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Abstract: We propose a new approach to extending the notion of commutator and Lie algebra to algebras with
ternary multiplication laws. Our approach is based on ternary associativity of the first and second kind. We
propose a ternary commutator, which is a linear combination of six (all permutations of three elements) triple
products. The coefficients of this linear combination are the cube roots of unity. We find an identity for the
ternary commutator that holds due to ternary associativity of the first or second kind. The form of the found
identity is determined by the permutations of the general affine group GA(1, 5) ⊂ S5. We consider the found
identity as an analogue of the Jacobi identity in the ternary case. We introduce the concept of a ternary Lie
algebra at the cubic root of unity and give examples of such an algebra constructed using ternary multiplications
of rectangular and three-dimensional matrices. We point out the connection between the structure constants of a
ternary Lie algebra with three generators and an irreducible representation of the rotation group.
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1. Introduction

The concept of a group endowed with the structure of a smooth manifold and of its tangent space at the
identity of a group endowed with the structure of a Lie algebra plays an important role in differential geometry,
classical mechanics and theoretical physics. The development of the theory of Lie groups and algebras began
with the work of Sophus Lie on the study of symmetries of differential equations and can be considered as an
analogue of Galois theory for differential equations. The development of the theory of Lie groups and algebras
is closely intertwined with the development of theoretical physics. The development of supersymmetric field
theories that emerged in the 1970s is based on the concept of Lie superalgebra, which can be considered as a
generalization of the concept of Lie algebra.

The development of the theory of Lie algebras has led to numerous generalizations of the concept of Lie
algebra. One such generalization arose in connection with the extension of the concept of Lie algebra to algebraic
structures with n-ary multiplication laws. This generalization is called n-Lie algebra and it was proposed and
developed by Filippov [7]. Independently of him, Nambu proposed a generalization of Hamiltonian mechanics
based on the notion of an n-ary Poisson bracket [11]. It was later shown that the n-ary Poisson bracket in Nambu’s
generalization of Hamiltonian mechanics satisfies an n-Lie algebra identity (now called the Filippov-Jacobi or
Fundamental Identity) and thus an n-ary Poisson bracket induces an n-Lie algebra structure on a vector space
of smooth functions. It should be noted that the concept of n-Lie algebra turned out to be fruitful, and in the
early 2000s this structure was used in the theory of M2-branes [5,6]. It is interesting to note that the quark model
served as the motivation for Nambu to construct a generalization of Hamiltonian mechanics.

In this paper we propose a new approach to extending the concept of Lie algebra to algebraic structures
with ternary multiplication laws. Our approach differs from the Filippov-Nambu approach, and to explain the
difference, we briefly recall the main properties of n-Lie algebras. First, the n-ary Lie bracket of an n-Lie algebra
is completely skew-symmetric, and second, the Filippov-Jacobi identity is an extension of the Leibniz rule to
a double n-ary Lie bracket. The main examples of n-ary Lie brackets in n-Lie algebras are constructed using
determinants. By this we mean that the theory of n-Lie algebras lacks an important construction that makes

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting 
from any ideas, methods, instructions, or products referred to in the content.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 September 2024 doi:10.20944/preprints202409.0063.v1

©  2024 by the author(s). Distributed under a Creative Commons CC BY license.

https://orcid.org/0000-0001-7174-8030
https://doi.org/10.20944/preprints202409.0063.v1
http://creativecommons.org/licenses/by/4.0/


2 of 14

it possible to construct a Lie algebra using a commutator. It is well known that if A is an associative algebra
over a field of real or complex numbers with multiplication (u, v) ∈ A → u · v ∈ A then one can construct a
Lie algebra by equipping A with Lie bracket defined by means of the commutator [u, v] = u · v − v · u. The
commutator satisfies the Jacobi identity[

[u, v], w
]
+

[
[v, w], u

]
+

[
[w, u], v

]
= 0, (1)

and A becomes the Lie algebra. This construction is very important, since it opens up the possibility of
constructing a wide and important class of matrix Lie algebras.

Let us consider in more detail the above construction of a Lie algebra by means of the commutator. First of
all, we are interested in the question of why the commutator satisfies the Jacobi identity. It is easy to verify that if
we expand all the double commutators on the left-hand side of the Jacobi identity (1), then each permutation of
three elements u, v, w will appear in the resulting expression twice, once in the form of product (u · v) · w, the
second time in the form of product u · (v · w), and these two products will have opposite signs. Thus, due to
associativity (u · v) · w = u · (v · w), we get zero. Our goal in this paper is to extend this construction to ternary
algebras, that is, to construct a ternary commutator and find an identity for this ternary commutator (analogous to
the Jacobi identity), which will be based on ternary associativity.

Let T be a vector space over the field of complex numbers C endowed with a ternary multiplication

(a, b, c) ∈ T × T × T 7→ a · b · c ∈ T .

By ternary multiplication we mean a mapping that assigns to each triple of elements of complex vector space
T the uniquely defined element of the same space T , and this mapping is trilinear. In the case of ternary
multiplication there are two kinds of associativity. A ternary multiplication is said to be associative of the first
kind if it satisfies

(a · b · c) · d · f = a · (b · c · d) · f = a · b · (c · d · f ), (2)

and associative of the second kind if

(a · b · c) · d · f = a · (d · c · b) · f = a · b · (c · d · f ). (3)

Note that in the case of associativity of the first kind, shifting the round brackets from left to right does not
change the order of the factors in a product, and in the case of associativity of the second kind, shifting the
round brackets from left to right swaps elements b and d. If we do not assume a vector space structure on T ,
then a ternary multiplication on T , satisfying associativity of the second kind (sometimes called generalized
associativity), determines the structure of a semi-heap [12]. In what follows, a vector space T equipped with a
ternary associative multiplication of the first or second kind will be referred to as a ternary algebra.

In the case of algebra with binary law of multiplication there are two ways of placing brackets in a product
u · v · w (which show in what order the elements u, v, w are multiplied), that is, (u · v) · w and u · (v · w). If
multiplication is associative then these two products are equal. Therefore, multiplying one of these two products
by -1 and adding them together, we, due to associativity, get zero. This is the basis of the Jacobi identity.

