &\mapsto \begin{pmatrix} pa_{11}p & pa_{12}p & | & pa_{11}p^\pi & pa_{12}p^\pi \\ pa_{21}p & pa_{22}p & | & pa_{21}p^\pi & pa_{22}p^\pi \\ \hline p^\pi a_{11}p & p^\pi a_{12}p & | & p^\pi a_{11}p^\pi & p^\pi a_{12}p^\pi \\ p^\pi a_{21}p & p^\pi a_{22}p & | & p^\pi a_{21}p^\pi & p^\pi a_{22}p^\pi \end{pmatrix}_{(\varphi, \psi)}. \end{aligned}$$

Lemma 2.7. Let \mathcal{A} be a Banach algebra and $M = \begin{pmatrix} a & b \\ 1 & 0 \end{pmatrix}$ with $a \in \mathcal{A}^{-1}, b \in \mathcal{A}^d$. If $ab = ba$, then $M \in M_2(\mathcal{A})^d$ and

$$M^d = \begin{pmatrix} z_{11} & z_{12} \\ z_{21} & z_{22} \end{pmatrix}$$

with z_{ij} are formulated by

$$\begin{aligned} z_{11} &= (ab^\pi + x)^{-1} - xy, \\ z_{12} &= bb^d + (ab^\pi + x)^{-1}x - xyx, \\ z_{21} &= b^d, \\ z_{22} &= -ab^d + y + yx, \end{aligned}$$

where

$$\begin{aligned} x &= \sum_{i=0}^{\infty} (-1)^i \frac{(2i)!}{i!(i+1)!} a^{-(2i+1)} b^{i+1} b^\pi, \\ y &= \sum_{i=0}^{\infty} (-1)^i (ab^\pi + x)^{-i-2} x^i. \end{aligned}$$

Proof. Let $p = bb^d$. Since $ab = ba$, we have

$$a = \begin{pmatrix} a_1 & 0 \\ 0 & a_2 \end{pmatrix}_p, b = \begin{pmatrix} b_1 & 0 \\ 0 & b_2 \end{pmatrix}_p \in \mathcal{A}.$$

Then

$$M = \begin{pmatrix} a_1 & 0 & | & b_1 & 0 \\ 0 & a_2 & | & 0 & b_2 \\ \hline p & 0 & | & 0 & 0 \\ 0 & p^\pi & | & 0 & 0 \end{pmatrix} \in M_2(\mathcal{A}).$$

Hence, we have

$$\rho(M) = \begin{pmatrix} M_1 & 0 \\ 0 & M_2 \end{pmatrix}_{(\varphi, \psi)},$$

where

$$M_1 = \begin{pmatrix} a_1 & b_1 \\ p & 0 \end{pmatrix} \in M_2(\mathcal{A}_1), M_2 = \begin{pmatrix} a_2 & b_2 \\ p^\pi & 0 \end{pmatrix} \in M_2(\mathcal{A}_2).$$

Claim 1. $M_1 \in M_2(\mathcal{A}_1)^d$. Clearly, $a_1 = abb^d, b_1 = b^2b^d \in \mathcal{A}_1^{-1}$. By Lemma 2.6, we have

$$M_1^d = M_1^{-1} = \begin{pmatrix} 0 & bb^d \\ b_1^{-1} & -b_1^{-1}a_1 \end{pmatrix}.$$

