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Abstract:  Early  diagnosis  of  paroxysmal  atrial  fibrillation  (PAF)  could  suggest  patients  to  receive  timely 

interventions in clinical practice. Various PAF onset prediction algorithms might benefit from accurate heart 

rate variability (HRV) analysis and machine learning classification but to be challenged in real‐time monitoring 

scenarios. The aim of this study is to present an end‐to‐end deep learning based PAFNet model that integrates 

a sliding window technique on raw R‐R interval of electrocardiogram (ECG) segments to achieve a real‐time 

prediction  of  PAF  onsets.  This  integration  enable  the  deep  convolutional  neural  network  (CNN)  to  be 

customized as a light‐weight architecture that accommodates the size of sliding windows simply by altering 

the input layer, specifically its effectiveness in making a new prediction with each new heartbeat. Catering to 

potential  influence  of  input  sizes,  three CNN models were  trained  using  50,  100,  and  200  R‐R  intervals, 

respectively. For each model,  the performance of automated algorithms was evaluated  for PAF prediction 

using a  ten‐fold cross‐validation. As a  results, a  total of 56,381 PAFN‐type and 56,900 N‐type R‐R  interval 

segments was collected from publicly accessible ECG databases, and a promising prediction performance of 

the  automated  algorithm with  a  100 R‐R  intervals was  achieved  in  terms of  the  sensitivity of  97.12%,  the 

specificity of 97.77%, and the accuracy of 97.45%, respectively. Importantly, the automated algorithm with a 

sliding windows step of 1 could process one sample in only 23.1 milliseconds and identify the onset of PAF at 

least 45 minutes in advance. The present results suggest that the sliding window technique on raw R‐R interval 

sequences along by deep learning based algorithms may offers the possibility of providing an accurate, real‐

time, and end‐to‐end clinical tool for mass monitoring of PAF. 

Keywords:  arrhythmias;  paroxysmal  atrial  fibrillation;  electrocardiogram;  heart  rate  variability; 

deep learning; onset prediction; real‐time; monitoring; algorithm 

 

1. Introduction 

Atrial  fibrillation  (AF)  is  a  common  sustained  arrhythmia  in  clinical  practice  and  can 

significantly impair quality of life and increase the risk of serious medical conditions, including stroke 

and heart attack [1]. The prevalence of AF increases with age [2], therefore, as the aging population 

problem becomes increasingly prominent, the threat of atrial fibrillation to human health becomes 

increasingly  severe. When AF  occurs,  the disorganized  fibrillation  of  the  atrium will  reduce  the 

cardiac output and accelerate the formation of a thrombus, which may cause blood vessel block and 

further lead to life‐threatening diseases such as ischemic stroke [3] and myocardial infarction [4]. 

To evaluate the risk of AF during different phases and take the intervention and treatment in 

time, AF is commonly divided into different types. Currently, the AF classification according to the 

presentation, duration, and spontaneous of AF episodes has become a consensus  in authoritative 

guidelines    [5],  the  corresponding  five AF  types  are:  first‐diagnosed AF, paroxysmal AF  (PAF), 

persistent AF, long‐standing persistent AF, and permanent AF. AF usually manifests as PAF at the 

beginning, which is defined as the AF that terminates spontaneously or with intervention within 7 
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days of onset. There are many ways  to manage and  treat AF,  including drug  therapy,  implanted 

medical instruments, and radio‐frequency ablation, but all these methods carry potential risks. For 

example, drug therapy has been shown to be effective in patients with newly diagnosed AF with a 

treatment success rate of about 50% [6,7], but in the case of patients with persistent AF, it may not 

only be less effective but also cause other arrhythmias and even fatal complications. So, to prevent 

irreversible  atrial  lesions  and prevent  the  further deterioration  of AF,  early diagnosis  of AF has 

become particularly important. 

