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Abstract: We use Fourier analysis to access risk in financial products. With it we analyze price 
changes of e.g. stocks. Via Fourier analysis we scrutinize quantitatively whether the frequency of 
change is higher than a change in (conserved) company value would allow. If it is the case, it would 
be a clear indicator of speculation and with it risk. The entire methods or better its application is 
fairly new. However, there were severe flaws in previous attempts; making the results (not the 
method) doubtful. We corrected all these mistakes by e.g. using Fourier transformation instead of 
discrete Fourier analysis. Our analysis is reliable in the entire frequency band, even for frequency 
of 1/1d or higher if the prices are noted accordingly. For the stocks scrutinized we found that the 
price of stocks changes disproportionally within one week which clearly indicates speculation. It 
would be an interesting extension to apply the method to crypto currencies as these currencies have 
no conserved value which makes normal considerations of volatility difficult. 

Keywords: finance; risk; Fourier; crypto currencies; stock market; conserved value 
 

1. Introduction 

Almost all financial products (e.g. stocks) have neither constant prices nor fixed interest. The price 
of a stock is supposed to reflect the future earnings of the underlying company. As it is impossible to 
know the future, one can only speculate about it. The fluctuating price of a stock can be too high or too 
low compared to the future to come. In essence there is certain risk involve in buying stocks and the 
like. 

There are many ways to estimate risk involved. One of the most common tools is to calculate the 
mean quadratic deviation around an average (standard deviation) which leads to the so-called 
volatility. Here we will investigate in a related but fairly new way. Of course there are more advanced 
ways to access risk in the financial world rather than just looking for volatility. As an example consider 
(Fahling et al. 2018). 

In Section 2.1 we will explain the Fourier analysis. Anything (e.g. prices) which changes over time 
does so slowly or rapidly. There is a frequency of change. High frequencies mean rapid changes and low 
frequencies mean slow ones. This is exactly comparable to a tone of an orchestra. Any sound is a 
variation in pressure. The different instruments (and even a single instrument) produce pressure 
changes with higher and lower frequencies. A Fourier analysis will give the amplitudes (strengths) of 
each frequency of (sinusoidal) pressure change. 

Applying this to e.g. stock prices will lead to something like x% of the changes of a stock price was 
due to daily change (high frequency), y% came from monthly changes (medium frequency), and z% 
from annual changes (low frequency). Of course a real spectrum will consist of many more frequencies. 
The maybe earliest attempts to access risk via Fourier can be found in (Bormetti et al. 2010) and (Baruník 
and Křehlík 2018), respectively. However, these works focus on (valuable) technical aspects and not so 
much on measures for risk assessment in the world of finance. 

(Schädler 2018) used Fourier (probably independent of the above) to find a tool for determining 
risk in financial products. It has been extended by (Schädler and Steurer 2019) and applied to portfolio 
selection (Fahling et al. 2019). The general idea was as follows. The value (profitability) of a company 
may increase (or decrease) because of new products, new technology, new inventions, new markets, 
and many more factors. All this will take time. To develop a new product may take a year, to introduce 
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it the market another one. Even very quick measures might take several months. A change of price of a 
company within e.g. a week must be purely speculative and cannot be connected to the (conserved) 
company value. As an example consider one week in fall 2008 when the stock of Volkswagen AG (a 
German car maker) gained and lost fourfold within a week (Appel and Grabinski 2011). Nobody 
visiting the company rather than the stock market would have noticed anything special during that 
week. 

Using Fourier to analyze the stocks will show the frequencies of the changes in stock price. If the 
spectrum is dominated by high frequencies it means that these changes are speculative. (Schädler 2018) 
called this irrationality. The general idea is marvelous. However, there are some severe flaws. Especially, 
frequencies over 1 �10 days�⁄ = 1 (2 weeks)⁄  were neglected because they could not be included for 
principle (technical) reasons. As it turns out, these high frequencies are essential. Some other flaws such 
as using the quadratic amplitudes produced results which are not there in reality. For more detail please 
see Section 2.2. 

The main purpose of this paper is to fix these problems and draw conclusions from it. Firstly, we 
transformed the stock prices so that frequencies as high as 1 �1 day�⁄  can be reliably used. (As we 
considered daily prices only, 1 �1 day�⁄  is the limit. However, using more frequently listed prices 
would allow arbitrarily high frequencies) Secondly, we used a Fourier transformation rather than a 
discrete analysis. For more details please see Section 3. 