Now in the case of ternary multiplication, we have three ways of placing round brackets in a product of five
elements, that is,

(a · b · c) · d · f , a · (b · c · d) · f , a · b · (c · d · f ), (4)

in the case of the associativity of the first kind and

(a · b · c) · d · f , a · (d · c · b) · f , a · b · (c · d · f ), (5)

in the case of the associativity of the second kind. The main idea of the present paper is that we can find an
analogue of the Jacobi identity for ternary algebras if we follow the above scheme, that is, we multiply each
of the three products in (4) or in (5) by some number, add three resulting products and, by virtue of ternary
associativity of the first or second kind, obtain zero. We think that using -1 in the ternary case looks unnatural, as
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it makes the whole construction asymmetrical and awkward. But the cube roots of unity fit perfectly into this
scheme. Indeed there are three cube roots of unity 1, ω, ω, where ω is a primitive cube root of unity and ω is its
complex conjugate. Now if we multiply each product in (4) or in (5) by a cube root of unity (each by its own,
different from the others) and add the resulting products, then by virtue of ternary associativity and the property
of cube roots of unity 1 + ω + ω = 0 we get zero. For example

1 (a · b · c) · d · f + ω a · (b · c · d) · f + ω a · b · (c · d · f ) = 0, (6)

and this equality can be considered as a ternary analog of the binary one (u · v) · w − u · (v · w) = 0.
The above reasoning leads to the conclusion that in the case of ternary algebra T an analog of the binary

commutator can be constructed by means of the cube roots of unity. We propose a ternary commutator which is a
linear combination of all six permutations of its arguments and the coefficients of this linear combination are the
cube roots of unity. Thus we endow a ternary algebra T with the ternary commutator defined by the following
formula

[a, b, c] = a · b · c + ω b · c · a + ω c · a · b + c · b · a + ω b · a · c + ω a · c · b. (7)

The structure of this ternary commutator is in line with the ideas, methods and structures developed in the
papers [1–3,10]. The ternary commutator (7) proposed in the present paper differs in its properties from a 3-Lie
bracket of 3-Lie algebra. Indeed, the ternary commutator (7) is not skew-symmetric and, therefore, the presence
of two equal arguments does not make it identically zero. However, in the case where all three arguments
are equal, it is identically zero. Here we see an analogy with the ternary generalization of the Pauli exclusion
principle proposed by Kerner [9]. According to this principle, a wave function of a quantum system of quarks
does not vanish in the case of two quarks with identical quantum characteristics, but it vanishes identically when
the system contains three such quarks.

We find an identity for the ternary commutator (7). It is natural to assume that, just as in the case of the
Jacobi identity, which is based on the subgroup of cyclic permutations of three elements Z3 ⊂ S3, an identity
for the ternary commutator (7) should be based on a subgroup of the symmetric group S5 and it really is. The
identity we found is based on the general affine group GA(1, 5) ⊂ S5. Thus, the left side of identity has 20
terms, but in some cases of ternary multiplication with the commutativity with respect to first two arguments it
decreases to 10 terms. The identity has the form

⟲
([

[a, b, c], d, f
]
+

[
[a, d, b], f , c

]
+

[
[a, f , d], c, b

]
+

[
[a, c, f ], b, d

])
= 0, (8)

where the symbol ⟲ stands for cyclic permutations of five elements and a, b, c, d, f ∈ T .
Motivated by this result result we propose a notion of ternary Lie algebra at cubic root of unity or, more

briefly, ternary ω-Lie algebra, where ω is a primitive cube root of unity. We give definition of ternary ω-Lie
algebra and study its structure constants. The structure constants of a ternary ω-Lie algebra is a (1,3)-tensor and
we derive the system of equations for this tensor from the identity (8). We show that in the case of ternary ω-Lie
algebra with three generators the structure constants of this algebra are related to irreducible tensor representation
of weight two of the rotation group. Then we give several examples of ternary ω-Lie algebras constructed using
ternary algebras of rectangular and three-dimensional matrices. Thus, the concept of ternary ω-Lie algebra
proposed in this paper allows us to extend the theory of Lie algebras from square matrices to rectangular and
three-dimensional matrices.

2. Ternary Commutator and Its Symmetries

In this section we explain why we call the expression on the right-hand side of (7) a ternary commutator. In
addition, we describe the symmetries of the ternary commutator, define its conjugate ternary commutator, and
derive a formula for the ternary commutator using sixth order roots of unity.

The concept of a commutator is closely related to a concept of commutativity. In the case of binary
multiplication u · v, two elements u, v are called commuting if the equality u · v = v · u holds. Now we introduce
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a commutator as an expression that vanishes on commuting elements, that is, [u, v] = u · v − v · u. In the case
of n-ary multiplication, where n > 2, commutativity can be defined in different ways, depending on how we
interpret commutativity in the binary case. For our purposes it is convenient to interpret the binary commutativity
as follows: we split a product into two parts, and rearranging these parts does not change the value of the product.
In this form, commutativity can be extended to n-ary multiplication laws. Assume we have an n-ary product
a1 · a2 · . . . · an and we split it into two parts

a1 · a2 · . . . · ai︸ ︷︷ ︸ · ai+1 · ai+2 · . . . · an︸ ︷︷ ︸, (9)

where i = 1, 2, . . . , n − 1. We call n-ary multiplication commutative if for any n elements a1, a2, . . . , an and for
any partition of their product into two parts (9) rearrangement of these two parts does not change the value of the
product, i.e.

a1 · a2 · . . . · ai · ai+1 · ai+2 · . . . · an = ai+1 · ai+2 · . . . · an · a1 · a2 · . . . · ai.

