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Abstract: The increasing rearrangement is a rewarding instrument in financial risk management. In practice, risk
must be managed in different perspectives. A common example is portfolio risk which often can be seen from at
least two perspectives: market value and book value. Different perspectives that is different distributions can
be coupled by increasing rearrangement. One distribution is regarded as underlying, and the other distribution
can be expressed as increasing rearrangement of the underlying distribution. Then, the risk measure for the
latter can be expressed in terms of the underlying distribution. Our first objective is to introduce the increasing
rearrangement for application in financial risk management and apply the increasing rearrangement to the class
of distortion risk measures. We derive formulas to compute risk measures in terms of the underlying distribution.
Afterwards, we apply our results to a series of special distortion risk measures, namely Value at Risk, Expected
Shortfall, Range Value at Risk, Conditional Value at Risk, Wang's risk measure. Finally, we present the connection
of increasing rearrangement to inverse transform sampling, Monte Carlo simulation, and cost-efficient strategies.

Butterfly options serve as illustrative example for the method.
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1. Introduction

Increasing rearrangements often appear in finance and risk management in a natural context. For
example, consider the market value and book value of a portfolio, where the book value is reported
according to some reporting standard. In many cases, the portfolio risk has to be managed based on
market values as well as book values — both points of view may be important and there may be even
more perspectives to be controlled. Mostly, the book value can be regarded as an increasing function
of the market value. In this case, risk measures of book and market values are related in a special
manner. Given that the distribution of the market values does not have atoms, distortion risk measures
of book values can be written in terms of the corresponding market values. This gives insight and
computational advance.

The class of distortion risk measures to which this idea applies is a rather general yet useful and
handy class of risk measures. All distortion risk measures are coherent as defined by Artzner et al. [1],
i.e. they are translation invariant, monotonous, sub-additive, and positively homogeneous. Distortion
risk measures were introduced by Denneberg [8] and Wang [20]. Their roots lie in the dual utility
theory of Yaari [21], where it is shown that there must exist a type of function such that a prospect is
valued at its distorted expectation. In place of using the tail probabilities in order to quantify risk, the
decision maker uses the distorted tail probabilities. A general overview of distortion risk measures and
their relation with the orderings of risks and the concept of comonotonicity can be found in [6] and [7].

Distortion risk measures allow an asset manager to reflect a client’s attitude towards risk by
choosing the appropriate distortion function. For instance, in insurance data analytics and actuarial

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202408.1329.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 August 2024 doi:10.20944/preprints202408.1329.v1

20f14

practice, distortion risk measures are used to capture the riskiness of the distribution tail and then
employed to price extreme events, to develop reserves, to design risk transfer strategies, and to allocate
capital.

The example of book and market values generalizes to any two distributions when one of them
does not have atoms, as in this case an increasing rearrangement exists that transforms the continuous
distribution into the other. Hence, given any distribution, we may find the increasing rearrangement
with respect to some continuous distribution of our choice (e.g. uniform or normal distribution) and
compute the risk of the given distribution in terms of the continuous distribution we chose.

Inverse transform sampling is a special case of this setting. In this case, the continuous dis-
tribution is the uniform distribution on [0,1]. Monte Carlo methods often use inverse transform
sampling. Another example are cost-efficient portfolios as it turns out that the increasing and decreasing
rearrangement yields explicit formulas for cost-efficient (and cost-inefficient) portfolios.

The article is organized as follows:

In Section 2 we introduce the increasing rearrangement in two versions called the “quantile
version” and the “transport version”. While the quantile version is especially advantageous in finance
— as it has the transformation property needed when applied to risk measures — the transport version is
a little smoother in a way and for this reason preferred when applied to optimal transport, hence our
naming.

The following Section 3 brings the application of increasing rearrangements (quantile version) to
distortion risk measures. We derive formulas of how to compute the risk in terms of the underlying
continuous distribution (“market values”).

This can be applied in Section 4 to a series of special distortion risk measures, namely Value at
Risk, Expected Shortfall, Range Value at Risk, Conditional Value at Risk, and Wang's risk measure.

We apply increasing rearrangement to inverse transform sampling and Monte Carlo simulation in
Section 5. An example is the butterfly spread with R code provided in Appendix A. Finally, we point
out the relation of increasing rearrangement to the theory of cost-efficient strategies.

