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Abstract: The utilisation of non-Saccharomyces yeasts in co-inoculation and non-thermal technologies for must 

sterilisation is becoming increasingly prevalent due to its notable utility and potential. This approach optimises 

the fermentation process, facilitates the production of wines with distinctive characteristics and enhances their 

stability. Two trials were conducted concurrently, designated as A and B. The same red must was utilized in 

both trials, with one undergoing UHPH treatment and the other serving as the control. The non-Saccharomyces 

yeasts were identical in both trials. In Trial A, different percentages of initial inoculum were employed with 

respect to the total volume of must to be fermented, with the objective of evaluating the influence and 

competitiveness between yeasts. Trial B was designed to investigate the impact of two nutrients that provide 

vitamins, energy and protection from oxidative stress on the development of these yeasts and their metabolic 

expression. A microbiological analysis was conducted, along with oenological parameter measurements, 

acidification assessments, volatile compound analyses, and spectrophotometric evaluations. It was observed 

in both trials that the prevalence of Lachancea thermotolerans (Lt) was longer than that of Metschnikowia 

pulcherrima (Mp), and that the use of quercetin + thiamine had a positive effect on yeast growth. Furthermore, 

the combination of Lt and Mp yeasts demonstrated remarkable synergy, resulting in the production of a 

substantial quantity of lactic acid (>5 g/L). With regard to aroma compounds, the UHPH must exhibited a 

nearly twofold increase in ethyl lactate. Additionally, the TPI was observed to be 8-10% higher in wines derived 

from UHPH musts, indicating that this technology may potentially safeguard against oxidation. 

Keywords: wine; fermentation; non-Saccharomyces; biocompatibility; yeast nutrients; non-thermal 

treatment 

 

1. Introduction 

Today, the use of non-Saccharomyces yeasts is increasingly widespread due to their high diversity 

and, therefore, their novel metabolic profiles that differentiate wines [1,2]. These distinctive attributes 
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can facilitate the enhancement of relatively flat grape profiles, thereby yielding wines that are both 

expressive and well-received by consumers [3]. Furthermore, the potential for co-inoculation with 

non-Saccharomyces yeasts introduces the possibility of generating interesting synergies at the 

oenological level [4,5]. Currently, the most studied mixed and sequential inoculations are those of the 

genera: Lachancea, Metschnikowia, Hanseniaspora and Torulaspora [6,7]. The yeast species Lachancea 

thermotolerans is capable of producing up to 10-11% alcohol and generating up to 12 g/L of lactic 

acid through the metabolisation of sugars. Additionally, it increases ethyl lactate and lowers pH, 

rendering it an appealing yeast for use in quality wine production where wines tend to remain at 

high pH [8,9]. The yeast species Metschnikowia pulcherrima is capable of producing a high volatile 

acidity (>0.7g/L) [10]. Furthermore, the yeast produces pulcherriminic acid, which, depending on the 

amount synthesised, can have an antimicrobial effect [11]. However, it is also a yeast that is used as 

a starter due to its ability to generate highly distinctive esters, thiols and terpenes, including pear-

scented ethyl octanoate and other aromas strongly associated with fermentation, such as 2,6-

dimethoxyphenol, which evokes smoked foods [12,13]. 

The use of ternary fermentations with three or more yeasts is becoming increasingly prevalent 

in order to fully harness the expressive potential of wines. The aforementioned yeasts serve as 

illustrative examples of starter yeasts that can enhance the organoleptic characteristics of wines [14]. 

