
Article Not peer-reviewed version

Estimates for Certain Rough Multiple

Singular Integrals on Triebel-Lizorkin

Space

Hussain Al-Qassem and Mohammed Ali *

Posted Date: 27 August 2024

doi: 10.20944/preprints202408.1914.v1

Keywords: Triebel-Lizorkin space; singular integrals; Rough kernels; product spaces

Preprints.org is a free multidiscipline platform providing preprint service that

is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any

medium, provided the original work is properly cited.

https://sciprofiles.com/profile/2192807
https://sciprofiles.com/profile/804633


Article

Estimates for Certain Rough Multiple Singular
Integrals on Triebel-Lizorkin Space
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1 Department of Mathematics and Statistics, Qatar University, Doha, Qatar; husseink@qu.edu.qa
2 Department of Mathematics and Statistics, Jordan University of Science and Technology, Irbid 22110, Jordan
* Correspondence: myali@just.edu.jo

Abstract: This paper focuses on studying the mapping properties of singular integral operators over product

symmetric spaces. The boundedness of such operators is established on Triebel-Lizorkin spaces whenever their

rough kernel functions belong to Grafakos and Stefanov class. Our findings generalize, extend and improve some

previously known results on singular integral operators as those in [1,2,11].
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1. Introduction and Main Results

Assume that Rs (s = κ or η) is the 2 ≤ s-Euclidean space and that Ss−1 is the unit sphere in Rs

equipped with the normalized Lebesgue surface measure dσs(·). Also assume that w′ = w/|w| for
w ∈ Rs\{0}.

Let ℧ be an integrable over Sκ−1 × Sη−1 and satisfy

℧(tu, rv) = ℧(u, v), ∀t, r > 0, (1)

∫
Sκ−1

℧(u′, v′)dσκ(u′) =
∫
Sη−1

℧(u′, v′)dση(v′) = 0. (2)

The singular integral operator T℧ on symmetric spaces Rκ × Rη is defined, initially for h ∈
S(Rκ ×Rη), by

T℧h(x, y) = p.v.
∫∫

Rκ×Rη
h(x − u, y − v)

℧(u′, v′)
|u|κ |v|η

dudv.

The study of the boundedness of the operator T℧ was started in [1] in which the authors proved
the Lp boundedness of T℧ for all p ∈ (1, ∞) if Ω satisfies certain Lipschitz conditions. Subsequently the
boundedness of T℧ and some of its extensions has been investigated by many researchers. For example,
Duoandikoetxea improved the above results in [2] by proving that T℧ is bounded on Lp(Rκ ×Rη)

under the weaker condition ℧ ∈ Lq(Sκ−1 × Sη−1). Later on, the authors of [3], confirmed that T℧ is
bounded on Lp(Rκ ×Rη) (1 < p < ∞) if ℧ ∈ L(log+ L)2(Sκ−1 × Sη−1). In [4] the authors established
the Lp boundedness of T℧ for p ∈ (1, ∞) provided that ℧ in the block space B(0,1)

q (Sκ−1 × Sη−1) for
some q > 1. Thereafter, the discussion of the mapping properties of T℧ and its extensions under
various conditions on ℧ has received a large amount of attention by many authors, the readers are
referred to [1–8].

Our focus in this paper will be in studying the boundedness of T℧ whenever ℧ belongs to a
certain class of functions related to a class of functions introduced by Walsh in [9] and then developed
by Grafakos and Stefanov in [10]. To clarify our purpose we recall some definitions and some pertinent
results related to our current study. Let Gα

(
Sκ−1 × Sη−1) (for α > 0) be the class of all functions ℧

which are integrable over Sκ−1 × Sη−1 and satisfy the condition on product spaces

sup
(ξ,ζ)∈Sκ−1×Sη−1

∫∫
Sκ−1×Sη−1

logα+1(
∣∣ξ · u′∣∣−1

) logα+1(
∣∣ζ · v′

∣∣−1
)
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×
∣∣℧(u′, v′

)∣∣dσκ

(
u′)dση

(
v′
)
< ∞.