2. The Increasing Rearrangement

The increasing rearrangement is related to the generalized inverse of distribution functions. There-
fore we first introduce this concept. Here and in the following, increasing means

f(a) < f(b) for all a < b in the range of definition of f. (1)

Definition 2.1. Let T : R — R be an increasing function. The generalized inverse T~ of T is defined
by

T (y) =inf{x e R|T(x) >y}, ()

with inf @ = oo.
Let F be any distribution function. For a € (0,1), we denote the corresponding quantile function
with g, (F). It coincides with the generalized inverse F* () and is given by

go(F) = F7(a) = inf{x € R|F(x) > a}. (3)

If X is a random variable with distribution function F, we write g, (X) = g+ (F) as well. To specify
distribution functions, we write Fx for the distribution function of X. If X and Y have the same
distribution function, we write X 2 Y. 1f X has distribution Fx, we write X ~ Fy.

We assume all random variables to be elements of some domain X C L° of random variables
with values in RU {co} and X be a convex cone, i.e. aX + BY € X forall X,Y € X and «, > 0.

Given any increasing function T : R — R, the generalized inverse T~ of T is increasing and
left-continuous (cf. [14], p. 641 £.).
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Proposition 2.2. [14], p. 642 If X is a random variable with distribution function Fx and ¢ : R — Ris
increasing and left-continuous, then

Fgox(a) = go Fx (a) foralla € (0,1). 4)

In terms of the quantile function, this means

Ja(goX) = go0qu(X) foralla € (0,1). (5)

Definition 2.3. Let T : R — R be an increasing function. The right-continuous generalized inverse T~
of T is defined by

T7(y) =inf{x €e R|T(x) >y}, (6)
with inf@ = co.

Definition 2.4. Let X and Y be random variables with distribution functions Fx and Fy. The increasing
rearrangement (quantile version) of Y with respect to X is given by

g =F oFx. (7)

The increasing rearrangement (transport version) of Y with respect to X is given by
g =F oFx. 8)

Lemma 2.5. [18], p. 19 £. Let X and Y be random variables. Let g~ be the increasing rearrangement (transport
version) of Y with respect to X. Then the following holds:

1. g7 is increasing.
2. g is right-continuous.
3. If X does not have atoms, then Y 4 7 (X).

Lemma 2.6. Let X and Y be random variables. Let ¢~ be the increasing rearrangement (quantile version) of Y
with respect to X. Then the following holds:

1. g% is increasing.
2. If X does not have atoms, then g is left-continuous.
3. If X does not have atoms, then Y 4 g (X).

Proof. (i) The functions Fx and F}~ are increasing, and so is .
(ii) X does not have atoms iff Fx is continuous. Moreover, Fy~ is left-continuous. This implies (2).
(iii) The continuity of Fx implies Fx(X) ~ UJ0,1] (uniformly distributed on [0,1]). Hence
F& (Fx(X)) £ Y. (cf. [10], p. 429) O

While the quantile version of the increasing rearrangement seems to be a natural choice in terms of
the generalized inverse and favorable in view of Proposition 2.2, the transport version of the increasing
rearrangement is right-continuous without further assumptions on X. Villani praises the transport
version of the increasing rearrangement: “This rearrangement is quite simple, explicit, as smooth as
can be, and enjoys good geometric properties” [18], p. 20.

3. Risk measures of increasing rearrangements

Distortion risk measures are law-invariant risk measures and include Value at Risk and Expected
Shortfall. They are defined in the following way:

Definition 3.1. [17]
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1. A distortion function D is an increasing, right-continuous function on [0, 1] satisfying D(0) = 0
and D(1) = 1.
2. The distortion risk measure associated with a distortion function D is defined by

1
e(X) = [ qu(X)dD(u). ©)

Note that in our notation we regard X as loss function, i.e. positive values of X stand for losses,
negative values of X stand for profits. If one uses a p&l-function with an opposite interpretation, the
formulas here and in the following have to be altered accordingly.

In [14] the definition of distortion risk measures is given for the smaller class of convex, absolutely
continuous distortion functions. With respect to these distortion functions, the corresponding distortion
risk measures are coherent. However, this excludes Value at Risk from the class, which is why we
prefer the more general Definition 3.1 of Tsukahara.

