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Abstract: Biomass production for cattle farming is affected by drought and high temperatures in southern
Mexico. Arbuscular mycorrhizae have been used to favor the transport of nutrients and water to the plant,
nowadays exogenous applications of brassinosteroids are considered to improve the regulation of diverse plant
growth processes. In this study, nursery research combining biofertilization of B. decumbens with Rhizophagus
intraradices and/or Azospirillum brasilense in combination with exogenous brassinosteroid applications, was
carried out to study their effects on plant growth. The results indicate an increase in morphological and
physiological components of B. decumbens with Hbr applications alone and/or in combination with
R. intraradices. Mycorrhizal colonization favored and increased N and P content with Hbr
applications. We conclude that Hbr not only favored growth, but also colonization with R.
intraradices and consequently biomass production, and N and P content in plant tissue. The growth
response and nutrient exchange suggest interdependence between brassinosteroids and the
endomycorrhizal fungus.

Keywords: Arbuscular mycorrhizae; Homobrassinolide; Yield components.

1. Introduction

Cattle production systems in southern Mexico are mainly based on the grazing of introduced
grasses of the genera Cynodon, Panicum, Digitaria and lately the genus Brachiaria, and within this
genus, B. decumbens Stapf is one of the preferred grasses in this region. In general, grasslands are
maintained with the minimum of inputs and over time they degrade due to the effects of seasonal
distribution of precipitation, high temperatures and soil acidity. In addition, the absence of
sustainable practices generates seasonal biomass production, with changes in the allocation of dry
matter in the yield components and an increase in undesirable plants [1].

These abiotic factors, in combination with poor grassland management, become a threat to the
sustainability of the system. In this regard, there is currently an increased interest in some
mechanisms of action of various rhizosphere microorganisms in the sustainable management of
grasslands, such as endomycorrhizal fungi [2] that establish symbiosis with the root system of plants
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in almost all ecosystems [3], favor the transport of nutrients and water [4] and have been shown to
increase crop yields through nutritional effects and the regulation of plant hormones [5].

The symbiosis presents preference between some species and different endomycorrhizal fungi
[6], however, B. decumbens presents high percentage of radical colonization and biomass in-growth
in different environments [7,8].

In the case of brassinosteroids, which are essential steroid hormones for plant growth, they exert
regulation of various processes in crop growth and yield, such as cell expansion and division,
vascular differentiation [9,10], pollen and stamen development [10], and homeostasis and signaling
[11]. In addition, they have been shown to positively affect symbiotic interaction with changes in
plant hormone levels when symbiosis is established [12], as in solanaceae [13]. They also interact with
plants in the presence of biotic and abiotic stresses [9,11].

Therefore, in order to improve the production and quality of biomass in Brachiaria de-cumbens
Stapf, it was biofertilized with R. intraradices and/or A. brasilense in interaction with a
homobrassinolide in Chiapas Mexico.

2. Materials and Methods

2.1. Study Area Location

The present investigation was carried out from March to July 2023 under nursery conditions in
the Pichucalco Experimental Station, (Latitude 17° 30” N, Longitude 93° 07” W altitude and 36 m
above sea level) of the National Institute of Forestry, Agricultural and Livestock Research (INIFAP)
in Pichucalco, Chiapas Mexico.

2.2. Edaphoclimatic Conditions of the Study Area

The climate of the region is type Af, [14] warm humid with rain all year round, average annual
precipitation of 3996 mm and average temperature of 25 °C.

The soil belongs to the Acrisol group, the substrate was made with the soil plus 50% washed
river sand and it was solarized for 72 h with the following physical-chemical characteristics: Sandy
crumb texture, sand 62.84%, silt 19.36% and clay 17.80% (Bayoucus), 3.72 % organic matter (Walkley-
Black), pH 5.58 (1:2 H20), Apparent density 1.47 g.ml*, 0.16 % N total (%) (Kjelddhall), P 57.7 mg.kg-
1 (colorimetry), 84 K* int. (mg/kg™), (atomic spectrophotometry), 0.3 mg/kg de Na+, 284.0 mg/kg de
Ca*, 1.5 Meq.100g" cation exchange capacity (CEC) and 0.05 ds.m? electrical conductivity
(conductometer).

