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Abstract: Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive 
impairment and memory loss. Oxidative stress (OS) has emerged as a central element in the pathophysiology 
of AD, linking various pathological features including amyloid-β (Aβ) plaque formation, tau 
hyperphosphorylation, and synaptic dysfunction. This review comprehensively examines the role of OS in AD, 
focusing on the mechanisms of reactive oxygen species (ROS) production, mitochondrial dysfunction, and their 
impact on neuronal integrity. Additionally, the review highlights recent advances in antioxidant therapy. 
Elevated ROS levels in the aging brain exacerbate oxidative damage to lipids, proteins, and DNA, contributing 
to neuronal atrophy and synaptic loss. Mitochondrial dysfunction further amplifies OS, disrupting cellular 
energy metabolism and promoting neurodegeneration. Despite the strong association between OS and AD, 
antioxidant therapies have shown inconsistent clinical outcomes. Emerging strategies targeting offer promising 
avenues for therapeutic intervention. This review highlights the need for a multifaceted approach in 
understanding and mitigating OS-related damage in AD, aiming to pave the way for more effective treatments 
and improved patient outcomes. 

Keywords: Alzheimer's disease; Oxidative stress; Mitochondrial dysfunction; Antioxidant; Reactive oxygen 
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1. Introduction 

Alzheimer's disease (AD) is a progressive neurodegenerative disorder that significantly impacts 
the elderly population and primarily manifests as cognitive impairment, memory loss, and 
compromised daily activities [1]. Globally, AD stands as the foremost cause of dementia accounting 
for 60-80% of all cases, and is the sixth leading cause of death among Americans aged 65 and older 
[2,3]. Approximately 6.7 million Americans currently live with AD with worldwide cases exceeding 
55 million- a number projected to nearly triple by 2050 [3,4]. This escalating prevalence, along with 
an aging global demographic, underscores the formidable challenge AD presents to healthcare 
systems worldwide [3]. 

AD is marked by two primary neuropathological hallmarks: the extracellular deposition of 
amyloid-β (Aβ) peptides forming diffuse and neuritic plaques and the intracellular accumulation of 
neurofibrillary tangles (NFTs) composed of hyperphosphorylated tau proteins [5,6]. These core 
features are widespread across the brain, inducing neuronal atrophy and synaptic loss, ultimately 
leading to neurodegeneration [6,7]. While these hallmarks are fundamental to understanding AD, 
they are part of a more complex pathogenesis. The development of AD also involves a broader 
spectrum of pathophysiological changes, including neuroinflammation, blood-brain barrier (BBB) 
dysfunction, mitochondrial dysfunction, and oxidative stress (OS) [8-10]. Multiple hypotheses have 
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been proposed to explain these diverse aspects of AD, encompassing the amyloidogenic cascade, 
tauopathy, neurovascular dysfunction, and the impacts of OS and neuroinflammation [9,11]. Each of 
these hypotheses is integrated through various mechanistic relationships, suggesting a multifaceted 
and interconnected approach is crucial for fully understanding and addressing the progression of 
AD, as shown in Figure 1 [12]. Building upon these core hypotheses, OS emerges as a central element 
in the pathophysiology of AD, particularly as it bridges several core hypotheses including amyloid 
cascade, tau protein, inflammation, and metal ions [13,14]. As the brain ages, its metabolic balance 
tilts towards a pro-oxidative state, exacerbating the imbalance between the generation of reactive 
oxygen species (ROS) such as superoxide radicals (O2•−)and hydrogen peroxide (H2O2), and the 
body's antioxidant defenses [13-15]. This imbalance leads to significant tissue damage, particularly 
in the presence of metal ions like iron and copper, which catalyze harmful redox reactions [16,17].  

The brain's high oxygen demand which accounts for 20% of the total body consumption is 
coupled with its abundance of peroxidation-sensitive lipids and cerebrospinal fluid that poorly binds 
iron hence heightening its vulnerability to oxidative damage [18]. Additionally, the brain's modest 
antioxidant defenses can cause higher susceptibility to OS and neurodegeneration [19]. This 
environment can lead to neuronal damage through possible mechanisms such as increased 
intracellular calcium, excitotoxicity, and the breakdown of cellular components including lipids, 
proteins, and DNA [20,21]. The neurotoxicity of Aβ peptides and hyperphosphorylated tau proteins 
synergistically lead to the accumulation of neurofibrillary tangles, synaptic loss, and cholinergic 
denervation, which are well-documented and exacerbated by OS [10,22,23]. 

Furthermore, mitochondrial dysfunction is a significant factor in AD's progression, evidenced 
by the reduced number and impaired functionality of mitochondria, largely due to defects in the 
electron transport chain (ETC) enzymes [24,25]. This mitochondrial impairment fosters ROS 
accumulation and further OS, disrupting calcium homeostasis and signal transduction, ultimately 
contributing to synaptic loss and neurodegeneration [26,27]. Extensive research, including studies by 
Butterfield’s group, has documented extensive oxidative damage in AD brains, linking it to the 
marked accumulation of Aβ and neurofibrillary tangles [24,28,29]. The complex interplay between 
ROS/RNS and the cellular antioxidant defenses underscores the importance of understanding these 
reactive species' sources, regulation, and effects. This knowledge is crucial for developing therapeutic 
strategies to mitigate OS-related damage in various diseases, including AD [30]. This body of work 
underscores the critical role of redox-mediated mechanisms in both the pathogenesis and progression 
of AD [31]. 

Recent therapeutic advances have been particularly noteworthy in light of this growing health 
concern. In particular, the U.S. Food and Drug Administration (FDA) has granted accelerated 
approval of Aducanumab and Lecanemab, reflecting the general urgency for therapeutic strategies 
for AD [32]. These monoclonal antibodies target amyloid-beta peptides implicated in AD pathology 
and are designed to modify disease progression, contrasting with traditional symptomatic treatments 
such as acetylcholinesterase inhibitors and N-methyl-D-aspartate antagonists like memantine [33]. 
The emergence of these therapies highlights a shift towards more targeted approaches that address 
the underlying mechanisms of AD, reflecting the ongoing need for a comprehensive and 
multidimensional strategy in combating this pervasive disease. 
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Figure 1. This figure illustrates various pathophysiological mechanisms involved in   Alzheimer's 
disease. 