Applying this notion of commutativity to the special case of a ternary multiplication, i.e. assuming that a ternary
multiplication is commutative in the sense just defined we will have the relations

a︸︷︷︸ · b · c︸︷︷︸ = b · c︸︷︷︸ · a︸︷︷︸, a · b︸︷︷︸ · c︸︷︷︸ = c︸︷︷︸ · a · b︸︷︷︸, (10)

c︸︷︷︸ · b · a︸︷︷︸ = b · a︸︷︷︸ · c︸︷︷︸, c · b︸︷︷︸ · a︸︷︷︸ = a︸︷︷︸ · c · b︸︷︷︸ . (11)

Thus, these relations show that the notion of commutativity in the special case of a ternary multiplication is
equivalent to the fact that any cyclic permutation of arguments in a triple product does not change the value of
this product. We have two sets of equal products (cyclic permutations of three elements), and each set contains
three products. Now, in order to construct a ternary commutator, we should combine all six products into a linear
combination in such a way that, first, we should use the cube roots of unity, and, second, when the commutativity
conditions (10), (11) are satisfied, this combination would vanish. Hence we define the ternary commutator as
follows

a · b · c + ω b · c · a + ω c · a · b + c · b · a + ω b · a · c + ω a · c · b, (12)

where a, b, c are elements of a ternary algebra and ω is a primitive 3rd order root of unity. In what follows we
will call this expression ternary commutator and denote it using square brackets, that is,

[a, b, c] = a · b · c + ω b · c · a + ω c · a · b + c · b · a + ω b · a · c + ω a · c · b. (13)

The ternary commutator can be constructed by analogy with the binary one using geometric reasoning. In the
case of binary multiplication u · v, it is natural to place the factors u, v at the ends of the segment and form their
product by taking as the first factor the element that stands at the left end of the segment. The permutation of the
factors in a product u · v corresponds to the rotation of the segment around its center by an angle of π. Thus,
the binary commutator can be interpreted in such a way that we take the product u · v determined by the initial
position of the segment and add to it the product determined by the segment rotated by the angle of π, multiplied
by the coefficient eiπ , that is, u · v + eiπ v · u = u · v − v · u = [u, v].

In the case of ternary multiplication, we should use a regular triangle to graphically represent a triple
product a · b · c. We will arrange the three factors a, b, c of this product at the vertices of a triangle, placing
the first factor a at the lower right vertex and going around the triangle clockwise. Then rotating the triangle
around its center by an angle of 2π/3 counterclockwise will give us the first cyclic permutation b · c · a, and
rotating it by an angle of 4π/3 will give us the second c · a · b. So they must enter into the expression for the
ternary commutator with the factors e2πi/3 = ω, e4πi/3 = ω. The second part of the expression for the ternary
commutator is obtained by mirroring the described construction.

u v v u⟲ π
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b a

c

c b

a

⟲ 2π
3

It is useful to define the conjugate ternary commutator as follows

[a, b, c]∗ = a · b · c + ω b · c · a + ω c · a · b + c · b · a + ω b · a · c + ω a · c · b. (14)

Then we have
[a, b, c]∗ = [c, b, a], ([a, b, c]∗)∗ = [a, b, c].

It is easy to verify by direct calculation that the ternary commutator (13) and its conjugate (14) transform under
cyclic permutations of their arguments as follows

[a, b, c] = ω [b, c, a], [a, b, c] = ω [c, a, b], (15)

[a, b, c]∗ = ω [b, c, a]∗, [a, b, c]∗ = ω [c, a, b]∗. (16)

From (15) it follows that the sum of three ternary commutators obtained by cyclic permutations of arguments is
equal to zero, that is,

[a, b, c] + [b, c, a] + [c, a, b] = 0. (17)

Concerning this important property of the ternary commutator (13) we have to make three remarks. The first
remark concerns Lie triple systems that arose in differential geometry in connection with the study of totally
geodesic submanifolds. Although the property (17) of the ternary commutator (13) has the same form as one of
the requirements in the definition of a Lie triple system, the ternary commutator (13) is not a Lie triple system
because it is not skew-symmetric in the first two arguments and does not satisfy the Filippov-Jacobi identity.

The second remark concerns 3-Lie algebras. Ternary Lie bracket in 3-Lie algebra is totally skew-symmetric
in its arguments and thus in general it does not satisfy the equation (17). In the next section we will find an
identity for the ternary commutator (13) and see that this identity is different from the Filippov-Jacobi identity.
Thus, the ternary commutator (13) induces on a ternary algebra T a structure different from a 3-Lie algebra.

The third remark concerns a relation with theoretical physics. It is easy to see that two equal arguments in
our ternary commutator (13) does not make it vanish identically. But in the case where all three arguments a, b, c
are equal, our ternary commutator vanishes identically, i.e. [a, a, a] = 0. Here we see a possible connection
with the ternary generalization of the Pauli exclusion principle proposed by Kerner [9]. We will discuss this
connection in the Discussion section.

Recall that Nambu in the paper [11] devoted to the generalization of Hamiltonian mechanics considered the
skew-symmetric ternary commutator

[A, B, C] = A B C + B C A + C A B − C B A − B A C − A C B,

where A, B, C are elements of some associative (binary) algebra. This version of a ternary commutator can
be considered as a direct extension of the skew-symmetry of the binary commutator to the case of ternary
multiplication. However, to our knowledge, no analogue of the Jacobi identity based on ternary associativity
has been found for such a ternary commutator. It is interesting that our ternary commutator (13) can also be
written in a form where the three even permutations have a plus sign, and the three odd permutations have a
minus sign. For this purpose we will need a primitive sixth root of unity which will be denoted by ε. We take
ω = ε2, ω = ε4. Among other relations we will have

ε + ε = 1, ω = −ε, ω = −ε. (18)
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Now we can write the ternary commutator (13) in the following form

[a, b, c] = a · b · c − ε b · a · c + ε2 b · c · a − ε3 c · b · a + ε4 c · a · b − ε5 a · c · b. (19)

In this formula, even permutations have a plus sign and are multiplied by even powers of the sixth root of unity ε,
and odd permutations have a minus sign and are multiplied by odd powers of the sixth root of unity. Now the
symmetries of the ternary commutator can be written in the form

[a, b, c] = ε2 [b, c, a] = ε4 [c, a, b], [a, b, c]∗ = ε4 [b, c, a]∗ = ε2 [c, a, b]∗,

[a, b, c] = −ε [b, a, c]∗, [a, b, c] = −ε3 [c, b, a]∗, [a, b, c] = −ε5 [a, c, b]∗.

