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Abstract: Optical wireless video transmission technology combines the advantages of high data rates,
enhanced security, large bandwidth capacity, and strong anti-interference capabilities inherent in optical
communication, establishing it as a pivotal technology in contemporary data transmission networks. However,
video data comprises a large volume of image information, resulting in substantial data flow with significant
redundant bits. To address this, we propose an adaptive block sampling compressive sensing algorithm that
overcomes the limitations of sampling inflexibility in traditional compressive sensing, which often leads to
either redundant or insufficient local sampling. This method significantly reduces the presence of redundant
bits in video images. First, the sampling mechanism of the block-based compressive sensing algorithm was
optimized. Subsequently, a wireless optical video transmission experimental system was developed using a
Field-Programmable Gate Array chip. Finally, experiments were conducted to evaluate the transmission of
video optical signals. The results demonstrate that the proposed algorithm improves the Peak Signal-to-Noise
Ratio by over 3 dB compared to other algorithms, with an enhancement exceeding 1.5 dB even in field tests,
thereby significantly optimizing video transmission quality. This research contributes essential technical
insights for the enhancement of wireless optical video transmission performance.

Keywords: space optical communication; video transmission technology; image saliency; FPGA;
peak signal-to-noise ratio

1. Introduction

Wireless data transmission, with its advantages of low cost, high flexibility, and ease of use, has
gained widespread adoption since its inception. As a vital component of loT services, video data
holds significant research importance in ensuring reliable transmission within wireless networks. A
recent Cisco report [1] indicates that mobile video traffic constituted up to 78% of global mobile data
traffic in 2021. Video data, composed of a sequence of images, exerts significant pressure on
transmission links due to its substantial data volume. Researchers have investigated various
strategies to efficiently leverage limited transmission bandwidth for delivering higher quality video.
Traditional video compression coding remains the most prevalent solution [2,3], but it often
necessitates additional redundant coding, which increases computational complexity and introduces
further redundancy into the compressed data [4]. To address the high data volume inherent in video
transmission, media practitioners have developed applications that leverage Device-to-Device (D2D)
communication to offload cellular network traffic, thereby alleviating the burden on the downlink
transmission of operational networks. From this perspective, reference [5] reported a 30%
performance gain for users. References [6,7] addressed the uplink allocation challenge for video
streams by iteratively optimizing the application layer's bandwidth allocation strategy. This line of

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202409.0048.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 September 2024 d0i:10.20944/preprints202409.0048.v1

research and development aims to circumvent challenges at the operational layer, yet it does not
address the underlying issue of excessive data volume. An innovative approach to video
transmission involves compressive sensing [8], which combines data compression and acquisition
into a unified process. S. Zheng et al. proposed an efficient video uploading system based on
compressive sensing for terminal-to-cloud networks [9]. L. Li et al. developed a new compressive
sensing model and corresponding reconstruction algorithm [10], creating an image communication
system for IoT monitoring applications that addresses sensor node transmission resource constraints.
Furthermore, we chose optical wireless communication (OWC) as our transmission medium [11-13]
because of its advantages, such as high transmission speed, abundant spectrum availability, and
strong security features [14,15]. N. Cvijetic et al. combined Low-Density Parity-Check (LDPC) coding
with channel interleaving in OWC video transmission experiments, evaluating the improvement
effects of this coding structure on video transmission [16]. Z. Hong et al. proposed a residual
distribution-based source-channel coding scheme, enhancing the channel error resistance in video
transmission, achieving a Bit Error Rate (BER) of 0.0421 in underwater OWC video transmission
experiments.

In this paper, we propose an adaptive block sampling compressed sensing algorithm that
optimizes the sampling rate allocation mechanism of traditional compressed sensing methods by
incorporating image saliency features. Simulation results show that the PSNR of the reconstruction
results of this algorithm is generally improved by more than 3 dB compared to other algorithms, with
a 1%-6% improvement in Structural Similarity Index (SSIM) metrics. To further verify the
performance of the proposed algorithm in optical wireless video transmission, we designed a space
optical wireless video transmission prototype based on an FPGA control chip, using the GTP protocol
in the Artix-7 series FPGA chips for optical signal transmission, with transmission rates supporting
0.8-6.6 Gbps. The final experimental results show that the PSNR is generally improved by more than
1.5 dB, and the SSIM is improved by more than 1%, demonstrating better optimization of the
reconstructed image quality by the proposed algorithm.