Plastic bags (25x35 cm) with a capacity of 5.0 kg were filled with the substrate, previously
perforated at the bottom to promote drainage. The bags were placed on wooden structures to avoid
contact with the ground.

2.3. Biofertilizers and Homobrassinolide

The endomycorrhizal fungus Rhizophagus intraradices (Schenk et Sm) Walker et Schuessler, was
reproduced in sterile soil in the root system of Sorghum bicolor L. At the time of packaging there were
40 spores per gram of soil plus propagules, and the level of colonization in the root system was 95%
(Micorriza INIFAP® Rosario Izapa, Chiapas, México. Data indicated on the product).

Azospirillum brasilense Tarrand, Krieg et Dobereiner, was produced by the company Bio-fabrica
Siglo XXI in Xochitepec, Morelos, México, under the trade name AzoFer Plus, having a concentration
of 500 x 10¢ bacteria-g™! (Data indicated on the product).

Brassinosteroid CIDEF-4 (HBr) is a product of Natura del. Desierto, SA de CV in Mexico with
80% steroidal content, and 10% active ingredient. Its soluble presentation is not toxic and it is
compatible for its application with agrochemicals.
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2.4. Experiment Setup and Application of Microorganisms and Homobrassinolide

The seeds of Brachiaria decumbens Stapf were sown in each treatment and the microorganisms
were adhered to 4% of the weight of the seed with carboxymethyl cellulose. The inoculated seeds
were sown 3 cm deep.

Brassinosteroid CIDEF-4 (HBr) was used at 2 mgL‘, and the first foliar application of
homobrassinolide was carried out 12 days after sowing (das), the time in which the emission of the
first true leaves occurred in all treatments, subsequently the application foliar treatment of
homobrassinolide was carried out every 28 days.

The treatments were: 1) Control, 2) Rhizophagus intraradices, 3) Azospirillum brasilense, 4) R.
intraradices + A. brasilense, 5) Homobrassinolide CIDEF-4 (Hbr), 6) Hbr + R. intraradices, 7) Hbr + A.
brasilense, 8) Hbr + R. intraradices + A. brasilense. In each treatment there were five repetitions, and
they were distributed in a completely randomized design. The experimental unit was one container
with one plant. Plants were irrigated with water drawn from a deep well.

2.5. Variables Evaluated

Destructive sampling of the plants was carried out at 28, 56, 84 and 112 (das). In addition,
morphological variables (plant height, number of leaves, diameter of stem and number of stems) and
physiological variables (dry weight of aerial and root components and leaf area) were recorded. The
percentage of mycorrhizal colonization was determined in the root and the N and P content in the
plant tissue.

The physiological yield components of aerial and root were weighed on a semi-analytical
balance (Ohaus Adventurer Pro, USA) after drying in a forced air oven at 60-75°C to constant weight.
Leaf area (cm?) was obtained using a leaf area integrator (LI-COR, LI 3000%, USA).

The percentage of colonization was quantified at 28 das using the technique [15]. One hundred
root segments of 1.5-1.6 cm in length were observed with an optical microscope with oil immersion
objective (100 X). With the previous variables, the Relative Growth Rate (RGR) [16] was determined.

N and P content was obtained by foliar analysis. N was determined by microkjeldahl and
phosphorus content with an Olsen/spectrophotometer (Thermo Fisher Scientific Model 400 Y4) at the
soil and water laboratory of the Agricultural Sciences Faculty of the UNACH in Huehuetan, Chiapas,
Mexico.

2.6. Statistical Analysis

A completely randomized design was used, performing an ANOVA analysis of variance, using
the SAS System for Windows Ver. 8.1 (1999-2000) [17], When the ANOVA was significant, the
parameters were compared by Tukey test (p < 0.05). The data, expressed in percentages, were
transformed by the formula arc.sin, before the ANOVA and the data were plotted using Sigma Plot
version 11.0.

3. Results

3.1. Morphological and Physiological Yield Components

The average height of plants in interaction with the microorganisms and the homobrassinolide,
alone or combined, increased 53.9 % more, compared to the control at 28 das and at the end of the
evaluation the increase represented 16.6 % (p < 0.05).