The formula (19) can be written in the form

[a, b, c] = (a · b · c − ε b · a · c) + ω (b · c · a − ε c · b · a) + ω (c · a · b − ε a · c · b). (20)

We can use this formula to justify the term "ternary commutator" that we use in relation to expression on the
right-hand side of (13). In the above formula, each of the three terms enclosed in round brackets can be interpreted
as measuring the non-commutativity of the ternary multiplication with respect to the first two arguments in
relation to the last which does not change its position. Geometrically, it would be convenient to depict the three
elements a, b, c of the ternary algebra T as the vertices of a regular triangle. Then the above formula "measures"
the non-commutativity of a ternary multiplication on each side of the triangle with respect to the opposite
vertex. Thus, geometrically, the transition from binary multiplication, where two factors can be represented as
points on a line, to ternary multiplication can be described as we leave a line and go to a plane, figuratively
speaking. This explains why the above formula contains sixth roots of unity and conjugation. To measure ternary
non-commutativity correctly, we need to use plane rotations and reflections. It should be noted here that in [13]
the authors develop an interesting graphical and diagrammatic approach for representing ternary associative
multiplication using triangles in the plane.

In particular, if a ternary multiplication is commutative with respect to some pair of its arguments, for
example the first pair, that is, a · b · c = b · a · c, then formula (20) reduces to a shorter form containing only three
terms. Indeed, we have

[a, b, c] = a · b · c + ω b · c · a + ω c · a · b + c · b · a + ω b · a · c + ω a · c · b

= (1 + ω) a · b · c + (1 + ω) b · c · a + (ω + ω) c · a · b

= −ω (a · b · c + ω b · c · a + ω c · a · b). (21)

3. General Affine Group, Basic Identity and Ternary Lie Algebra at Cube Root of Unity

The concept of a Lie algebra consists of two important components, where the first is a Lie bracket (or, in
particular, the binary commutator) with its properties with respect to permutations of arguments and the Jacobi
identity. Since we have the ternary commutator defined and considered in the previous section, our goal now is to
find an identity for the ternary commutator (13), based on ternary associativity. Following the analogy with the
binary commutator, we could estimate how many terms a possible identity could contain. If we consider the
binary case then each double commutator, when expanded, yields four products. But if we expand all the double
commutators at the left-hand side of identity, then in the resulting expression each product of three elements
(totally we have six permutations) will occur twice (the brackets are either on the left or on the right). Thus, we
will have twelve products on the left-hand side of identity. Dividing twelve by four we conclude that an identity
consists of three double commutators and this is so in the case of the Jacobi identity.

A similar calculation can be made in the case of the ternary commutator (13). If we expand the double
ternary commutator [[a, b, c], d, f ] we get thirty-six terms. On the other hand, we have one hundred and twenty
permutations of five elements. Due to ternary associativity, each permutation must occur at least three times
(brackets on the left, in the center and on the right) with coefficients 1, ω, ω. Thus, dividing three hundred and
sixty by thirty-six gives ten. Note that this is the minimum number of terms in a possible identity. Also note
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that in this calculation we have not taken into account such an important structure of the ternary commutator as
conjugation. Obviously, if we take this structure into account, we will have to double the number of terms in the
identity, i.e. we can expect that a possible identity will contain twenty terms.

Since an identity we are looking for is a sum of double ternary commutators of the form [[a, b, c], d, f ], the
second assumption, which seems very natural, is that an identity must be based on a subgroup of symmetric
group S5. Taking into account the above, we come to the conclusion that there are two potential candidates for
the subgroups of the symmetric group S5, these are the dihedral group D10 (10 elements) or the general affine
group GA(1, 5) (20 elements). Moreover, the dihedral group is a subgroup of the general affine group, that is,
D10 ⊂ GA(1, 5).

The general affine group GA(1, 5) has several different representations. In this article we will use the
representation of this group by permutations of five elements. The minimal set of permutations that generates the
entire group consists of two cycles, which we denote as follows

σ = (1 2 3 4 5), τ = (2 4 5 3).

Hence
σ(1) = 2, σ(2) = 3, σ(3) = 4, σ(5) = 1, (22)

and
τ(1) = 1, τ(2) = 4, τ(3) = 2, τ(4) = 5, τ(5) = 3. (23)

Then
GA(1, 5) =< σ, τ | σ5 = e, τ4 = e, τ σ τ−1 = σ2 >,

where e is the identity element of the group GA(1, 5). All elements of the group can be written in the following
form

e, σ, σ2, σ3, σ4, (24)

τ, τσ3, τσ, τσ4, τσ2, (25)

τ2, τ2σ4, τ2σ3, τ2σ2, τ2σ, (26)

τ3, τ3σ2, τ3σ4, τ3σ, τ3σ3. (27)

We will use this representation to write the identity. In this representation, all elements of the general affine
group are divided into four sets (24)–(27) and in each of these sets the second element is obtained by a cyclic
permutation of five elements in the first, the third by a cyclic permutation in the second, and so on. For a more
compact representation of an identity, we will use the symbol ⟲. This symbol means that an expression that
follows contains five elements and must be subjected to the following procedure. One should form the sum
of five expressions, starting with the initial one and where each subsequent one is a cyclic permutation of five
elements of the previous one. Thus

⟲
[
[a, b, c], d, f

]
=

[
[a, b, c], d, f

]
+

[
[b, c, d], f , a

]
+

[
[c, d, f ], a, b

]
+

[
[d, f , a], b, c

]
+
[
[ f , a, b], c, d

]
,

where a, b, c, d, f are elements of a ternary algebra T .