Electrocardiogram (ECG) is a commonly used tool that could assist cardiologists to diagnose AF 

in clinical practice, the development of accurate predictors based on ECG is important for designing 

high‐performance models [5]. Three types of ECG episodes from both normal and PAF subjects are 

divided as (A) ECG episode of a normal subject under rest state, (B) ECG episode of a PAF subject 

when AF doesn’t occur, and (C) ECG episode of a PAF subject when AF occurs. Compared with the 

ECG episode from a normal subject, (B) have occasionally premature beats and subtle changes of R‐

R interval in the ECG episode from PAF subjects when AF doesn’t occur, which could be used as 

predictors  of  the  onset  of  PAF.  As  such,  developing  a  PAF  onset  prediction model would  be 

significant for several reasons. First, when AF doesn’t occur, itʹs difficult to distinguish the ECG of 

PAF subjects from that of normal subjects. An automatic PAF onset prediction model could assist 

clinicians in the risk assessment of patients with PAF. Second, the positive prediction result could 

suggest patients to receive timely interventions, like drug therapy, which could effectively avoid the 

deterioration  of  AF  in  PAF  subjects.  Third,  during  postoperative  follow‐up  of  radio‐frequency 

ablation surgery, the model is also helpful for assessing the surgical effect [7].   

In past decades, many PAF onset prediction algorithms based on machine  learning methods 

have been proposed, with most of these studies based on the extracted heart rate variability (HRV) 

features including time domain, frequency, nonlinear and time‐frequency domain features. In March 

2001, the PhysioNet Computing in Cardiology Challenge 2001 was held [8], during which researchers 

proposed various methods to predict the onset of PAF, such as methods based on HRV features [9–

12], atrial premature contraction numbers [13,14], Rhythm‐based heartbeat duration normalization 

[15]  and  P‐wave  morphology  [16].  The  publicly  accessible  PAF  prediction  challenge  database 

(AFPDB)  was  also  provided  in  this  competition,  which  could  be  used  to  train  and  test  the 

classification model. Recently, Mohebbi [17] extracted spectrum, bispectrum and non‐linear features 

from the 30‐minute HRV signal and used a support vector machine (SVM)‐based classifier to predict 

the onset of PAF, achieving a sensitivity of 96.3%. Boon    [18] used genetic algorithm to optimize the 

features extracted from 15 minutes HRV signal and also used SVM classifier to predict the onset of 

PAF, achieving an accuracy of 79.3%. In another study, they used a shorter 5‐minute HRV signal and 

achieved an accuracy of 87.7% [19]. Narin    [20] also used 5 minutes HRV signal for the linear and 

non‐linear  features  extraction,  they  used  the  k‐nearest  neighbors  (KNN)  classifier  and  further 

discussed  the performance of  the model  for data segments  in different  time windows. Wang  [21] 

improved  the  speed  of  SVM  algorithm  and  gained  92.5%  accuracy  for  the  test  set  of  different 

databases but  the  required  length of  the signal was 5 minutes  long and  the generalization ability 

(87.0% accuracy) on clinical tests was unsatisfying. Sutton    [22] proposed the PhysOnline, an open‐

source  streaming  physiological  signal  analysis  platform,  and  demonstrated  the  effective  online 

prediction of PAF. Although the HRV analysis commonly used in such studies on the topic of PAF 

prediction  could  be well  compatible with  the  feature  selection methods  and machine  learning 

classifiers, their extraction and selection of hand‐crafted features would be inevitably subjective as 

well as a time consuming and labor‐intensive processes. Most recently, couple studies have reported 

on  developing  AF  detection  algorithms  using  deep  learning  methods  [23–27],  showing  better 

performance  compared  with  feature  extraction  [28–30]  and machine  learning methods  [31–33]. 

However, few studies on the topic of PAF prediction based on deep learning methods were presented 

so  far,  and  a prominent  limitation  in  these machine  learning  based methods  is  a poor  real‐time 

performance since the time duration of the ECG signal used for HRV analysis is commonly at least 

couple minutes, which doesn’t meet the requirements of the real‐time monitoring scenarios [34]. 
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To address these challenges, this paper proposes a novel deep learning based method for real‐

time predicting PAF onset, named the PAFNet model. This automated algorithm integrates a sliding 

window technique on raw R‐R interval of ECG segments with an end‐to‐end convolutional neural 

network (CNN). This integration enable the CNN model to accommodate the size of sliding windows 

by only altering the input layer, specifically its effectiveness in making a new prediction with each 

new  heartbeat. This  algorithm  aims  to mitigate  traditional PAF prediction methods’  limitations: 

vulnerability  to subjective and poor real‐time performance and  limited contextual understanding. 