Despite mounting evidence implicating OS as a pivotal factor in the development and 
progression of AD. However, the exact mechanisms and interactions between OS and AD pathology 
remain unclear. Additionally, clinical trials utilizing antioxidant therapies have yielded inconsistent 
and often disappointing results. This review aims to provide a comprehensive exploration of the 
intricate roles played by OS and mitochondrial dysfunction in AD pathophysiology. We will delve 
into the complex interactions between oxidative damage and key pathological features of AD, such 
as amyloid-beta plaques, tau hyperphosphorylation, and synaptic dysfunction. Furthermore, we will 
assess how mitochondrial dysfunction exacerbates disease progression and contributes to 
neurodegeneration. By synthesizing current research findings, this review seeks to enhance our 
understanding of the mechanisms underlying AD and the dual role that ROS play in both neuronal 
health and disease. In addition, we will highlight recent advancements in antioxidant therapies and 
innovative strategies targeting oxidative stress, offering promising avenues for the development of 
more effective treatments for AD. 

2. Method 

In preparing this review, we systematically searched the PubMed and Google Scholar databases 
for articles published from 1994 to 2024. This search strategy incorporated key terms, such as 
oxidative stress, mitochondrial dysfunction, and Alzheimer’s disease, to capture studies that 
specifically addressed these factors in AD. The inclusion criteria targeted research articles that 
provided insights into the impact of oxidative stress and mitochondrial dysfunction on AD’s 
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pathological markers or progression, whether through in vitro, in vivo, or clinical investigations. 
Articles focusing on non-neurological aspects of oxidative stress or mitochondrial dysfunction were 
excluded from the review to maintain a clear focus on AD. Our aim was to present a balanced 
overview to ensure a broad representation of the current research landscape. 

3. Oxidative Stress 

OS results from an imbalance between the production of species ROS and reactive nitrogen 
species (RNS), and the cell's ability to detoxify these reactive intermediates or repair the resulting 
damage [34,35]. This imbalance, often linked to mitochondrial dysfunction, can lead to significant 
damage to cellular components including lipids, proteins, polysaccharides, and DNA [36]. Elevated 
ROS levels can cause free radical damage to cell membranes and DNA, adversely affecting cellular 
function and survival. This damage can create a self-perpetuating cycle, as OS can destroy 
biomolecules and further increase ROS production [37]. Therefore, maintaining adequate levels of 
antioxidants and antioxidant enzyme activity is crucial to mitigate the harmful effects of OS [38]. 

At the molecular level, OS involves various molecules and free radicals derived from molecular 
oxygen [39]. Free radicals are chemical species with an unpaired electron in their outer shell, making 
them highly reactive [40]. Molecular oxygen in its ground state is a bi-radical with two unpaired 
electrons sharing the same spin, making it relatively unreactive [34]. However, when one of these 
electrons is excited, it changes its spin, allowing the oxygen molecule to react readily with other 
electron pairs, particularly double bonds. This reaction produces singlet oxygen, a highly potent 
oxidant [30]. 

It is important to note that ROS must be present at low levels and cannot be eliminated, as they 
play a vital role in normal cellular functions including inducing plasticity changes in response to 
various cellular changes. However, excessive ROS levels are detrimental to cells [37,38]. 

The reduction of oxygen by one electron generates relatively stable intermediates, leading to the 
formation of an O2•− [34,41]. This anion is a precursor to most ROS and a key player in OS chain 
reactions. Antioxidants can partially reduce O2•− to form a hydroxyl radical (OH•), one of the most 
potent oxidants [39,41]. This process is catalyzed by reduced transition metals, which can be re-
reduced by O2•− hence further perpetuating the cycle  [35,41]. O2•− can also react with other 
radicals such as nitric oxide (NO•) and form peroxynitrite (ONOO−), an extremely potent oxidant 
driving reactive RNS [30,42]. 

ROS and RNS play dual roles in intracellular signaling, cell proliferation, and survival [43,44]. 
However, uncontrolled increases in their steady-state concentrations can lead to free radical-
mediated chain reactions targeting critical cellular components [44,45]. In vivo, O2•− is primarily 
produced by mitochondria and regulated by both enzymatic and non-enzymatic processes [46,47]. 
The ETC leaks electrons to oxygen making it a significant source of O2•− in many tissues [45]. Key 
enzymatic sources of O2•− include Nicotinamide Adenine Dinucleotide Phosphate (NADPH) 
oxidases in various cell membranes, cytochrome P450 enzymes, and H2O2-dependent oxygenases 
[39,48]. Another source is the conversion of xanthine dehydrogenase to xanthine oxidase [49]. Non-
enzymatic production occurs via direct oxygen transfer by reduced coenzymes or prosthetic groups 
like flavin or iron-sulfur clusters or by xenobiotics after enzymatic reduction [50,51]. 

Mitochondria also employ several mechanisms to mitigate ROS and regulate the steady-state 
concentration of O2•− [52]. Superoxide dismutase (SOD) enzymes dismutate O2•− to H2O2, which 
is further reduced to water [51,52]. Mitochondrial SOD (MnSOD or SOD2) eliminates O2•− in the 
matrix or inner membrane, while copper-zinc SOD (SOD1) functions in the cytoplasm [53]. 
Cytochrome c in the intermembrane space reduces superoxide anion, regenerating oxygen  [54]. 
Glutathione peroxidase (GPx) and catalase decompose O2•− and hydroxyl radicals (OH•). 
Additionally, ubiquinol (QH2) acts as a reducing agent, detoxifying various peroxides [55]. 
Mitochondria also possess DNA repair enzymes to correct oxidative damage, maintaining genetic 
integrity [30]. 

Apart from direct ROS generation, glial cells such as astrocytes and microglia, alongside redox-
active metal ions, like copper and iron, can also contribute to cerebral levels of ROS/RNS [56]. This 
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increased level can alter DNA, RNA, lipids, and proteins,  potentially exacerbating the production 
of ROS/RNS molecules [42,57]. Consequently,  the resulting DNA oxidation can affect gene 
transcription and replication, while the RNA oxidation primarily results in strand breaks and 
ribosomal dysfunction [57,58]. Lipid peroxidation, particularly that of unsaturated fatty acids, 
produces compounds like isoprostanes, malondialdehyde (MDA), and 4-hydroxynonenal (HNE), 
which impair cellular membrane integration and protein functions [59,60]. The resulting oxidative 
damage to mitochondrial components can exacerbate ROS production, damage mitochondrial DNA, 
and trigger apoptosis through mechanisms involving the redox-sensitive protein Thioredoxin-1 (Trx-
1) and Apoptosis Signal-regulating Kinase 1 (ASK-1), as well as other redox proteins and the p53 
pathway, which activates proapoptotic genes [61,62]. 