In chapter 4 we present our results. An indeed we found a typical “irrationality” for frequencies 
≥ 1 �5 days�⁄ . These results correspond to “gut-feeling” as crazy ups and downs within the stock 
market appear not rarely within one week and are forgotten in the next one. 

We close with conclusions and future work in Section 5. Though our work is precise, it consumes 
lots of computing power. So some simplification is desirable. It may also lead to much more useful 
conclusions from the Fourier transformed price. 

It appears to be also very interesting to apply our method to other financial products especially 
crypto currencies. A risk assessment via volatility is very tricky there, cf. the newer works of (Almeida 
et al. 2023), (Bowala and Sigh 2022), and (Irfan et al. 2023). Fourier analysis promises new insights. 

2. General method and previous shortcomings 
This section provides an overview how a Fourier transformation can be used to give a risk 

measure of financial assets. Section 2.1 provides the general idea including a brief summary of the 
mathematics behind it. 

In Section 2.2 the general problems are discussed and especially the shortcomings of (Schädler 
2018) and (Schädler and Steurer 2019). 

2.1. The general method 

The Fourier transformation is an over 200-year-old tool mostly applied to analyze frequencies in 
a signal (spectral analysis) or to solve an arbitrary set of linear partial differential equations. First, the 
Fourier series is introduced. 

Any periodic function 𝑓𝑓(𝑡𝑡) can be written as a series of harmonic functions: 

𝑓𝑓(𝑡𝑡) = �𝑎𝑎𝑘𝑘𝑐𝑐𝑐𝑐𝑐𝑐(𝑘𝑘 ∙ 𝜔𝜔𝜔𝜔) + 𝑏𝑏𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠(𝑘𝑘 ∙ 𝜔𝜔𝜔𝜔)
∞

𝑘𝑘=0

 (1) 

Here a period of 𝑇𝑇 has been assumed so that 𝜔𝜔 = 2𝜋𝜋 𝑇𝑇⁄ . The coefficients 𝑎𝑎𝑘𝑘 and 𝑏𝑏𝑘𝑘 are determined 
by 

𝑎𝑎𝑘𝑘 =
2
𝑇𝑇
�𝑑𝑑𝑑𝑑 𝑓𝑓(𝑡𝑡) ∙ 𝑐𝑐𝑐𝑐𝑐𝑐(𝑘𝑘 ∙ 𝜔𝜔𝜔𝜔)
𝑇𝑇

0

       𝑎𝑎𝑎𝑎𝑎𝑎      𝑏𝑏𝑘𝑘 =
2
𝑇𝑇
�𝑑𝑑𝑑𝑑 𝑓𝑓(𝑡𝑡) ∙ 𝑠𝑠𝑠𝑠𝑠𝑠(𝑘𝑘 ∙ 𝜔𝜔𝜔𝜔)
𝑇𝑇

0

 (2) 

A proof of Equation (2) is performed by inserting 𝑓𝑓(𝑡𝑡)  of Equation (1) into Equation (2) and 
performing the integration. A Fourier series exists only if the integrals of Equation (2) exist. Of course 
anything can be found in books like e.g. (Bronshtein et al. 2007) 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 23 August 2024                   doi:10.20944/preprints202408.1680.v1

https://doi.org/10.20944/preprints202408.1680.v1


 3 

 

The interpretation of the Fourier transformation is as follows. The function 𝑓𝑓(𝑡𝑡) is changing 
over time. If it is changing “rapidly,” it is a high frequency, if it is changing “slowly,” it is a low 
frequency. In a general function 𝑓𝑓(𝑡𝑡) there are of course slow and rapid changes. It is a mixture of 
frequencies. The 𝑎𝑎𝑘𝑘  and 𝑏𝑏𝑘𝑘  are the amplitudes of the set of frequencies. So the Fourier 
transformation analyses quantitively how much a financial assets changes e.g. on a daily, monthly, 
or yearly bases. 