Non-Saccharomyces yeasts are not particularly competitive and demonstrate limited resistance to SO₂; 

therefore, the utilisation of non-thermal technologies, such as pulsed electric fields (PEF), pulsed light 

(PL), and ultra-high pressure homogenisation (UHPH), is a promising approach to reduce or 

eliminate the initial microbial load in the must, thereby facilitating the successful implantation of the 

desired yeasts [15–17]. In addition to the elimination of microorganisms, the UHPH technology 

inactivates oxidative enzymes by generating nanofragmentation due to the continuous pressurisation 

of the fluid to be used at a pressure exceeding 200 MPa, this process occurs without appreciable 

organoleptic changes [15,18]. The aim of this work was to analyse the biocompatibility of the 

following yeasts in ternary fermentations (co-inoculations), in all cases finishing the fermentation 

sequentially with Saccharomyces cerevisiae for the production of high quality wines in warm areas: L. 

thermotolerans and M. pulcherrima, with a S. cerevisiae strain as control and with two different 

conditions, trial A, with different volumes of initial inoculum and trial B, with the use of two 

nutrients, all with must untreated by UHPH and with must treated by UHPH. 

2. Materials and Methods 

2.1. Ultra-High Pressure Homogenisation of Musts 

A pneumatic press was used to crush the Vitis vinifera L. Tempranillo grapes at a temperature of 

15 °C. The resulting must was then separated into two parts, one part was treated by UHPH and the 

other part was used as a control. The tempranillo must was processed using a continuous UHPH 

system (60 L/h), at an inlet temperature of 23-25 °C and outlet temperature of 13-15 °C, valve 

temperature of 78-85 °C for only 0.02 s, and flow rate of 60 L/h at 300 ± 3 MPa. The total volume 

processed by the UHPH was 60 L [19], patented by the Universitat Autònoma de Barcelona and 

manufactured by Ypsicon Advanced Technologies in Barcelona, Spain (EP2409583B1). 

2.2. Yeast Strains and Growing Media 

The yeast strains used in this experimental set-up were all isolated at the Food Technology 

Laboratory of the Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas 

(Universidad Politécnica de Madrid). The starter species used were two non-Saccharomyces yeast in 

co-inoculation (Lachancea thermotolerans (Lt) strain L3.1 and Metschnikowia pulcherrima (Mp) strain 

M29). All vinifications were completed with a sequential fermentation by inoculating the 

Saccharomyces cerevisiae (Sc) yeast strain 7VA on the seventh day after the start of fermentation to 

completely exhaust the sugars present in the must. 

To achieve a high and similar population for the fermentation trials, all strains were grown for 

24 h in liquid YEPD medium at a constant temperature of 24°C. The liquid medium for yeast growth 
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was prepared by combining 1% yeast extract, 2% bacteriological peptone and 2% anhydrous D(+)-

glucose from Panreac Química of Barcelona, Spain (Laboratorios Conda, Madrid, Spain). The culture 

medium was autoclaved at 120°C for 15 minutes. 

2.3. Micro-Fermentation Trials 

According to Figure 1, the microfermentation tests were performed in ISO flasks of 100 mL 

capacity, with 80 mL of must Vitis vinifera L. cv. Tempranillo with ~245 g/L of sugars and a pH of 

~3.7. In total, two different musts were used, one of which was Tempranillo without any treatment 

and another must that was treated by UHPH according to the instructions in section 2.1. Two trials 

were carried out at the same time with these yeasts and the same must but with different conditions. 

In the trial A, both non-Saccharomyces strains were inoculated in equal parts (50:50), but the volume 

of the initial inoculum was 2% (Ca and Ua) and 0.2% (Cb and Ub), to study the influence of UHPH 

on the implantation and biocompatibility of different inoculum volumes. In the trial B, both non-

Saccharomyces strains were inoculated in equal parts (50:50) and at 2% inoculum volume, but adding 

quercetin (1g/L, “Cq” and “Uq”) to one batch and quercetin + thiamine (1g/L + 0.6mg/L, respectively, 

“Cqt” and “Uqt”) to the other batch, to evaluate the use of these fermentation activators on the 

metabolic performance of the co-inoculated non-Saccharomyces species. All fermentations were 

carried out in triplicate and continued for 25 days until sugar exhaustion (<2g/L). In all the 

vinifications, sequential fermentation with Sc took place on day 7 by adding 2% of the precultured 

strain 7VA. After completion of fermentations, five millilitres of each wine triplicate were filtered 

through 0.45 ηm MCE syringe membranes (Branchia, Dismadel, Madrid, Spain) for analytical 

characterisation. 