The maximum average height reached with the treatments where Hbr was applied was 8.8 %
compared to the biofertilized treatments alone. On the other hand, the biofertilized treatments were
11.2 % taller than the control. The most contrasting effect was between the treatments with Hbr and
the control with a difference of 20.9 cm in height (Table 1).
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Table 1. Morphological yield components of Brachiaria decumbnes Stapf. biofertilized with R.
intraradices, A. brasilense and foliar application of homobrassinolide in nursery.
Time Treatment Height Leaves Stems Stem diameter***
(days) (cm.plant  (Number.plant (Number.plan (mm.plant?)
b ) )
Control 14.2 ¢** 3.8c¢ 24b 2.0 ab
R. intraradices 15.8 bc 4.6 abc 3.2 ab 2.0 ab
A. brasilense 15.0 bc 4.8 ab 28D 1.9 ab
28 R. intraradices+ A. brasilense 16.8 ab 4.4 bc 3.0Db 2.0 ab
Hbr* 15.8 bc 54a 3.8a 22a
Hbr + R. intraradices 18.4 a 54 a 3.0 ab 23a
Hbr + A. brasilense 182 a 4.8 ab 28D 1.7b
Hbr + R. intraradices + A. 152bc  5.0ab 2.6b 2.0 ab
brasilense
CV (%) 5.5 9.9 14.1 8.7
Control 36.6 e 14.4 f 3.8 bc 24 a
R. intraradices 47.2d 21.0d 3.6¢c 25a
A. brasilense 49.6 bcd 16.2 ef 3.8 bc 24 a
56 R. intraradices+ A. brasilense 46.2 d 18.0e 4.0 bc 25a
Hbr 47.6 cd 322a 5.0a 2.6 a
Hbr + R. intraradices 58.4 a 29.2b 4.6 ab 25a
Hbr + A. brasilense 55.2abc  23.8c¢ 4.2 abc 2.6 a
Hbr + R. intraradices + A. 56.4 ab 248 ¢ 38¢ 2.6 a
brasilense
CV (%) 7.7 4.5 11.8 7.0
Control 61.6 c 29.6 d 3.8d 25b
R. intraradices 66.8 b 47.0 ¢ 4.6 cd 2.6b
A. brasilense 68.8b 55.2 bc 4.6 cd 25b
R. intraradices+ A. brasilense 67.6 b 53.6 bc 5.4 bc 25b
84 Hbr 72.6a 70.2 a 6.8 a 26b
Hbr + R. intraradices 69.4 b 68.8 a 5.6 bc 29a
Hbr + A. brasilense 69.4b 57.6 b 6.4 ab 2.7b
Hbr + R. intraradices + A. 72.6a 55.0 cb 6.0 ab 29a
brasilense
CV (%) 2.2 7.9 10.1 2.9
Control 65.4d 82.0c 50d 26b
R. intraradices 71.8 ¢ 98.4b 5.8 cd 2.6 ab
A. brasilense 73.6 c 99.2 b 5.6 cd 2.7 ab
112 R. intraradices+ A. brasilense 76.2 bc 94.0 b 6.0 bed 26b
Hbr 824 a 114.8 a 9.6a 2.8 ab
Hbr + R. intraradices 81.6a 1244 a 8.8 a 29a

Hbr + A. brasilense 82.6 a 95.4b 6.6 be 2.7 ab
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Hbr + R. intraradices + A.
80.8 ab 122.0a.6 72b 2.8 ab

brasilense
CV (%) 3.4 5.2 8.9 5.2

*Hbr= Homobrassinolide. **Values with the same letter within each factor and column are equal according to

Tukey’s test at p < 0.05. CV = coefficient of variation (%). *** average of three stems per plant.

In contrast, the ratio was 24 % when measuring the height of plants with Hbr compared to
biofertilized plants alone.