Let D be an absolutely continuous distortion function and ¢ be the right derivative of D. Then ¢
is a non-negative function, and

D(u) = /Ou ¢(s)ds. (10)
One defines

Definition 3.2. Let ¢ be the right derivative of an absolutely continuous distortion function. The
spectral risk measure with respect to ¢ is

1
00 (X) = [ qu(X)p(w) du. ay
One calls ¢ the spectrum of ¢,.

If ¢ is the right derivative of an absolutely continuous distortion function D, then ¢p = ¢, holds
by construction.

Lemma 3.3. Let D be a distortion function and op the risk measure associated with D. Then op can be written
in the form

on(X) :/ xdD o Fx (x). (12)
Proof. The proof given in [14], p. 287 for convex and absolutely continuous distortion function D
applies literally. O

The chain rule, applied to (12), implies

Lemma 3.4. Let D be an absolutely continuous distortion function, ¢ its spectrum and g, the risk measure
associated with ¢. Let X be a random variable with an absolutely continuous distribution function Fx and let
fx be the right-derivative of Fx (density of X). Then ¢, can be written in the form

(e

0(X) = [ xpo Fx(x)fx(x) dx. (13)

Theorem 3.5. Let X and Y be random variables and X be atomless. Let ¢~ be the quantile version of increasing
rearrangement of Y with respect to X. Let D be a distortion function and op the distortion risk measure
associated with D. Then the following holds:
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1 1
eo(¥) = [ qu(¥)dD@w) = [ g~ 0 qu(X)dD(w), (14)
op(Y) = / xdD o Fy(x) = / ¢ (x)dD o Fx(x). (15)

If D is absolutely continuous and ¢ is the corresponding spectrum, we have
1 1,

00(¥) = [ qu(Mp(w)du= [ g 0gu(X)g(u)du. (16)

Moreover, if X is absolutely continuous with density fx,
oY) = [ 87 (x) @ o Fx(x)fx(x) dx. (17)

Note that representation (17) cannot be written down in terms of Fy, because Fy is not supposed
to be absolutely continuous (not even continuous).

Proof. By Lemma 5.3., ¢ is an increasing, left-continuous function, and Y 2 g (X). Thus Proposition
2.2 applies and yields (14) and (16).
To show (15), we write G(x) = D o Fx(x) and observe G (x) = F5y o D (x).! Now

/_Zg“(x)dc(x):/Olg“(cﬁ(u))du:/Olg&opXmDe(u)du

(18)
=E[g" oFx oD (U)], U~ U[0,1].
We introduce the random variable V = D* (U) and obtain with (14)
[<S) 1
| 8 (Do bx(x) =E[g” o Fg (V)] = [ g~ 0 F¢ (0)dD(0) = ep(¥Y).  (19)
—0 0

This shows (15). Finally, applying the chain rule to (15) implies (17) and this finishes the proof. [

4. Application to Special Risk Measures

4.1. Application to Value at Risk

Value at Risk of a loss distribution is defined to be the quantile at some confidence level « € (0,1),
we write

VaR, (Y) = gu(Y). (20)

Value at Risk is a distortion risk measure with distortion function
D(u) = L) (u). (21)
(See [17] for more details.) Hence, Theorem 3.5 applied to VaR yields the well-known

Lemma 4.1. Let X and Y be random variables and X does not have atoms. Let g be the quantile version of
increasing rearrangement of Y with respect to X. Then

T Cf. [14], p. 287
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VaR,(Y) = g o VaR,(X). (22)

Proof. The assertion follows from equation (14) of Theorem 3.5. Also, it is a consequence of Lemma
5.3. (iii) in combination with Proposition 2.2, namely:

VaRy(Y) = Fy () = Fge ox () = ¢ o Fx (@) = g o VaRu(X). (23)
O

4.2. Application to Expected Shortfall

The Expected Shortfall of a random variable Y with E(Y") < oo and confidence level « € (0,1), e.g.
& = 0.995, is the spectral risk measure defined as follows:

1
ESu(Y) = [ u(¥)ges(u) du @4
with specific spectrum

1
-

¢ps(u) == i L1, 1)(u) for u € [0,1]. (25)