 

Figure 1. Schematic representation of the experimental process for the evaluation of co-inoculation of 

non-Saccharomyces under different inoculation volumes and nutrient addition, and the use of UHPH-

treated or untreated must. 

2.4. Oenological Parameters 
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General oenological parameters were determined in grape juices and finished wines with the 

use of FTIR spectrometry (FOSS, Barcelona, Spain) and with the use of Y25 enzymatic analyser 

(Byosystems, Barcelona, Spain). The analysis comprised the determination of amino nitrogen, 

ammonia, total sugars, organic acids (tartaric acid and malic acid) in grape juices, while organic acids 

(lactic acid (by Y25), acetic acid), residual sugars (glucose and fructose), ethanol and pH were 

measured in finished wines. Additionally, pH values were measured with a GLP 21 Crison 

Instruments (Hach Lange Spain, S.L.U., Madrid, Spain). Five mL Samples were filtered with 0.45 ηm 

membrane and the CO2 trapped was removed with agitation. 

2.5. Aroma Volatile Compounds 

Volatile compounds were analysed in accordance with a previously described method [19]. The 

identification of volatile compounds was carried out with an Agilent Technologies™ 6850 

chromatograph (Palo Alto, CA, USA) with a column DB-624 (60 m × 250 μm × 1.4 μm). The GC-FID 

parameters were as follows: injector’s temperature 250 °C; detector’s temperature 300 °C; and 

hydrogen was the carrying gas with a flow of 2.2 L/min and split ratio of 1:10. Finally, the temperature 

increased from 40 °C for 5 min to 250 °C with a gradient of 10 °C/min and was maintained for 5 min. 

The identification and the quantification of volatile organic compounds were performed on 1 mL of 

previously filtered samples and the use of individual calibration curves for the following: 2-

phenylethyl acetate, 2-phenylethanol, ethyl acetate, isobutyl acetate, ethyl butyrate, isoamyl acetate, 

acetaldehyde, methanol, 1-propanol, diacetyl, 1-butanol, 2-butanol, isobutanol, acetoin, 2-methyl-1-

butanol, 3-methyl-1-butanol, ethyl lactate, 2,3-butanediol, and 1-hexanol. Lastly, in accordance with 

the procedure previously described, 100 μL of 4-methyl-2-pentanol (500 mg/L) was used as internal 

standard. 

2.6. Colour Parameters 

The absorbance at 280, 420, 520 and 620 nm was determined at the end of fermentation using an 

Agilent 8453 spectrophotometer (Agilent Technologies S.L., Madrid, Spain) and a 1 mm pitch quartz 

cuvette, to comply with the standard method, the result is multiplied by 10 to emulate the optical 

passage through a 1 cm cuvette and parameters such as TPI, colour intensity and tonality were 

determined. 

2.7. Statistics 

ANOVA and the least significant difference (LSD) test were used to analyse differences and 

determine the means and standard deviations. PCA and all calculations were performed with the 

program PC Statgraphics v.5, (Graphics Software Systems, Rockville, MD, USA). The significance 

was set to p < 0.05. 

3. Results and Discussion 

Two studies have been carried out to look at the mixed implantation of non-Saccharomyces yeasts, 

on the one hand, with the use of different volumes of starter inoculum, and on the other hand, with 

the use of different nutrients. All this using the same must, but one part of the must had been treated 

with UHPH and the other not, in order to verify the effect of this sanitisation technology on the 

metabolic development of the yeasts used as starters. Non-thermal technologies such as the one used 

in these trials, in addition to pulsed light (PL), pulsed electric fields (PEFs) among others, are 

increasingly used in the field of oenology to partially or totally eliminate wild microflora from musts, 

without causing organoleptic changes, and thus be able to inoculate the desired yeasts with a higher 

success rate [16,17,20]. 