2. Design and Principle

The algorithm initially performs block-by-block compressed sensing processing on the input

image I with an adaptive sampling rate based on the saliency information of different image
blocks. We utilize a fixed-size block and an adaptive block sampling rate mechanism for compressed
sensing processing. The traditional block-based compressed sensing algorithm [17] applies a fixed
sampling rate to different blocks. 6. 1 illustrates an example of a natural image divided into 4x4
blocks. The amount of information contained in different blocks in the figure is obviously different.
Some blocks contain complex elements such as buildings, clouds, and plants, while most others
consist primarily of a simple sky background with minimal data. When different blocks are sampled
at a fixed rate, blocks with large amounts of information will be undersampled, leading to insufficient
image reconstruction quality, while blocks with less information will be oversampled, resulting in
redundant use of storage resources. In the actual block-based compressed sensing algorithm, more
image blocks are generated, further amplifying the differences in information content across the
blocks.
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Figure 1. Image segmentation diagram.

To enable adaptive sampling across different blocks, this paper introduces saliency information
[18] as the foundation for determining the sampling rate allocation of each block. We proposed an
Adaptive Block Sampling (ABS-SPL) compressed sensing algorithm based on the SPL algorithm [19].
The basic architecture of this approach is illustrated in Figure 2.
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Figure 2. Adaptive block sampling compressed sensing algorithm flow.

First, we construct a saliency model for the image using a multi-scale spectral residual approach.
Spectral Residual (SR) is an analytical method that rapidly detects salient areas of an image by
integrating and extracting frequency domain information. The theory posits that the logarithmic
spectrum of the spectral amplitude, following the Fourier transform of an image, exhibits a linear
distribution trend. This consistent statistical characteristic reflects the image's inherent information
redundancy. By removing the similar components of the logarithmic spectrum and retaining the
differential information, the salient areas of the image can be effectively identified. The following
section outlines the specific implementation steps of the multi-scale residual analysis model.

Given an image I, the Gaussian pyramid method is applied to generate L images of |5,

o=L..L at different scales based on the original image. A Fourier transform is then performed on
5 (x.y) to obtain the amplitude spectrum A; (u.v) and the phase spectrum w5 (U.V) at these
L scales,
1 M N _(j2;zux+j27rvy) )
Fﬁ(UaV):_ZZIJ(Xy ye M N :As(u’v)e%(um
MN x=1 y=1
A (u,v) =[RZ(u,v) + 1 2(u, V)" : )
I;(u,v
w,;(u,v) = arctan(M)
R;(u,v)

A logarithmic operation is performed on the amplitude spectrum A (U.V) to obtain the

logarithmic amplitude spectrum Ly (u.v) ,
L; (u,v) = Ig[A; (u, v)]. o)
The logarithmic amplitude spectrum L;(u,v) is mean filtered (5x5 filter domain) to obtain
Ls(u,v) , and then compared with the logarithmic amplitude spectrum L (u,v) , the spectral
residual E;(u.v) at L scales is obtained respectively,

Es;(u,v)= L5(u,v)—[5(u,v). (3)
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. Es(u,v ;(u,v . : :
Combine 5 (U:V) and ¥ (u.v) , then perform an inverse Fourier transform to obtain

5, y). Subsequently, apply a Gaussian filter 9(x.y) to (% Y) to produce the significant
feature maps Ss at L scales.
F;(u,v) =exp[E, (U, v) +,(u,v)]
. 1 M N . (j27rux+j2;zvy)
L0y === D Fs(uve M v @
MN u=1l v=1
S; (%) = 1,(x ) *g(x.y)

The salient feature maps S5 at different scales are combined using a fusion algorithm to

generate the final saliency map S The fusion weight W5 is determined by the square of the
contrast difference between the salient areas in the saliency feature map and the entire image. Finally,
binary segmentation is applied to the final saliency map to obtain templates for salient and non-
salient areas, which are then used to allocate compressed sensing sampling rates.