By following the same arguments as that employed in [10], we get the following:

⋃
q>1

Lq
(
Sκ−1 × Sη−1

)
⊈ Gα

(
Sκ−1 × Sη−1

)
f or any α > 0,

⋂
α>0

Gα

(
Sκ−1 × Sη−1

)
⊈ L(log+ L)2(Sκ−1 × Sη−1) ⊈

⋃
α>0

Gα

(
Sκ−1 × Sη−1

)
,

⋂
α>0

Gα

(
Sκ−1 × Sη−1

)
⊈ B(0,1)

q (Sκ−1 × Sη−1) ⊈
⋃

α>0
Gα

(
Sκ−1 × Sη−1

)
.

Let us recall the definition of the homogeneous Triebel-Lizorkin space
.
F

ε,−→γ
p (Rκ × Rη). For

p, ε ∈ (1, ∞) and −→γ = (γ1, γ2) ∈ R×R, the homogeneous Triebel-Lizorkin space
.
F

ε,−→γ
p (Rκ ×Rη) is

the class of all tempered distributions h on Rκ ×Rη that satisfy

∥h∥ .
F

ε,−→γ
p (Rκ×Rη)

=

∥∥∥∥∥∥
(

∑
j,k∈Z

2jγ1ε2kγ2ε
∣∣(Aj ⊗Bk) ∗ h

∣∣ε)1/ε
∥∥∥∥∥∥

Lp(Rκ×Rη)

< ∞,

where Âj(u) = 2−jκA(2−ju) for j ∈ Z, B̂k(v) = 2−kηB(2−kv) for k ∈ Z and the radial functions
A ∈ S(Rκ), B ∈ S(Rη) satisfy the following:

(1) 0 ≤ A ≤ 1, 0 ≤ B ≤ 1,
(2) supp (A) ⊂

{
u : 1

2 ≤ |u| ≤ 2
}

, supp (B) ⊂
{

v : 1
2 ≤ |v| ≤ 2

}
,

(3) There exists M > 0 such that A(u),B(v) ≥ M for all |u|, |v| ∈ [ 3
5 , 5

3 ] ,
(4) ∑

j∈Z
A(2−ju) = 1 with u ̸= 0 and ∑

k∈Z
B(2−kv) = 1 with v ̸= 0.

The authors of [12] proved the following properties:

(i) The Schwartz space S(Rκ ×Rη) is dense in
.
F

ε,−→γ
p (Rκ ×Rη),

(ii)
.
F

2,
−→
0

p (Rκ ×Rη) = Lp(Rκ ×Rη) for 1 < p < ∞,

(iii)
.
F

ε1,−→γ
p (Rκ ×Rη) ⊆

.
F

ε2,−→γ
p (Rκ ×Rη) if ε1 ≤ ε2.

In [11], Ying showed that if ℧ ∈ Gα

(
Sκ−1 × Sη−1) for some α > 0, then T℧ is bounded on

Lp(Rκ ×Rη) for all p ∈ ( 2+2α
1+2α , 2 + 2α).

In the one parameter setting, the singular operator related to T℧ is given by

H℧h(x) = p.v.
∫
Rκ

h(x − u)
℧(u′)

|u|κ
du.

For α > 0, the class Gα

(
Sκ−1) is the collection of all functions ℧ ∈ L1(Sκ−1) which satisfy the

Grafakos-Stefanov condition

sup
ξ∈Sκ−1

∫
Sκ−1

∣∣℧(u′)∣∣ logα+1(
∣∣ξ · u′∣∣−1

)dσκ

(
u′) < ∞.

In [13], the authors proved that the integral operator H℧ is bounded on
.
F

ε,γ1
p (Rκ) for p ∈ ( 2+2α

1+2α , 2+
2α), ε ∈ ( 2+2α

1+2α , 2 + 2α) and γ1 ∈ R.