Alternatively, Expected Shortfall can be represented in terms of the distortion function of the
form:

Dgs(u) = /au ¢rs(s)ds = max{bll__z,O}, ue0,1], (26)

(This follows from Definition 3.2 of distortion risk measures.) For continuous random variables X,
Expected Shortfall has an intuitive interpretation as conditional expectation, namely

ES,(X) = E[X | X > q.(X)]. 27)

For discontinous random variables though, one has to be careful and the proper definition in this
general case amounts to [14], p. 283

ESu(X) = 10— { E[X1 0,0 (X)] +a(X) (1~ 2 — P(X > gu(X)))}. 8)

Nevertheless, the theorem on increasing rearrangement and distortion risk measures allows to
find a version of formula (27) for discontinuous random variables as follows:

Theorem 4.2. Let X and Y be random variables and X be absolutely continuous. Let ¢ be the quantile version
of increasing rearrangement of Y with respect to X. Let E(Y™) < oo. Then

ES,(Y) = E[g (X) | X > gu(X)]. (29)

Proof. As X is absolutely continuous there exists a density function fx. Consequently, the expected
shortfall can be written in the form of equation (17) with the spectrum ¢gs. We derive
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& ‘;" (30)

as was to be shown. O

In case Y = ¢ (X), X-a.s., Theorem 4.2. takes the striking form

ES(Y) =E[Y | X = g4(X)]. @31)

The following theorem shows that this holds for any (not necessarily left-continuous) increasing
transformation g with Y = g o X, X-a.s., as well.

Theorem 4.3. Let X be an absolutely continuous random variable, and Y = g o X, X-a.s., where g is increasing.
Let E(Y') < oo. Then

ESy(Y) = E(Y | X > qu(X))- (32)
Proof. We consider the sets

Y={xeR|g(x) >g,(Y)}and X ={x e R|x > g,(X)}. (33)

In the first place, X C ), or, what is the same,
1y -1y >0. (34)
Indeed, for an arbitrary x € X we obtain
a < P(X < x) < P(g(X) < g(x)) = P(Y < g(x)), (35)
which means x € ). This implies (34). Moreover, we find that

Iy(x) — 1y (x) > 0implies g(x) = ga(Y). (36)

This can be shown by contradiction. Indeed, let x € Y \ X be arbitrary and assume g(x) > g4 (Y).
Then we obtain by the monotony of ¢ and the absolute continuity of X

P(X <x) = P(X < x) > P(g(X) < g(x)) = P(Y < g(x))
X) — gy 37
2P<Y§q“(y)+g()2q(y)>2a, (37)

hence x > g,(X) in contradiction to x ¢ X'. Thus statement (36) holds.
Now we prove the theorem by showing

(1—a)(ESa(Y)—IE(goX|XZq,X(X))) = 0. (38)

Representation (28) of Expected Shortfall is equivalent to
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1
ESa(Y) = - {E(Ylysg ) + (V) (1 = = P(Y = qu(¥)) }, (39)
as follows from
E(Y1Y>qa(l/)) - E(Y]IYzqa(Y)) —qu(Y)P(Y = q4(Y)). (40)

The random variable X is assumed to be absolutely continuous and hence possesses a probability
density function fX. We calculate with (39)

(1- oc)(ESa(Y) ~E(goX|X > qa(X))) -
=E(Y[Y 2 qa(Y)) + 32 (Y)(1 —a = P(Y > ga(Y)) ~
—(1—a)E(go X |X > gq4(X))

= [ 8GOy () £ () dx - qu(¥) [ L)X () D
—3a(Y) [ 1y (0¥ () dx — [ g1 (0) ¥ (x) dx
= [ [s() = a(0)] [1y(0) = 12(x)] £¥ () .
By (34) an (36), the integrand vanishes. This shows (38) and thus the theorem is proven. [

4.3. Application to Range-Value-at-Risk

Next, we highlight Range-Value-at-Risk introduced by [4]. It is a modified version of Expected
Shortfall such that an average of VaR levels is calculated across a pre-defined range of loss probabilities.
Let0 <o <1,0 < B <1—u,then