The most contrasting difference in leaf number was at 56 and 84 das and was between the control
treatments and the application of Hbr alone or in combination with the microorganisms. This
represented an increase of 90.9 % (56 das) and 112 % (84 das). The average of the four samples in the
treatments biofertilized with R intraradices and/or A. brasilense was 35 % higher than the control. When
applying Hbr in combination with the microorganisms, the number of leaves increased in different
percentages compared to the same treatments without Hbr. The initial value at 28 das, the difference
when applying Hbr was 8 %, at 56 das 40.7 %, and at 84 and 112 das it was 16 %. In all samplings
there were statistical differences (p < 0.05), the first statistical group was formed by the treatments
where Hbr was applied alone and when biofertilization was also applied with R. intraradices.

The number of stems per plant showed significant statistical differences (p<0.05) in favor of the
treatments applied only with Hbr and in combination with biofertilization of R. intraradices, as well
as biofertilization alone of R. intraradices from the first sampling. The most notable difference between
treatments occurred at 84 and 112 das. At 84 das, the number of stems increased 41% in the treatments
with the biofertilization of the microorganisms plus Hbr compared to the same treatments with only
the microorganisms. At 112 das, the Hbr treatment increased the number of stems by 92% in relation
to the control, 65% in relation to the treatments with microorganisms and 29% with microorganisms
plus Hbr. Stem thickness is more consistent when combining Hbr and R. intraradices from the
beginning of the evaluation. The greatest increase occurred at 28, 84 and 112 das with the Hbr plus
R. intraradices treatment and was statistically superior (p < 0.05) to the rest of the treatments. The
difference represented 13% more in the thickness of the stem for the treatment R. intraradices plus
Hbr compared to the control.

In relation to the physiological components of yield (Table 2), the greatest increase in root
biomass after 28 das occurred in the treatment where Hbr was applied and was statistically different
from the other treatments (p<0.05). At this time, the lowest value was presented with the control.

Table 2. Physiological yield components of Brachiaria decumbnes Stapf. biofertilized with R.
intraradices, A. brasilense and foliar application of homobrasinolide in nursery.

dry weight (g.plant-1) Leaf area
Time (days) Treatment Root Leaves Stem (cm2.plant)

Control 0.034 c** 0.092 d 0.044 e 272 c

R. intraradices 0.062 b 0.122b 0.068 abc 38.6 b

A. brasilense 0.064 b 0.104 cd 0.054 de 41.3b
28 R. intraradices+ A. brasilense 0.070 ab 0.120 cd 0.066 bc 41.6 b

Hbr* 0.076 a 0.128b 0.078 a 53.8a

Hbr + R. intraradices 0.060 b 0.154 a 0.076 ab 61.3a

Hbr + A. brasilense 0.040 ¢ 0.090 d 0.064 cd 35.3b

Hbr + R. intraradices + A. 0.060 b 0.112 be 0.068 abc 272 ¢

brasilense

CV (%) 9.7 7.1 8.8 8.9

56 Control 0.35d 1.92 de 1.37d 285.2d
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R. intraradices 0.40 cd 2.00 cde 1.50 cd 301.8d
A. brasilense 0.49 ¢ 1.65¢e 1.34d 5374 a
R. intraradices+ A. brasilense 0.46 c 2.00 cde 1.45 cd 581.0 a
Hbr 1.06 a 391a 3.02a 4699Db
Hbr + R. intraradices 0.77 b 3.12b 2.61b 445.2 be
Hbr + A. brasilense 042 cd 253 ¢ 1.73 ¢ 456.7 bc
Hbr + R. intraradices + A. 042 cd 2.38 cd 1.67 cd 399.1 ¢
brasilense
CV (%) 8.1 11.1 9.8 6.9
Control 0.88 e 418 e 3.65d 537.38 f
R. intraradices 1.23d 7.07 d 6.93 ¢ 621.13 ef
A. brasilense 1.24d 8.69 ¢ 8.63b 928.17 d
R. intraradices+ A. brasilense 1.32 cd 7.06 e 6.64 c 719.11 e
84 Hbr 2.15a 10.00 b 1155 a 1055.43 ¢
Hbr + R. intraradices 1.52 bed 12.14 a 12.52 a 1427.05 a
Hbr + A. brasilense 1.63 bc 10.51 b 11.29 a 1254.99 b
Hbr + R. intraradices + A. 1.75b 10.01b 9.28b 1093.19 ¢
brasilense
CV (%) 11.3 6.0 9.2 5.7
Control 220 e 10.73 ¢ 14.94 ed 151.18 ¢
R. intraradices 321b 12.92b 19.47 d 174.73 ¢
A. brasilense 2.86 ¢ 13.41Db 20.26 cd 169.85 ¢
R. intraradices+ A. brasilense 2.61 cd 12.71 bc 16.79 e 171.86 ¢
112 Hbr 3.64a 18.26 a 26.63 b 288.16 a
Hbr + R. intraradices 2.69 cd 19.85 a 28.92b 274.60 a
Hbr + A. brasilense 1.80 f 13.58 b 22.26 ¢ 206.41 c
Hbr + R. intraradices + A.
brasilense 2.44 de 19.32 a 32.79 a 2812.44 a
CV (%) 6.0 6.4 4.9 6.4