It is worth mentioning that the Triebel–Lizorkin space
.
F

ε,γ1
p (Rκ) covers several classes of many

well-known function spaces including Lebesgue spaces Lp(Rκ) , the Hardy spaces Hp(Rκ) and the
Sobolev spaces Lα

p(Rκ). So it is tacitly that the work on these spaces is more intricate than Lp(Rκ). This
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clearly has instigated many authors to investigate the boundedness of H℧ and some of its extensions,
see for instance [14–26].

In light of the results obtained in [13] regarding the
.
F

ε,γ1
p boundedness of the singular integral

H℧ in the one parameter setting whenever ℧ ∈ Gα

(
Sκ−1), and the work done in [11] regarding the

Lp boundedness of the singular integral T℧ in the product domains whenever ℧ ∈ Gα

(
Sκ−1 × Sη−1),

we are motivated to investigate the boundedness of T℧ on
.
F

ε,−→γ
p (Rκ ×Rη) whenever ℧ satisfies the

Grafakos-Stefanov condition.
The main result of this paper is the following:

Theorem 1. Suppose that ℧ ∈ Gα(Sκ−1 × Sη−1) for some α > 0. Then T℧ is bounded on
.
F

ε,−→γ
p (Rκ ×Rη)

for p ∈ ( 2+2α
1+2α , 2 + 2α), ε ∈ ( 2+2α

1+2α , 2 + 2α) and −→γ ∈ R×R.

2. Auxiliary Lemmas

We devote this section to establishing some preliminary lemmas. For ℧ ∈ L1(Sκ−1 × Sη−1), we
consider the sequence of measures {Υt,r : t, r ∈ R} and its corresponding maximal operator Υ∗ on
Rκ ×Rη by ∫∫

Rκ×Rη
h dΥt,r =

∫∫
It,r

h(u, v)
℧(u′, v′)
|u|κ |v|η

dudv

and
Υ∗(h) = sup

t,r∈R
|Υt,r| ∗ |h|,

where It,r =
{
(u, v) ∈ Rκ ×Rη : 2t ≤ |u| < 2t+1, 2r ≤ |v| < 2r+1}.

By adapting the same argument used in [10] to the product case, it is easy to obtain the following:

Lemma 1. Let ℧ ∈ Gα

(
Sκ−1 × Sη−1) for some α > 0 and satisfy the conditions (1)-(2). Then there is a

constant C > 0 such that the estimates∣∣Υ̂t,r(ξ, ζ)
∣∣ ≤ C, (3)∣∣Υ̂t,r(ξ, ζ)
∣∣ ≤ C min

{∣∣2tξ
∣∣, (log+

∣∣2tξ
∣∣)−(α+1)

}
, (4)∣∣Υ̂t,r(ξ, ζ)

∣∣ ≤ C min
{
|2rζ|,

(
log+|2rζ|

)−(α+1)
}

(5)

hold for all t, r ∈ R and (ξ, ζ) ∈ Rκ×Rη .

Proof. By the definition of Υ̂t,r(ξ, ζ), it is easy to see that∣∣Υ̂t,r(ξ, ζ)
∣∣ ≤ (log 2)2∥℧∥L1(Sκ−1×Sη−1), (6)

which proves (3). By a change of variable, we deduce that

∣∣Υ̂t,r(ξ, ζ)
∣∣ ≤ ∫∫

Sκ−1×Sη−1
|℧(u, v)|

∫ 2r+1

2r
|Jt(ξ, u, l)|dτ

τ
dσκ(u)dση(v), (7)

where

Jt(ξ, u, l) =
∫ 2

1
e−i(l2tξ·u) dl

l

which leads to
Jt(ξ, u, l) ≤ C

∣∣2tξ
∣∣u · ξ ′

∣∣∣∣−1/2.
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Hence, by the last estimate and the trivial estimate |Jt(ξ, u, l)| ≤ (log 2) along with the fact that
t/(log t)α is increasing on (2α, ∞), we get that

|Jt(ξ, u, l)| ≤ C

(
log 2|ξ ′ · u|−1

)α+1

(log|2tξ|)α+1 if
∣∣2tξ

∣∣ > 2α. (8)