Before discussing the application for financial assets, there are other “versions” of a Fourier 
transformation. Instead of having discrete frequencies, continuous frequencies can be applied. 𝑎𝑎𝑘𝑘 or 
𝑏𝑏𝑘𝑘 are then becoming a function rather than a set of discrete parameters. This leads to the so-called 
Fourier transformation. The Fourier transformed 𝑓𝑓(𝜔𝜔) of a not necessarily periodic function 𝑓𝑓(𝑡𝑡) is 
defined by 

𝑓𝑓(𝜔𝜔) ≡ � 𝑑𝑑𝑑𝑑 𝑓𝑓(𝑡𝑡) ∙ 𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖
∞

−∞

 (3) 

As usual 𝑖𝑖2 ≡ −1. There is also a backward transformation given by 

𝑓𝑓(𝑡𝑡) =
1

2𝜋𝜋
� 𝑑𝑑𝑑𝑑 𝑓𝑓(𝜔𝜔) ∙ 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖
∞

−∞

 (4) 

The proof of Equations (3) or (4) is again performed by inserting Equation (3) into Equation (4) or 
vice versa. The Fourier transformed exists if the integral in Equation (3) exists. Equation (4) is the 
continuous analogue to Equation (1). The sum in Equation (1) is transformed into an integral and the 
discrete coefficients 𝑎𝑎𝑘𝑘  and 𝑏𝑏𝑘𝑘  are now a function 𝑓𝑓(𝜔𝜔) . The absolute value �𝑓𝑓(𝜔𝜔)�  is the 
“amplitude” of this particular frequency 𝜔𝜔. Please do not be confused that 𝑓𝑓(𝜔𝜔) has complex values 
(even if 𝑓𝑓(𝑡𝑡) is real). The identity 

𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑐𝑐𝑐𝑐𝑐𝑐(𝜔𝜔𝜔𝜔) + 𝑖𝑖 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠(𝜔𝜔𝜔𝜔) (5) 

shows that the real part of 𝑓𝑓(𝜔𝜔) corresponds to 𝑎𝑎𝑘𝑘 and the imaginary part to 𝑏𝑏𝑘𝑘. In this sense one 
sometimes speaks of the cosine or sine transformed function. In the same token one may use Equation 
(5) to rewrite Equation (1) into 

𝑓𝑓(𝑡𝑡) = � 𝑐𝑐𝑘𝑘 ∙ 𝑒𝑒𝑘𝑘∙𝑖𝑖𝑖𝑖𝑖𝑖
∞

𝑘𝑘=−∞

 (6) 

with 𝑐𝑐𝑘𝑘 ∈ ℂ given by 

𝑐𝑐𝑘𝑘 =
1
𝑇𝑇
�𝑑𝑑𝑑𝑑 𝑓𝑓(𝑡𝑡) ∙ 𝑒𝑒−𝑘𝑘∙𝑖𝑖𝑖𝑖𝑖𝑖
𝑇𝑇

0

 (7) 

Equations (6) and (7) are only a different writing of Equations (1) and (2). 
With this short course in mathematics, we can show how this can be used in evaluating financial 

assets. The price of anything (and especially financial products) can be displayed by a function 𝑓𝑓(𝑡𝑡). 
If the financial product is a stock or similar, its price may change rapidly or with high frequency. In 
the classical interpretation of (Fama 1970) there are random fluctuations. Meanwhile it had been 
proven that they are chaotic (Klinkova and Grabinski 2017b). At least for stocks where there is an 
underlying value of a company, the change in price should reflect the change in company value or 
better expected future value. 

In a fixed interest financial product there is no risk (except for the underlying currency) and 
therefore no fluctuation. Therefore fluctuations are taken for a measure of risk. The most often used 
approach is volatility or standard deviation. There are more advanced methods which are cum grano 
salis based upon volatility. 

Using Fourier analysis to scrutinize risk is a method suggested by (Schädler 2018). The idea 
behind it goes as follows. The (changing) price of a stock should reflect the (future) value of the 
company. However, the price of a stock may change within a millisecond (or shorter). The 
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(conserved) value of a company may change over months or even years. Obviously fast changes are 
due to pure speculation. As a typical example consider the stock of VW, German car manufacturer. 
In fall 2008 its stocks gained and loosed fourfold within a week (Appel and Grabinski 2011). The 
explanation for it was simple. There was a takeover poker with Porsche, a German sports car 
manufacturer. However, the “real” value of Volkswagen did not butch at all during that week. That 
led to the concept of conserved value (cannot change rapidly) and speculation (Appel and Grabinski 
2011). It is also the main idea behind using Fourier analysis to access risk. If the amplitudes for high 
frequencies (e.g. |𝑐𝑐𝑘𝑘≫1| of Equation (7)) are “big” compared to the others, it is “irrational” (a term 
phrased by (Schädler 2018)), speculation and with-it risk is dominant. Therefore (Schädler 2018) 
introduced the ratio 

∑ |𝑐𝑐𝑘𝑘|𝑁𝑁
𝑘𝑘=0

∑ |𝑐𝑐𝑘𝑘|∞
𝑘𝑘=0

 (8) 

|𝑐𝑐𝑁𝑁| is the amplitude of a frequency 𝑁𝑁𝑁𝑁 which is still considered reasonable (e.g. 1/(3 months)). 
The closer the ratio of Equation (8) is to 1, the lesser is speculation or irrationality. To choose 𝑁𝑁 is of 
course arbitrary. However, one may also scrutinize the entire spectrum of |𝑐𝑐𝑘𝑘| and draw conclusions 
from it. 