Claim 2. $M_2 \in M_2(\mathcal{A}_2)^d$. Clearly, $a_2 = ab^\pi \in \mathcal{A}_1^{-1}, b_2 = bb^\pi \in \mathcal{A}_2^{qnil}$. By virtue of Lemma 2.5, we have

$$M_2^d = \begin{pmatrix} (a_2 + x)^{-1} - xy & (a_2 + x)^{-1}x - xyx \\ y & yx \end{pmatrix},$$

where $x = \sum_{i=0}^{\infty} (-1)^i \frac{(2i)!}{i!(i+1)!} a_2^{-(2i+1)} b_2^{i+1}, y = \sum_{i=0}^{\infty} (-1)^i (a_2 + x)^{-i-2} x^i$. Therefore $\rho(M) \in T^d$ and

$$[\rho(M)]^d = \begin{pmatrix} 0 & bb^d & \vdots & 0 & 0 \\ b_1^{-1} & -b_1^{-1}a_1 & \vdots & 0 & 0 \\ 0 & 0 & \vdots & (a_2 + x)^{-1} - xy & (a_2 + x)^{-1}x - xyx \\ 0 & 0 & \vdots & y & yx \end{pmatrix}_{(\varphi, \psi)}.$$

Therefore $M \in M_2(\mathcal{A})^d$. Furthermore, we have

$$\begin{aligned} M^d &= \begin{pmatrix} 0 & 0 & \vdots & bb^d & 0 \\ 0 & (a_2 + x)^{-1} - xy & \vdots & 0 & (a_2 + x)^{-1}x - xyx \\ b_1^{-1} & 0 & \vdots & -b_1^{-1}a_1 & 0 \\ 0 & 0 & \vdots & y & yx \end{pmatrix} \\ &= \begin{pmatrix} z_{11} & z_{12} \\ z_{21} & z_{22} \end{pmatrix} \end{aligned}$$

with z_{ij} are formulated by

$$\begin{aligned} z_{11} &= (ab^\pi + x)^{-1} - xy, \\ z_{12} &= bb^d + (ab^\pi + x)^{-1}x - xyx, \\ z_{21} &= b^d, \\ z_{22} &= -ab^d + y + yx, \end{aligned}$$

where

$$x = \sum_{i=0}^{\infty} (-1)^i \frac{(2i)!}{i!(i+1)!} a^{-(2i+1)} b^{i+1} b^\pi,$$

$$y = \sum_{i=0}^{\infty} (-1)^i (ab^\pi + x)^{-i-2} x^i.$$

This completes the proof. \square

Lemma 2.8. Let \mathcal{A} be a Banach algebra and $M = \begin{pmatrix} a & b \\ 1 & 0 \end{pmatrix}$ with $a \in \mathcal{A}^{qnil}, b \in \mathcal{A}^d$. If $ab = ba$, then

$M \in M_2(\mathcal{A})^d$ and

$$M^d = \begin{pmatrix} 0 & bb^d \\ b^d & -ab^d \end{pmatrix}.$$

Proof. Let $X = \begin{pmatrix} 0 & bb^d \\ b^d & -ab^d \end{pmatrix}$. One directly verify that

$$\begin{aligned} MX &= \begin{pmatrix} a & b \\ 1 & 0 \\ bb^d & 0 \\ 0 & bb^d \\ 0 & bb^d \\ b^d & -ab^d \end{pmatrix} \begin{pmatrix} 0 & bb^d \\ b^d & -ab^d \end{pmatrix} \\ &= \begin{pmatrix} a & b \\ 1 & 0 \\ bb^d & 0 \\ 0 & bb^d \\ 0 & bb^d \\ b^d & -ab^d \end{pmatrix} \\ &= \begin{pmatrix} a & b \\ 1 & 0 \\ bb^d & 0 \\ 0 & bb^d \\ 0 & bb^d \\ b^d & -ab^d \end{pmatrix} \begin{pmatrix} a & b \\ 1 & 0 \end{pmatrix} \\ &= XM, \\ MX^2 &= (MX)X = X, \\ M - (MX)M &= \begin{pmatrix} a & b \\ 1 & 0 \end{pmatrix} - \begin{pmatrix} bb^d & 0 \\ 0 & bb^d \end{pmatrix} \begin{pmatrix} a & b \\ 1 & 0 \end{pmatrix} \\ &= \begin{pmatrix} a(1 - bb^d) & b - b^2b^d \\ 1 - bb^d & 0 \end{pmatrix} \in M_2(\mathcal{A})^{qnil}. \end{aligned}$$

Therefore M has g-Drazin inverse and $M^d = X$, as desired. \square

3. Main Results

We now present the main results of this paper, which extend [16] [Theorem 3.8] and [18] [Theorem 4.1] to anti-triangular matrices in Banach algebras.