Thus, the inequalities (7) and (8) give that∣∣Υ̂t,r(ξ, ζ)
∣∣

≤ C
(
log
∣∣2tξ

∣∣)−(α+1)
∫∫

Sκ−1×Sη−1

(
log
(

2
∣∣ξ ′ · u

∣∣−1
))α+1

|℧(u, v)|dσκ(u)dση(v),

which in turn implies that

∣∣Υ̂t,r(ξ, ζ)
∣∣ ≤ C

(
log
∣∣2tξ

∣∣)−(α+1) if
∣∣2tξ

∣∣ > 2α. (9)

Similarly, we derive that∣∣Υ̂t,r(ξ, ζ)
∣∣ ≤ C(log|2rζ|)−(α+1) if |2rζ| > 2α. (10)

Now, by the cancellation property (1), we have

∣∣Υ̂t,r(ξ, ζ)
∣∣ ≤ C

∫∫
Sκ−1×Sη−1

|℧(u, v)|
∫ 2r+1

2r

∫ 2

1

∣∣∣e−il2tξ·u − 1
∣∣∣dldτ

lτ
dσκ(u)dση(v)

≤ C
∣∣2tξ

∣∣. (11)

In the same manner, we obtain that∣∣Υ̂t,r(ξ, ζ)
∣∣ ≤ C|2rζ|. (12)

Therefore, by combining (9) with (11) we get (4), and by combining (10) with (12), we get (5). The
lemma is proved.

The following lemma can be found in [4] (see also [2,3,8]).

Lemma 2. Let ℧ ∈ L1(Sκ−1 × Sη−1). Then there exists a constant Cp > 0 such that

∥Υ∗( f )∥Lp(Rκ×Rη) ≤ Cp∥h∥Lp(Rκ×Rη)∥℧∥L1(Sκ−1×Sη−1) (13)

for all 1 < p < ∞ and h ∈ Lp(Rκ ×Rη).

Let A ∈ S(Rκ) and B ∈ S(Rη) be radial functions satisfying the following:
(1) 0 ≤ A, B ≤ 1,
(2) supp (A) ⊂

{
u : 1

2 ≤ |u| ≤ 2
}

, supp (B) ⊂
{

v : 1
2 ≤ |v| ≤ 2

}
,

(3) There is a constant M > 0 such that A(u),B(v) ≥ M for all |u|, |v| ∈ [ 3
5 , 5

3 ] ,

(4)
∫
R

∣∣∣Â(2tu)
∣∣∣2 = 1 with u ̸= 0 and

∫
R

∣∣∣B̂(2rv)
∣∣∣2 = 1 with v ̸= 0.

For simplicity, we denote Â(tu) by Ât(u) and B̂(rv) by B̂r(v). Then it is clear that A2t(u) =

2−tκA(u/2t) and B2r (v) = 2−rηB(v/2r). Let W2t ,2r (h)(u, v) = (A2t ⊗ B2r ) ∗ h(u, v). Hence, for any
h ∈ S(Rκ ×Rη), we have
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∥h∥ .
F

ε,
−→
0

p (Rκ×Rη)
∼

∥∥∥∥∥
(∫∫

R+×R+
|(At ⊗Br) ∗ h|ε dtdr

tr

)1/ε
∥∥∥∥∥

Lp(Rκ×Rη)

∼

∥∥∥∥∥
(∫∫

R×R

∣∣W2t ,2r (h)
∣∣εdtdr

)1/ε
∥∥∥∥∥

Lp(Rκ×Rη)

.

Let us give the following result regarding the boundedness of the measures |Υt,r| ∗ |h| on
.
F

ε,
−→
0

p (Rκ ×Rη).