3.1. Evolution of the Inoculated Population 

The yeast population and its evolution during fermentation (Figure 2) were monitored until day 

6 through the CHROMagar™ Candida culture medium, just before the inoculation of S. cerevisiae on 
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day 7. In Trial A (Figure 2A), the initial inocula exhibited a 10-fold difference, with one (6-log 

CFU/mL, 2% initial inoculum) being higher than the other (5-log CFU/mL, 0.2% initial inoculum), 

which was anticipated. On the third day, both yeasts demonstrated reduced growth in the UHPH-

treated musts. In both cases, the UHPH-treated musts exhibited no indigenous yeasts at the outset or 

throughout fermentation. By the sixth day, the yeast populations had decreased overall by 1-log 

CFU/mL. The prevalence of L. thermotolerans was observed to persist for a longer period than that of 

M. pulcherrima. From day 3 onwards, the viability of the latter declined at a more rapid rate, which is 

likely attributable to its poor ethanol tolerance [21]. In general, the exponential growth of M. 

pulcherrima was observed to be lower, which is likely attributed to its relatively low competitiveness 

[22]. Furthermore, the use of UHPH-treated musts resulted in a reduction in yeast population growth, 

which is likely attributable to a decline in nutrient bioavailability and subsequent utilisation [23]. 

On the other hand, in trial B (Figure 2B) the yeast growth was similar, reaching more than 7-log 

in L. thermotolerans on the third day and almost 7-log on average in M. pulcherrima. Furthermore, it 

was observed that the combination of quercetin and thiamine resulted in an average increase of 0.5 

log in population size compared to that observed in the presence of quercetin alone. For both yeast 

strains, a decline in population was observed from the sixth day of fermentation, similar to that 

observed in Trial A, only indigenous yeasts were present in the non-UHPH-treated controls. The 

combination of quercetin + thiamine appears to exert a beneficial effect on yeast growth in both 

control and UHPH must, potentially due to its capacity to safeguard yeast cells from oxidative stress 

[24,25]. The antimicrobial efficacy of UHPH was unmistakably demonstrated by the absence of 

indigenous yeast growth [15,19]. 

 

 

 

 

 

Figure 2. (A). Evolution of yeast populations in the trial A with two different inoculum volumes (a = 

2% inoculation volume, b = 0.2% inoculation volume, C = Control must and U = UHPH treated must). 

(B). Evolution of the yeast populations in the trial B with the addition of quercetin and quercetin + 

thiamine. Values are means ± SD (n = 3). A different letter for the same day means significant 

differences (p < 0.05). 

3.2. Oenological Parameters 

The initial must had a sugar concentration of approximately 245 g/L. In Trial A, it was observed 

that the fermentation process was slower in the musts with UHPH, resulting in the accumulation of 

residual sugars at the end of fermentation (Table 1). This phenomenon can be attributed to the 

reduced availability of certain nitrogenous compounds that may be nano-encapsulated and less 

accessible [19]. Nevertheless, the greatest quantity of alcohol was achieved with the UHPH musts. 

With regard to total acidity, the highest levels were observed in the fermentation with control musts 

(without UHPH) and at high inoculum doses, with a value of 8.27 ± 0.26 g/L in tartaric acid 

equivalents. Volatile acidity was found to be below 0.5 g/L in all cases. 
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Table 1. Oenological parameters of the first trial with different initial inoculum volumes. Different 

letters in each column indicate statistical differences (p < 0.05) between treatments in each 

fermentation scenario. 