W, = [y (S5) = Frean (S,)F2 0 =1,2,..., L

L 5)
S = (w,xS,)
5=1

(b) (d)

Figure 3. Saliency map acquisition; (a) original image; (b) saliency map obtained in Gaussian domain
7x7; (c) saliency map obtained in Gaussian domain 5x5; (d) saliency map obtained in Gaussian domain
3x3.

The salient signal of an image represents the amount of information contained within the image,
and the quantity of salient signals in each block indicates the distribution of image features. A high
distribution of salient pixel signals indicates that the block contains a substantial amount of features,
typically corresponding to the textured regions of the image. Conversely, a smaller number of salient
pixels represents regions with fewer distinct features, usually corresponding to smoother blocks in
block-based compressed sensing. Therefore, the saliency of an image can serve as a metric for pixel
activity, with the complexity of the image block's texture quantified by the amount of salient signals.
This allows for a reasonable allocation of the sampling rate based on these factors. The following
section introduces the specific implementation method of block adaptive sampling.

We conducted experiments using a 256x256 resolution image, with a block size of 16x16 pixels
and 256 bytes of information per data block. The image was then sampled based on these parameters.

Let the proportion of salient signals in the image be calculated, and then determine the adaptive

sampling rate { for each image block based on the salient image,
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r = (R_Rmin)'n' pi
| ipi—’_Rmin (6)

i=1

Through calculation, the difference det between the current adaptive sampling rate mean and

A

the total sampling rate is obtained, allowing for the determination of the final sampling rate ri,

det=R- mean(zn: r). )
i=1

f, =r, +det. (8)

Here, R represents the total sampling rate, Rin denotes the minimum sampling rate
threshold, det indicates the difference between the mean adaptive sampling rate and the total
sampling rate, and " represents the number of image blocks.

To ensure that the adaptive sampling rate does not fall below an acceptable level, the minimum
sampling rate threshold is specifically defined as follows,

{R/2,0<R£0.1

©)

min

0.05,0.1<R<1’

Based on the sampling rate array s IR, for each block, the size M <M, of the
sampling matrix is first determined.

M, = round (sgrt(r, x N?)). (10)

Where "' is a fixed block size. According to the size of each block sampling matrix, a discrete
cosine transform algorithm is used to generate a sparse matrix, and finally a sampling matrix array

©={P, Py P}

is generated. The image is compressed based on the sampling matrix, and the

final compressed data ¢ ={p0 @210 00} is obtained by data splicing.
After receiving the data, even if the bytes are not received completely, the receiving end can
restore the block grouping of the data through the relative position relationship of the frame header,

}7 ={)~/1, )72,---, yn}

sampling matrix and sampling rate matrix, the image reconstruction can be completed. The
reconstruction algorithm of BCS-SPL couples the complete image Wiener filter smoothing processing
with the sparsity enhancement threshold processing in the domain of the complete image sparse
transformation, and uses the Landweber method to iterate between smoothing and threshold
operations. The reconstruction algorithm in this paper is based on the same principle as BCS-SPL.
The Landweber iterative steps are used for blocks at different sampling rates, and the measurement

o

frame tail and row number to obtain the compressed data . Using the known

matrix based on the current block is used. The specific reconstruction process is as follows:

Table 1. Adaptive block sampling compressed sensing image reconstruction process.

function

X= Re(yi{(pi,lsiSn}l l//)

for each block i
~© T ~
X =0,
i=0
do
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x = Block _ DWT *(x")
20 =Wwiener (xV)
X = Block _ DWT (%)
for each kA)Iocki
X0 =50+ g (5, - %)
XD = pBlock _DWT _1(>3<i“))
% =Threshold ()

XM = Block _ DWT *(x")
For each block i
I =20 1 97 (§, -0, %))

DU _ [[g _ &0
2
j=j+1
‘D(i) _ D(j—l)‘ <1072
Until
% =%

The aforementioned calculation process represents a 2D image reconstruction algorithm based
on adaptive sampling rate block compressed sensing. In this context, Wiener(.) refers to a Wiener
filter that adapts pixel-by-pixel using a 3x3 neighborhood, while Threshold(.) denotes the threshold
processing within the BCS-SPL algorithm. The application of this algorithm results in the accurate
reconstruction of the image.