Our  experiments  on  a  variety  of  publicly  accessible  ECG  databases  show  that  our  algorithm 

improved the prediction accuracy and real‐time performance of PAF. The contributions of this paper 

are: 

(1)  We  propose  a  novel  automated  algorithm  for  real‐time  predicting  PAF  onset,  which 

integrates a sliding window on raw R‐R interval of ECG segments. This mechanism allows the model 

to easily adjust the sliding step to meet different application scenarios. We set the sliding step to 1 in 

this study to meet the real‐time monitoring requirements. 

(2) We also introduce the CNN model for an end‐to‐end PAF prediction and classification with 

only raw R‐R interval segments as  input samples, which allow the whole system to automatically 

emphasize  important  information of  input data and avoid  inevitable subjective  in using machine 

learning methods.   

(3) By comparing the results produced with different input sizes of the model, we found that 100 

R‐R  intervals were  the overall  improvement  in  the prediction performance,  and  50  and  200 R‐R 

intervals were a relatively lower efficiency in terms of testing time of each sample. 

(4) We carried out comprehensive comparative experiments using public datasets to validate the 

effectiveness of our model. The results demonstrate that our approach performs exceptionally well 

in PAF prediction tasks and holds promise for real‐time applications.   

The  rest  of  the  article  is  structured  as  follows.  In  Section  2,  the databases  and  the detailed 

methods both are presented. The methods are evaluated in Section 3. Section 4 discusses the analysis 

and results. Finally, Section 5 concludes this article by summarizing the achievements and stating 

possible future applications. 

2. Materials and Methods 

2.1. Databases 

Table 1 shows  that we used AFPDB  for  training and validating PAFNet, while  the MIT‐BIH 

Atrial Fibrillation Database (AFDB) and the MIT‐BIH Normal Sinus Rhythm Database (NSRDB) were 

used to test the modelʹs performance and generalization ability. These publicly accessible databases 

are available from PhysioNet [34] and contain two ECG channels each. As all channels were collected 

simultaneously  and possess  the  same RR  interval  information, we used only  single‐lead ECG  to 

derive the RR interval sequence. 

Table 1. ECG Datasets. 

Database  Number of Records (n) 
Number of   

R‐R intervals (n) 

Training and 

validation 

AFPDB (PAFN)  25  56,381 

AFPDB (N)  25  56,900 

Testing 
AFDB (PAFN)  12  27,836 

NSRDB (N)  18  44,087 

Figure 1 (A) shows the learning set of AFPDB, which contains three types of labeled ECG records: 

PAF normal (PAFN) type, which is at least 45 minutes away from any AF episodes; PAF onset (PAFO) 

type, which is just near the onset of AF; and normal (N) type, with each record lasting 30 minutes. To 

predict the onset of PAF at least 45 minutes in advance, we used 25 PAFN‐type ECG records and 25 

N‐type ECG records. 
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Figure 1. Demonstration of the data segmentation used for training PAFNet. (A) Two types of 30‐

minute ECG records before the onset of AF are shown: PAF normal (PAFN) type, which is at least 45 

minutes away from any AF episodes, and PAF onset (PAFO) type, which is just before the onset of 

AF. (B) An example of the RR interval sequence derived from a PAFN record and the corresponding 

data  segmentation  based  on  the  sliding window  technique.  (C) An  example  of  the  RR  interval 

sequence derived from a normal sinus record. 

For the test databases, AFDB includes 25 long‐term ECG records from subjects with AF (mostly 

PAF), and NSRDB includes 18 long‐term ECG records from subjects with no significant arrhythmia. 