In Table 1 some results from (Schädler 2018) have been displayed. For exactly how these 
irrationalities are calculated see (Schädler 2018) and (Schädler and Steurer 2019). Some of it will be 
discussed in section 2.2. These three particular stocks will be reconsidered in Section 3. 

Table 1. Some results taken from (Schädler 2018). 

Company Irrationality 
BASF SE 77.8% 
SAP SE 79.2% 
Deutsche Bank AG 82.8% 

Up to now we have shown the fairly new method of using Fourier transformation to access risk. 
In what follows we will discuss problems and shortcomings of this approach. 

2.2. Previous shortcomings 

The general technique from the last section has been used in e.g. physics for centuries for e.g. 
analyzing radio signals from far away solar systems in order to discover orbiting planets. It is also a 
standard tool to solve linear differential equations. The theory and especially its applications in the 
real world are for sure correct. 

For the application here there is a severe difference. We do not have a function 𝑓𝑓(𝑡𝑡). We just have 
discrete quotes for prices. This does not look like a severe problem as Figure 1 shows the end of day 
prices of BASF SE (a German chemical giant) for 5050 trading days. 
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Figure 1. Price of BASF stock between January 2, 1997 and December 30, 2016. 

Though the graphics of Figure 1 looks like a perfect approximation for a function  
𝑓𝑓:ℝ+ → ℝ+, it isn’t one for principle reasons. There are 5050 discrete points which aren’t equally 
distant. Within 20 years there are typically 5050 trading days as the stock market formally closes over 
the weekend and some holidays. Formally speaking, any integral over a “function” displayed in 
Figure 1 is zero. 

Stock prices are quoted much more often than daily. Though there is partly a price every 
millisecond, sometimes it takes many minutes for a new price. But even considering any quoted price, 
the problem of discrete prices does remain. Furthermore such historic values are hard to get, make 
different stocks not comparable as their prices are quoted at different times, and would lead to 
tremendous amounts of data. From Section 3 it would be clear that even the 5,050 prices considered 
here do lead a huge CPU time. 

In experimental physics (especially astronomy) there are also discrete values which should be 
Fourier transformed. They are not a discrete series in itself. Normally it was not possible to measure 
the signals continuously. This is in contrast to the financial data. Prices on the stock market do not 
exist between two quotes. As the price of a stock is in almost all circumstances far away from the 
conserved value (Appel and Grabinski 2011) of the company considered, it does not make sense to 
speculate about continuous prices. 

A function being Fourier transformed via Equations (1) and (2) must be periodic. The 
transformation involving Equations (3) and (4) need an integrable function running form minus 
infinity to plus infinity. Obviously neither requirement is met by a “function” like in Figure 1. Of 
course it is easy to make the function periodic just as it is done in solid states physics. Or for using 
Equations (3) and (4) it can be assumed a function running from minus infinity to plus infinity just 
by setting it to zero outside the regime displayed in Figure 1. 

In (Schädler 2018) and (Schädler and Steurer 2019) the problem has been omitted by using a 
discrete Fourier transformation. It is the analog to a continuous Fourier transformation for a set of 
discrete numbers. It is textbook knowledge (Bronshtein et al 2007) and has been applied to e.g. 
random numbers (Lanczos and Gellai 1975) where a “normal” Fourier analysis is not possible as a 
random function is not integrable (at least not by using Riemann integrals). A discrete Fourier 
analysis is considered an approximation to the Fourier analysis of Equations (1) and (2). It is not clear 
how big the mistake of this approximation is here but it seems to be small. 

