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Abstract: This paper focuses on studying the mapping properties of singular integral operators over product
symmetric spaces. The boundedness of such operators is established on Triebel-Lizorkin spaces whenever their
rough kernel functions belong to Grafakos and Stefanov class. Our findings generalize, extend and improve some

previously known results on singular integral operators as those in [1,2,11].
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1. Introduction and Main Results

Assume that R® (s = « or 77) is the 2 < s-Euclidean space and that S*~! is the unit sphere in R®
equipped with the normalized Lebesgue surface measure do;(-). Also assume that w’ = w/|w| for
w € R°\{0}.

Let U be an integrable over S*~! x S7~! and satisfy

O(tu,rv) = O(u,v), Vt,r >0, 1)

/SK—l O, o )do(u') = /SIH O, v")doy (v') = 0. )

The singular integral operator T;; on symmetric spaces R* x R is defined, initially for h €
S(R* x R7), by

_ IV
Toh(x,y) = p-v. //RKXRW h(x —u,y— U)Wd udo.

The study of the boundedness of the operator T;; was started in [1] in which the authors proved
the L? boundedness of Ty; forall p € (1, c0) if Q) satisfies certain Lipschitz conditions. Subsequently the
boundedness of T¢; and some of its extensions has been investigated by many researchers. For example,
Duoandikoetxea improved the above results in [2] by proving that T¢; is bounded on LP (R* x R)
under the weaker condition U € L1(S*~! x S7~1). Later on, the authors of [3], confirmed that T;; is
bounded on LP(R¥ x R") (1 < p < c0)if U € L(log’ L)2(S*~! x S7~1). In [4] the authors established
the L? boundedness of T¢; for p € (1, 00) provided that U in the block space Béo’l) (S x S171) for
some q > 1. Thereafter, the discussion of the mapping properties of T; and its extensions under
various conditions on U has received a large amount of attention by many authors, the readers are
referred to [1-8].

Our focus in this paper will be in studying the boundedness of T; whenever U belongs to a
certain class of functions related to a class of functions introduced by Walsh in [9] and then developed
by Grafakos and Stefanov in [10]. To clarify our purpose we recall some definitions and some pertinent
results related to our current study. Let G, (S"_l X S’7_1) (for & > 0) be the class of all functions U
which are integrable over S*~! x S§7~! and satisfy the condition on product spaces

(9] egll}?xgﬂ 1 //SK Ixsi- 1 Hl }5 ”‘ loguchl ‘C v} )
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x|O(u', ") |doy (u")doy (v') < oo.
By following the same arguments as that employed in [10], we get the following:

UL (S"_l X 8’7_1) ¢ Gy (S"_1 X S”_l) for any a >0,

g>1

N Ga (SH x S’H) ¢ Log" LS xS ¢ | Ga (S’H x S’H),
a>0 a>0
NGu(stxs1 1) ¢ BP(E I« 817 ¢ |J G (85 x87Y).

a>0 a>0

Let us recall the definition of the homogeneous Triebel-Lizorkin space P (RK x R"). For
-
-

p,e € (1,00) and 7 = (71,72) € R xR, the homogeneous Triebel-Lizorkin space F ! (R* x R") is
the class of all tempered distributions # on R* x R” that satisfy

1/¢
|kl ” ( ) zf"flszkwy(Aj@Bk) *hF) < oo,

jkeZ

(RExRT) |
LP(RExRY)

where fT( ) = 277X A(277u) for j € Z, Br(v) = 27 ¥ B(27%v) for k € Z and the radial functions
A e S(R¥), B € S(R") satisfy the following:

10<A<1, 0<B<I,

(2) supp (A) C { u: s < |ul <2} supp (B) C {U:% < |v| SZ},

(3) There exists M > 0 such that A(u), B(v) > M forall |ul, |v] € [£,3],

(4) z A(271u) =1with u #0 and Y. B(27%0) = 1 with v # 0.
kezZ
The authors of [12] proved the following properties:
%

(i) The Schwartz space S(R" x R") is dense in F; ! (R* x R7),
%
2,0
(i) F, (R*xRT) =LP(R* x R7) for 1 < p < oo,

- 81/7 - 82/7
(i) F,  (R*xRT) CF," (R* xR7)ife; <en.
In [11], Ying showed that if U € G,(S*"! x S"™1) for some a > 0, then T¢; is bounded on
LP(R* x R7) forall p € (313,24 2a).
In the one parameter setting, the singular operator related to Ty is given by

Hyh(x) = p.v. /RK h(x —u) ZTE{T;) du.