Lemma 3. Let ℧ ∈ L1(Sκ−1 × Sη−1). Then, the estimate

∥|Υt,r| ∗ |h|∥ .
F

ε,
−→
0

p (Rκ×Rη)
≤ Cp∥h∥ .

F
ε,
−→
0

p (Rκ×Rη)
∥℧∥L1(Sκ−1×Sη−1) (14)

holds for all 1 < p, ε < ∞.

Proof. Let h ∈
.
F

ε,
−→
0

p (Rκ ×Rη). Then for any function f ∈
.
F

ε′ ,
−→
0

p′ (Rκ ×Rη) with ∥ f ∥ .
F

ε′ ,−→0
p′ (Rκ×Rη)

≤ 1,

by Hölder’s inequality we get

|⟨|Υt,r| ∗ |h|, f ⟩|

≤
∣∣∣∣∫∫Rκ×Rη

∫∫
R×R

|Υt,r| ∗ W2t+n ,2r+m(|h|)W∗
2t+n ,2r+m( f )(u, v)dndmdudv

∣∣∣∣
≤

∥∥∥∥∥∥∥
 ∫∫

R×R

∣∣|Υt,r| ∗ W2t+n ,2r+m(|h|)
∣∣εdndm

1/ε
∥∥∥∥∥∥∥

p

×

∥∥∥∥∥∥∥
 ∫∫

R×R

∣∣∣W∗
2t+n ,2r+m( f )

∣∣∣ε′dndm

1/ε′
∥∥∥∥∥∥∥

p′

which in turn implies

∥|Υt,r| ∗ |h|∥ .
F

ε,
−→
0

p (Rκ×Rη)
≤ C

∥∥∥∥∥∥∥
 ∫∫

R×R

∣∣|Υt,r| ∗ W2t+n ,2r+m(|h|)
∣∣εdndm

1/ε
∥∥∥∥∥∥∥

p

. (15)

Let us now estimate the Lp-norm of

( ∫∫
R×R

∣∣|Υt,r| ∗ W2t+n ,2r+m(|h|)
∣∣εdndm

)1/ε

. Since p > 1, by

duality there exits a function g ∈ Lp′(Rκ ×Rη) such that ∥g∥Lp′ (Rκ×Rη)
= 1 and∥∥∥∥∥∥

∫∫
R×R

∣∣|Υt,r| ∗ W2t+n ,2r+m(|h|)
∣∣dndm

∥∥∥∥∥∥
p

=
∫∫
R×R

⟨
∣∣|Υt,r| ∗ W2t+n ,2r+m(|h|)

∣∣, g⟩dndm
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≤
∫∫
R×R

⟨
∣∣W2t+n ,2r+m(|h|)(u, v)

∣∣, Υ∗(g)(u, v)⟩dndm

≤

∥∥∥∥∥∥
∫∫
R×R

W2t+n ,2r+m(|h|)dndm

∥∥∥∥∥∥
p

∥Υ∗(g)∥p′

≤

∥∥∥∥∥∥
∫∫
R×R

W2t+n ,2r+m(|h|)dndm

∥∥∥∥∥∥
p

∥℧∥L1(Sκ−1×Sη−1), (16)

where g(u, v) = g(−u,−v) and the last inequality is obtained by Lemma 2.
By following similar arguments as that employed in the proof of Lemma 2 in [4] we get∥∥∥∥∥ sup

t,r∈R

∣∣|Υt,r| ∗ W2t+n ,2r+m(|h|)
∣∣∥∥∥∥∥

p

≤ Cp

∥∥∥∥∥ sup
t,r∈R

∣∣W2t+n ,2r+m(|h|)
∣∣∥∥∥∥∥

p

∥℧∥L1(Sκ−1×Sη−1). (17)

By interpolating between (16) and (17) we obtain that∥∥∥∥∥∥∥
 ∫∫

R×R

∣∣|Υt,r| ∗ W2t+n ,2r+m(|h|)
∣∣εdndm

1/ε
∥∥∥∥∥∥∥

p

≤ ∥℧∥L1(Sκ−1×Sη−1)∥h∥ .
F

ε,
−→
0

p (Rκ×Rη)
.