Theorem 1. Let T be a ternary algebra. Then for any a, b, c, d, f ∈ T the ternary commutator (13) and its
conjugate (14) have the property

[a, b, c] = ω [b, c, a] = ω [c, a, b], [a, b, c]∗ = ω [b, c, a]∗ = ω [c, a, b]∗
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and the ternary commutator satisfies the identity

⟲
([

[a, b, c], d, f
]
+

[
[a, d, b], f , c

]
+

[
[a, f , d], c, b

]
+

[
[a, c, f ], b, d

])
= 0.

In what follows we will call the above identity that is the statement of Theorem 1 the basic identity. We
can prove Theorem 1 by direct computation, that is, by applying formula (13) twice to each term of the basic
identity and using a ternary associativity of multiplication. We carried out this computation using a computer
program containing a non-commutative symbolic calculus. The computer program we use makes it possible
to study the structure of the basic identity. A study of the structure of the basic identity shows that it holds
due to the reasoning based on the Formulas (4)–(6). Let us denote a = a1, b = a2, c = a3, d = a4, f = a5.
The computer program allows us to find in which terms of the basic identity a particular product of elements
a1, a2, a3, a4, a5 appears, with what coefficient and how the round brackets are placed in it. For example the
product a1 · a2 · a3 · a4 · a5 appears six times as follows

[[a1, a2, a3], a4, a5], [[a2, a3, a4], a5, a1], [[a3, a4, a5], a1, a2],

(a1 · a2 · a3) · a4 · a5, ω a1 · (a2 · a3 · a4) · a5, ω a1 · a2 · (a3 · a4 · a5),

and

[[a5, a4, a3], a2, a1], [[a4, a3, a2], a1, a5], [[a3, a2, a1], a5, a4],

a1 · a2 · (a3 · a4 · a5), ω a1 · (a2 · a3 · a4) · a5, ω (a1 · a2 · a3) · a4 · a5.

Here in the first line we show the double ternary commutators of the basic identity and below them we show in
which form, that is, the coefficient and position of round brackets, the product a1 · a2 · a3 · a4 · a5 appears in the
corresponding double commutator. Adding up the six terms obtained in this case and assuming associativity of
the first kind, we get zero in total.

In the case of ternary associativity of the second kind, in addition to the above table we should consider
the set of those double ternary commutators on the left-hand side of the basic identity that contain the product
a1 · a4 · a3 · a2 · a5. They are summarized in the following table

[[a3, a1, a4], a2, a5], [[a2, a3, a4], a5, a1], [[a2, a5, a3], a1, a4],

ω (a1 · a4 · a3) · a2 · a5, ω a1 · (a4 · a3 · a2) · a5, a1 · a4 · (a3 · a2 · a5),

and

[[a4, a1, a3], a5, a2], [[a4, a3, a2], a1, a5], [[a3, a5, a2], a4, a1],

(a1 · a4 · a3) · a2 · a5, ω a1 · (a4 · a3 · a2) · a5, ω a1 · a4 · (a3 · a2 · a5).

A comparison of the columns in the center of these tables immediately shows that in the case of ternary
associativity of the second kind we obtain the same type of sum, which is equal to zero.

Thus the basic identity consists of 20 double ternary commutators. The general affine group, considered as
a subgroup of the permutations of the symmetric group 1, is generated by two cycles. The general affine group,
considered as a subgroup of the permutations of the symmetric group S5, is generated by two cycles σ, τ. The
double ternary commutators[

[a1, a2, a3], a4, a5
]
,
[
[a1, a4, a2], a5, a3

]
,
[
[a1, a5, a4], a3, a2

]
,
[
[a1, a3, a5], a2, a4

]
(28)

are determined by the permutations e, τ, τ2, τ3, that is, by the first elements of the general affine group GA(1, 5)
in the Formulas (24)–(27). The cyclic permutations of the double ternary commutators (28) are determined by
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the elements in (24)–(27) respectively, starting from the second element. Note that the elements in (24), (26)
form the dihedral subgroup D10 of the symmetric group S5.

Theorem 1 provides a motivation for introduction of the following notion.

Definition 1. Let L be a vector space over the field of complex numbers. Then L is said to be a ternary Lie
algebra at cube root of unity, where ω is a primitive cube root of unity, if L is endowed with a ternary bracket
(x, y, z) ∈ L × L × L 7→ [x, y, z] ∈ L which transforms under the cyclic permutations of its arguments as
follows

[x, y, z] = ω [y, z, x] = ω [z, x, y], [x, y, z]∗ = ω [y, z, x]∗ = ω [z, x, y]∗, (29)

where [x, y, z]∗ = [z, y, x], and satisfies the identity

⟲
([

[x, y, z], u, v
]
+

[
[x, u, y], v, z

]
+

[
[x, v, u], z, y

]
+

[
[x, z, v], y, u

])
= 0. (30)

In this paper, to simplify the terminology, a ternary Lie algebra at cube root of unity will be referred to as a
ternary ω-Lie algebra. The property (29) will be referred to as ω-symmetry of ternary bracket of a ternary ω-Lie
algebra. The identity (30) will be called as before the basic identity.

Let L be a ternary ω-Lie algebra, where L is an n-dimensional vector space, and e1, e2, . . . , en be a basis
for a vector space L. In analogy with the binary case we introduce the structure constants of a ternary ω-Lie
algebra as follows

[ei, ek, el ] = Cm
ikl em, [ei, ek, el ]

∗ = C̃m
ikl em (31)

where Cm
ikl , C̃m

ijk will be referred to as structure constants of a ternary ω-Lie algebra L. It is easy to see that

C̃m
ijk = Cm

kji. In (31) we used the Einstein convention of summation over repeated indices. Obviously the structure
constants of a ternary ω-Lie algebra can be considered as a complex-valued tensor of type (1, 3). This tensor has
the ω-symmetry with respect to cyclic permutations of its three subscripts, that is,

Cm
ikl = ω Cm

kli = ω Cm
lik, C̃m

ikl = ω C̃m
kli = ω C̃m

lik. (32)

It follows that for every value of the superscript m = 1, 2, . . . , n the structure constants of a ternary ω-Lie
algebra L, that is, both Cm

ijk and C̃m
ijk, satisfy the equation

Tijk + Tjki + Tkij = 0, (33)

where Tijk is a covariant tensor of order 3. It is evident that the third order covariant tensors defined on the vector
space L, which satisfy the equation (33), form the subspace in the vector space of covariant tensors of order 3.
This subspace will be denoted by T3(L).