RVaR,5(X) = 5 / VaR, (X) du. 42)
Range-Value-at-Risk has good statistical properties (“C-robustness”) which carry over to Expected
Shortfall in a certain sense as is discussed in [4]. In applying our main theorem 3.5, we derive a formula

for the Range-Value-at-Risk of Y in terms of X:

Theorem 4.4. Let X and Y be random variables and X be absolutely continuous. Let g~ be the quantile version
of increasing rearrangement of Y with respect to X. Let E(YT) < coand B > 0, a + B < 1. Then

RVaR, 5(Y) = E[g™(X) [ 4asp(X) > X > qa(X)]. (43)

Proof. The assumption of absolute continuity of X gives us the possibility to write the Range-Value-at-
Risk in terms of the density function fx by (17), as follows:

pra
RVaR,Xﬁ ,3/ VaR,(Y)du = ‘3/ ]ltxzx-i—,B) u)qu(Y) du

= 5 8 0 ey (Pl )

ﬁ/ L (0 (X) g0 5 ()) (¥ fx (2)dx
E[g(X) [qurp(X) = X > ga(X)],

(44)

as was to be shown. O
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4.4. Application to Conditional Value at Risk

The distributional transform is defined as follows [3,15]: Let X be a real random variable with
distribution function F and let V' ~ U(0, 1) be uniformly distributed on (0, 1) and independent of X.
The modified distribution function F(x,A) is defined by

F(x,A) =P(X < x) + AP(X = x). (45)
The (generalized) distributional transform of X is then defined by
U:=F(X,V). (46)
An equivalent representation of the distributional transform is

U = F(X-)+ V(F(X) — F(X-)). (47)

An early source for this transform is the statistics book [11]. See [16, p. 21-28] for a range of
applications of the distributional transform. By means of the distributional transform one can give a
proper definition of Conditional Value at Risk, namely (see [3], [15])

CVaR,(X) = E(X|U > a). (48)

The main theorem on conditional value at risk is that it actually coincides with expected shortfall.
We prove this result of Burgert and Riischendorf by applying Theorem 4.2.

Corollary 4.5. [3] Let Y be a random variable and U its distributional transform. Let E(Y ™) < co. Then
ES,(Y) =E(Y|U > «). (49)

Proof. For the distributional transform U of Y it holds that U ~ U(0,1) and Y = F* (U) a.s., see [15].
On [0, 1], Fyy is the identity. Hence the increasing rearrangement ¢~ of Y with respect to U equals
F< on [0,1] by (7). This implies Y = ¢* (U) ass.
U posesses a density (namely, the density of the uniform distribution on (0, 1)). That means that
U is absolutely continuous and Theorem 4.2. applies. We obtain

ES.(Y) = E(g(U) | U > go(U)). (50)
Using Y = ¢ (U) a.s., this implies
ES,(Y) =E(Y|U > g.(U)) = CVaR,(Y), (51)
as was to be shown. 0O

4.5. Application to Wang’s risk measure

For the pricing of financial and insurance risk, [19] has introduced a specific distortion function
which is based on the standard normal distribution ® in combination with a shift parameter A € R:

DWang,A(u) = CI)((I)_l(x) _A>' (52)
Formula (15) of Theorem 3.5 yields

Lemma 4.6. Let X and Y be random variables and X be normal distributed with y € R and 0 > 0. Let ¢ be
the quantile version of increasing rearrangement of Y with respect to X. Let E(Y™) < oo . Then

QWang,/\(Y) = E[ge o Z] (53)

d0i:10.20944/preprints202408.1329.v1
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holds for Z ~ N(u + Ao, 0?).
Likewise, let X be log-normal distributed with y € R and ¢ > 0 and g be the quantile version of
increasing rearrangement of Y with respect to X, E(Y+) < oo . Then (53) holds for log(Z) ~ N(p + Ac, o).