We  extracted PAFN‐type  records  from AFDB using  the  same protocol  as AFPDB,  excluding AF 

segments less than 5 minutes, atrial flutter segments, and atrial ventricular junction rhythm segments. 

As a result, we extracted 12 PAFN‐type ECG records and 18 N‐type ECG records  from these two 

databases, with each record lasting 30 minutes. 

2.2. R‐R Intervals of ECG Segments 

Pre‐processing of ECG records through filtering is crucial for improving signal quality and R‐

wave location accuracy. To reduce different types of noise interferences, we adopted a series of digital 

filters. First, we used a band‐pass filter with a cutoff frequency of 0.1 Hz to 100 Hz to filter out noise 

beyond the useful frequency range. Next, we removed the baseline drift using a median filter with a 

window size set to 0.85 of the sampling frequencies. Finally, we used a fourth‐order low‐pass filter 

to further eliminate high‐frequency noise. 

Figures 1 (B) and (C) demonstrate the data segmentation procedure. The R‐R interval sequence 

of PAFN subjects is more fluctuant than that of normal subjects. After pre‐processing, we accurately 

located the R‐waves of each ECG record using the difference threshold algorithm, and derived the R‐

R interval sequence using this equation: 

1i i iRR R R 
  (1)

where R‐Ri represents the value of the i‐th RR interval, Ri represents the time  index of the i‐th R‐

wave, and the index i ranges from 1 to M when the ECG record contains (M+1) R‐waves.   
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We then adopted a sliding window with a size of N on each R‐R interval sequence. This window 

continuously moved  from one side to another, and derived a segment containing N R‐R  intervals 

during each move. The sliding step could be adjusted according to different application scenarios. In 

this study, we set the sliding step to 1 to meet the real‐time processing requirements and the massive 

amount of data required for training deep learning models. With a sliding step of 1, we derived (M‐

N+1) RR interval segments from the whole RR interval sequence. 

2.3. Architecture of the PAFNet Model 

In this study, we explored a real‐time and accurate method for predicting the onset of PAF at 

least 45 minutes in advance by developing a 1D CNN model. Unlike methods that rely on manually 

extracted  HRV  features  and  traditional  machine  learning  classifiers,  end‐to‐end  deep  learning 

techniques  avoid  the  need  for  hand‐crafted  feature  extraction,  thus  reducing  the  loss  of  ECG 

information and the limitations of prior knowledge. Among these techniques, CNN is well‐suited for 

image  processing  and  automatic  feature  extraction, making  it  ideal  for  image  classification  and 

identification [35]. Similarly, the ECG signal and RR interval sequence contain abundant overall and 

partial information that can be automatically extracted using CNN to identify specific diseases. The 

CNN model can extract high‐level feature maps from 1D signal, enabling accurate identification of 

specific patterns related to the onset of PAF.   

As shown in Figure 2, PAFNet consisted of 26 layers, including 5 convolutional layers. The input 

size is the same as the sliding window, with each sample represented by a matrix of one row and N 

columns, where the column number is the index of the RR interval, and the value is the corresponding 

RR interval duration in seconds. The 1D convolutional layer, batch normalization layer, activation 

layer, and 1D maximum pooling  layer were abstracted as a block, CBAP  layer. The convolutional 

layer automatically extracted feature maps using kernel techniques, while the batch normalization 

layer accelerated training and improved accuracy. The activation layer increased the non‐linearity of 

the model, and the pooling layer reduced the scale of the feature map. The flatten layer converted all 

feature maps into one row as input to the dense layer for the final prediction. The output represents 

the binary prediction result of PAFNet. 

 

Figure 2. Illustration of the model structure of the proposed CNN model, named as PAFNet in this 

study. The 1D convolutional layer, batch normalization layer, activation layer and 1D max pooling 

layer are abstracted as CBAP layer. 
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Table  2  displays  the  details  of  the  PAFNetʹs  architecture,  including  hyperparameters  and 

activation functions used. The size of the input layer depends on the size of the sliding window, and 

the size of the output layer is set to 1, which represents the probability that the corresponding sample 

is PAFN. For the CBAP layer, a convolutional kernel size of 100 and a stride of 16 were selected, and 

the padding method was set to  ʹvalidʹ. The ReLU function was used as  the activation  function. A 

pooling kernel size of 2 and a stride of 2 were selected to halve the scale of each feature map. The 

number of output feature maps was set to 16, 32, 64, and 128 for the four CBAP layers, respectively. 