*Hbr= Homobrassinolide. **Values with the same letter within each factor and column are equal according to
Tukey’s test at p < 0.05. CV = coefficient of variation (%).

On the other hand, at 56 and 84 das, the interaction of the application with Hbr and the
microorganisms induced increases in root biomass of 19 and 28 % respectively in comparison with
the biofertilized treatments but without Hbr. In the last evaluation at 112 das, the root biomass of the
biofertilized treatments alone increased 43 % more in comparison with the same treatments plus Hbr.

Leaf biomass presented the greatest increase with biofertilization of R. intraradices plus Hbr at
28, 84 and 112 das, and was statistically different (p<0.05). The treatment with Hbr alone at 56 and
112 das was included in the same statistical group.

Stem dry weight presented the highest values in the first samples at 28 and 56 das with the Hbr
alone treatment and statistically different (p<0.05). At 84 das, the individual biofertilization of R.
intraradices and A. brasilense was included in the same statistical group. At the end of the study, the
highest biomass allocation to stems was found with the Hbr treatment plus the two biofertilizers.

Leaf area presented differential induction in the response to biofertilization of microorganisms,
alone or associated through time and in interaction with Hbr. In the first sampling at 28 das, there
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was a statistical difference and the greatest leaf area, at this time was in the treatments with Hbr and
when biofertilized with the endomycorrhizal fungus. On the other hand, at 56 das, the greatest leaf
area was found in plants biofertilized with the endomycorrhizal fungus and nitrogen-fixing bacteria
separately. In the third sampling, at 84 das, the greatest increase occurred in the treatment with the
biofertilization of R. intraradices plus the application of Hbr. At the end of the evaluation, the greatest
increase in leaf area and statistically different (p<0.05) was in the treatments where Hbr was applied
alone, in interaction with the biofertilization with R. intraradices, and in co-inoculation with A.
brasilense (Table 2).

3.2. Biomass Allocation in Shoot and Root

The highest biomass allocation to the root system in relation to the shoot was found in the initial
sampling with the symbiosis of the two microorganisms in the plant and when Hbr was included in
the same treatment. This same effect was found in the plants only treated with Hbr. In the following
samples, the highest value was found in the plants where Hbr was included (Figure 1).

The greatest initial increase in biomass allocation to the aerial part of B. decumbens Stapf occurred
with the treatments biofertilized with R. intraradices, alone, in co-inoculation with A. brasilense or
when Hbr was included. The application of Hbr alone showed the greatest biomass accumulation in
the four samples.

In the aerial part, at 28, 56 and 84 das the highest biomass allocation was presented with the
application of Hbr alone and in the treatment with biofertilization of R. intraradices plus Hbr. At 112
days, in addition to the previous treatments, the aerial biomass was higher with the co-inoculation of
R. intraradices plus A. brasilense and the application of Hbr.

035] Shoot 28 days | shoot 56 days

g.plant™

27 - Shoot 84 days Shoot 112 days

g.plant®

Root

Control  Reinia- A brasi- R.i
radices lense

Figure 1. Root and aerial biomass of B. decumbens Stapf biofertilized with R. intraradices, A. brasilensis
in interaction with an homobrassinolide. The values are averages of five repetitions per treatment.