Proof. We start with the definition of Wang’s risk measure and (15):

e o)

XdDWang,/\ o FY(x) = / ge<x) dDWang,/\ o FX(x>' (54)

—00

OwangA (Y) = /

—o00
Let us assume that X ~ N(p, ). We can equivalently write X in terms of the standard normal

distribution, namely Fx(x) = ® (%) , and obtain for the integrator:

Dwanga © Fx (%) :<1><<1>—1 [@(";”ﬂ A) :cp(x_”_”) (55)

g

This implies (53) with Z ~ N(p + Ao, 02).
The analogous argument holds for log(X) ~ N(p,c) and the log-normal distribution function
Fx(x) = @82,

Diang1 © Fx (¥) = q>(c1>—1 {q>(k’g(xa)_”>} - A) - @(WW\) (56)

(o4

Thus equation (53) holds in both cases and the Lemma is proven. [

One may write the assertion of the lemma in terms of X rather than Z. Namely, in the notation of
the lemma and in case X ~ N(y,0?), equation (53) amounts to

QWang,A(Y) = I[*:[gF o (X + A‘T)]' (57)

In case log(X) ~ N(u,¢?), (53) amounts to
QWang,/\(Y) =E [ge o (eUAX)} : (58)
5. Application to Numerical Simulation and Cost-Efficient Portfolios

5.1. Inverse Transform Sampling

Inverse transform sampling is related to the increasing rearrangement. The well-known inversion
principle (or, inversion method) to random number generation reads:

Theorem 5.1. Let F be a cumulative distribution function and X be uniformly distributed on (0,1). Then
Y = F(X) has cdf F.
Proof. Seee.g. [13],p. 87. O

In this setting, the increasing rearrangement of Y with respect to X is

¢ (X) = Ff o Fx(X) = F (X) as. (59)

In other words, F< (X) as given in the theorem is the increasing rearrangement applied to X in special
case X ~ U(0,1). Hence, all assertions of the preceding section apply to inverse transform sampling.

5.2. Monte Carlo simulation

In general, with Monte Carlo simulation, simulated prices are not an increasing rearrangement of
random numbers or underlying prices, respectively. Consider for example a butterfly spread [12], p.
190 ff. with payoff as displayed in Table 1. Notation:

d0i:10.20944/preprints202408.1329.v1
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* St price of underlying at maturity T,
* Ky, Ky, K3 strike prices, K; < K3, K = (Kl + K3)/2.

The payoff of the butterfly spread reads as follows:

Table 1. payoff of butterfly spread.

stock price payoff

St <Ky 0
Ki<St<Ky, St—Kq
Ky <St <Kz Kz—57

K; < St 0

The payoff is depicted in Figure 1 (blue line). Given the model for stock prices, the distribution
of the butterfly payoff can be obtained by the increasing rearrangement. Let us denote the butterfly
payoff with Y = Y(S7) and the increasing rearrangement of Y with respect to St by ¢~ . Then by
Lemma 5.3 we have:

Y £ ¢ (Sr). (60)

This is easy to compute in the Monte Carlo simulation. One just has to sort Y. R code is provided
in the appendix.

Assuming a lognormal distribution for St with y = 0, 0 = 20% and T = 1/52, we obtain Figure
1. The payoff Y is denoted with the blue line, ¢ (St) with the red line. Note that g (St) is increasing
while Y is not. However, both have the same distribution.

<
S 4
(=)
= -
>
[SHN]
o o
=)
o
S -
(=)

I I I I I
0.90 0.95 1.00 1.05 1.10

price of underlying

Figure 1. Numerical increasing rearrangement of butterfly spread.

5.3. Cost-Efficient Strategies

A strategy (or a payoff) is said to be cost-efficient if any other strategy that generates the same
distribution costs at least as much. Starting with Cox and Leland [5], Dybvig [9] pointed out that
there are indeed inefficient strategies in the market. Examples like the so-called constant proportion
portfolio insurance (CPPI), or the butterfly spread discussed in section 5.2 show, as Dybvig puts it,
“how to throw away a million dollars in the stock market”.

It turns out that a payoff is cost-efficient if and only if it is non-increasing in the state-price almost
surely, see [2] for an introduction into the topic, proofs and references. We will make this statement
more explicit in Theorem 5.4 below.

In the words of Bernard et al.: “The cheapest way to achieve a lottery assigns outcomes of
the lottery to the states in reverse order of the state-price density.” [2] So we define the decreasing
rearrangement, as follows:
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Definition 5.2. Let X and Y be random variables with distribution functions Fx and Fy. The decreasing
rearrangement (quantile version) of Y with respect to X is given by

T:=F5 o(1- Fy). (61)

Lemma 5.3. Let X and Y be random variables. Let § be the decreasing rearrangement (quantile version) of Y
with respect to X. Then the following holds:

1. g is decreasing.
2. If X does not have atoms, then g is left-continuous.