The main limitation in (Schädler 2018) and (Schädler and Steurer 2019) was that frequencies >
1 �10 days�⁄  were not considered. It has been because all values were observed on a daily basis only. 
So frequencies > 1 �1 day�⁄  are for sure nonsense. Considering frequencies at least ten times lower 
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avoids for sure nuisance effects. On the other hand, 10 days are two trading weeks. What if the main 
“irrational” fluctuations appear in this period? Just by observing the stock market it looks like that 
there are typically highly fluctuating weeks rather than months. As an archetype example just 
consider the “crazy” week of the VW stock in fall 2008 mentioned in Section 2.1 (Appel and Grabinski 
2011). By considering frequencies < 1 �10 days�⁄  such purely speculative fluctuations are excluded. 
And indeed, chapter 4 will prove that the main effect appears within frequencies > 1 (5 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)⁄  (and 
≤ 1 �1 days�⁄ ). 

Besides considering too low frequencies, (Schädler 2018) and (Schädler and Steurer 2019) 
considered the squares of the amplitudes |𝑐𝑐𝑘𝑘|. Squares make “small things smaller and big things 
bigger.” However, squaring is unlike the Fourier transformation not a linear transformation. 
Therefore the results depend on the chosen dimension. Here it depends on whether the stocks are 
quoted in € or Yen and the time is measured in days or seconds. Taking the square will amplify 
differences. Why not taking the fourth, sixth, eighth, or tenth power? In doing so differences which 
are below the measurement accuracy will suddenly appear to be within the accuracy. 

It does not help that this squaring is often wrongly used. Even by performing a least square fit 
it is supposed to be a “least absolute value fit” (Grabinski and Klinkova 2020). In (Schädler 2018) and 
(Schädler and Steurer 2019) the squaring was used because they wanted to scrutinize the power 
spectrum. However, this is no justification here. In the before mentioned radio signals from outer 
space a power spectrum or squared amplitudes do make sense. Directly measured is an electric (or 
magnetic) field. The amplitudes of this electromagnetic field are almost meaningless from the 
physical point of view. As the energy or here energy current is a conserved quantity which is 
proportional to the square of an amplitude, scrutinizing the squares of the amplitudes scrutinizes the 
(conserved) energy pro time which is also known as power (measured in e.g. Watts). (Therefore the 
name power spectrum) 

Transferring this one-to-one into the financial world is ludicrous. The price of a stock and also 
its square is not a conserved value (Appel and Grabinski 2011). Therefore the fluctuations which are 
due to speculation and with it risk. It does not help to square the prices or here their changes per 
time. 

3. The new method used 

Having highlighted the shortcomings in previous publications, it is now easy to fix these 
problems. 

First one has to make a function out of the data points in Figure 1. Financial products with no 
fluctuations (e.g. fixed interest) are growing or decaying exponentially. As we are not considering 
any fluctuations between two quoted prices, it is only natural to connect data points by exponential 
curves just as they were fixed interest assets with no fluctuations. It is straight forward (but maybe 
puzzling) to do this for all 5,050 prices. To see the difference, we display the first ten trading days of 
BASF SE in Figure 2. As a next step we deduct the average interest from each exponential line 
connecting two data points. Without fluctuations we would have a straight line now. As a last step 
we subtract the value of the first data point (which is equal to the last data point) from each data 
point. In Figure 3 it is shown schematically how the sperate data points of Figure 1 transforms into a 
Fourier transformable function. On the r.h.s. of Figure 3 we have now a perfectly fine Fourier 
transformable function containing the fluctuations only. The same must be done for all data being 
analyzed. 
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Figure 2. Transfomation of separate prices of BASF SE to continuous function. 

 
Figure 3. Transformation of separate prices of BASF SE into function. 

The Fourier transformable function on the r.h.s. of Figure 3 should be transformed by using Eq. 
(3) rather than (7) because one week would contain only five 𝑐𝑐𝑘𝑘 which must be compared to over 
5,000 “ordinary” amplitudes. The function on the r.h.s. of Figure 3 is a piecewise exponential function. 
Its Fourier transformed can be obtained very easily analytically. Its absolute value is a “simple” but 
very long formula. In Equation (9) the result has  

�𝑓𝑓(𝜔𝜔)� = √((−
5.879096792750167(−Cos[𝜔𝜔] + Cos[5050𝜔𝜔])