The formulas (32) clearly show that the for any superscript m the structure constants Cm
ijk, C̃m

ijk are the

eigenvectors of the linear operator in T3(L) induced by the cyclic permutation (1 2 3) with eigenvalues ω, ω,
respectively. Thus

T3(L) = T3
ω(L)⊕ T3

ω(L), (34)

where

T3
ω(L) = {Tijk ∈ T3(L) : Tijk = ωTjki}, T3

ω(L) = {Tijk ∈ T3(L) : Tijk = ω Tjki}.

Thus, for each value of the superscript m, the structure constants Cm
ijk of a ternary ω-Lie algebra L belong to

subspace T3
ω(L), and the structure constants C̃m

ijk belong to subspace T3
ω(L).

Here we would like to note an important connection between the structure constants of a three-dimensional
ternary Lie algebra and irreducible representations of the rotation group. Let n = 3, i.e. we are considering a
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three-dimensional ternary Lie algebra. Let A = (Ai
j) ∈ SO(3) be a real orthogonal matrix with determinant 1.

Then the formula
Tijk → T′

prs = Ai
p Aj

r Ak
s Tijk, (35)

where Tijk, T′
prs ∈ T3(L), defines a linear representation of the rotation group SO(3) in the space T3(L). If

we add to Equation (33) the condition of tracelessness of a tensor Tijk for any pair of subscripts, Formula (35)
defines a twice repeated irreducible representation of the rotation group in the corresponding subspace of 3rd
order covariant tensors [8]. Now the decomposition (34) splits this two-fold irreducible representation into two
irreducible ones, respectively in subspaces T3

ω(L) and T3
ω(L) (with the additional condition that a tensor Tijk

is traceless). Note that the subspace of traceless tensors in T3
ω(L) is a five-dimensional Hermitian space and

the explicit description of this space can be found in [3]. In the next paper we plan to use this connection with
irreducible representations of the rotation group to classify three-dimensional ternary ω-Lie algebras.

It follows from the basic identity (30) that the structure constants of a ternary ω-Lie algebra L satisfy the
system of equations

⟲ (Cm
i k l Cp

m r s + Cm
i r k Cp

m s l + Cm
i s r Cp

m l k + Cm
i l s Cp

m k r) = 0. (36)

In this formula, the symbol ⟲ means that in an expression that follows it, we should perform the five cyclic
permutations of the underlined subscripts and then take the sum of obtained expressions. For instance, if we
apply ⟲ to the first term in (36) then we get

⟲ Cm
i k l Cp

m r s = Cm
ikl Cp

mrs + Cm
klr Cp

msi + Cm
lrs Cp

mik + Cm
rsi Cp

mkl + Cm
sik Cp

mlr.

We have the simplest case of a ternary ω-Lie algebra in dimension 2. It is easy to verify that if the vector space
of a ternary ω-Lie algebra has dimension 2, that is, the ternary ω-Lie algebra has two generators e1, e2, the basic
identity (30) does not impose any additional conditions, that is, it is satisfied due to the ω-symmetries of ternary
bracket. Using this, it is easy to show that in dimension 2, up to isomorphism, there is only one ternary ω-Lie
algebra, which is given by the following non-trivial commutation relations

[e1, e2, e1] = e2, [e2, e1, e2] = e1. (37)

We denote this 2-dimensional ternary ω-Lie algebra by L2.

4. Examples of Ternary Lie Algebra at Cube Root of Unity

In this section we give some important examples of ternary associative algebras and consider ternary ω-Lie
algebras that are induced by the ternary commutator (13). A wide class of ternary associative algebras can
be constructed using square matrices. Indeed, if A, B, C are square matrices of order n, we can consider the
ternary product A B C. This definition is correct, since matrix multiplication is associative. Obviously, in this
case we obtain ternary multiplication with associativity of the first kind. However, from our point of view, this
example is of little interest from the ternary point of view, because, firstly, ternary multiplication is constructed
using binary, that is, binary is more fundamental than ternary, and, secondly, for square matrices there is a
deeply developed theory of (binary) Lie algebras. Therefore, in this section we will consider examples of ternary
algebras constructed using either rectangular (two-dimensional) matrices or cubic (three-dimensional) matrices.
Thus, the notion of a ternary ω-Lie algebra proposed in this paper can be considered as an extension of the
concept of Lie algebra to rectangular and cubic matrices. Note that, firstly, the ternary multiplications considered
in this section cannot be reduced to binary ones, and, secondly, they are associative of the second kind.

One of the simplest examples of ternary algebra with associativity of the second kind is an n-dimensional
complex vector space Cn with a bilinear symmetric form B defined on it. Then the ternary multiplication in Cn

will be defined as follows
x · y · z = B(x, y) z. (38)
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It is easy to verify that this ternary product is associative of the second kind. Indeed

(x · y · z) · u · v = (B(x, y) z) · u · v = B(x, y) B(z, u) v,

x · (u · z · y) · v = x · (B(u, z) y) · v = B(u, z) B(x, y) v,

x · y · (z · u · v) = x · y · (B(z, u) v) = B(z, u) B(x, y) v,

and, due to the symmetry B(z, u) = B(u, z), we see that all three products are equal. Hence if we endow a
vector space Cn with the ternary commutator (13) then according to Theorem 1 it becomes a ternary ω-Lie
algebra. The ternary commutator in this case can be written as follows

[x, y, z] = x · y · z + ω y · z · x + ω z · x · y + z · y · x + ω y · x · z + ω x · z · y

= B(x, y) z + ω B(y, z) x + ω B(z, x) y + B(z, y)x + ω B(y, x) z + ω B(x, z) y

= (1 + ω) B(x, y) z + (1 + ω) B(y, z) x + (ω + ω) B(z, x) y

= −
(

B(z, x) y + ω B(x, y) z + ω B(y, z) x
)
.