3. If X does not have atoms, then Y 4 2(X).

Proof. (i) The function (1 — Fx) is decreasing while F;~ is increasing, so g is a decreasing function.
(i) X does not have atoms iff Fx is continuous. Moreover, Fy~ is left-continuous. This implies (2).
(iii) The continuity of Fx implies Fx (X) ~ U[0, 1] (uniformly distributed on [0, 1]), so 1 — Fx(X) ~
U[o0,1] as well. Hence Fy (1 — Fx(X)) Ly (cf. [10, p. 429]). O

We consider an arbitrage-free and complete market with an unique state-price density &;, t > 0
and assume that ¢; is atomless for all # > 0. In such a market the price (or cost) of a strategy (or of a
financial investment contract) with terminal payoff Xt at T > 0 is given by

C(XT) = E[gTXT], (62)

where the expectation is taken under the physical measure. The Theorem on cost efficient
strategies reads as follows.

Theorem 5.4. [2] Let Xt be a given payoff, i.e. any random variable. Let G, t > 0 be the state-price density
and g the decreasing rearrangement (quantile version) of Xt with respect to 1. Then gt 4 Xt and gt is the

cost-efficient strategy to replicate Xt: Given any other random variable YT with Yr 4 X, it holds that

c(gr) < c(Y7). (63)

In the Black-Scholes model with positive expected return p > 0, stock prices and state prices
at T > 0 are non-increasing functions of each other. Hence Theorem 5.4 amounts to the payoff be
increasing in the stock price, i.e. the increasing rearrangement of the payoff in terms of the price of the
underlying stock yields the cost-efficient strategy that replicates the distribution of the payoff under
consideration. An example is given by the butterfly spread discussed in the previous section. While
the given payoff is not cost-efficient, its increasing rearrangement is.

Note that the assertion hinges (amongst the other assumptions) on the assumption that » > 0.
Investors who do not believe that the drift of stock is positive will consequently not conclude that the
payoff of the increasing rearrangement of the butterfly spread is cost-efficient.

6. Conclusions

We consider distortion risk measures of increasing rearrangements. The “pull through property”
of the increasing rearrangement with respect to quantiles implies formulas for the risk measure of Y in
terms of X, given that Y is the increasing rearrangement of X.

The special case of Value at Risk illustrates the principle by the well-known formula

VaR,(Y) = ¢ o VaRy(X),

where Y = ¢ o X and ¢ is the increasing rearrangement.
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Moreover, applied to Expected Shortfall, the principle allows to generalize the interpretation of
Expected Shortfall as conditional expectation. Namely, let Y be an arbitrary random variable (“book
values”), X be an arbitrary absolutely continuous random variable (“market values”) and ¢ be the
increasing rearrangement of Y with respect to X. Then the Expected Shortfall of Y can be written as a
conditional expectation on ¢~ o X (which has the same distribution as Y) in terms of X. This applies
to Range Value at Risk as well.

Next, the principle implies a Theorem of Burgert and Riischendorf stating that Expected Shortfall
equals Conditional Value at Risk. An application to Wang's risk measure yields a representation of
Wang's risk measure as some expected value.

Finally, we highlight the connection of the principle to inverse transform sampling, Monte Carlo
simulation, and cost-efficient strategies.
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Appendix A R-code (butterfly example)
Figure 1 was drawn with the following R code:

N <- 100000

alpha <- 0.10 # conficence level 1 - alpha
sigma <- 0.2 # volatility

T <-1/52 # time (week)

K1 <- 0.95

K3 <- 1.05

K2 <- (K1 +K3) /2

X <- sort(rlnorm(N, sdlog = sigma * sqrt(T)))
Y <- pmax(X - K1, 0) + pmax(X - K3, 0) - 2 * pmax(X - K2, 0)

plot(X, Y, type = "1", col = "blue", xlab = "price of underlying",
ylab = "payoff")
# main ="numerical increasing rearrangement of butterfly"
lines(X, sort(Y), type = "1", col = "red")

In the last line, the increasing rearrangement is done by just sorting Y.
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