  
Figure 2. This figure illustrates the relationship between mitochondrial dysfunction, OS, and AD. At 
the core of cellular metabolism, mitochondria generate energy through the electron transport chain 
(ETC), a series of protein complexes embedded in the inner mitochondrial membrane. The ETC 
facilitates the transfer of electrons from NADH and FADH2 through complexes I to IV, culminating 
in the reduction of oxygen to water and the synthesis of ATP via ATP synthase. During this process, 
ROS are generated as by-products. Excessive ROS production, as indicated in the figure, leads to OS, 
damaging cellular components such as lipids, proteins, and DNA. This oxidative damage is 
particularly detrimental to neuronal cells, contributing to the pathogenesis of AD. The schematic 
highlights how metabolic intermediates like glucose and pyruvate fuel the tricarboxylic acid (TCA) 
cycle, producing substrates for the ETC. However, dysregulation in these pathways exacerbates ROS 
production, ultimately promoting neurodegenerative processes associated with AD, as depicted by 
the brain image showing areas affected by the disease. 

The complex interplay between ROS and RNS with cellular antioxidant defenses is crucial for 
understanding the sources, regulation, and mechanisms of action of these reactive species [30]. The 
accompanying figure illustrates how mitochondrial dysfunction leads to ROS production, 
highlighting the electron transport chain's role and its implications in OS and AD as shown in Figure 
2. 

4. Oxidative Stress in Alzheimer's Disease 

The brain is highly susceptible to ROS-induced OS due to its significant energy demand, high 
oxygen requirement, and mitochondrial activity [14]. Neuronal cells contain high levels of lipids and 
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iron but have fewer antioxidant enzymes compared to other tissues, making the brain particularly 
vulnerable to oxidative damage [63]. Both ROS and RNS can produce damaging reactive 
intermediates [64]. The OS burden increases with aging and is associated with decreased antioxidant 
defenses and neurogenesis [27,64]. 

In AD, extensive oxidative damage is observed and it’s closely linked to the abnormal 
accumulation of Aβ and NFTs [65]. Biometals such as iron, zinc, and copper play critical roles in Aβ 
aggregation and neurodegeneration, with copper exacerbating OS as a potent mediator of OH• 
found in elevated levels in amyloid plaques [16]. Elevated levels of oxidative damage markers are 
found in individuals with symptoms of preclinical Alzheimer's disease (PCAD), amnestic mild 
cognitive impairment (aMCI), and AD [39]. 

Markers of protein oxidation, such as protein carbonyls (PCs), are elevated in AD-affected brain 
regions rich in Aβ-peptide senile plaques [39]. Furthermore, lipid peroxidation markers, including 
protein-conjugated HNE, F2-isoprostanes, and F4-isoprostanes, are increased in patients diagnosed 
with AD, aMCI, and particularly in the hippocampus of patients with PCAD. [66]. Elevated 3-
nitrotyrosine (3-NT) levels indicate damage by ONOO− and the biomarker 8-hydroxy-
deoxyguanosine (8-OHdG) reflects oxidative damage to both nuclear and mitochondrial DNA 
[67,68]. RNA oxidation is also significant in AD reflected by oxidized, glycated, and nitrated proteins 
found within neuritic plaques and NFTs [69]. 

The consequences of oxidative and nitrosative damage include disrupted glucose metabolism, 
loss of ion gradients, impaired action potentials, and calcium imbalance [66]. Brain membrane 
phospholipids rich in polyunsaturated fatty acids are particularly susceptible to free radical attacks, 
leading to lipid peroxidation - a prominent feature in AD [16,70]. OS also affects protein function and 
can impair critical enzymes like GS and creatine kinase, which are reduced in AD pathology. This 
reduction is linked to altered glutamate concentrations, increased excitotoxicity, and decreased 
energy metabolism [71]. 

Due to the clear link between OS and AD, recent studies are attempting to establish reliable 
oxidative and nitrosative stress biomarkers for early AD diagnosis [56]. HNE is widely used as an 
indicator of OS and is increased in AD brains,  particularly in the early stages [72]. Other indicators 
of oxidative and nitrosative stress in both early and late AD stages include PCs and protein nitration 
[73,74]. Observed increased levels of ROS and RNS are often accompanied by a decrease in 
antioxidant defenses in AD, leading to an increase in the total oxidative capacity [74]. 

5. Mitochondrial Dysfunction in Alzheimer's Disease 

Mitochondria, the powerhouse of the cell, are pivotal in oxidative phosphorylation-driven 
energy production and generating adenosine triphosphate (ATP) [75]. This process makes them a 
significant source of reactive ROS due to ETC activity in the inner membrane [45]. A considerable 
amount of cellular H2O2 originates from mitochondria, which can quickly convert to superoxide (O2-

) due to electron leakage during energy production [45,76].  
Oxidative damage severely impacts proteins involved in mitochondrial ATP production and 

glycolysis [77]. Impaired cellular metabolism leads to increased ROS production and creates a 
feedback loop of OS and increased cellular damage [78]. Reduced ATP levels cause heightened 
mitochondrial activity, further escalating ROS production and electron leakage from the ETC [79]. 
This suboptimal mitochondrial functioning accompanied by increased ROS and decreased ATP 
production, is critical in AD pathogenesis [80]. 

Mitochondrial dysfunction is evident early in AD and affects various aspects of mitochondrial 
function including energy metabolism, calcium homeostasis, and the expression of mitochondrial 
and DNA (mtDNA) [81]. Glucose metabolism, closely linked to cognitive function, is an essential 
measure for monitoring AD progression [82]. In AD, energy metabolism genes such as those of the 
mitochondrial ETC, are decreased in the posterior cingulate cortex, a region affected early in the 
disease progression [83]. 

The reduced glucose metabolism in the AD brain is associated with decreased activity of 
mitochondrial ETC enzymes like pyruvate dehydrogenase, alpha-ketoglutarate dehydrogenase 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 19 August 2024                   doi:10.20944/preprints202408.1375.v1

https://doi.org/10.20944/preprints202408.1375.v1


 7 

 

complex, and cytochrome oxidase [82,84]. This reduction correlates with clinical symptoms and is 
consistent with the presence of Aβ plaques. Furthermore, AD brains show higher levels of mtDNA 
oxidation and mutations compared to age-matched controls due to the proximity of mtDNA to ROS 
generation sites and the lack of protective histone proteins [85-87]. 

These mutations impact mitochondrial function and the number of mitochondria, which are 
lower in AD brains compared to controls [88]. Interestingly, mitochondrial size in AD brains is 
increased, which is attributed to impaired fusion and fission dynamics resulting from abnormal 
protein expression. Dihydrosphingosine phosphate lyase (DPL1) is a protein mainly expressed in the 
cytoplasm and is recruited to mitochondria during fission. DPL1 is increased in AD, and may also 
interact with Aβ and phosphorylated tau, contributing to AD pathophysiology [89]. Therefore, 
excessive mitochondrial fission may enhance oxidative and nitrosative stress in AD pathology. 