Omitting the irrelevant factor −1, we can consider the ternary commutator (13) and its conjugate in a reduced
form

[x, y, z] = B(z, x) y + ω B(x, y) z + ω B(y, z) x, (39)

[x, y, z]∗ = B(z, x) y + ω B(x, y) z + ω B(y, z) x. (40)

It is easy to verify that the reduced ternary commutator (39) and its conjugate (40) have the same transformation
properties under cyclic permutations of arguments (15), (16) as the full-length commutator (13) and its conjugate.
It is interesting to note that in this particular case the reduced ternary commutator (39) satisfies a reduced version
of the basic identity, which contains only ten terms

⟲
[
[x, y, z], u, v

]
+ ⟲

[
[x, u, y], v, z

]
= 0. (41)

The basic identity contains two copies of the dihedral group D10. The dihedral group D10 contains a subgroup of
cyclic permutations Z5. Thus, the reduced identity (41) is obtained by reducing each copy of the dihedral group
D10 to its cyclic subgroup Z5.

Let us consider a special case of a ternary ω-Lie algebra constructed using ternary multiplication (38). Let
us consider n-dimensional vectors of Cn as row matrices. Then we can put B(x, y) = x yT , where yT is the
column matrix. Thus we have the ternary Lie algebra, where the vector space of the ternary ω-Lie algebra is the
n-dimensional complex vector space Cn and the ternary commutator is defined by the formula

[x, y, z] = z xT y + ω x yT z + ω y zT x. (42)

In this particular case we can easily compute the structure constants of the ternary ω-Lie algebra. Indeed let
e1, e2, . . . , en be the canonical basis for Cn, that is, the ith coordinate of a vector ei is 1, all other coordinates are
equal to zero. Then the structure constants of this ternary ω-Lie algebra are

Cm
ijk = δki δm

j + ω δij δm
k + ω δjk δm

i . (43)

If we calculate the structure constants of the ternary ω-Lie algebra (42) for the simplest case n = 2 then we get

[e1, e2, e1] = e2, [e2, e1, e2] = e1. (44)

Thus we have obtained a realization of the ternary ω-Lie algebra L2 introduced at the end of the previous section
using vectors of the complex plane and ternary multiplication (42).
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Let Mn(C) be a vector space of complex nth order square matrices. Then the ternary product (38) can be
applied to Mn(C) if we take B(Φ, Ψ) = Tr (Φ Ψ), where Φ, Ψ ∈ Mn(C). Then the ternary commutator (39)
takes on the form

[Φ, Ψ, Ω] = Tr (Ω Φ) Ψ + ω Tr (Φ Ψ) Ω + ω Tr (Ψ Ω) Φ. (45)

Hence the ternary commutator (45) induces a structure of ternary ω-Lie algebra on a complex vector space
Mn(C). It is interesting to note that the ternary commutator, which is also constructed by means of the trace and
cyclic permutations of arguments

JΦ, Ψ, ΩK = Tr (Φ) [Ψ, Ω] + Tr (Ψ) [Ω, Φ] + Tr (Ω) [Φ, Ψ], (46)

where square brackets on the right-hand side of this formula stand for commutator of two matrices, that
is, [Φ, Ψ] = Φ Ψ − Ψ Φ, induces a structure of 3-Lie algebra on a vector space Mn(C). The ternary
commutator (46) was introduced in [4] in order to construct a quantization for generalized Hamiltonian mechanics
proposed by Nambu. It should be mentioned that the ternary commutators (45) and (46) have different properties
with respect to permutations of arguments, that is, our ternary commutator (45) has ω-symmetry, while the
ternary commutator (46) is totally skew-symmetric.

The example of a ternary Lie algebra with ternary commutator (42) is a special case of a more general
construction. In other words, we can extend the ternary commutator (42) to rectangular matrices of arbitrary
dimensions. Let Mm,n(C) be a vector space of complex m × n-matrices. One can define the ternary product of
three m × n-matrices A, B, C ∈ Mm,n(C) as follows

A · B · C = A BT C,

where on the right side of this formula we mean the usual matrix multiplication and BT stands for transposed
matrix. It is easy to verify that this ternary product of m × n-matrices has the associativity of the second kind.
Hence we can endow the complex vector space Mm,n(C) with the following ternary commutator

[A, B, C] = A BT C + ω B CT A + ω C AT B + C BT A + ω B AT C + ω A CT B, (47)

and the complex vector space Mm,n(C) of rectangular m × n-matrices becomes a ternary ω-Lie algebra.
A large class of ternary ω-Lie algebras can be constructed by means of three-dimensional matrices.

According to the theorem proposed in [2], there is no ternary product of three-dimensional matrices that satisfies
associativity of the first kind. However, the situation with associativity of the second kind of ternary multiplication
of three-dimensional matrices is much better. In the same paper [2], the authors found four different ternary
products of three-dimensional matrices with associativity of the second kind.

Theorem 2. Let A, B, C be Nth order complex three-dimensional matrices. Then there are only four different
triple products of Nth order complex three-dimensional matrices which obey the associativity of the second kind.
These are

1) (A ⊙ B ⊙ C)ijk = AilmBnlmCnjk, A ⊙ B ⊙ C → A B C•◦◦ ◦◦◦ ◦••
2) (A ⊙ B ⊙ C)ijk = AilmBnmlCnjk, A ⊙ B ⊙ C → A B C•◦◦ ◦◦◦ ◦••
3) (A ⊙ B ⊙ C)ijk = Aijl BnmlCmnk, A ⊙ B ⊙ C → A B C••◦ ◦◦◦ ◦◦•
4) (A ⊙ B ⊙ C)ijk = Aijl BmnlCmnk, A ⊙ B ⊙ C → A B C••◦ ◦◦◦ ◦◦•

In the diagrammatic representation of ternary multiplication, one should take a sum over a pair of indices
depicted by empty circles connected by arcs and black filled circles represent free indices.