𝜔𝜔
+. . . +3.558113329776304

× 10−10Sin[5051𝜔𝜔])))²) 
(9) 

been displayed for the example of BASF SE. Displaying the Fourier transformed (or more precisely 
its absolute value) in Equation (9) in full (even in this not very nice format) will take over 500 pages. 
To handle this function is possible with a computer algebra such as Mathematica only. In Figure 4 
the function from Equation (9) has been displayed. It has some similarities to the 5,050 amplitudes in 
(Schädler 2018) (Figure 1 there). Please note that Figure 4 contains a function and not separate values. 
The details can be seen in the enlargement in Figure 5. As we see, frequencies of 1 �several days�⁄  
are slightly more pronounced as the peaks of slightly lower frequencies. At first glance it looks like a 
nuisance effect. However, it is a true effect as we can easily show if we plot the same as in Figure 5 
but for SAP SE. In Figure 6 we see a dramatically enhanced peak. This proves the hint in section 2.2 
that the trading within one week does produce most change. Many more things can be seen from the 
Fourier transformed. The spectrum of BASF shows only a slight increase for high frequencies. Else 
Figure 4 and Figure 5 show a typical 1 𝜔𝜔𝛼𝛼⁄  with 𝛼𝛼 > 0 behavior. This is typical for some random or 
better chaotic fluctuations where lower frequencies are more important. In the case of SAP (Figure 6) 
one sees no general decay of the amplitudes but a peak for frequencies 1 �several days�⁄ . For very 
low frequencies (not displayed here) SAP shows a 1 𝜔𝜔𝛼𝛼⁄  behavior. This means that in the long run 
the price of SAP adjusts to the underlying company value. In shorter periods of time SAP takes 
speculative prices only. This is in perfect accordance to (Appel and Grabinski 2011) who also 
analyzed the SAP stock by completely other means. 
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Figure 4. Fourier transformed of BASF SE price. 

 

Figure 5. �𝑓𝑓(𝜔𝜔)� of BASF SE for frequencies of 1 (50 days)⁄  to 1 (1 day)⁄ . 

 
Figure 6. �𝑓𝑓(𝜔𝜔)�of SAP SE for frequencies of 1 (50 days)⁄  to 1 (1 day)⁄ . 

Many more things can be said from the spectra of stock prices. However, they are quite 
individual. In chapter 4 we will give one analysis which may be used for all stocks universally which 
is in accordance to (Schädler 2018) and (Schädler and Steurer 2019). 

Though formulas like in Equation (9) are quite long, all calculations did not consume much 
computing power. On an ordinary laptop a CPU time of five to ten minutes will produce Figure 4, 
Figure 5, or Figure 6 and also the complete formula in Equations (9). To evaluate the Fourier 
transformed �𝑓𝑓(𝜔𝜔)� one need an integration instead of summation in Equation (8). This will be the 
topic of Section 4. The principle is simple but the numerical integration will consume lots of CPU 
time of typically six weeks. Parallelization can reduce it accordingly. With our means we still needed 
five days. Therefore we evaluated the three stocks of BASF SE, SAP SE, and Deutsche Bank AG only. 
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4. Quantitative analysis of the Fourier transformed 

As the Fourier transformed �𝑓𝑓(𝜔𝜔)� shows the speculative behavior by an undue increase at 
some frequencies (expected range here 1 �5 days�⁄  to 1 �1 day�⁄ ) one should consider the following 
function 

𝐹𝐹(𝜔𝜔) = � 𝑑𝑑𝜔𝜔′� 𝑓𝑓(𝜔𝜔′)�

𝜔𝜔 𝑑𝑑𝑑𝑑𝑑𝑑⁄

0

 (10) 

in the rage 0 ≤ 𝜔𝜔 ≤ 2𝜋𝜋. As 𝐹𝐹(𝜔𝜔) is the “sum of the amplitudes” up to 𝜔𝜔, an undue increase at some 
𝜔𝜔 would unveil the frequency where speculation takes place. As the relative rather than absolute 
amplitudes are essential, one should normalize 𝐹𝐹(2𝜋𝜋) to 1. This is easily done by dividing 𝐹𝐹(𝜔𝜔) of 
Equation (10) by 

𝐹𝐹𝑡𝑡𝑡𝑡𝑡𝑡 = � 𝑑𝑑𝜔𝜔′� 𝑓𝑓(𝜔𝜔′)�

2𝜋𝜋 𝑑𝑑𝑑𝑑𝑑𝑑⁄

0

 (11) 

which will make the results for different stocks comparable. Needless to say that the integrals in 
Equations (10) and (11) cannot be executed analytically. Of course they can be calculated numerically. 
As �𝑓𝑓(𝜔𝜔)� shows 5,050 oscillation, a sufficient accuracy is given by dividing each oscillation into 
1,000 parts. So the numerical integration is essentially performed by inserting 5,050,000 values 
between 0 and 2𝜋𝜋 𝑑𝑑𝑑𝑑𝑑𝑑⁄  into �𝑓𝑓(𝜔𝜔)�. It will lead to 5,050,000 functional values. Adding them up in 
accordance to the integration limits will solve the integrals numerically. As stated, �𝑓𝑓(𝜔𝜔)� is a simple 
but very long formula, cf. Equation (9). Getting the over five million functional values consumes 
roughly six weeks of CPU time. 