For a > 0, the class G, (S*!) is the collection of all functions U € L}(S*~!) which satisfy the
Grafakos-Stefanov condition

sup / }U(u’)|log’x+1(|§-u"71)d(7,((u’)<oo.
gesk-1 /S

In [13], the authors proved that the integral operator Hy; is bounded on F ;,71 (R¥) for p € (3£22,2 +

1+2a”
20), ¢ € (35,2 +2a) and 71 € R.

It is worth mentioning that the Triebel-Lizorkin space [;_,;,71 (R*) covers several classes of many
well-known function spaces including Lebesgue spaces LP (R*) , the Hardy spaces H? (R*) and the
Sobolev spaces L;, (R¥). So it is tacitly that the work on these spaces is more intricate than L? (R"). This
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clearly has instigated many authors to investigate the boundedness of H;s and some of its extensions,
see for instance [14-26]. o

In light of the results obtained in [13] regarding the F,  boundedness of the singular integral
Hy; in the one parameter setting whenever U € G, (S*71), and the work done in [11] regarding the
L? boundedness of the singular integral T;; in the product domains whenever U € G, (S*~! x S771),

. . . &Y P
we are motivated to investigate the boundedness of Tis on F, * (R* x R”7) whenever U satisfies the
Grafakos-Stefanov condition.
The main result of this paper is the following;:
&7

(R* x RT)

&

Theorem 1. Suppose that U € G, (S x S~ 1) for some « > 0. Then Tys is bounded on F

forpe (F3%,2+20), ¢ € (432,24 2a) and 7 € R x R.

2. Auxiliary Lemmas

We devote this section to establishing some preliminary lemmas. For € L' (S*~! x S7~1), we
consider the sequence of measures {Y;, : t,r € R} and its corresponding maximal operator Y* on

R* x R" by
// hdY:, = // (u,v) q)dudv
KXRY | | | |

Y*(h) = sup|Ye,| * ||,
treR

where I, = {(u,v) € R* x R7: 2! < |u| < 207127 < |o| < 271}
By adapting the same argument used in [10] to the product case, it is easy to obtain the following:

and

Lemma 1. Let U € Gy (S*! x S"™1) for some a > 0 and satisfy the conditions (1)-(2). Then there is a
constant C > 0 such that the estimates

|Yt,r(§, | S C, (3)
Yir(8,0)] < Cmm{]zfg\ (log*|2'¢]) ™ «+1)}I W
Yt,r(§r§)| < Cm1n{|2’§| (log |2’§\) 0‘+1)} 6)

hold for all t,r € Rand (¢, () € R*xR".
Proof. By the definition of Yt,r(é, 0), itis easy to see that

}Yt,r(gz @‘ < (10g2)2||UHL1(SK—1><S’7*1)7 (6)
which proves (3). By a change of variable, we deduce that
or+l

@l < [ owol [ @ do e o), @)

where ) i
_ —i(I2fEu) 4+
Ji (G, u,l) /1 e ;

which leads to
~1/2

(G ul) < Cl2'g|u-¢'||
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Hence, by the last estimate and the trivial estimate |J;(§,u,1)| < (log2) along with the fact that
t/(logt)* is increasing on (2%, ), we get that

1

(o)

7 ’l —_
Je(G,u,1)| < (log|2t )T

if |2¢| > 2*. (®)

Thus, the inequalities (7) and (8) give that

¥er(8,0)]
_ a+1
< C(logl2'e[) ™ //Skilxgqil(log(2|§’~u| )" (0, 0) ldo (u)dory (0),
which in turn implies that

(a+1)

¥, (& 0)| < Cllogl2'e]) "™ i |'| > 2. 9)
Similarly, we derive that
[¥1,(2,0)] < Cllogl27g)) ™ if 2] > 2. (10)
Now, by the cancellation property (1), we have
Yu@ol< c [ ool ] / LA
< Cl2'g| (11)
In the same manner, we obtain that
¥10(2,0)| < Cl2°¢]. (12)

Therefore, by combining (9) with (11) we get (4), and by combining (10) with (12), we get (5). The
lemma is proved. O

The following lemma can be found in [4] (see also [2,3,8]).