Consequently, by the last inequality and (15), we get (14).

3. Proof of Theorem 1

Let ℧ ∈ Gα(Sκ−1 × Sη−1) for some α > 0. By the translation invariance of T℧, it is enough to

prove the boundedness of T℧ on
.
F

ε,−→γ
p (Rκ ×Rη) only whenever −→γ =

−→
0 . It is clear that

T℧h(x, y) =
∫∫

R×R
Υt,r ∗ h(x, y)dtdr

=
∫∫

R×R
Qn,m(h)dndm, (18)

where
Qn,m(h) =

∫∫
R×R

W2t+n ,2r+m
(
Υt,r ∗W2t+n ,2r+m(h)

)
dtdr.

Let us estimate the ∥Qn,m∥ .
F

ε,
−→
0

p (Rκ×Rη)
. By following the same steps in proving (15), we get that

∥Qn,m(h)∥ .
F

ε,
−→
0

p (Rκ×Rη)
≤ C

∥∥∥∥∥∥∥
 ∫∫

R×R

∣∣Υt,r ∗W2t+n ,2r+m(h)
∣∣εdtdr

1/ε
∥∥∥∥∥∥∥

p

. (19)

We need now to consider three cases:

Case 1. p = 2 = ε. In this case, we have
.
F

2,
−→
0

2 (Rκ × Rη) = L2(Rκ × Rη). So, by invoking
Plancherel’s theorem, we obtain

∥Qn,m(h)∥2
.
F

2,
−→
0

2 (Rκ×Rη)
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≤ C
∫∫

R×R

∫∫
Rκ×Rη

∣∣∣(Â(2t+nξ)⊗ B̂(2r+mζ)
)

Υ̂t,r(ξ, ζ) f̂ (ξ, ζ)
∣∣∣2dξdζdrdt

≤ C
∫∫

R×R

∫∫
∆t+n,r+m

∣∣∣(Â(2t+nξ)⊗ B̂(2r+mζ)
)

Υ̂t,r(ξ, ζ)ĥ(ξ, ζ)
∣∣∣2dξdζdrdt

≤ C((1 + |n|)(1 + |m|))−α−1∥h∥Lp(Rκ×Rη), (20)

where ∆t,r =
{
(ξ, ζ) ∈ Rκ ×Rη : 1

2 ≤ A(2tξ) ≤ 2 and 1
2 ≤ B(2rζ) ≤ 2

}
.

Case 2. p = ε. By (15), we get that

∥Qn,m(h)∥ .
F

p,
−→
0

p (Rκ×Rη)
(21)

≤ C
(∫∫

R×R

∫∫
Rκ×Rη

(∫∫
Sκ−1×Sη−1

Mu,v(W2t+n ,2r+m(h)(u, v))

× |℧(u, v)|σκ(u)dση(v)
)εdxdydtdr

)1/ε

≤ C
(∫∫

R×R

(∫∫
Sκ−1×Sη−1

|℧(u, v)|

×
∥∥Mu,v(W2t+n ,2r+m(h)

∥∥
pσκ(u)dση(v)

)p
dtdr

)1/p
,

where

Mu,v(h)(u, v) = sup
k1k2∈R

1
k1, k2

∫ k2

0

∫ k1

0
h(x − tu, y − rv)dtdr

which is bounded on Lp(Rκ ×Rη) for 1 < p < ∞. Therefore,

∥Qn,m(h)∥ .
F

p,
−→
0

p (Rκ×Rη)
≤ C∥℧∥L1(Sκ−1×Sη−1)∥h∥ .