3. Results

3.1. Simulation Analysis

We utilize the SPL algorithm, the 2DCS algorithm, and the MS-SPL-DDWT algorithm as
benchmarks for comparison. The SPL algorithm, a classical block compressed sensing approach,
combines Wiener smoothing with Landweber iteration, offering superior processing performance.
The 2DCS algorithm [20] is an encryption-then-compression (ETC) approach that enhances the error
correction capability of reconstruction through its encryption process. In addition to enhancing the
confidentiality of information transmission, it also significantly optimizes the overall quality of the
reconstructed image. The MS-SPL algorithm [21] allocates appropriate sampling rates to the wavelet
coefficients of images at different scales, significantly enhancing the reconstruction quality compared
to previous methods. We selected these three algorithms for comparison with the algorithm proposed
in this paper, utilizing peak signal-to-noise ratio (PSNR), structural similarity (SSIM), gradient
magnitude similarity deviation (GMSD), and normalized root mean square error (NMSE) as
evaluation metrics. The peak signal-to-noise ratio (PSNR) [22] measures the peak error between the
reconstructed image data and the original image data, quantifying the peak signal-to-noise ratio
between the two images. The structural similarity index (SS5IM) [23] evaluates the similarity between
the reconstructed image and the original image by considering three key aspects: brightness, contrast,
and structure. Elevated values of these two parameters reflect an improved quality of image
reconstruction. The normalized root-mean-square error (NMSE) [24] and gradient magnitude
similarity deviation (GMSD) [25] serve as error metrics that quantify the discrepancies between the
original and reconstructed images. Lower values for these two metrics indicate a better
reconstruction quality. After conducting simulations, the test results are as follows.

As illustrated in Figures 4-7, using a sampling rate of 0.5 as an example, the PSNR of the
reconstruction result achieved by the algorithm proposed in this paper exceeds 41 dB, which is
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approximately 3 dB higher than that of other algorithms. From the perspective of the SSIM index, the
reconstruction result of the algorithm proposed in this paper is slightly higher than that achieved by
the MS-SPL algorithm. The results of these two algorithms are close to 98%, which is over 2% higher
than those of the other algorithms. Regarding the two error parameters, NMSE and GMSD, in the
low sampling rate range (0.1-0.3), the algorithm proposed in this paper outperforms other algorithms
significantly, with error rates generally 1%-6% lower than those of the other methods. As the
sampling rate increases, the reconstruction results of the MS-SPL algorithm gradually converge, but
its error remains slightly higher than that of the algorithm proposed in this paper. Analysis indicates
that the algorithm proposed in this paper offers substantial enhancements in image reconstruction
quality, particularly at lower sampling rates. By efficiently allocating sampling rates across different
blocks, the algorithm improves data utilization efficiency and assigns higher subsampling rates to
blocks containing more complex scenes.

v / |

ABS SPL

MS_SPL_DDWT

PSNR(dB)
Alggy
gorlthm

BCS-SPL

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
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Figure 4. PSNR statistics of reconstructed images.
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Figure 6. NMSE statistics of reconstructed images.
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Figure 7. GMSD statistics of reconstructed images.

3.2. Optical Wireless Video Transmission Experiment

We utilized the Artix-7 series FPGA chip as the processor to design a spatial optical wireless
video transmission system. As depicted in Figure 8, the compressed sensing algorithm is first
employed on the PC to process the image sequence on a frame-by-frame basis. Subsequently, the
compressed image sequence is transmitted to the device transmitter as a video stream via Camera-
Link. After the FPGA captures the video stream frame by frame, the image data is internally cached
and encoded. The optoelectronic transceiver module (Small Form Pluggable, SFP) subsequently
converts the electrical signal into an optical signal. This optical signal is then amplified by an erbium-
doped fiber amplifier (EDFA) before being transmitted through the optical system. At the receiving
end, an APD detector module serves as the optical signal receiver. The collected optical signal is
conveyed to the SFP optical module on the receiving FPGA board via the optoelectronic conversion
module. The FPGA then converts the image into a Camera-Link video stream, which is sent to the
PC for frame-by-frame reconstruction. Ultimately, the reconstructed image sequence is compiled into
a video. We utilized the Artix-7 series 7al00t-fgg484 model FPGA as the main control chip and set
the GTP transmission rate to 1.25 Gbps for the experiment. To ensure the equipment's lightness and
miniaturization, we opted for a highly integrated modular EDFA (BG-EDFA-M3-C1-N-15dBm,
0.95M-1m-FC/APC). For the APD module, we selected the LSTAPDT-S5200 InGaAs APD detector,
which offers superior response at the 1550 nm wavelength. The optical system incorporated a
transmissive optical antenna with a 1550 nm communication band and a 25 mm aperture.
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Figure 8. Principle of space optical wireless video transmission.