Lemma 2. Let U € L1(S*1 x S7=1). Then there exists a constant C,, > 0 such that

Y ()Nl e xiry < Cpllll o e scrny O] 1 s-1.x1-1) (13)

foralll < p < ooand h € LP(R* x R7).

Let A € S(R*) and B € S(R") be radial functions satisfying the following:

o< A B<L1,

(2) supp (A) C {u 13 <ul < 2}, supp (B) C { 13 <ol < 2}

(3) There is a constant M > 0 such that A(u), B(v) > M for all |ul, [v| € [2,3],

—~ 2 ~ 2

) fR’A(Ztu)‘ = 1with u #0 and fR‘B(er)’ =1 with v # 0.

For simplicity, we denote A(tu) by A;(u) and B(rv) by B,(v). Then it is clear that Ay (1) =
27" A(u/2") and Bor(v) = 27"B(v/2"). Let Wyt o (h) (1, v) = (Ay @ Bor) % h(u,v). Hence, for any
h € S(R* x R7), we have
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dtdr\ "/
Il 5 ~ H (/TSRS
F, (R*xRY) Rt xR+ r LP(RFxRY)
f )
// |W2t,2r (h)| dtd?’)
RxR LP(R*xR7)
Let us give the following result regarding the boundedness of the measures on
_>
.g, 0
F, (R*xRT).
Lemma 3. Let § € LY(S*~1 x S"=1). Then, the estimate
« |h|| .5 < Cyllhll .5 O 1o - 14
I | |||F;,0 I plinl .ZO(RKX[M)II It (sx-1xs-1) (14)
holds forall 1 < p,e < oo.
. £ 6> . 8/ 6>
Proof. Leth € F, (R* x R"). Then for any function f € F,/ (R* x R") with [|f|| ., 5 <1,
F, (RFxRY)
by Holder’s inequality we get
(Y el % R, £
< / / . / /R Y Wt g () Wt e () (1, 0) dndmudo
1/¢
< ( / / [ Yo+ w2t+n,2,+m(|h|)|€dndm)
RxR
p
1/¢
e/
X ( //’W;Hrnlzﬂrm (f) dndm)
RxR ,
p
which in turn implies
1/¢
I <c //\|Yt,,| 5 Watin grens([1]) | dndm . (15)
F, (R*xRY) O

p

1/¢
Let us now estimate the LP-norm of ( ST Yer] W2t+n,2r+m(|h|>|edndm> . Since p > 1, by
RxR

duality there exits a function g € L' (R* x R") such that | g]| L (R =1land

xR1)
I

RxR

g)dndm

// [1Ya | 5 Wi orin (1)),

RxR
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< [ W zron (1) 0,0, Y (@) 0, 2))lndm
RxR
< || [ Wasngron(bDdndm| @),
RxR p
< | ] Wanzenilydndm)| 1501551511 (16)
RxR p
where g(u,v) = g(—u, —v) and the last inequality is obtained by Lemma 2.
By following similar arguments as that employed in the proof of Lemma 2 in [4] we get
sup || Yer| % Watin grem (|1]) | < Cp|[sup [Warin grem ([h])| ”UHLl(SK*l xS1-1)- (17)
treR p treR p

By interpolating between (16) and (17) we obtain that

1/¢
( iRz *W2f+",2r+m(|h|)|£d”dm) <180l ge-1xsr1 ] o5

RxR p (REXRY)

p

Consequently, by the last inequality and (15), we get (14). O

3. Proof of Theorem 1
Let U € G, (S*! x S"~1) for some & > 0. By the translation invariance of Ty, it is enough to
_>

€ —
prove the boundedness of T¢; on P; ! (R x R") only whenever 7 = 0. It is clear that

Tsh(x,y) = //RXRYt,r*h(x,y)dtdr

= //RxR Qnm(h)dndm, (18)

where

Qn,m (h) = //l‘{ R W2t+n,2r+m (Yt,r * W2t+n,27+m (h))dtdr
X

Let us estimate the || Q. u|| . . By following the same steps in proving (15), we get that
F, (R¥xR7)
P