Calcium, an essential cellular signaling messenger, is dysregulated in AD which consequently 
leads to neurons becoming more susceptible to neurodegeneration [90]. ROS produced from 
mitochondrial damage can disrupt calcium homeostasis and impair the endoplasmic reticulum's 
ability to buffer calcium which is detrimental to cell signaling and survival [91]. Increased levels of 
calcium-related enzymes in AD patients further highlight this proposed mechanism of cellular 
dysregulation [90]. 

Finally, mitochondria are crucial in apoptosis, with ROS activating caspases that induce pro-
apoptotic proteins like Bcl-2-associated X protein (Bax) to translocate to the mitochondrial membrane 
[92]. This translocation results in the formation of the mitochondrial membrane permeability 
transition pore, releasing cytochrome c and triggering cell death [93]. Although there is some 
controversy regarding these processes, the role of mitochondrial dysfunction in AD is evident [94]. 
The intricate interplay between mitochondrial dysfunction and OS underscores the importance of 
early detection and potential therapeutic strategies aimed at restoring mitochondrial function and 
mitigating oxidative damage in AD [79]. 

6. Neurobiological Implications 

6.1. Oxidative Stress and Aβ plaques 

OS has several neurobiological implications that contribute to the pathogenesis of AD, including 
amyloid plaque formation, tau hyperphosphorylation, and synaptic dysfunction. The formation of 
Aβ plaques is intricately linked to OS, with Aβ peptides, particularly Aβ42, prone to aggregation and 
forming insoluble fibrils that deposit as plaques in the brain [95]. OS enhances the production and 
aggregation of Aβ [96]. ROS can induce the expression of amyloid precursor protein (APP) and 
influence the activity of secretases that process APP, favoring the production of amyloidogenic Aβ 
fragments [42]. Moreover, Aβ itself can generate ROS, creating a vicious cycle where OS promotes 
Aβ production, and Aβ, in turn, generates more ROS [96]. This self-propagating loop exacerbates 
oxidative damage and plaque formation, with the presence of biometals like iron, copper, and zinc 
in amyloid plaques further accelerating ROS production through Fenton reactions [96]. 

Further compounding this issue, Aβ has been shown to enhance ROS production and cause 
mitochondrial dysfunction, exacerbating OS [23,97]. Research indicates that brain regions with higher 
Aβ expression exhibit greater levels of protein oxidation and lipid peroxidation compared to the 
cerebellum, which is relatively low in Aβ [98]. Amyloid plaques predominantly contain Aβ with a 
methionine sulfoxide modification, suggesting that lipid peroxidation is an early event in 
neurodegeneration [99]. When incorporated into lipid bilayer membranes, Aβ induces OS, leading to 
lipid peroxidation and subsequent damage to nucleic acids and proteins [23,100]. Proteins are 
particularly susceptible to oxidative damage, which can result in irreversible structural modifications 
such as unfolding, aggregation, and the disassociation of subunits, ultimately leading to functional 
loss [101] . 

In both AD patients and transgenic mice models, Aβ has been shown to interact with the 
mitochondrial enzyme Aβ-binding alcohol dehydrogenase (ABAD), causing mitochondrial 
dysfunction, increased ROS production, and eventual apoptosis [101,102]. Apoptosis, a primary 
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mode of cell death in AD progression, is closely associated with elevated oxidative and nitrosative 
stress (OS&NS), as observed in AD models [103]. Treatment of AD fibroblasts with the Aβ peptide 
leads to the oxidation of anti-apoptotic proteins such as vimentin and heat shock protein 60 (HSP60). 
Similarly, neuroblastoma cells treated with Aβ (1-42) show increased oxidation of anti-apoptotic 
proteins glutaredoxin-1 (GRX-1) and TRX-1 [104] . Additionally, elevated levels of the pro-apoptotic 
protein p53 and its oxidized form have been detected in the AD brain, further contributing to 
increased apoptosis [105,106]. Overall, the induction of Aβ significantly contributes to the heightened 
oxidative status observed in AD. 

6.2. Oxidative Stress and Tau Hyperphosphorylation: 

 Tau protein plays a critical role in stabilizing microtubules and ensuring smooth neuronal 
signal transmission [107]. Numerous studies have demonstrated that OS contributes to the 
hyperphosphorylation of tau proteins [108]. The peroxidation end product Carbonyl-4-HNE has been 
identified as a key factor in the accumulation of hyperphosphorylated tau [109]. However, the exact 
relationship between tau hyperphosphorylation and OS remains unclear. In animal studies, exposure 
to OS -inducing compounds has been shown to increase the activity of glycogen synthase kinase 3β 
(GSK3β), a Ser/Thr kinase that hyperphosphorylates tau proteins, thereby exacerbating disease 
pathology [109,110]. Besides GSK3β, OS also influences other kinases, promoting tau 
hyperphosphorylation [109]. Additional research has indicated that OS leads to a reduction of 
peptidyl prolyl cis-trans isomerase 1 (Pin1) in AD brains [110]. Pin1 is crucial for the 
dephosphorylation of tau proteins [108]. The decrease in antioxidant molecules like GSH and the use 
of buthionine sulfoximine further contribute to increased tau hyperphosphorylation under OS 
conditions [109]. Moreover, OS can directly induce tau hyperphosphorylation by affecting protein 
phosphatase 2A (PP2A) [109]. Under OS, GSK3β activity is heightened while PP2A activity is 
diminished, which in turn activates the extracellular signal-regulated kinase 1/2 (ERK1/2) pathway, 
leading to apoptosis [109,110].  

Studies show that low doses of GSK-3β inhibitors protect neuron cells from OS-induced 
apoptosis, while higher doses can have the opposite effect [111]. Increased GSK-3β and the p25 
activator of cyclin-dependent kinase 5 halt mitochondrial movement in neurons, but GSK-3β 
inhibition reverses axonal transport disruption caused by Tau overexpression [112,113]. ROS-
mimicking mitochondrial OS promotes Tau phosphorylation by increasing GSK-3β activity [114]. 

Overall, OS, mitochondrial dysfunction, and Aβ involvement are interconnected with Tau 
pathology, with Tau pathology also inducing OS and mitochondrial damage, partly by modulating 
Aβ toxicity [52]. 

6.3. Oxidative Stress and Glutamatergic Signaling and Synaptic Dysfunction 

Glial pathology and neurotransmitter system dysfunction are critical factors in various 
neurodegenerative diseases, including AD [115,116]. Astrocytes play essential roles such as 
regulating synaptic transmission, supplying nutrients to neurons, controlling vasodilation, 
maintaining BBB permeability, and responding to injury and immune challenges [117]. Glutamate, 
the primary excitatory neurotransmitter in the mammalian CNS, is integral to brain plasticity but 
excessive levels contribute to neurodegenerative diseases, brain trauma, seizures, and cerebral 
ischemic injury [118-120]. 