Theorem 3.1. Let \mathcal{A} be a Banach algebra and $M = \begin{pmatrix} a & b \\ 1 & 0 \end{pmatrix}$ with $a, b \in \mathcal{A}^d$. If $ab = ba$, then $M \in M_2(\mathcal{A})^d$ and

$$M^d = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}$$

with $\alpha, \beta, \gamma, \delta$ are formulated by

$$\begin{aligned} \alpha &= (a^2a^d b^\pi + x)^{-1} - xy, \\ \beta &= aa^d bb^d + (a^2a^d b^\pi + x)^{-1}x - xyx + a^\pi bb^d, \\ \gamma &= aa^d b^d + a^\pi b^d, \\ \delta &= -a^2a^d b^d + y + yx - aa^\pi b^d, \end{aligned}$$

where

$$\begin{aligned} x &= \sum_{i=0}^{\infty} (-1)^i \frac{(2i)!}{i!(i+1)!} a^{-2i} a^d b^{i+1} b^\pi, \\ y &= \sum_{i=0}^{\infty} (-1)^i (a^2a^d b^\pi + x)^{-i-2} x^i. \end{aligned}$$

Proof. Let $q = aa^d$. Since $ab = ba$, we have

$$a = \begin{pmatrix} a_1 & 0 \\ 0 & a_2 \end{pmatrix}_q, b = \begin{pmatrix} b_1 & 0 \\ 0 & b_2 \end{pmatrix}_q.$$

Then

$$M = \begin{pmatrix} a_1 & 0 & | & b_1 & 0 \\ 0 & a_2 & | & 0 & b_2 \\ \hline p & 0 & | & 0 & 0 \\ 0 & p^\pi & | & 0 & 0 \end{pmatrix} \in M_2(\mathcal{A}).$$

By using the isomorphism ρ between the matrix ring $M_2(\mathcal{A})$ and the the ring of Morita context $(\mathcal{A}_1, \mathcal{A}_2, \varphi, \psi)$ mentioned above, we have

$$\rho(M) = \begin{pmatrix} M_1 & 0 \\ 0 & M_2 \end{pmatrix}_{(\varphi, \psi)},$$

where

$$M_1 = \begin{pmatrix} a_1 & b_1 \\ q & 0 \end{pmatrix} \in M_2(\mathcal{A}_1), M_2 = \begin{pmatrix} a_2 & b_2 \\ q^\pi & 0 \end{pmatrix} \in M_2(\mathcal{A}_2).$$

Claim 1. $M_1 \in M_2(\mathcal{A}_1)^d$. Obviously, $a_1 \in \mathcal{A}_1^{-1}$, $b_1 \in \mathcal{A}_1^d$. In view of Lemma 2.7, we have

$$M_1^d = \begin{pmatrix} z_{11} & z_{12} \\ z_{21} & z_{22} \end{pmatrix}$$

with z_{ij} are formulated by

$$\begin{aligned} z_{11} &= (a^2 a^d b^\pi + x)^{-1} - xy, \\ z_{12} &= aa^d b b^d + (a^2 a^d b^\pi + x)^{-1} x - xyx, \\ z_{21} &= aa^d b^d, \\ z_{22} &= -a^2 a^d b^d + y + yx, \end{aligned}$$

where

$$\begin{aligned} x &= \sum_{i=0}^{\infty} (-1)^i \frac{(2i)!}{i!(i+1)!} a^{-2i} a^d b^{i+1} b^\pi, \\ y &= \sum_{i=0}^{\infty} (-1)^i (a^2 a^d b^\pi + x)^{-i-2} x^i. \end{aligned}$$