The normalized plot of 𝐹𝐹(𝜔𝜔) for SAP is displayed in Figure 7. On this scale there is hardly 
anything unusual. However, displaying frequencies of between 1 �50 days�⁄  and 1 �1 day�⁄ , will 
lead to the graphics of Figure 8. On this scale the summed-up amplitudes are increasing almost linear 
which is natural as for high frequencies the slope in Figure 7 is fairly low. In the high frequency range 
of Figure 8, 10 % of the displayed frequency range accumulated to the last 30 % of the functional 
value of 𝐹𝐹(𝜔𝜔). 

 

Figure 7. Normalized plot of 𝐹𝐹(𝜔𝜔) from Equation (10) for SAP. 
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Figure 1. Normalized plot of 𝐹𝐹(𝜔𝜔) for SAP for frequencies 1 �50 days�⁄  to 1 �1 day�⁄  

The same can be done for Deutsche Bank AG (DB). The result is displayed in Figure 9 Compared 
to SAP the effect is much smaller. But in the frequency around 1 �25 days�⁄  there is an increase. It is 
still a frequency range were the conserved value of a company should not change as in five weeks it 
is hardly possible to change the value of a company. So this is also a hint of speculation but probably 
not within Deutsche Bank itself. As Deutsche Bank is a lender and investor in many companies like 
SAP, it is probably a smeared-out effect from underlying companies. 

 

Figure 2. Normalized plot of 𝐹𝐹(𝜔𝜔) for DB for frequencies 1 �50 days�⁄  to 1 �1 day�⁄ . 

As a last stock we consider BASF. In Figure 10 one can see almost no effect like before. Its looks 
like in Figure 7 where the entire frequency range has been displayed. This is in accordance with 
Figure 5 and the comment under it. BASF is a company producing goods which are needed especially 
for other companies. There is little room for speculation whether its products become into fashion or 
not. 
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Figure 10. Normalized plot of 𝐹𝐹(𝜔𝜔) for BASF for frequencies 1 �50 days�⁄  to 1 �1 day�⁄ . 

Just for completeness, a ten times zoomed scale is displayed in Figure 11. One sees a 
disproportional increase for frequencies of 1 1� day�⁄  and slightly below. BASF does show almost 
no speculation by the analysis of Fourier transformation. That does not mean that the BASF stock is 
a safe bet. As BASF uses lots of energy like gas and oil as a raw material, its value will increase or 
decrease with the energy market which is highly volatile. However, BASF is using hedging to be 
independent of short-term price fluctuations in the energy market. Therefore the Fourier analysis 
focusing on the frequencies of changes does not show any unusual things. 

 
Figure 11. Normalized plot of 𝐹𝐹(𝜔𝜔) for BASF for frequencies 1 �5 days�⁄  to 1 �1 day�⁄  

Before closing this section we will compare our findings to the ones of (Schädler 2018) and also 
say a few words about the difference between Fourier analysis and volatility. 
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For the stocks considered here, (Schädler 2018) found the following results which are 
summarized in Table 2. We found that SAP is most irrational, BASF least and Deutsche Bank in 
between. Compared to the results of Table 2, SAP and Deutsche Bank changed places. Furthermore, 
BASF showed almost no irratonality in our analysis. Please note that this has to do with the method 
(Schädler 2018) used and its flaws mentioned in section 2.1. The frequency range considered here was 
not considered. So it is impossible that (Schädler 2018) has found any of our results. 

Table 2. Results from (Schädler 2018). 