Glutamate activates ionotropic receptors (NMDAR, AMPA, and kainate) and metabotropic 
receptors [121]. Astrocytes are crucial for glutamate recycling, primarily through glutamate uptake 
mediated by glutamate aspartate transporter (GLAST or EAAT1) and glutamate transporter 1 (GLT-
1 or EAAT2), with the enzyme GS converting glutamate to glutamine [122,123]. Proper regulation of 
glutamate is essential for neuronal survival; low levels compromise neuron viability, while excess 
leads to excitotoxicity, characterized by increased intracellular calcium through heightened NMDAR 
activity, impairing synaptic function and causing neuronal cell death [123,124]. In AD, impaired 
glutamate availability and NMDAR function exacerbate OS, resulting in increased neuronal damage 
and cell death [125]. 
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Synapses, specialized neuronal regions for signaling, rely on precise mechanisms including 
neurotransmitter biosynthesis, delivery, synaptic vesicle formation, receptor binding, and 
neurotransmitter removal [126]. Calcium is critical in mediating synaptic transmission by triggering 
synaptic vesicle release through voltage-gated calcium channels [127]. Disruption in any step can 
severely impact synaptic function and cognitive abilities. In AD, progressive memory impairment is 
linked to inhibited long-term potentiation (LTP) and enhanced long-term depression (LTD) in the 
hippocampus, with synapse loss correlating strongly with cognitive impairment [128,129]. 

Extensive research indicates a direct relationship between OS and synaptic dysfunction in AD 
[125,130]. ROS, Aβ, and phosphorylated tau (pTau) independently and synergistically affect NMDAR 
activity, crucial for excitatory synaptic transmission and plasticity [131,132]. Aβ reduces surface 
NMDA receptors, triggers NMDA-mediated calcium influx, and induces excitotoxicity, exacerbating 
oxidative stress and impairing neuronal function [133,134]. Memantine targets non-synaptic NMDA 
receptors involved in excitotoxicity due to glutamate spillover [135,136]. Additionally, soluble Aβ 
species promote AMPA receptor internalization, affecting synaptic plasticity and causing synaptic 
dysfunction and dendritic spine loss [137]. 

OS significantly impacts synaptic integrity and function, especially in synaptic membranes rich 
in polyunsaturated fatty acids, which are highly susceptible to lipid peroxidation [138,139]. Aβ 
oligomers are particularly toxic to synapses, inducing OS by interacting with synaptic receptors and 
disrupting calcium homeostasis[140,141]. Excessive glutamate resulting from impaired astrocytic 
glutamate transporters overstimulates NMDA receptors, leading to a large influx of calcium into 
neurons [142]. Elevated intracellular calcium levels activate detrimental cellular events, including 
calcium-dependent enzymes like calpains, phospholipases, and nitric oxide synthase (NOS), which 
increase ROS production [142]. This overwhelms cellular antioxidant defenses, causing further 
oxidative damage to lipids, proteins, and DNA, disrupting membrane integrity, enzyme activity, and 
structural proteins [143]. Mitochondrial dysfunction exacerbates ROS production, reducing ATP 
production and releasing pro-apoptotic factors [142]. This disruption hampers neurotransmitter 
release and reuptake, impairing synaptic plasticity crucial for learning and memory [144]. Chronic 
inflammation further exacerbates synaptic damage through pro-inflammatory cytokines and 
additional ROS, contributing to synaptic loss and cognitive decline [142]. This complex interplay of 
factors underpins the synaptic dysfunction observed in AD, highlighting the critical roles of 
neurotransmitter systems, OS, and neuronal integrity in disease progression. 

7. Oxidative Stress Impact on Cellular Functions  

The impact of OS on cellular function is profound and multifaceted. ROS can oxidize essential 
biomolecules such as lipids, proteins, and nucleic acids, leading to significant impairment of cellular 
structures and functions [145]. Lipid peroxidation, for instance, damages cell membranes, affecting 
their fluidity and permeability [146]. This damage compromises the integrity and function of the cell 
membrane, leading to cellular instability. Similarly, protein oxidation can alter enzyme activities and 
disrupt protein-protein interactions, thereby interfering with critical cellular processes [147]. 
Oxidative damage to DNA is another severe consequence, resulting in mutations and impaired gene 
expression, which further exacerbate cellular dysfunction [148]. 

7.1. Protein Oxidation: 

In AD, ROS mediates protein oxidation, introducing hydroxyl groups or generating protein-
based carbonyls through the oxidation of amino acid residues such as lysine, arginine, proline, and 
threonine [149]. This process also involves the cleavage of peptide bonds via the α-amidation 
pathway or the oxidation of glutamyl residues [39]. ROS can also react with lipids, DNA, and sugars, 
producing reactive carbonyl derivatives and aldehydes that further react with proteins to form 
protein-bound carbonyls [39,149]. Measurement of protein carbonylation is a reliable indicator of 
oxidative damage linked to various OS conditions, aging, physiological disorders, and AD [150]. 
Functional changes in AD, such as decreased glucose metabolism in the parietal-temporal association 
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cortices, are observed through fluorodeoxyglucose (FDG)-positron emission tomography (PET) 
analysis [151].  

7.2. Lipid Oxidation: 

Lipid peroxidation, an essential process in OS, results in the formation of several aldehyde by-
products including MDA, HNE, and acrolein [152]. Among these, HNE and MDA are the most 
abundant, while acrolein is highly reactive [153]. 

Elevated levels of HNE-histidine and glutathione-HNE adducts have been observed in AD 
brains [154]. Proteomic analysis has shown a significant increase in protein-bound HNE in these 
brains [153]. F2-isoprostanes (F2-IsoPs) and neuroprostanes are also significantly elevated in patients 
with MCI and late-stage AD [155]. Increased acrolein levels are found in the hippocampus and 
temporal cortex of AD patients, regions where OS is exceptionally high [156]. Due to its high 
reactivity, acrolein is both a marker of lipid peroxidation and an initiator of OS, forming adducts with 
proteins, lipids, and nucleic acids [153]. 