Relative Growth Rate

Microorganisms alone or in co-inoculation induce differential effect on the relative growth rate
of B. decumbens Stapf. There are fluctuations in it over time, and it increases during the first evaluation
period when Hbr is included (Figure 2).

In the period from 56 to 84 das, there was a significant increase in the relative growth rate with
the biofertilization of A. brasilense, which is similar to the growth achieved when Hbr is included in
the biofertilization. On the other hand, in the third period, there was a significant increase in the
control, same as the induction of the growth rate of the treatment with the symbiosis of the
microorganisms plus Hbr.
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Figure 2. Relative growth rate of B. decumbens Stapf plants biofertilized with A. brasilense and/or R.
intraradices alone and/or combined in interaction with a homobrassinolide. Values are averages of five
plants per treatment and sampling.

In general, after the initial high growth, its effect decreases in the following period or at the end
of the evaluation. It should be noted that the most consistent relative growth rate was presented in
the treatment with Hbr and the symbiosis of the two microorganisms.

In the case of A. brasilense, the effect is opposite to the growth induced by R. intraradices, which
was in this case at the beginning, and decreases notably in the last two months of the evaluation. A.
brasilense increases in the second period and decreases in the third period. The co-inoculation of the
two microorganisms plus Hbr caused a slight initial decrease compared to the microorganisms alone
plus Hbr, but it was higher in the second and third evaluation periods.

Mycorrhizal colonization

Mycorrhizal colonization increased 42 % more with R. intraradices alone and in co-inoculation
with A. brasilense compared to the control and A. brasilense (Figure 3).

50

t

20 -

Caolonizacion micorrizica (%)

T T T T T T T T
Control  R.intra- A brasi- R_intra- Homo- Homobrainolide +
radices lense radices+ brasino- R inta- A brasi- R. infraradicest
A brasi- lide radices  lense A. brasilense

lense

Figure 3. Mycorrhizal colonization on B. decumbens Stapf biofertilized with A. brasilense and/or R.
intraradices alone and/or combined in interaction with a homobrassinolide at 28 das. Values are
averages of four samples per treatment.

The application of Hbr alone was 37 % and with R. intrardices 43 %. Hbr in combination with A.
brasilense showed colonization of 33 %. The highest value of 39.8 % was with the co-inoculation of the
two microorganisms plus Hbr and represented 58 % more in relation to the control.

Content of N and P in plant tissue

The N content in plant tissue of B. decumbens Stapf increased significantly with biofertilizers plus
Hbr applications (Figure 4).
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Figure 4. Variation in nitrogen and phosphorus content in the plant tissue of B. decumbens Stapf
biofertilized with R. intraradices, A. brasilense in interaction with homobrassinolide. Different letters
indicate statistically significant differences according to the Tukey test (P < 0.05). The vertical bars
indicate the standard error of the mean (n = 4). Coefficient of variation = 14.9 %N y 15.1 %P.

4. Discussion

The increase in morphological components of B. decumbens Stapf biofertilized with R. intraradices
and/or A. brasilense alone or in co-inoculation, indicates compatibility between the two, even though
it is possible to find differences in the induction of host plant growth depending on the
microorganisms [18]. The development of biofertilized plants at the beginning of root colonization
seems to be related to photosynthate demand of the root system [19]. This same effect was higher in
the same treatments with the biofertilizers plus Hbr. applications. The previous higher expression
was when combining biofertilization of R. intraradices and exogenous Hbr applications.

The positive effect on plant height when applying Hbr alone or combined with R. intraradices
biofertilization compared to A. brasilense has been demonstrated in solanaceae [13], tobacco, tomato
[20] and in wheat where synthetic Br foliar was applied and mycorrhization was increased [21]. In
addition, in vitro plants of great dwarf banana (Musa sp.) also increased the height of shoots with the
application of Hbr (Cidef-4) [22]. In greenhouse, plant height was greater with the application of Hbr
Biobras (6-ABr) alone, in banana FHIA-18 subjected to high temperatures [23] and in field conditions
biofertilization alone of R. intraradices induced more height of Brachiaria decumbens [24].