Claim 2. $M_2 \in M_2(\mathcal{A}_2)^d$. Obviously, $a_2 \in \mathcal{A}_2^{qnil}$, $b_2 \in \mathcal{A}_2^d$. By virtue of Lemma 2.8, we derive that

$$M_2^d = \begin{pmatrix} 0 & b_2 b_2^d \\ b_2^d & -a_2 b_2^d \end{pmatrix}.$$

Therefore $\rho(M) \in T^d$ and

$$[\rho(M)]^d = \begin{pmatrix} M_1^d & 0 \\ 0 & M_2^d \end{pmatrix}_{(\varphi, \psi)}.$$

Therefore

$$M^d = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \in M_2(\mathcal{A}),$$

where

$$\begin{aligned} \alpha &= \begin{pmatrix} z_{11} & 0 \\ 0 & 0 \end{pmatrix}_p = z_{11}, \\ \beta &= \begin{pmatrix} z_{12} & 0 \\ 0 & b_2 b_2^d \end{pmatrix}_p = z_{12} + a^\pi b b^d, \\ \gamma &= \begin{pmatrix} z_{21} & 0 \\ 0 & b_2^d \end{pmatrix}_p = z_{21} + a^\pi b^d, \\ \delta &= \begin{pmatrix} z_{22} & 0 \\ 0 & -a_2 b_2^d \end{pmatrix}_p = z_{22} - aa^\pi b^d. \end{aligned}$$

This completes the proof. \square

Corollary 3.2. Let \mathcal{A} be a Banach algebra and $M = \begin{pmatrix} a & b \\ 1 & 0 \end{pmatrix}$ with $a, b \in \mathcal{A}^D$. If $ab = ba$, then $M \in M_2(\mathcal{A})^D$ and

$$M^D = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}$$

with $\alpha, \beta, \gamma, \delta$ are formulated by

$$\begin{aligned} \alpha &= (a^2 a^D b^\pi + x)^{-1} - xy, \\ \beta &= aa^d bb^D + (a^2 a^D b^\pi + x)^{-1} x - xyx + a^\pi bb^D, \\ \gamma &= aa^D b^D + a^\pi b^D, \\ \delta &= -a^2 a^D b^D + y + yx - aa^\pi b^D, \end{aligned}$$

where

$$\begin{aligned} x &= \sum_{i=0}^{\text{ind}(b)-1} (-1)^i \frac{(2i)!}{i!(i+1)!} a^{-2i} a^D b^{i+1} b^\pi, \\ y &= \sum_{i=0}^{\text{ind}(b)-1} (-1)^i (a^2 a^D b^\pi + x)^{-i-2} x^i. \end{aligned}$$

Proof. Evidently, $z \in \mathcal{A}^D$ if and only if $z \in \mathcal{A}^d$ and $a - a^2 a^d \in \mathcal{A}$ is nilpotent. In this case, $z^D = z^d$. Therefore we complete the proof by Theorem 3.1. \square

We are now ready to prove:

Theorem 3.3. Let \mathcal{A} be a Banach algebra and $M = \begin{pmatrix} a & b \\ 1 & 0 \end{pmatrix}$ with $a, b, b^\pi a \in \mathcal{A}^d$. If $b^\pi ab^d = 0$ and $b^\pi(ab) = b^\pi(ba)$, then $M \in M_2(\mathcal{A})^d$ and

$$M^d = \sum_{i=0}^{\infty} P^i [I - PP^d] (Q^d)^{i+1},$$

where

$$\begin{aligned} P &= \begin{pmatrix} b^\pi a & b^\pi b \\ b^\pi & 0 \end{pmatrix}, P^d = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}, \\ Q &= \begin{pmatrix} bb^d a & b^2 b^d \\ bb^d & 0 \end{pmatrix}, Q^d = \begin{pmatrix} 0 & bb^d \\ b^d & -b^d a \end{pmatrix} \end{aligned}$$

