
Article Not peer-reviewed version

Solving NP-Complete Problems

Efficiently

Frank Vega *

Posted Date: 22 August 2024

doi: 10.20944/preprints202408.1631.v1

Keywords: Complexity classes; Graph; Polynomial time; Boolean formula

Preprints.org is a free multidiscipline platform providing preprint service that

is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any

medium, provided the original work is properly cited.

https://sciprofiles.com/profile/696106

Article

Solving NP-Complete Problems Efficiently

Frank Vega

Information Physics Institute, Miami, Florida, United States; vega.frank@gmail.com

Abstract: The P versus NP problem is a fundamental question in computer science. It asks whether problems

whose solutions can be quickly verified can also be quickly solved. Here, "quickly" refers to computational time

that grows proportionally to the size of the input (polynomial time). While the problem’s roots trace back to a

1955 letter from John Nash, its formalization is attributed to Stephen Cook and Leonid Levin. Despite extensive

research, a definitive answer remains elusive. Closely tied to this is the concept of NP-completeness. If a single

NP-complete problem could be solved efficiently, it would imply that all problems in NP can be solved efficiently,

proving that P equals NP. This work posits that ONE-IN-THREE 3SAT, a notoriously difficult NP-complete

problem, can be solved efficiently, thereby establishing the equivalence of P and NP.

Keywords: complexity classes; graph; polynomial time; Boolean formula

MSC Classification: 68Q15; 68Q17; 68Q25

1. Introduction

Computer science is confronted by the formidable challenge of the P versus NP problem [1].
Fundamentally, this inquiry seeks to determine if the ability to swiftly verify a solution implies the
capacity to swiftly compute it. Here, "swiftly" denotes algorithms with a polynomial time complexity,
where computational time grows proportionally to input size. Problems solvable within polynomial
time constitute the class P. Conversely, NP encompasses problems whose solutions can be verified
efficiently given a suitable "certificate" - a piece of information enabling rapid validation [2].

The crux of the P versus NP question lies in whether P and NP are identical. A prevailing belief
is that P is a strict subset of NP (P ̸= NP), signifying that certain problems are inherently more
difficult to solve than to verify. Resolving this enigma holds profound implications for fields such as
cryptography and artificial intelligence [3,4]. The P versus NP problem is widely considered one of
the most challenging open questions in computer science. Evidence supporting its difficulty arises
from techniques like relativization and natural proofs, which have yielded inconclusive results [5,6].
Similar problems, such as the VP versus VNP problem in algebraic complexity, remain unsolved [7].

Resolving the P versus NP question is often described as a "holy grail" of computer science. A
positive resolution would revolutionize our understanding of computation, potentially leading to
groundbreaking algorithms for critical problems. Reflecting its significance, the problem is listed
among the Millennium Prize Problems. While recent years have seen progress in related areas, such as
finding efficient solutions to specific instances of NP-complete problems, the core question of P versus
NP remains unanswered [8]. A polynomial-time algorithm for any NP-complete problem would
directly imply P equals NP [9]. Our work focuses on presenting such an algorithm for a well-known
NP-complete problem.

2. Background and ancillary Results

NP-complete problems are the Everest of computational challenges. Despite the ease of verifying
proposed solutions with a succinct certificate [9], finding these solutions efficiently remains an elusive
goal. A problem is classified as NP-complete if it satisfies two stringent criteria within computational
complexity theory:

1. Efficient Verifiability: Solutions can be swiftly checked using a concise proof.

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 August 2024 doi:10.20944/preprints202408.1631.v1

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202408.1631.v1
http://creativecommons.org/licenses/by/4.0/

2 of 6

2. Universal Hardness: Every problem in the class NP can be transformed into an instance of this
problem without significant computational overhead [9].

The implications of finding an efficient algorithm for a single NP-complete problem are profound. Such
a breakthrough would serve as a master key, unlocking efficient solutions for all problems in NP, with
transformative consequences for fields like cryptography, artificial intelligence, and planning [3,4].

Illustrative examples of NP-complete problems include:

• Boolean satisfiability (SAT): Given a logical expression, determine if there exists an assignment
of truth values to its variables that makes the entire expression true [10].

• Independent Set: In a given graph, identify a maximum-sized subset of vertices where no two
vertices are connected by an edge [10].

The provided examples represent a small subset of the extensively studied NP-complete problems
relevant to our current work. A comparability graph, denoted as G = (V, E), is characterized by the
existence of a partial order P on its vertex set V such that an edge connects vertices u and v if and only
if either u precedes v or v precedes u in P [11]. Determining whether a given graph is a comparability
graph can be accomplished efficiently (in polynomial time) [11].