The separate contrasting effects of Hbr and endomycorrhizal fungi in inducing differential
response when applied may be due, in the case of endocmycorrhizal fungi, to the stimulation of host
plant growth [25], through the transport of nutrients [26] and water [27] and with the application of
Hbr, the benefit in the improvement of plants is attributed to its influence on various growth
processes [9], in addition to improving their permanence in environments with stress, biotic or abiotic
[28].

In the case of R. intraradices, the contrasting effect between the number of leaves of B. decumbens
from the first sampling coincides with high mycorrhization (40 %) compared to the control (19 %).
This suggests, efficiency of symbiosis with R. intraradices. This fact has been cited in B. decumbens
Stapf [29], and in B. brizantha (Hochst. ex A. Rich) cv insurgent with R. intraradices [8]. In other crops
biofertilized with R. intraradices, leaf number has also been increased as in Coffea canephora (Pierre) ex
Froehrner [30], and Theobroma cacao [31].

The application of brassinosteroid alone in various crops, such as in vitro plants, induces a
positive response in the number of leaves, as in banana clone FHIA-18 with the addition of Hbr
(Biobras-6) [32], in Lactuca sativa L. with the foliar spraying of Biobras-16 [33]. In contrast, in Stevia
rebaudiana Bert the highest number of leaves (p<0.05) was found with the mixture of R. intraradices
and Hbr [34]. The above response may be related to the extension of the mycelium of the fungus
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which allows it to act as an extension of the root absorption surface [26] and favors the persistence of
the host plant in adverse environmental conditions [35], such as drought [27] and in general, the
concomitant increase in photosynthetic activity and growth [36].

Additionally, these results with positive effects on plant growth also occur under biotic or abiotic
stress conditions [9,28] (Gonzalez et al., 2008; Faridud-din et al., 2014).

In potato (Solanum tuberosum L.), vitro plants transplanted in greenhouse, Hbr (BB-6) was applied
to the foliage and an increase number of minitubers per plant was observed [37], and banana clone
FHIA-18 [38] reported an increase in the diameter of the pseudostem, to apply the Hbr (BB-6) by
immersion and foliar spraying and when applying CIDEF 4 (hbr), The shoot height of Musa spp cv
great dwarf is increased in vitro by growing in two culture media [22].

In the case of A. brasilense, there is a tendency for morphological variables to increase when it is
associated with the endomycorrhizal fungus. It is likely that the contributions of radical exudates of
the bacterium, such as indole acetic acid [39], favor communication with soil microorganisms [40,41].
Phytohormones have been considered as signaling compounds for endomycorrhizal fungi that can
influence spore germination, hyphal growth and root colonization [42] (Larosse et al., 2002).

The differential response in the growth of the different organs of B. decumbens Stapf, as a
consequence of biofertilization with the microorganisms, suggests compatibility between the two.

Physiological components

The increase in dry matter allocation to the different physiological components of yield in B.
decumbens Stapf in most samples and plant structures, when Hbr was applied alone, and when
combining the same treatment with R. intraradices, suggests interdependence between the two. The
above response is expressed in the growth of mycorrhizal plants, through the increase in nutrient
content of the host and biomass production [43]. In this regard, [21] when epibrassinolide was applied
to wheat and rice, reported an increase in the growth of both mycorrhizal species established under
salt stress conditions. Similar results were reported in cotton when exogenous applications of
brassinosteroids were applied, with an increase in yield and greater accumulation of biomass [44].

The above response seems to be related to various phytohormones, such as auxins, ethylene,
jasmonic acid, brassinosteroid and strigolactones involved in the growth and development of root
hairs [12,45] as happens when biofertilizing trifoliate orange under drought stress [46].

In other crops, brassinosteroids are also cited as positively affecting the mycorrhizal symbiosis
of tobacco and tomato plants [20] and auxins, brassinosteroids and strigolactones are responsible for
the establishment of mycorrhizal associations [47]. In general, microbial communities are attracted
by some signaling factors in the form of exudates released by plant roots [48] and lead to improved
plant growth [49].

Hormonal homeostasis (in response to fungal associations) leads to signaling and induces
various physiological changes to the benefit of the plant [47], such as the transport of nutrients and
water through the hypha, which is thinner than plant roots and allows it to penetrate to places where
root absorbing hairs normally do not [50].