with $\alpha, \beta, \gamma, \delta$ are formulated by

$$\begin{aligned} \alpha &= (b^\pi a^2 a^d + x)^{-1} - xy, \\ \beta &= (b^\pi a^2 a^d + x)^{-1} x - xyx, \\ \gamma &= 0, \\ \delta &= y + yx, \end{aligned}$$

where

$$\begin{aligned} x &= \sum_{i=0}^{\infty} (-1)^i \frac{(2i)!}{i!(i+1)!} a^{-2i} b^\pi a^d b^{i+1}, \\ y &= \sum_{i=0}^{\infty} (-1)^i (b^\pi a^2 a^d + x)^{-i-2} x^i. \end{aligned}$$

Proof. Write $M = P + Q$, where

$$P = \begin{pmatrix} b^\pi a & b^\pi b \\ b^\pi & 0 \end{pmatrix}, Q = \begin{pmatrix} bb^d a & b^2 b^d \\ bb^d & 0 \end{pmatrix}.$$

Step 1. P has g-Drazin inverse. By hypothesis, we verify that

$$(b^\pi a)(b^\pi b) = b^\pi(ab) = b^\pi(ba) = (b^\pi b)(b^\pi a).$$

In light of Theorem 3.1, we have

$$P^d = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}$$

with $\alpha, \beta, \gamma, \delta$ are formulated by

$$\begin{aligned} \alpha &= (b^\pi a^2 a^d + x)^{-1} - xy, \\ \beta &= (b^\pi a^2 a^d + x)^{-1} x - xyx, \\ \gamma &= 0, \\ \delta &= y + yx, \end{aligned}$$

where

$$\begin{aligned} x &= \sum_{i=0}^{\infty} (-1)^i \frac{(2i)!}{i!(i+1)!} a^{-2i} b^\pi a^d b^{i+1}, \\ y &= \sum_{i=0}^{\infty} (-1)^i (b^\pi a^2 a^d + x)^{-i-2} x^i. \end{aligned}$$

Step 2. Q has g-Drazin inverse. By virtue of Lemma 2.6,

$$Q^d = \begin{pmatrix} 0 & bb^d \\ b^d & -b^d a \end{pmatrix}.$$

Step 3. Since $PQ = 0$, it follows by Lemma 2.1 that

$$\begin{aligned} M^d &= (P + Q)^d \\ &= \sum_{i=0}^{\infty} (P^d)^{i+1} Q^i Q^\pi + \sum_{i=0}^{\infty} P^i P^\pi (Q^d)^{i+1} \\ &= \sum_{i=0}^{\infty} P^i P^\pi (Q^d)^{i+1}. \end{aligned}$$

This completes the proof. \square

Corollary 3.4. Let \mathcal{A} be a Banach algebra and $M = \begin{pmatrix} a & b \\ 1 & 0 \end{pmatrix}$ with $a, b, b^\pi a \in \mathcal{A}^D$. If $b^\pi ab^D = 0$ and $b^\pi(ab) = b^\pi(ba)$, then $M \in M_2(\mathcal{A})^D$ and

$$M^D = \sum_{i=0}^{ind(P)} P^i [I - PP^D] (Q^D)^{i+1},$$

where

$$\begin{aligned} P &= \begin{pmatrix} b^\pi a & b^\pi b \\ b^\pi & 0 \end{pmatrix}, P^D = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}, \\ Q &= \begin{pmatrix} bb^D a & b^2 b^D \\ bb^D & 0 \end{pmatrix}, Q^D = \begin{pmatrix} 0 & bb^D \\ b^D & -b^D a \end{pmatrix} \end{aligned}$$

with $\alpha, \beta, \gamma, \delta$ are formulated by

$$\begin{aligned} \alpha &= (b^\pi a^2 a^D + x)^{-1} - xy, \\ \beta &= (b^\pi a^2 a^D + x)^{-1} x - xyx, \\ \gamma &= 0, \\ \delta &= y + yx, \end{aligned}$$

where

$$\begin{aligned} x &= \sum_{i=0}^{\text{ind}(b)-1} (-1)^i \frac{(2i)!}{i!(i+1)!} a^{-2i} b^\pi a^D b^{i+1}, \\ y &= \sum_{i=0}^{\text{ind}(b)-1} (-1)^i (b^\pi a^2 a^D + x)^{-i-2} x^i. \end{aligned}$$