 

There is also a column about volatility in Table 2. The results for volatility are in accordance with 
our results from Fourier transformation. Volatility is related to findings by a Fourier transformation 
but it is far from being identical. Volatility measures changes in price over an entire period. We here 
focused on short term (high frequency) changes. So the advantage of Fourier transformation is to 
measure a spectrum of changes. Sometimes volatility is measured on different time scales (monthly, 
annual,…). This goes to the direction of our analysis. However, volativity must always analyze some 
time period which has enough results to perform statistics or calculate a meaningful standard 
deviation. With our analysis the Fourier transformed 𝑓𝑓(𝜔𝜔) containes all time scales. The limit in our 
approach is only that the smalles frequenciy is 1 �1 day�⁄  as we considered dayly price only. But this 
is of course not a principle limition. Had we take prices every second, the limit were 1 (1 second)⁄  

5. Conclusions and future work 

Classically it is assumed that stocks and the like adjust to their true value by random fluctuation 
in price (Fama 1970). The height of these fluctuations measures the risk involved as one can never be 
sure whether the current price is over or under the true value. So it comes natural to measure 
volatility as it is the average quadratic deviation from the mean. 

From (Appel and Grabinski 2011), (Schefczyk 2012), and (Klinkova and Grabinski 2017b) we 
know that the fluctuations are chaotic rather than random. This makes averages and other statistical 
operations at least doubtful (Grabinski and Klinkova 2019). Furthermore random fluctuations force 
a Gaussian distribution. At least from (Grabinski and Klinkova 2020) we know that even the so-called 
fat tail is due to a wrongly applied statistics. Even speaking of fluctuations (being them random or 
chaotic) around a true value is misleading. We have a conserved value (Klinkova and Grabinski 
2017a) plus a speculative part which fluctuates. 

We investigated in analyzing (fluctuating) prices of financial products via Fourier 
transformation. In doing so all the above is not relevant. As the (conserved) value changes slowly 
only, short term price changes cannot have its origin in a change of conserved value. Fourier 
transformation measures the amount of change over the frequencies. The price function 𝑓𝑓(𝑡𝑡)  is 
transformed into 𝑓𝑓(𝜔𝜔) the so-called Fourier transformed, cf. Equations (3) and (4). 

We scrutinized just three stocks of SAP, Deutsche Bank, and BASF. We did it to prove the 
principle and to uncover the flaws of (Schädler 2018). As a next step one should scrutinize the waste 
amount of stocks (Schädler 2018) and (Schädler and Steurer 2019) analyzed. 

There are two other ways to improve this publication. Firstly, one should try to simplify our 
method as it currently consumes lots of computing power. There appears to be little chance to do this 
directly. Most likely the very long formula for �𝑓𝑓(𝜔𝜔)� (e.g. Equation (9)) cannot be simplified. Even 
a “brute force” attempt to simplify�𝑓𝑓(𝜔𝜔)� failed. We used e.g. “FullSimplify” in Mathematica. We 
had to abort it after over 50 hours of CPU time and 2.6 TB of RAM in the process. But instead of using 
�𝑓𝑓(𝜔𝜔)� one may use its real or imaginary part only. It is of course not correct. However, if it would 
lead to similar results in the three cases presented here, one should scrutinize it further. The formula 

Company Irrationality Volatility 
BASF SE 77.8% 23.7% 
SAP SE 79.2% 32.5% 
Deutsche Bank AG 82.8% 33.1% 
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for the real or imaginary part of 𝑓𝑓(𝜔𝜔) is much simpler than �𝑓𝑓(𝜔𝜔)� from Equation (9). It is even 
possible to integrate it analytically. (The main obstacle will be that the real and imaginary show 
negative and positive values and its integral is essentially zero. Taking the absolute value is of no 
help as it would lead to little improvement compared to considering �𝑓𝑓(𝜔𝜔)�) 

Secondly, we analyzed �𝑓𝑓(𝜔𝜔)� in a not standard way. We showed successfully that it has too 
high values for high frequencies but we did not have a measure for it. Furthermore, probably much 
more can be extracted from �𝑓𝑓(𝜔𝜔)�. But currently we can only discuss it. So we have no quantitative 
comparison between different stocks. 

It is an interesting question what a Fourier analysis of crypto currencies will show. There is a 
waste amount of newer publications analyzing risk in cryptocurrencies, e.g. (Almeida et al. 2023), 
(Bowala and Sigh 2022), and (Irfan et al. 2023). Analyzing cryptocurrencies makes the classical 
analysis via volatility, etc. at least questionable. The main reason is that cryptocurrencies do not have 
a conserved value. So there is no adjustment towards it and no fluctuations around it, be them 
random or chaotic. A Fourier analysis of these prices will reveal a frequency spectrum where no 
frequency is per se “abnormal.” But it may or may not show a “typical” frequency. The result is 
important to understand how people speculate with crypto currencies. 
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