Definition 1. Independent Set for Comparability Graph (ISCG):
Given a comparability graph G = (V, E) and a positive integer k, the ISCG problem asks whether there

exists a subset V′ of V containing at least k vertices such that no two vertices in V′ are connected by an edge in
G. This problem can be solved efficiently in polynomial time [12].

A Boolean satisfiability problem (SAT) instance is a Boolean formula constructed from:

1. Boolean variables: x1, x2, ..., xn, which can take on the values true or false.
2. Boolean connectives: Logical operators such as AND (∧), OR (∨), NOT (¬), implication (⇒), and

equivalence (⇔).
3. Parentheses: To specify the order of operations.

A truth assignment for a Boolean formula is a complete mapping of its variables to the values
true or false. A satisfying truth assignment is one that evaluates the formula to true. If such an
assignment exists, the formula is satisfiable. The SAT problem asks whether a given Boolean formula
is satisfiable [10].

A literal is a single variable or its negation within a Boolean formula [9]. A Boolean formula is in
conjunctive normal form (CNF) when it is expressed as a conjunction (AND) of clauses, where each
clause is a disjunction (OR) of one or more literals [9]. A 3-conjunctive normal form (3CNF) formula is
a specific type of CNF where each clause contains exactly three distinct literals [9].

For instance, the formula

(x1 ∨ ¬x1 ∨ x2) ∧ (x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ ¬x3)

in 3CNF. Its first clause, (x1 ∨ ¬x1 ∨ x2), consists of the three literals x1, ¬x1 and x2.
We introduce the ONE-IN-THREE 3SAT problem:

Definition 2. ONE-IN-THREE 3SAT:
Given a Boolean formula in 3CNF, determine if there exists a truth assignment such that exactly one literal

is true in each clause. This problem is a well-known NP-complete problem [10].

By presenting an efficient solution to ONE-IN-THREE 3SAT, we would establish a proof that P
equals NP.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 August 2024 doi:10.20944/preprints202408.1631.v1

https://doi.org/10.20944/preprints202408.1631.v1

3 of 6

3. Main Result

This is a key finding.

Theorem 1. ONE-IN-THREE 3SAT can be solved in polynomial time.

Proof. Let φ be a Boolean formula satisfying the specific constraints of the ONE-IN-THREE 3SAT
problem. We can transform φ in 3CNF into another Boolean formula ϕ in CNF such that each variable
in ϕ is restricted to appear at most three times, and each literal at most twice (the use of CNF in ϕ

requires only that each clause has at most 3 literals and contains at least 2 literals).
We proceed to convert φ into ϕ in the following way:

• Suppose that some variable x appears k times in φ.
• Replace the first occurrence of x by x1, the second by x2 and so on, where x1, x2, . . . , xk are k new

variables.
• Add (¬x1 ∨ x2) ∧ (¬x2 ∨ x3) ∧ · · · ∧ (¬xk ∨ x1) to the expression.

– This is logically equivalent to

x1 ⇒ x2 ⇒ · · · ⇒ xk ⇒ x1.

– Note that each clause above has exactly 2 literals.

• The resulting equivalent expression in ϕ satisfies the condition for x.
• Suppose that we are given the following expression in φ:

· · · ∧ (¬x ∨ a ∨ b) ∧ · · · ∧ (x ∨ y ∨ z) · · · .

• The transformed expression is

· · · (¬x1 ∨ a ∨ b) ∧ · · · ∧ (x2 ∨ y ∨ z) · · · (¬x1 ∨ x2) ∧ (¬x2 ∨ x1).

– Variable x1 appears thrice.
– Literal x1 appears once.
– Literal ¬x1 appears twice.

• We complete this transformation iterating over all the new expressions for each variable and
putting them together in order to create the Boolean formula ϕ.

A truth assignment satisfying the ONE-IN-THREE condition for φ exists if and only if such an assign-
ment exists for ϕ. The modified formula ϕ contains m clauses with three literals each and m′ clauses
with two literals each.

A special type of graph, G = (V, E), known as a comparability graph, can be constructed from
the Boolean formula ϕ. This graph will serve as a tool to solve the original formula φ.