Proof. It is immediate from Theorem 3.3. \square

It is convenient at this stage to derive the following:

Theorem 3.5. Let \mathcal{A} be a Banach algebra and $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ with $a, d, bc \in \mathcal{A}^d$. If $abc = bca, bdc = 0$ and $bd^2 = 0$, then $M \in M_2(\mathcal{A})^d$ and

$$\begin{aligned} M^d &= \sum_{i=0}^{\infty} (Q^d)^{i+1} P^i (I - PP^d) + \sum_{i=0}^{\infty} Q^i Q^\pi (P^d)^{i+1} + \sum_{i=0}^{\infty} Q^i (I - QQ^d) (P^d)^{i+2} Q \\ &+ \sum_{i=0}^{\infty} (Q^d)^{i+3} P^{i+1} (I - PP^d) Q - Q^d P^d Q - (Q^d)^2 P P^d Q, \end{aligned}$$

where

$$\begin{aligned} P &= \begin{pmatrix} a & b \\ c & 0 \end{pmatrix}, P^d = \begin{pmatrix} \alpha^2 a + \alpha\beta + \beta\gamma a + \beta\delta & \alpha^2 b + \beta\gamma b \\ c\gamma\alpha a + c\gamma\beta + c\delta\gamma a + c\delta\delta & c\gamma\alpha b + c\delta\gamma b \end{pmatrix}; \\ Q &= \begin{pmatrix} 0 & 0 \\ 0 & d \end{pmatrix}, Q^d = \begin{pmatrix} 0 & 0 \\ 0 & d^d \end{pmatrix} \end{aligned}$$

with $\alpha, \beta, \gamma, \delta$ are formulated by

$$\begin{aligned} \alpha &= (a^2 a^d (bc)^\pi + x)^{-1} - xy, \\ \beta &= aa^d bc (bc)^d + (a^2 a^d (bc)^\pi + x)^{-1} x - xyx + a^\pi bc (bc)^d, \\ \gamma &= aa^d (bc)^d + a^\pi (bc)^d, \\ \delta &= -a^2 a^d (bc)^d + y + yx - aa^\pi (bc)^d, \end{aligned}$$

where

$$\begin{aligned} x &= \sum_{i=0}^{\infty} (-1)^i \frac{(2i)!}{i!(i+1)!} a^{-2i} a^d (bc)^{i+1} (bc)^\pi, \\ y &= \sum_{i=0}^{\infty} (-1)^i [a^2 a^d (bc)^\pi + x]^{-i-2} x^i. \end{aligned}$$

Proof. Let $P = \begin{pmatrix} a & b \\ c & 0 \end{pmatrix}$ and $Q = \begin{pmatrix} 0 & 0 \\ 0 & d \end{pmatrix}$. In view of Theorem 3.1, we have

$$\begin{pmatrix} a & bc \\ 1 & 0 \end{pmatrix}^d = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}$$

with $\alpha, \beta, \gamma, \delta$ are formulated by

$$\begin{aligned} \alpha &= (a^2 a^d (bc)^\pi + x)^{-1} - xy, \\ \beta &= aa^d bc (bc)^d + (a^2 a^d (bc)^\pi + x)^{-1} x - xyx + a^\pi bc (bc)^d, \\ \gamma &= aa^d (bc)^d + a^\pi (bc)^d, \\ \delta &= -a^2 a^d (bc)^d + y + yx - aa^\pi (bc)^d, \end{aligned}$$

where

$$\begin{aligned} x &= \sum_{i=0}^{\infty} (-1)^i \frac{(2i)!}{i!(i+1)!} a^{-2i} a^d (bc)^{i+1} (bc)^\pi, \\ y &= \sum_{i=0}^{\infty} (-1)^i [a^2 a^d (bc)^\pi + x]^{-i-2} x^i. \end{aligned}$$