 Residual sugars 

(g/L) 
Ethanol (% v/v) Total acidity1 (g/L) 

Volatile acidity2 

(g/L) 

Trial/D

ays 
3 25 3 25 3 25 3 25 

Ca 
154.40 ± 

2.23a 

0.00 ± 

0.00a 

4.07 ± 

0.15c 

12.25 ± 

0.32a 

7.65 ± 

0.03c 

8.27 ± 

0.26c 

0.35 ± 

0.01c 

0.44 ± 

0.05c 

Ua 
208.77 ± 

6.43c 

2.07 ± 

0.90b 

2.03 ± 

0.15a 

14.09 ± 

0.15c 

5.15 ± 

0.46b 

6.41 ± 

0.49b 

0.30 ± 

0.02b 

0.29 ± 

0.02b 

Cb 
170.77 ± 

3.10b 

0.00 ± 

0.00a 

3.70 ± 

0.26b 

13.52 ± 

0.34b 

5.21 ± 

0.09b 

5.30 ± 

0.11a 

0.28 ± 

0.02ab 

0.20 ± 

0.02a 

Ub 
216.30 ± 

2.08d 

1.87 ± 

0.49b 

1.93 ± 

0.06a 

14.54 ± 

0.15c 

4.30 ± 

0.24a 

6.10 ± 

0.52b 

0.26 ± 

0.02a 

0.25 ± 

0.06ab 
1 Expressed as tartaric acid. 2 Expressed as acetic acid. 

In contrast, the fermentation process in trial B (Table 2) was more homogeneous, although 

residual sugars below 0.5 g/L were present in the fermentations with UHPH must. In all cases, volatile 

acidity was below 0.5 g/L. 

Table 2. Oenological parameters of the second trial with quercetin and quercetin + thiamine nutrients. 

Different letters in each column indicate statistical differences (p < 0.05) between treatments in each 

fermentation scenario. 

 Residual sugar (g/L) Ethanol (% v/v) 
Total acidity1 

(g/L) 

Volatile acidity2 

(g/L) 

Trial/D

ays 
3 25 3 25 3 25 3 25 

Cq 
154.43 ± 

4.31a 

0.00 ± 

0.00a 

4.17 ± 

0.23a 

12.89 ± 

0.17a 

7.71 ± 

0.13c 

8.36 ± 

0.24a 

0.35 ± 

0.01a 

0.39 ± 

0.03bc 

Uq 
172.13 ± 

4.88a 

0.30 ± 

0.17b 

3.60 ± 

0.26a 

13.56 ± 

0.85a 

7.32 ± 

0.13b 

9.20 ± 

0.18b 

0.35 ± 

0.02a 

0.30 ± 

0.02a 

Cqt 
163.93 ± 

18.89a 

0.00 ± 

0.00a 

3.67 ± 

0.93a 

13.04 ± 

0.26a 

7.71 ± 

0.13c 

8.52 ± 

0.31a 

0.34 ± 

0.02a 

0.46 ± 

0.07c 

Uqt 
168.37 ± 

2.47a 

0.47 ± 

0.25b 

3.90 ± 

0.10a 

13.56 ± 

0.06a 

7.07 ± 

0.07a 

8.74 ± 

0.13a 

0.33 ± 

0.02a 

0.32 ± 

0.03ab 
1 Expressed as tartaric acid. 2 Expressed as acetic acid. 

It was observed that fermentations with higher total acidity, both in trial A and especially in trial 

B, exhibited a reduction in ethanol production at the end of fermentation, reaching a level of 

approximately 1% v/v less than expected (~14.5% v/v). This phenomenon can be attributed to the high 

lactic acid production of L. thermotolerans, which utilizes a portion of the sugars present in the must 

to generate this elevated acidity [26]. Furthermore, although not the subject of investigation in these 

trials, numerous non-Saccharomyces yeasts have the capacity to produce pyruvic acid, glycerol and 

other compounds from sugars through secondary metabolic processes [27]. It should be noted that 

certain Mp strains have the capacity to reduce the final ethanol content by up to 1.6% v/v when co-

inoculated with a Sc. [28]. In accordance with the characteristics of a mixed fermentation, the volatile 

acidity was found to be relatively low, with a concentration below 0.5 g/L in both trials, a finding that 

aligns with the observations of other researchers in this field [29]. 