1. Building the Graph.

• Vertex Creation: Each literal in a three-literal clause of ϕ is represented by a unique vertex in
G, denoted ux. Similarly, each literal y in a two-literal clause is represented by a vertex vy.
For each variable x, both its positive (ux, vx) and negative (u¬x, v¬x) forms are represented
as vertices, regardless of whether they appear in three- or two-literal clauses.

• Edge Creation for Variable Consistency: For each variable x, an edge connects vx and v¬x

to ensure at most one can be included in an independent set. If x appears in both three- and
two-literal clauses, an edge connects ux and v¬x (or vx and u¬x in case of ¬x could appear in
both three- and two-literal clauses) to enforce consistency.

• Edge Creation for Clause Constraints: For each three-literal clause (x ∨ y ∨ z), edges are
added between ux, uy and uz to guarantee at most one can be in an independent set. For
each two-literal clause (x ∨ y), an edge is added between vx and vy for the same purpose.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 August 2024 doi:10.20944/preprints202408.1631.v1

https://doi.org/10.20944/preprints202408.1631.v1

4 of 6

2. Edge Implications. The introduced edges serve two primary purposes:

• Mutual Exclusion: They prevent the simultaneous inclusion of literal vertices representing a
variable and its negation within an independent set.

• Clause Restriction: By connecting vertices from the same clause, they enforce the constraint
that at most one literal per clause can be part of an independent set.

3. Understanding the Edges. The edges in the graph are designed to ensure the following:

• Solution Mapping: An independent set in the graph corresponds to a valid solution for the
formula ϕ.

• Clause Satisfaction: A clause in ϕ contains exactly one true literal if and only if at least one
of its corresponding vertices is included in the independent set.

4. Mapping Between Solutions. An independent set in the graph represents a valid solution to the
formula if:

• Clause Coverage: It includes at least one vertex from every clause, ensuring that each clause
contains exactly one true literal.

• Literal Consistency: It includes at most two vertices representing a specific literal (positive
or negative) for each variable. This guarantees that the solution assigns a consistent truth
value to each variable.

5. Why it Works.

• Consistency Enforcement: The graph’s structure ensures that any chosen set of vertices
(independent set) corresponds to a valid truth assignment for the formula’s variables.

• Solution Equivalence: A truth assignment with exactly one true literal per clause in ϕ is
directly equivalent to an independent set V′ containing at least m + m′ vertices (where m and
m′ represent the number of three- and two-literal clauses, respectively). The existence of such
an independent set guarantees that G is a comparability graph. This can be demonstrated
by assigning a numerical rank to each vertex: 3 for vertices in V′, 0 for literals in two-literal
clauses outside V′, and 1 or 2 for literals in three-literal clauses outside V′.

6. Equivalence and Complexity.

• Problem Equivalence: A solution to the ONE-IN-THREE 3SAT problem (a truth assignment
with exactly one true literal per clause) exists if and only if an independent set of size at least
m + m′ exists in the corresponding comparability graph.

• Polynomial Time Solvability: The ISCG problem, which involves finding such an inde-
pendent set in a comparability graph, is solvable in polynomial time. Consequently, the
original ONE-IN-THREE 3SAT problem can also be solved in polynomial time. This is be-
cause determining the existence of a suitable truth assignment is equivalent to finding the
independent set, which is a computationally efficient task. Additionally, verifying if the
constructed graph is indeed a comparability graph can be done in polynomial time [11].

In essence, this construction establishes a direct connection between solving the ISCG problem and
finding a valid solution (or certificate) for any ONE-IN-THREE 3SAT instance. Since ISCG can be
solved efficiently, it follows that the original, seemingly more complex problem can also be solved
efficiently.

This is the main theorem.

Theorem 2. P = NP.

Proof. A polynomial-time solution to any NP-complete problem would establish the equivalence of
P and NP [9]. Despite extensive research on over 300 significant NP-complete problems, no such
polynomial-time algorithm has been discovered [9]. Given that ONE-IN-THREE 3SAT is a well-known
NP-complete problem [9], a polynomial-time solution for it, as presented in Theorem 1, would directly
imply P equals NP.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 August 2024 doi:10.20944/preprints202408.1631.v1

https://doi.org/10.20944/preprints202408.1631.v1

5 of 6

4. Conclusion

A definitive proof that P equals NP would fundamentally reshape our computational landscape.
The implications of such a discovery are profound and far-reaching:

• Algorithmic Revolution.

– The most immediate impact would be a dramatic acceleration of problem-solving capabil-
ities. Complex challenges currently deemed intractable, such as protein folding, logistics
optimization, and certain cryptographic problems, could become efficiently solvable [3].
This breakthrough would revolutionize fields from medicine to cybersecurity. Moreover,
everyday optimization tasks, from scheduling to financial modeling, would benefit from
exponentially faster algorithms, leading to improved efficiency and decision-making across
industries [3].