One easily verifies that

$$\begin{aligned} \begin{pmatrix} a & bc \\ 1 & 0 \end{pmatrix} &= \begin{pmatrix} a & b \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & c \end{pmatrix}, \\ \begin{pmatrix} a & b \\ c & 0 \end{pmatrix} &= \begin{pmatrix} 1 & 0 \\ 0 & c \end{pmatrix} \begin{pmatrix} a & b \\ 1 & 0 \end{pmatrix}. \end{aligned}$$

By using Cline's formula (see [14] [Theorem 2.2]), P has g-Drazin inverse and

$$\begin{aligned} P^d &= \begin{pmatrix} 1 & 0 \\ 0 & c \end{pmatrix} \left[\begin{pmatrix} a & bc \\ 1 & 0 \end{pmatrix}^d \right]^2 \begin{pmatrix} a & b \\ 1 & 0 \end{pmatrix} \\ &= \begin{pmatrix} 1 & 0 \\ 0 & c \end{pmatrix} \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}^2 \begin{pmatrix} a & b \\ 1 & 0 \end{pmatrix} \\ &= \begin{pmatrix} \alpha & \beta \\ c\gamma & c\delta \end{pmatrix} \begin{pmatrix} \alpha a + \beta & \alpha b \\ \gamma a + \delta & \gamma b \end{pmatrix} \\ &= \begin{pmatrix} \alpha^2 a + \alpha\beta + \beta\gamma a + \beta\delta & \alpha^2 b + \beta\gamma b \\ c\gamma\alpha a + c\gamma\beta + c\delta\gamma a + c\delta\delta & c\gamma\alpha b + c\delta\gamma b \end{pmatrix}. \end{aligned}$$

Obviously, we have

$$Q^d = \begin{pmatrix} 0 & 0 \\ 0 & d^d \end{pmatrix}, Q^\pi = \begin{pmatrix} 1 & 0 \\ 0 & d^\pi \end{pmatrix}.$$

One easily checks that

$$\begin{aligned} PQ^2 &= \begin{pmatrix} a & b \\ c & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & d^2 \end{pmatrix} = \begin{pmatrix} 0 & bd^2 \\ 0 & 0 \end{pmatrix} = 0, \\ PQP &= \begin{pmatrix} a & b \\ c & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & d \end{pmatrix} \begin{pmatrix} a & b \\ c & 0 \end{pmatrix} \\ &= \begin{pmatrix} bd & 0 \\ 0 & 0 \end{pmatrix} = 0. \end{aligned}$$

According to Lemma 2.2, we derive that

$$\begin{aligned} M^d &= (P + Q)^d \\ &= \sum_{i=0}^{\infty} (Q^d)^{i+1} P^i P^\pi + \sum_{i=0}^{\infty} Q^i Q^\pi (P^d)^{i+1} + \sum_{i=0}^{\infty} Q^i Q^\pi (P^d)^{i+2} Q \\ &+ \sum_{i=0}^{\infty} (Q^d)^{i+3} P^{i+1} P^\pi Q - Q^d P^d Q - (Q^d)^2 P P^d Q, \end{aligned}$$

as asserted. \square

Data Availability Statement: The data used to support the findings of this study are included within the article.

Conflicts of Interest: The authors declare there is no conflicts of interest.