F
p,
−→
0

p (Rκ×Rη)
. (22)

Case 3. p > ε. By duality, there is a non-negative function ϕ lies in the space L(p/ε)′(Rκ ×Rη)

such that ∥ϕ∥L(p/ε)′ (Rκ×Rη)
= 1 and

∥Qn,m(h)∥ε
.
F

ε,
−→
0

p (Rκ×Rη)

≤ C
∫∫

R×R

∫∫
Rκ×Rη

∣∣∣∣∫∫It,r

℧(u′, v′)
|u|κ |v|η

W2t+n ,2r+m(h)(x − u, y − v)dudv
∣∣∣∣εϕ(x, y)dxdy dtdr

≤ C∥℧∥ε/ε′

L1(Sκ−1×Sη−1)

∫∫
R×R

∫∫
Rκ×Rη

∫∫
It,r

|℧(u′, v′)|
|u|κ |v|η

×
∣∣W2t+n ,2r+m(h)(x − u, y − v)

∣∣εdudvϕ(x, y)dxdy dtdr

≤ C∥℧∥ε/ε′

L1(Sκ−1×Sη−1)

∫∫
Rκ×Rη

Υ∗(ϕ)(x, y)
(∫∫

R×R

∣∣W2t+n ,2r+m(h)(x, y)
∣∣εdtdr

)
dxdy

≤ C∥℧∥ε/ε′

L1(Sκ−1×Sη−1)

∥∥∥∥∫∫R×R

∣∣W2t+n ,2r+m(h)(x, y)
∣∣εdtdr

∥∥∥∥
(p/q)

∥∥Υ∗(ϕ)
∥∥
(p/q)′

≤ C∥℧∥ε/ε′+1
L1(Sκ−1×Sη−1)

∥h∥ε
.
F

ε,
−→
0

p (Rκ×Rη)
.

Thus, by the last inequality and (22), we obtain that
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∥Qn,m(h)∥ .
F

ε,
−→
0

p (Rκ×Rη)
≤ C∥℧∥L1(Sκ−1×Sη−1)∥h∥ .

F
ε,
−→
0

p (Rκ×Rη)
. (23)

for all p ≥ ε. Therefor, by employing the duality along with the interpolation, we conclude that the
inequality (23) holds for all 1 < p < ∞ and 1 < ε < ∞, which is when interpolated with (20), we get

∥Qn,m(h)∥ .
F

ε,
−→
0

p (Rκ×Rη)
≤ C ((1 + |n|)(1 + |m|))−θ(α+1)∥h∥ .

F
ε,
−→
0

p (Rκ×Rη)
(24)

for all θ ∈ (0, 1), θ
2 < 1

p < 1 − θ
2 and θ

2 < 1
ε < 1 − θ

2 . Since

∥T℧(h)∥ .
F

ε,
−→
0

p (Rκ×Rη)
≤ C

∫∫
R×R

∥Qn,m(h)∥ .
F

ε,
−→
0

p (Rκ×Rη)
dndm,

then by invoking (24) and choosing θ > 1
α+1 , we end with

∥T℧(h)∥ .
F

ε,
−→
0

p (Rκ×Rη)
≤ C∥h∥ .

F
ε,
−→
0

p (Rκ×Rη)
(25)

for all p, ε ∈ ( 2+2α
1+2α , 2 + 2α).

4. Conclusions

In this work, we proved the boundedness of the singular integrals T℧ on Triebel-Lizorkin spaces
.
F

ε,−→γ
p (Rκ × Rη) for all p, ε ∈ ( 2+2α

1+2α , 2 + 2α) whenever the kernel function ℧ in Gα(Sκ−1 × Sη−1) for
some α > 0. The main result in this paper generalizes and improves the main results proved in [1,2,11].

In future work, we aim to prove the boundedness of T℧ on
.
F

ε,−→γ
p (Rκ × Rη) for a wider range of p

provided that ℧ ∈ Gα(Sκ−1 × Sη−1).
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