Lipid peroxidation occurs not only in the brains of MCI patients but also in those with preclinical 
AD, suggesting that oxidative damage may play an early role in the disease pathogenesis [153]. Aβ 
induces lipid peroxidation of membranes, correlating strongly with the presence of antioxidant 
enzymes, amyloid plaques, and NFTs in AD brains [39]. Breakdown products of OS such as HNE, 
acrolein, MDA, and F2-isoprostanes, are more prevalent in AD brains compared to age-matched 
controls. Particularly, HNE can modify proteins, inhibiting neuronal glucose and glutamate 
transporters, Na-K ATPases, and disrupting intracellular calcium signaling, ultimately triggering 
apoptotic mechanisms [39,157-160]. 

The first evidence of Aβ-induced lipid peroxidation was demonstrated using electron 
paramagnetic resonance (EPR) methods [161]. Aβ addition to synaptosomes led to a rapid loss of the 
EPR signal, indicating lipid-centered free radical formation [14,161]. Subsequent studies using a 
murine model of mutant presenilin-1 (PS-1) supported these findings, showing oxidative damage in 
the brain [162]. A proposed mechanism involves the Aβ42 peptide, which in its oligomeric form can 
integrate into the lipid bilayer of neuronal membranes, adopting an α-helical structure. [23,158,163]. 
This conformation contributes to oxidative damage and neurotoxicity [158]. The interaction between 
specific amino acid residues within the peptide, such as the sulfur atom of methionine and the oxygen 
atom of isoleucine, facilitates one-electron oxidation, generating free radicals that propagate lipid 
peroxidation [164]. This process results in the formation of lipid peroxyl radicals and lipid 
hydroperoxides which combinedly contribute to the OS observed in AD [152,165]. 

In summary, lipid oxidation is a crucial factor in the OS associated with AD. The by-products of 
lipid peroxidation, particularly HNE, MDA, and acrolein, play significant roles in the disease's 
progression by modifying proteins and disrupting cellular functions, ultimately leading to neuronal 
damage and death. 

7.3. DNA Oxidation: 

OS significantly impacts DNA integrity in AD, contributing to its pathogenesis and disease 
progression [39,166]. ROS, particularly OH•, can cause various forms of DNA damage, including 
strand breaks, DNA-DNA and DNA-protein cross-linking, and the formation of oxidized base 
adducts [167,168]. These modifications can lead to mutations and altered protein synthesis [168,169]. 

DNA bases are highly susceptible to damage caused by OS, resulting in hydroxylation, protein 
carbonylation, and nitration [39]. One of the most prominent markers of oxidative DNA damage is 
8-hydroxylamine (8-OHG), which forms when ROS reacts with guanine [170]. Due to its low 
oxidation potential, guanine is readily oxidized and forms several by-products including 2,6-
diamino-4-hydroxy-5-formamidopyrimidine (FapyGua) and 7,8-dihydro-8-oxoguanine (8-OHG) 
[171,172]. ROS attack on DNA leads to more than 20 oxidized base adducts [173]. The most common 
oxidative DNA damage includes single-strand breaks (SSBs) and double-strand breaks (DSBs), with 
DSBs being more toxic and capable of altering gene transcription [174]. SSBs occur due to the 
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breakdown of the DNA sugar-phosphate backbone following ROS oxidation, while DSBs can result 
in changes in the transcription of gene promoters near break sites [173,174]. 

The capacity to repair DNA damage is compromised in AD [175]. Studies indicate a decline in 
the efficiency of the base excision repair (BER) pathway and other DNA repair mechanisms [175,176]. 
This impairment is evidenced by reduced recruitment of repair proteins such as p53-binding protein 
1 (53BP1) to sites of damage and lower levels of critical proteins involved in double-strain break (DSB) 
repair, including DNA PKcs and the MRN complex [177,178]. Elevated levels of γH2AX, a marker of 
DSBs, have been found in the neurons and astrocytes of AD patients, indicating persistent DNA 
damage [179]. 

OS significantly impacts DNA integrity in AD, leading to various forms of DNA damage, 
including strand breaks and oxidized base adducts. The compromised DNA repair capacity in AD 
exacerbates disease progression and highlights the need for targeted therapeutic interventions. 

8. Biometals and Alzheimer’s disease Pathogenesis 

8.1. Copper, Selenium and Zinc: 

Copper (Cu2+) is an essential micronutrient and redox-active metal that plays a crucial role in 
AD [180]. It is required for the function of SOD1, a vital cellular antioxidant [181]. However, the 
interaction of Cu2+ with Aβ forms H2O2, which contributes to the production of OH• and exacerbates 
AD pathogenesis [182]. Zinc, while providing structural support to SOD1, in excess, promotes the 
hyperphosphorylation of tau, a protein crucial for microtubule stability [183]. Both Cu2+ and zinc can 
enhance the production of ROS, and damage proteins, DNA, and lipids [184,185]. Studies in mice 
have shown that chelating these metals from Aβ aggregates increases Aβ solubilization and decreases 
deposits, suggesting potential therapeutic strategies [184,186]. 

Selenium has a dual role in AD, acting both as an antioxidant and a pro-oxidant depending on 
its concentration [187]. High selenium levels can increase free radical formation by oxidizing 
sulfhydryl groups [187,188]. Conversely, selenium deficiency impairs GPx activity, leading to 
increased OS production [187]. As an antioxidant, selenium has the ability to help mitigate oxidative 
damage in AD.  

8.2. Magnesium, Calcium, and Iron: 

Magnesium and calcium also influence AD through their interactions with APP and presenilins 
[189,190]. Presenilins, which form the catalytic subunit of the γ-secretase complex, regulate zinc and 
Cu2+ uptake and are involved in cleaving APP [191]. Mutations in presenilin genes (PS1 and PS2) 
lead to the downregulation of calcium channels and mitochondrial transport proteins, disrupting 
calcium homeostasis and contributing to AD pathology [192]. Both magnesium and calcium stabilize 
γ-secretase and enhance its activity which reduces Aβ production [193].  

Iron accumulation in the brain is associated with Aβ aggregation, inflammation, and OS 
[194,195]. Increased iron deposition exacerbates OS, which promotes further Aβ deposition in a 
proposed vicious cycle [196]. Aβ alters redox-inactive ferric iron (Fe3+) to redox-active ferrous iron 
(Fe2+), catalyzing the production of toxic free radicals via Fenton reactions [197,198]. Elevated iron 
levels have been observed in individuals with MCI, suggesting early involvement in AD [199]. APP 
contains an iron response element (IRE) that regulates its translation under iron-rich conditions, 
linking increased iron levels to higher APP production and toxic aggregate formation [200]. 
Additionally, APP interacts with ferroportin to facilitate iron export, and hepcidin regulates iron 
levels by controlling ferroportin activity [201]. Dysregulation of these pathways can contribute to AD 
pathology [198]. Disruption in iron homeostasis also influences tau protein aggregation through 
induction of tau aggregation by Fe3+, while reducing Fe2+ levels can reverse this process. [198]. 
Proteins involved in iron metabolism, such as divalent metal transporter 1 (DMT1) and ferroportin 1 
(FPN1), affect brain iron load and AD progression [202]. 