Figure 9 depicts the spatial optical wireless video transceiver prototype constructed based on
the design principles outlined in Figure 8, which was used to conduct a dual-end video data
transmission experiment in an atmospheric environment. Figure 9a presents the overall front view of
the device, while Figure 9b illustrates the external interface from the rear. Figure 9¢,d provide
schematic representations of the device connections during the spatial optical wireless video
transceiver experiment. The device is equipped with GTP high-speed transceivers, an RJ45 Gigabit
Ethernet interface, and an SDR26 Camera-Link video transceiver interface. The optical signal
transceiver supports rates ranging from 0.8 to 6.6 Gbps, thereby fulfilling the requirements for
processing and converting spatial optical wireless video transceiver input from various interfaces.

Figure 9. Space optical wireless video transmission experiment; (a) Diagram 1 of spatial optical
wireless video transmission system; (b) Diagram 2 of spatial optical wireless video transmission
system; (c) Diagram 1 of setup for spatial optical wireless video transmission experiment; (d) Diagram
2 of setup for spatial optical wireless video transmission experiment.

A video sequence consisting of 500 frames was captured and processed using the four
algorithms previously compared on the PC. A spatial optical wireless video transmission experiment
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was then conducted over a terminal distance of 20 meters. Following calibration, a spatial optical
power meter was used to measure the transmitter's optical power, which was recorded as 9.3 dBm,
while the APD receiver's optical power was measured at -24.7 dBm. The sampling rate for the
compressed sensing algorithm was uniformly set to 0.5, and the PSNR and SSIM metrics of the
reconstruction results were statistically analyzed on a frame-by-frame basis. The experimental results
are presented in Figures 10 and 11.
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Figure 10. PSNR values for the reconstructed results of the 500-frame image sequence and their
corresponding average values. (Average: APS-SPL=38.56dB, MS-SPL=36.97dB, 2DCS=36.33dB,
SPL=32.98dB).
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Figure 11. SSIM values for the reconstructed results of the 500-frame image sequence and their
corresponding average values. (Average: APS-SPL=0.9755, MS-SPL=0.9638, 2DCS=0.957, SPL=0.9168).

Figure 10 demonstrates that the proposed algorithm performs effectively in spatial optical
wireless video transmission, with its reconstruction results showing a PSNR generally more than 1.5
dB higher than those of the other algorithms. Similarly, Figure 11 indicates that the proposed
algorithm achieves SSIM values that are generally over 1% higher than those of the comparison
algorithms, thereby delivering superior video reception quality.

4. Summary and Discussion

This paper introduces a compressed sensing algorithm with an adaptive block sampling rate,
wherein the sampling rate for each block is determined based on the proportion of significant
information within the image blocks. This method enhances the quality of compressed sensing
reconstructed images while maintaining the same data volume. Evaluation using image quality
metrics reveals improvements of over 3 dB in PSNR and more than 2% in SSIM. Additionally, the
NMSE and GMSD metrics are reduced by 1% to 6%. A spatial optical wireless video transceiver
system, based on an FPGA master chip, was designed, and natural target video transmission
experiments were conducted using 500 frames of image sequences processed by the proposed
algorithm. The experimental results demonstrate that the algorithm maintains superior image
transmission performance in spatial optical wireless video transmission, with PSNR improved by
more than 1.5 dB and SSIM by over 1%. Furthermore, the spatial optical video transmission system
developed in this study exhibits excellent integration and cost efficiency, offering significant practical
and commercial value.
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