3.3. Lactic Acidity and pH 
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It has been demonstrated that Lt is capable of producing lactic acid between days 3 and 6 of 

fermentation. However, this process is contingent upon a number of variables, including 

temperature, nutrients, and the competitive dynamics between yeast strains. Consequently, these 

factors must be considered in any analysis [5,30]. To check the effect of bioacidification with lactic 

acid on pH, we compared these results in trial A (Figure 3a) and saw a high correlation (> -0.9) where 

the Control sample with high initial inoculum (2%) produced a higher amount of lactic acid (4.30 ± 

0.09 g/L) and, therefore, a lower pH, 3.20 ± 0.01. On the other hand, in trial B (Figure 3b) the 

production of lactic acid was more pronounced, especially in the must sample with UHPH and the 

nutrient quercetin, producing 6.18 ± 0.34 g/L lactic acid and a pH of 3.10 ± 0.03. 

With these results it was observed that nutrients can generate a higher production of lactic acid 

compared to the average of Ca and Ua samples, producing 1.5 g/L more lactic acid in trial B 

Additionally, the observed synergy between Lt and Mp yeasts was found to be highly effective, 

without the occurrence of incompatibilities, as previously documented in other studies [5,31,32]. 

 

Figure 3. (A). Lactic acid production (solid line) versus pH decrease (dashed line) in the trial A. (B). 

Lactic acid production (solid line) versus pH decrease (dashed line) in the trial B. a = 2% inoculation 

volume, b = 0.2% inoculation volume, C = Control must and U = UHPH treated must. 

3.4. Colour Assessment 

Their absorbances at different wavelengths were evaluated spectrophotometrically to 

determine, after fermentation, their colour intensity, hue and total polyphenol index (TPI). In trial A 

(Table 3), a considerably higher colour intensity than the rest was observed in the Control sample 

with the high initial inoculum (Ca), probably because the pH is lower and the anthocyanins are 

predominantly found in their protonated form and their colour is more reddish [33]. It is also 

noteworthy that both the hue and the IPT of the control samples were significantly lower than in the 

wines obtained from UHPH-treated musts. 

The same evaluation was conducted with Trial B, and it was observed that the controls with both 

quercetin and quercetin + thiamine exhibited a higher colour intensity at the conclusion of 

fermentation than the UHPH. Furthermore, as observed in Trial A, the hue and IPT were significantly 

lower in the control wines compared to the UHPH. 

Higher IPT in wines from UHPH musts means a higher concentration of these compounds and 

that this technology protects from oxidation [15]. It was also calculated that the samples that had 

produced more lactic acid in both trials A and B (Cq, Uq, Cqt, Uqt, Uqt and Ca) generated about 9% 

less yellow tints (420nm) [23,32]. 

Table 3. Trial A and trial B parameters of colour intensity, tonality and total polyphenols index (TPI) 

measured on the last day of fermentation (day 25). Values are means ± sd (n = 3). A different letter for 

the same parameter and assay means significant differences (p < 0.05). 

   
COLOR 

INTENSITY 

TONALITY 

(Adimensional) 

TPI 

(Absorbance unirts) 

3.A 3.B 
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(Absorbance 

units) 

Trial A 

Ca 2.13 ± 0.01b 6.46 ± 0.01a 15.23 ± 0.25a 

Ua 1.78 ± 0.09a 10.26 ± 0.10c 17.19 ± 0.72b 

Cb 1.64 ± 0.01a 7.63 ± 0.01b 15.76 ± 0.15a 

Ub 1.74 ± 0.01a 10.39 ± 0.01c 17.06 ± 0.51b 

Trial B 

Cq 2.00 ± 0.05b 6.53 ± 0.05a 14.95 ± 0.15a 

Uq 1.48 ± 0.05a 10.22 ± 0.06b 16.03 ± 0.64ab 

Cqt 2.10 ± 0.03b 6.52 ± 0.04a 15.10 ± 0.15a 

Uqt 1.56 ± 0.10a 10.79 ± 0.13b 16.40 ± 1.00b 

3.5. Aromatic Profile 

The volatile compounds that are produced during the fermentation process of wine play an 

important role in determining the wine's sensory profile, the inoculated yeasts are a significant factor 

in this process, influencing the types and quantities of aromas that are synthesised [34,35]. The 

volatile compounds of fermentation origin were subjected to analysis in both trials. In Trial A (Figure 

4A), it was observed that fermentations with a high initial inoculum (Ca and Ua) produced lower 

amounts of higher alcohols and total esters. Furthermore, carbonyl compounds were generally low. 