Understanding the complex roles of these metals in AD provides insights into potential 
therapeutic targets for mitigating OS, protein aggregation, and neurodegeneration in AD pathology. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 19 August 2024                   doi:10.20944/preprints202408.1375.v1

https://doi.org/10.20944/preprints202408.1375.v1


 12 

 

9. Antioxidant Deficiency in Alzheimer's Disease 

RNS and ROS are typically regulated by a balance of endogenous and dietary antioxidants 
presence, such as glutathione (GSH), and antioxidant enzymes, including glutaredoxins, catalase, 
Trx-1, GPx, glutathione reductase (GR), and SOD [203]. These antioxidant systems are distributed 
across various subcellular compartments and often work in complementary ways to neutralize ROS 
and RNS [43]. 

In AD, these antioxidant defenses become insufficient due to increased ROS production, which 
can result from the downregulation or loss of function of antioxidant enzymes [78]. This insufficiency 
of antioxidative mechanisms can tilt the cellular reprogramming to a pro-oxidative state, which can 
contribute to additional OS [204]. GSH is widely expressed throughout the body and is crucial in 
reducing OS [205]. Increased levels of H2O2 induce GPx activity, which reduces H2O2 by oxidizing 
GSH into glutathione disulfide (GSSG) [206]. The GSH/GSSG ratio is an essential marker of OS. This 
ratio is often lowered in erythrocytes in AD patients and is likely due to increased GPx activity 
despite some studies reporting mixed results [207,208]. 

The activity of SOD1, a key antioxidant enzyme, is lower in the frontal lobes of AD patients 
suggesting that regional variations in central antioxidant enzyme activity may be significant in the 
pathogenesis of AD [209,210]. When compared to healthy controls, systemic SOD and GPx activities 
were found to be lower not only in AD patients but also in individuals with mild cognitive 
impairment (MCI), a precursor stage to AD [211,212]. This supports the notion that increased 
systemic OS is an early indicator of AD progression [213]. 

10. Recent Advances in Alzheimer's Disease Therapeutics Targeting Oxidative Stress 

Currently, the FDA-approved drugs for treating AD include galantamine, donepezil, 
memantine, rivastigmine, and the combination drug Namzaric (donepezil and memantine). These 
medications, however, provide only symptomatic relief without halting disease progression or 
altering its outcomes [214]. Tacrine was the first drug approved for AD treatment, but it was later 
withdrawn due to hepatotoxicity [110,215]. Acetylcholinesterase inhibitors are beneficial in almost 
all stages of dementia, yet their efficacy in mild cognitive impairment and prodromal AD remains 
unproven [215]. Memantine is effective for moderate to severe AD but does not significantly mitigate 
cognitive decline [215]. 

Recently, anti-amyloid-β antibodies, such as aducanumab, lecanemab, and gantenerumab, have 
garnered attention for AD treatment [32]. These monoclonal IgG1 antibodies target aggregated forms 
of Aβ, and growing clinical evidence supports the beneficial role of Aβ immunotherapy in improving 
AD conditions [216]. Emerging therapeutic developments include naturally occurring polyphenolic 
compounds that act as antioxidants and confer neuroprotection in AD [217]. Polyphenols either 
reduce the production of ROS or enhance antioxidant release [218]. These compounds can cross the 
BBB and promote neuroprotection [219]. For instance, α-lipoic acid, a polyphenolic compound, acts 
as a free radical scavenger and mitigates H2O2 or iron-induced pathologies by inhibiting ferroptosis. 
It reduces the iron required for converting H2O2 into OH• via the Fenton reaction by forming chelates 
with iron. Additionally, it decreases brain calcium content and calpain activity, thereby preventing 
neuronal cell death [220]. 

Polyphenols exhibit a broad range of biological activities against several human diseases, 
including AD [218,221]. They also potentially modulate gut dysbiosis [222]. Green tea polyphenols, 
rich in (-)-epigallocatechin-3-gallate (EGCG), scavenge free radicals, chelate metal ions, and inhibit 
the nuclear translocation of NF-кB, alleviating OS and protecting against various AD-promoting 
factors [223]. ROS have been found to disrupt the BBB by activating several signaling pathways, 
leading to tight junction activation, adherent junction modification, mitochondrial membrane pore 
activation, and cytoskeletal disorganization. This disruption results in BBB dysfunction and further 
exacerbates other pathological conditions, including neuroinflammation, progressing to AD. 
Naturally occurring polyphenols such as stilbenes, flavanones, isoflavones, and phenolic acids act as 
antioxidants, mitigating BBB dysfunction associated with increased OS [224]. Thus, polyphenols are 
considered potential therapeutic molecules for treating OS-induced AD. 
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Additionally, targeting mitochondria to reduce the production of free radicals (FRs) is a 
significant strategy in ameliorating OS-induced AD. Antioxidants like coenzyme Q10, MitoQ, 
dimebon, and α-lipoic acid are potent in alleviating mitochondrial dysfunction and associated 
oxidative damage, thereby reducing cognitive decline in AD patients [225]. ROS activates protein 
kinase C and the Mitogen-Activated Protein Kinase (MAPK) pathway, triggering the release of 
inflammatory cytokines and chemokines. These inflammatory cells synthesize FRs, further 
stimulating other inflammatory mediators. Consequently, anti-inflammatory drugs can be employed 
to reduce OS-induced damage and prevent neurodegeneration. Tumor Necrosis Factor-alpha (TNF-
α) is a major stimulator of cytokines and other inflammatory mediators, leading to the abnormal 
cleavage of amyloid precursor protein (APP). TNF-α also stimulates the Nuclear Factor kappa B 
(NFκB) pathway, resulting in the production of Aβ. Inhibiting TNF-α in AD patients has been found 
to mitigate cognitive defects [226]. TNF-α inhibitors, such as etanercept, can reduce TNF-α-induced 
neuronal damage. Drugs targeting OS-induced AD are currently undergoing clinical trials, offering 
hope for more effective treatments. 