Root colonization is high from the beginning (40 %) and the benefits of the symbiosis are
reflected in this variable. It is likely that the initial establishment of the mycorrhizal symbiosis and its
effect on the number of leaves favored the transport of nutrients to the plant [51].

The increase in root biomass of all biofertilized treatments alone or combined seems to be
influenced by the amount of root exudates that favor root growth and this condition allows them to
explore more soil surface [52]. The lowest root growth was in the control, possibly due to the low
levels of native mycorrhization compared to the functioning of the R. intraradices-B. decumbens
symbiosis that has been cited as effective in improving their productivity [53].

Higher root biomass allocation in response to Hbr applications is supposed to [54] stimulate the
intrinsic potential of plants and consequently promote growth and yield [55]. Brassinosteroids have
now been shown to play an important role in yield increase [44]. The increase in vegetative and
reproductive development has been reported in different annual crops biofertilized with
endomycorhysic fungi and A. brasilense [56].
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The effect of R. intraradices in inducing greater biomass in the stem of biofertilized plants from
the beginning of the evaluation is due to the nutrient and water supply to the host plant [57], and
consequently changes in its structures are induced [58]. In Coffea canephora (Pierre) ex Froehner [30]
and Tabebuia donnell-smithii Rose, the same response occurs when biofertilized with R. intraradices
[59].

Foliar laminae biomass also increases. The above may be related with the establishment of the
symbiosis, where the fungus receives photosynthates and the plant increases its access to mineral
nutrition and water [60]. In general, biofertilization with endomycorrhizal fungi significantly
increases the allocation of dry matter to the different morphological and physiological yield
components, compared to the control.

The importance of the interaction of rhizosphere microbiota with plant root exudates such as
indole acetic acid [39], cytokinins and gibberellins [61] has been demonstrated. In addition, it has
been shown that the interaction of endomycorrhizal fungi with plants producing specialized
metabolites such as flavonoids [57], which establish communication with other soil microorganisms
[40,41] and are considered signaling compounds for endomycorrhizal fungi that can influence spore
germination, hyphal growth and root colonization [42].

In addition to the above, plant growth is influenced by various environmental factors [62], which
can be reflected in differential growth regulated by genetic traits with little variation in phenotypic
plasticity through modular growth [63].

In the case of B. decumbens Stapf, its utilization depends on the proportion of leaves, stems and
roots that are generated and these components result in forage yield. Knowledge of the influence of
environmental seasonality on the growth and forage production of species of interest allows the
identification of forage availability and, consequently, the adoption of differential management
strategies for each species.

Moycorrhizal colonization

Colonization was observed in all B. decumbens plants, including the control (possible native
strain), and was greater in plants biofertilized with R. intraradices compared to plants without
biofertilization. The above confirms the presence of endomycorrhizal fungi in the regional substrate;
however, they have a lower capacity for colonization and growth induction, even though B.
decumbens has been considered to have high mycorrhizal dependence [7,8]. The average percentage
of colonization in the control was 16% and with R. intraradices 41%. The above may be related to the
supplementation of carbon sources from the host plant to the fungus [64]. The high colonization
capacity of R. intraradices has been cited in other crops, annuals and perennials [19,56]. It should be
noted that mycorrhizal colonization of plants is influenced, in addition to environmental factors, by
variations in the host genotype [65].

In general, the results showed that the increase in physiological variables coincides with the
increase in colonization levels.

The phosphorus and nitrogen content increased in all treatments with the microorganisms alone
or in co-inoculation, and they statistically surpassed the control (P < 0.05). The preference of
endomycorrhizal fungi to transport phosphorus has been cited [66], in addition to raising the
phosphorus content, iron and zinc are increased [20] (von Sivers, et al., 2019), and the transport of
nitrogen [66].

5. Conclusions

The exogenous applications of Hbr favored the growth of B. decumbens in the morphological and
physiological components of the yield and the effect was synergistic when combined with the
biofertilization of R. intraradices. In addition to the production of biomass, the content of N and P in
the tissue of the plant. The response in growth and nutrient exchange suggests interdependence
between brassinosteroids and endomycorrhizal fungi.
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