1/¢
1) 7 <cC ( i \Yt,,*w2t+n,2r+m(h)|5dtdr) . (19)

.g,0
F RxxR7
p (REXRT) RxR
p
We need now to consider three cases:

i

.2,
Case 1. p = 2 = ¢. In this case, we have F, (Rf x R7) = L2(R* x R"). So, by invoking
Plancherel’s theorem, we obtain

1 Qun (W),

.2,
£y (RExRY)

d0i:10.20944/preprints202408.1914.v1
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IN

A 8 B0 ) V(& O F(E,0)| dedgarat
c /um //A,WW (A@+e) @ BE"0)) Y108, O (g,g))zdgdgdrdt

C((+ )X+ )™ 1Al Ly ) (20)

IN

IN

where A;, = {((;‘,é) ERFxRT: 1 < A(21¢) <2 and } <B(2'7) < 2}.
Case 2. p = ¢. By (15), we get that

=l

1 Qn,m (1) | .5, (21)
F

p  (RFxRY)

IN

C<//Rx1R //RKxR'? (//Sx—leﬂl Mo (Watsn prim (1) (1, 0))

1O(u, v)|ox (u)doy, (v))sdxdydtdr> Ve

([ (1. 1000

1/p
HMu,v(W2t+n,2r+m(h)||p(7K(u)da,7(v)>pdth) ,

X

IN

X

where

ky rk
M, (h)(u,v) = sup 1 /2/1h(x—tu,y—rv)dtdr
kpko€R ki, ka Jo Jo

which is bounded on L? (R* x R") for 1 < p < co. Therefore,

1L, < ClIB gr-1xsr-yy Il 5 : (22)
4

.0
(RFxR) F,  (R*xRY)

Case 3. p > ¢. By duality, there is a non-negative function ¢ lies in the space L(P/¢)" (R* x R")
such that H(PHL(P/E)/(RKXR’Y) =1and

1QnmM) 5

B (Rexmy)

€

¢(x,y)dxdy dtdr

IN

C / // // n yr+m h 7 —_ d d
RxR K xR I, |u| |U|'7 WZH 2+ ( )( —uy ZJ) udvo

O,
Cllv]J 5, // // // T
| ||Lls Ixsn—1 RxR JJRexRT J S, |”| |v|’7

X Whtin grim () (x — u,y — 0)|“dudvg(x, y)dxdy dtdr

IN

< CHUHZ{SSK 1xs1-1) //"xR’? .X y (// }Wan 2r+m x y ‘ dtd?’)dXdy
S C”UHSL/lESK 1 gn—l) //Rlewthrn’sz (h)(x,}/)rdtdr (p HY* H p/q
< QDI g IR

g .
-¢,0
E,” (R*xRY)

Thus, by the last inequality and (22), we obtain that


https://doi.org/10.20944/preprints202408.1914.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 August 2024 doi:10.20944/preprints202408.1914.v1

8of9

QM) .= < IOl et wgrn Il 5 : 23
I e @)

for all p > e. Therefor, by employing the duality along with the interpolation, we conclude that the
inequality (23) holds forall 1 < p < oo and 1 < & < oo, which is when interpolated with (20), we get

1Qnm(W 7 < C(A+[n)+[m) " n| 5 (24)
F, (R*xRT) F, (R*xRT)

forallGE(O,l),%<%<1—%and%<%<1—%.$ince

To (7 . < C// Q h - dndm,
[ Tas ( )HP;,O(RKXM ol )||FZO(RKX]R,7)

then by invoking (24) and choosing 6 > %H, we end with

ITs (M. 5

0 < Clnf ..z (25)
F, (R*xRT) F

, (REXRY)

forall p,e € (§132,2 + 2u).

4. Conclusions

In this work, we proved the boundedness of the singular integrals T5 on Triebel-Lizorkin spaces

-
F;7 (R* x R") for all p,e € (ﬁ%g,Z + 2a) whenever the kernel function U in G, (S*~! x S7~1) for

some & > 0. The main result in this paper generalizes and improves the main results proved in [1,2,11].

In future work, we aim to prove the boundedness of T on F; ! (R* x R") for a wider range of p
provided that U € G, (S x S771).
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