Carvedilol, a β-blocker, is currently in phase IV clinical trials with 29 participants enrolled. This 
study, designed as a randomized, triple-blind, and parallel assignment, has shown that Carvedilol 
inhibits apoptosis, reduces ROS levels, and mitigates Aβ toxicity. By regulating Interleukin-1 beta 
(IL-1β) expression, Carvedilol promotes neuronal growth and survival. Furthermore, it activates the 
Nrf2/ARE pathway, increasing the levels of heme oxygenase-1 (HO-1) and NAD(P)H quinone 
oxidoreductase-1 (NQO-1) in HT22 cells, thereby alleviating OS [227,228]. Similarly, Donepezil is 
being evaluated in phase III trials for its therapeutic potential in AD patients through cognitive 
function assessments. This double-blind, randomized, parallel assignment study has demonstrated 
that Donepezil suppresses NF-κB in murine macrophages and promotes remyelination of neurons in 
a cuprizone-induced mouse model. As a piperidine derivative, Donepezil reversibly inhibits 
acetylcholinesterase, thereby improving cholinergic transmission by increasing acetylcholine levels. 
Additionally, Donepezil activates AMPK and other downstream pathways to mitigate OS [229-231]. 
Following this, Memantine is in phase III clinical trials with a randomized quadruple masking and 
factorial assignment study design involving 613 participants. Memantine blocks NMDA receptors, 
crucial for brain function, and has been shown to mitigate OS via Brain-Derived Neurotrophic Factor 
/ Tropomyosin receptor kinase B (BDNF/TrkB) signaling in HUVECs. It also activates the Nrf2 
pathway in SHSY5Y cells, reducing OS directly or indirectly [231-233] 

In a related effort, Melatonin is undergoing phase III trials aimed at treating AD. As a pineal 
hormone, Melatonin inhibits β and γ secretase enzymes while increasing α secretase activity, thus 
reducing amyloidogenesis. It is highly efficient in early-stage AD for neuroprotection. Melatonin 
scavenges ROS and activates the Nrf2/HO-1 pathway, elevating antioxidant levels such as catalase, 
superoxide dismutase, and glutathione peroxidase [231,234,235]. On a similar note, Pramipexole is in 
phase II trials with an open-label, single-group assignment design involving 20 participants. 
Preclinical studies in APPswe/PS1dE9 mice models have shown that Pramipexole, a dopamine 
agonist, exhibits neuroprotective effects by scavenging free radicals and mitigating OS in 
mitochondria. It activates the Nrf2/HO-1 pathway, increases IL-10 generation, and improves 
cognitive functions. Additionally, Pramipexole activates the CREB pathway, reducing over-
expressed RCAN1 levels  [236-239]. 

Moreover, Resveratrol is in phase II trials to evaluate its effectiveness in preventing AD 
progression. This randomized, single-centered study with quadruple masking and parallel group 
assignment includes 119 participants. Preclinical studies in Tg19959 and APP/PS1 transgenic mice 
models have shown that Resveratrol reduces tau pathology by activating AMPK and reducing OS. It 
also inhibits the Phosphoinositide 3-Kinase / Protein Kinase B (PI3K/AKT) pathway and stimulates 
PP2A activation, promoting tau dephosphorylation and neuronal survival [240-242]. Adding to the 
list, Etanercept is in phase I clinical trials with an open-label, crossover assignment model involving 
12 participants. Studies in AD mouse models have demonstrated that Etanercept decreases TNF-α 
levels in the brain, reducing ROS production via NADPH oxidase and improving cognitive function. 
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As an anti-TNF-α drug, Etanercept reduces OS, evidenced by decreased malondialdehyde levels and 
increased antioxidant levels such as superoxide dismutase and glutathione peroxidase [243-247].  

Similarly, Epigallocatechin-gallate (EGCG) is being evaluated in phase III trials for its benefits 
in early-stage AD. With 200 participants, this randomized, double-blind, crossover assignment study 
has shown that EGCG, which contains hydroxyl groups, neutralizes FRs, modulates pro-apoptotic 
proteins Bax and Bad, and regulates mitochondrial permeability. It also activates the Nrf2/ARE 
pathway, alleviating OS and providing neuroprotection [248,249]. Lastly, Genistein, in a phase II trial 
with a randomized, parallel assignment, and quadruple masking study design, involves 27 
participants. Experiments on streptozotocin-induced rat models have shown that Genistein induces 
autophagy and promotes Aβ clearance. It hinders kinases such as cyclic Adenosine Monophosphate 
(cAMP)-dependent protein kinase, protein kinase C, and phosphorylase kinase. Genistein also 
promotes neuronal survival by attenuating OS via the Phosphoinositide 3-Kinase / Protein Kinase B 
(Akt) / Nuclear Factor Erythroid 2-Related Factor 2 / Kelch-like ECH-Associated Protein 1  
(PI3K/Akt/Nrf2/Keap1) pathway and activates the cAMP/CREB-BDNF-TrkB signaling pathway, 
enhancing cAMP levels and CREB and TrkB phosphorylation [250-252]. 
 

11. Conclusions 

Based on the comprehensive review of the literature on OS and AD, it is evident that OS plays a 
pivotal role in the pathogenesis and progression of AD. This review highlights the multifaceted 
mechanisms through which ROS and RNS contribute to neuronal damage, including lipid 
peroxidation, protein oxidation, and DNA damage. Mitochondrial dysfunction emerges as a critical 
factor, exacerbating ROS production and disrupting cellular energy metabolism, further contributing 
to the neurodegenerative processes observed in AD. The interplay between OS and key pathological 
features of AD, such as Aβ aggregation, tau hyperphosphorylation, and synaptic dysfunction, 
underscores the complexity of the disease. Aβ peptides, particularly Aβ42, are prone to aggregation, 
forming insoluble fibrils that deposit as plaques in the brain, a process enhanced by OS. Furthermore, 
OS-induced mitochondrial dysfunction leads to increased ROS production, creating a vicious cycle 
that perpetuates neuronal damage and cognitive decline. 

Despite the strong evidence linking OS to AD, clinical trials with antioxidant therapies have 
yielded inconsistent results, highlighting the need for a more nuanced understanding of the disease's 
pathophysiology. Emerging therapeutic strategies, including the use of polyphenolic compounds 
and targeted mitochondrial antioxidants, show promise in mitigating OS-related damage. 
Additionally, recent advances in immunotherapy, such as the development of monoclonal antibodies 
targeting Aβ, represent a significant shift towards disease-modifying treatments. 

Future research should focus on combination therapies that target multiple pathways implicated 
in AD, including OS, mitochondrial dysfunction, and neuroinflammation. Promoting a healthy 
lifestyle with a focus on antioxidant-rich diets, regular physical activity, and cognitive engagement 
may also play a role in delaying the onset and progression of AD. 

In conclusion, while significant progress has been made in understanding the role of OS in AD, 
further studies are needed to translate these insights into effective therapeutic interventions. By 
addressing the intricate mechanisms underlying OS and its interplay with other pathological features 
of AD, there is hope for developing treatments that can slow or even halt the progression of this 
debilitating disease. 
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