• Scientific Advancements.

– Scientific research would undergo a paradigm shift. Complex simulations in fields like
physics, chemistry, and biology could be executed at unprecedented speeds, accelerating
discoveries in materials science, drug development, and climate modeling [3]. The ability to
efficiently analyze massive datasets would provide unparalleled insights in social sciences,
economics, and healthcare, unlocking hidden patterns and correlations [3].

• Technological Transformation.

– Artificial intelligence would be profoundly impacted. The development of more powerful AI
algorithms would be significantly accelerated, leading to breakthroughs in machine learning,
natural language processing, and robotics [8]. While the cryptographic landscape would face
challenges, it would also present opportunities to develop new, provably secure encryption
methods [8].

• Economic and Societal Benefits.

– The broader economic and societal implications are equally significant. A surge in inno-
vation across various sectors would be fueled by the ability to efficiently solve complex
problems. Resource optimization, from energy to transportation, would become more
feasible, contributing to a sustainable future [3].

In conclusion, a proof of P = NP would usher in a new era of computational power with transformative
effects on science, technology, and society. While challenges and uncertainties exist, the potential
benefits are immense, making this a compelling area of continued research.

References

1. Cook, S.A. The P versus NP Problem, Clay Mathematics Institute. https://www.claymath.org/wp-content/
uploads/2022/06/pvsnp.pdf, 2022. Accessed August 7, 2024.

2. Sudan, M. The P vs. NP problem. http://people.csail.mit.edu/madhu/papers/2010/pnp.pdf, 2010.
Accessed August 7, 2024.

3. Fortnow, L. The status of the P versus NP problem. Communications of the ACM 2009, 52, 78–86. https:
//doi.org/10.1145/1562164.1562186.

4. Aaronson, S. P ?
= NP. Open Problems in Mathematics 2016, pp. 1–122. doi:10.1007/978-3-319-32162-2_1.

5. Baker, T.; Gill, J.; Solovay, R. Relativizations of the P =?NP Question. SIAM Journal on computing 1975,
4, 431–442. doi:10.1137/0204037.

6. Razborov, A.A.; Rudich, S. Natural Proofs. Journal of Computer and System Sciences 1997, 1, 24–35.
doi:10.1006/jcss.1997.1494.

7. Wigderson, A. Mathematics and Computation: A Theory Revolutionizing Technology and Science; Princeton
University Press, 2019.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 August 2024 doi:10.20944/preprints202408.1631.v1

https://www.claymath.org/wp-content/uploads/2022/06/pvsnp.pdf
https://www.claymath.org/wp-content/uploads/2022/06/pvsnp.pdf
http://people.csail.mit.edu/madhu/papers/2010/pnp.pdf
https://doi.org/10.1145/1562164.1562186
https://doi.org/10.1145/1562164.1562186
https://doi.org/10.1007/978-3-319-32162-2_1
https://doi.org/10.1137/0204037
https://doi.org/10.1006/jcss.1997.1494
https://doi.org/10.20944/preprints202408.1631.v1

6 of 6

8. Fortnow, L. Fifty Years of P vs. NP and the Possibility of the Impossible. Communications of the ACM 2022,
65, 76–85. doi:10.1145/3460351.

9. Cormen, T.H.; Leiserson, C.E.; Rivest, R.L.; Stein, C. Introduction to Algorithms, 3rd ed.; The MIT Press, 2009.
10. Garey, M.R.; Johnson, D.S. Computers and Intractability: A Guide to the Theory of NP-Completeness, 1 ed.; San

Francisco: W. H. Freeman and Company, 1979.
11. Alvarez, C.; Greenlaw, R. A compendium of problems complete for symmetric logarithmic space. Computa-

tional Complexity 2000, 9, 123–145. doi:10.1007/PL00001603.
12. Golumbic, M.C. The complexity of comparability graph recognition and coloring. Computing 1977, 18, 199–

208. doi:10.1007/BF02253207.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 August 2024 doi:10.20944/preprints202408.1631.v1

https://doi.org/10.1145/3460351
https://doi.org/10.1007/PL00001603
https://doi.org/10.1007/BF02253207
https://doi.org/10.20944/preprints202408.1631.v1

	Introduction
	Background and ancillary Results
	Main Result
	Conclusion
	References