We will consider the simplest example of a ternary ω-Lie algebra constructed using three-dimensional
matrices of the second order. As a ternary product of three-dimensional matrices, we will use ternary
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multiplication 3 (Theorem 2), although it is worth noting that we could equally well use ternary multiplication
4. Let A = (aijk) be a three-dimensional matrix of second order, that is, i, j, k = 1, 2. We will call a
three-dimensional matrix A traceless if the trace of this matrix with respect to any pair of subscripts is zero.
Hence for any k = 1, 2 we have

aiik = aiki = akii = 0, (48)

where aiik = a11k + a22k, aiki = a1k1 + a2k2, akii = ak11 + ak22. The ternary ω-Lie algebra of three-dimensional
matrices of the second order is an 8-dimensional algebra. Traceless matrices form a two-dimensional subspace in
this algebra, and it is easy to show that this two-dimensional subspace is closed under the ternary commutator (13),
that is, traceless three-dimensional matrices of the second order form a subalgebra of the ternary ω-Lie algebra
of three-dimensional matrices of the second order. From conditions (48) it follows that in the case of a
three-dimensional matrix of the second order A we have two independent parameters a111, a222, and all other
entries of the matrix are expressed through them, that is,

a221 = a212 = a122 = −a111, a112 = a121 = a211 = −a222.

We arrange the entries of a three-dimensional matrix of 2nd order A in space, that is, in the vertices of the cube,
as follows

a112 a122

a111 a121

a212 a222

a211 a221

Thus, as generators of the ternary ω-Lie algebra of three-dimensional traceless matrices of the second order, we
can take two three-dimensional matrices F1 = − i

2
√

2
E1, F2 = − i

2
√

2
E2, where

0 −1

1 0

−1 0

0 −1

E1 =

−1 0

0 −1

0 1

−1 0

E2 =

Calculating the ternary commutator

[A, B, C]ijk = Aijl BnmlCmnk + ω BijlCnml Amnk + ω Cijl Anml Bmnk

+Cijl Bnml Amnk + ω Bijl AnmlCmnk + ω AijlCnml Bmnk,

we find the commutation relations of the ternary ω-Lie algebra of three-dimensional traceless matrices of the
second order

[F1, F2, F1] = F2, [F2, F1, F2] = F1.

Thus we constructed one more realization of the 2-dimensional ternary ω-Lie algebra L2 by means of traceless
three-dimensional matrices of second order.
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5. Discussion

In this paper we propose an extension of the concept of Lie algebra to algebras with ternary multiplication
laws. Our approach is based on the concept of a ternary commutator, which we construct by analogy with a
binary commutator, that is, we form six triple products using all permutations of three arguments of ternary
commutator and then form their linear combination using the 3rd order roots of unity as coefficients. Due to the
properties of 3rd roots of unity, the ternary commutator we propose vanishes identically when all three of its
arguments are equal. However, in the case when two of its three arguments are equal, it is generally not equal
to zero. Here we note the analogy with the ternary generalization of the Pauli exclusion principle proposed by
Kerner [9]. According to this generalization, a wave function of a quantum system consisting of three particles
vanishes identically when all three particles have identical quantum characteristics. However, in the case where
two particles have equal quantum characteristics, a wave function does not necessarily vanish. As an example,
we can point to the properties of the quark model. The theory of groups, Lie algebras and their representations is
successfully used in the theory of elementary particles. We think that the concept of a ternary Lie algebra at cube
root of unity, introduced in this paper, adequately reflects the basic properties of the quark model.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Abramov, V., Kerner, R. and Le Roy, B. Hypersymmetry: A Z3-generalization of supersymmetry, J. Math. Phys. 1997,
38 (3), 1650–1669.

2. Abramov, V., Kerner, R., Shitov, S. and Liivapuu, O. Algebras with ternary law of composition and their realization by
cubic matrices, Jornal of Generalized Lie Theory and Applications 2009, 3 (2), 77–94.

3. Abramov, V. and Liivapuu, O. SO(3)-Irreducible Geometry in Complex Dimension Five and Ternary Generalization of
Pauli Exclusion Principle, Universe 2024, 10 (1), 1.

4. Awata, H., Li, M., Minic, D., and Yaneya, T. On the quantization of Nambu brackets, JHEP02 2001, 013.
5. Bagger, J. and Lambert, N. Modeling multiple M2’s. Phys. Rev 2007, D75, 045020, arXiv:hep-th/0611108.
6. Bagger, J. and Lambert, N. Gauge symmetry and supersymmetry of multiple M2-branes. Phys. Rev 2008, D77, 065008,

arXiv:0711.0955 [hep-th].
7. Filippov, V. T. n-Lie algebras. Siberian Math. J. 1985, 26, 879–891.
8. Gelfand, I. M., Minlos, R. A., Shapiro, Z. Ya. Representations of the Rotation and Lorentz Groups and Their

Applications, Dover Publications, Ins. Mineola, New York, 2018.
9. Kerner, R. Ternary Generalization of Pauli’s Principle and the Z6-Graded Algebras, Phys. At. Nucl. 2017, 80, 522–534.
10. Kerner, R. The Quantum Nature of Lorentz Invariance, Universe 2018, 5 (1).
11. Nambu, Y. Generalized Hamiltonian mechanics. Phys. Rev. D 1973, 7, 2405–2412.
12. Wagner, V. V. The theory of generalized heaps and generalized groups, Matematicheskii Sbornik 1953, 74 (3), 545 –

632.
13. Zapata-Carratalá, C., Arsiwalla, X. D., Beynon, T. Heaps of Fish: arrays, generalized associativity and heapoids,

arXiv:2205.05456[math.RA] (to appear in Theoretical Computer Science).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the
individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility
for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 September 2024 doi:10.20944/preprints202409.0063.v1

https://arxiv.org/abs/hep-th/0611108
https://arxiv.org/abs/0711.0955
https://arxiv.org/abs/2205.05456
https://doi.org/10.20944/preprints202409.0063.v1

	Introduction
	Ternary Commutator and Its Symmetries
	General Affine Group, Basic Identity and Ternary Lie Algebra at Cube Root of Unity
	Examples of Ternary Lie Algebra at Cube Root of Unity
	Discussion
	References