References

1. C. Bu; C. Feng and S. Bai, Representations for the Drazin inverses of the sum of two matrices and some block matrices, *Applied Math. Comput.*, **218**(2012), 20226–20237.
2. C. Bu; K. Zhang and J. Zhao, Representation of the Drazin inverse on solution of a class singular differential equations, *Linear Multilinear Algebra*, **59**(2011), 863–877.
3. S.L. Campbell, The Drazin inverse and systems of second order linear differential equations, *Linear Multilinear Algebra*, **14**(1983), 195–198.
4. H. Chen and M. Sheibani, The g-Drazin inverses of special operator matrices, *Oper. Matrices*, **15**(2021), 151–162.
5. H. Chen and M. Sheibani, *Theory of Clean Rings and Matrices*, Singapore: World Scientific, 2023.
6. H. Chen and M. Sheibani, The generalized Drazin inverse of an operator matrix with commuting entries, *Georgian Math. J.*, **31**(2024), 195–204.
7. H. Chen and M. Sheibani, The g-Drazin inverses of anti-triangular block operator matrices, *Applied Math. Comput.*, **463**(2024) 128368.
8. H. Chen and M. Sheibani, The Drazin inverse for perturbed block-operator matrices, *Filomat*, **38**(2024), 2311–2321.
9. N. Castro-González and E. Dopazo, Representations of the Drazin inverse for a class of block matrices, *Linear Algebra Appl.*, **400**(2005), 253–269.
10. D.S. Cvetković-Ilić, Some results on the (2, 2, 0) Drazin inverse problem, *Linear Algebra Appl.*, **438**(2013), 4726–4741.
11. C. Deng and Y. Wei, A note on the Drazin inverse of an anti-triangular matrix, *Linear Algebra Appl.*, **431**(2009), 1910–1922.
12. E. Dopazo and M.F. Martínez-Serrano, Further results on the representation of the Drazin inverse of a 2×2 block matrix, *Linear Algebra Appl.*, **432**(2010), 1896–1904.
13. J. Li and H. Wang, Generalized Drazin invertibility of the product and sum of bounded linear operators, *Acta Anal. Funct. Appl.*, **22**(2020), 33–43.
14. Y. Liao; J. Chen and J. Cui, Cline's formula for the generalized Drazin inverse, *Bull. Malays. Math. Sci. Soc.*, **37**(2014), 37–42.
15. X. Liu; X. Qin and J. Benítez, New additive results for the generalized Drazin inverse in a Banach algebra, *Filomat*, **30**(2016), 2289–2294.
16. Q. Xu; C. Song and L. Zhang, Solvability of certain quadratic operator equations and representations of Drazin inverses, *Linear Algebra Appl.*, **439**(2013), 291–309.
17. H. Yang and X. Liu, The Drazin inverse of the sum of two matrices and its applications, *J. Comput. Applied Math.*, **235**(2011), 1412–1417.
18. A. Yu; X. Wang and C. Deng, On the Drazin inverse of anti-triangular block matrix, *Linear Algebra Appl.*, **489**(2016), 274–287.
19. D. Zhang; D. Mosić and L. Chen, On the Drazin inverse of anti-triangular block matrices, *Electron. Res. Arch.*, **30**(2022), 2428–2445.
20. D. Zhang; Y. Jin and D. Mosić, Generalizations of certain conditions for Drazin inverse expressions of anti-triangular partitioned matrices, *Aequationes Math.*, **98**(2024), 1081–1098.
21. D. Zhang; Y. Zhao; D. Mosić and V.N. Katsikis, Exact expressions for the Drazin inverse of anti-triangular matrices, *J. Comput. Appl. Math.*, **428**(2023), Article ID 115187, 16 p.
22. H. Zou; D. Mosić and J. Chen, Generalized Drazin invertibility of the product and sum of two elements in a Banach algebra and its applications, *Turk. J. Math.*, **41**(2017), 548–563.
23. H. Zou; J. Chen and D. Mosić, The Drazin invertibility of an anti-triangular matrix over a ring, *Stud. Sci. Math. Hung.*, **54**(2017), 489–508.

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.