Notably, for esters, excluding ethyl acetate, it was observed that UHPH wines contain almost twice 

as much ethyl lactate. Conversely, trial B revealed that the simultaneous addition of quercetin and 

thiamine resulted in the production of elevated levels of higher alcohols in the UHPH wines, while 

the Control wine exhibited enhanced formation of total esters (not including ethyl acetate) and 

carbonyl compounds. 

 

Figure 4. (A) Aromatic compounds from the trial A. (B) Aromatic compounds from the trial B. Values 

are means ± SD (n = 3). A different letter for the same compound group means significant differences 

(p < 0.05). 

In all cases, the higher alcohols were present in concentrations above 300 mg/L, which could 

impart subtle spicy and fusel oil aromas [36], it should be noted that the alcohol that exerted the most 

pronounced effect was 3-methyl-1-butanol (isoamyl alcohol), which produces complex, smoky, and 

roasted aromas when its concentration exceeds 30 mg/L [37,38]. The second most abundant alcohol 

was 1-propanol, with a mean of 67 mg/L. However, this was considerably below the perceived 

threshold of 830 mg/L [39]. This discrepancy can be attributed to the limited scale of the test, as at 

industrial levels, this alcohol does not typically emerge as a prominent factor [9,29]. The concentration 

of carbonyl compounds, which impart notes of candy and butter, was below the detection threshold 

for diacetyl (4–12 mg/L) and acetoin (150 mg/L) in both tests [40,41]. It can be stated that esters are 

aromas that are related to the amount of nitrogen (NFA) that the yeast is able to assimilate [39]. Ethyl 

acetate is a compound that, at concentrations below 60 mg/L, exhibits pleasant fruity aromas. In all 

fermentations, its concentration remained below this threshold, with an average of ~48 mg/L. Ethyl 

lactate, whose production is a direct consequence of lactic acid production by Lt [42], also remained 

below the perception threshold of 150 mg/L, with an average concentration of ~43 mg/L [42,43]. Both 
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isoamyl acetate with sweet banana and fruit aroma with a hint of ripe essence and isobutyl acetate 

with tropical fruit aroma especially banana were detected in several samples but especially in the 

Control sample with quercetin + thiamine with ~4mg/L for both volatiles, which could be detectable 

as their perception threshold is below 2 mg/L for both volatiles [39,41]. It should be noted that, 

although not depicted in the figures, acetaldehyde was also analysed as a volatile compound, 

yielding values approximately 20 times higher in the control wines (approximately 300 mg/L). These 

elevated values may be attributed to a number of factors, including the composition of the medium, 

the nature of the insoluble materials employed to clarify the musts, the ageing/breeding procedure, 

the SO₂ content, the aeration, and most notably, the indigenous yeast population, which differs 

significantly between the control must and the UHPH must. It is highly probable that a population 

of S. cerevisiae beticus was present [44]. Additionally, the presence of non-Saccharomyces species, 

including C. stellata, Z. bailii, and S. pombe [45] as well as bacteria such as Lactobacillus plantarum, may 

contribute to the observed fermentation profile [46]. 

4. Conclusions 

The use of UHPH eliminates the microflora naturally present in the grape must, facilitating the 

implantation of yeast ferments and not allowing spontaneous fermentations to take place. Moreover, 

the use of non-Saccharomyces yeasts can be strongly favoured in both mono- and co-inoculation. It 

should also be noted that both the nutrients (quercetin + thiamine) and the non-Saccharomyces yeasts 

studied produced some very interesting synergies that open up a very powerful field of study to be 

explored further. 
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