The size of the flatten layer also depends on the size of the sliding window, and the node number of 

the first dense layer is set to 2,048. A dropout ratio of 0.5 was used to randomly deactivate half of the 

nodes during each iteration. The training epoch was set to 9, and the batch size was set to 512. 

Table 2. The architecture of the proposed PAFNet. 

Number  Layer type 

Number of 

feature maps 

or nodes 

Parameters  Number  Layer type 

Number of 

feature maps 

or nodes 

Parameters 

1  input   

changing 

with the size 

of the sliding 

window 

N  14  BN *  ‐  ‐ 

2 
convolutio

nal   
16 

size: N, kernel: 8, 

padding=ʺsameʺ 
15  activation    ‐  ReLU 

3  BN  ‐  ‐  16  pooling    ‐  size: 2 

4  activation  ‐  ReLU  17  convolutional  256 

size: N/16, 

kernel: 8, 

padding=ʺsa

meʺ 

5 
convolutio

nal   
32 

size: N/2, kernel: 

8, 

padding=ʺsameʺ 

18  BN    ‐  ‐ 

6  BN    ‐  ‐  19  activation    ‐  ReLU 

7  activation  ‐  ReLU  20  pooling    ‐  size: 2 

8  pooling    ‐  size: 2  21  Flatten    ‐  ‐ 

9 
convolutio

nal   
64 

size: N/4, kernel: 

8, 

padding=ʺsameʺ 

22  Dense  512  ‐ 

10  BN    ‐  ‐  23  BN    ‐  ‐ 

11  activation  ‐  ReLU  24  activation  ‐  ReLU 

12  pooling    ‐  size: 2  25  dropout  ‐  0.25 

13 
convolutio

nal   
128 

size: N/8, kernel: 

8, 

padding=ʺsameʺ 

26  Dense output  1 

activation 

function: 

Sigmoid 

* BN = Batch Normalization. 

2.4. Training and Optimization of the PAFNet Model 

After determining the modelʹs structure, the next step was to optimize  the size of  the sliding 

window.  Three  types  of  evaluation metrics were  used  to  assess  the modelʹs  performance with 

different  input sizes,  including  testing  time per batch. A small  input size may result  in decreased 

performance due  to  insufficient ECG  information captured by  the sliding window, while a  larger 

input size includes more details but may require more testing time per batch. 

The  limited  total sample number of  the databases necessitated  the use of a stratified  ten‐fold 

cross‐validation strategy to optimize and evaluate the performance of the PAFNet model during the 

training and  testing procedures. The  training dataset, with a  sliding window size of 100, yielded 

113,281  RR  interval  segments,  consisting  of  56,381  PAFN  type  and  56,900 N  type  R‐R  interval 

segments. To train PAFNet, all segments were randomly divided into ten parts, with nine parts used 

for training and one part used for validation. This resulted in ten CNN models being trained and 
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saved, with the prediction result of PAFNet during the testing procedure obtained by averaging the 

prediction result of these models. The modelʹs performance was evaluated using the receiver operator 

characteristic (ROC) curve, which compared the prediction results obtained when using samples of 

different spans before the onset of PAF as input.   

2.4. Evaluation Protocols 

The ability of PAFNet to predict the onset of PAF was evaluated quantitatively using sensitivity 

(Sen), specificity (Spe), and accuracy (Acc). The total number of true positive (TP), false negative (FN), 

true negative (TN), and false positive (FP) were counted for PAFN type as positive and N type as 

negative, and Sen, Spe, and Acc were calculated based on these statistical parameters.   

Finally, based on these statistical parameters, Sen, Spe and Acc were calculated as follows: 

TP
Sen

TP FN


  
(2)

TN
Spe

TN FP


  
(3)

TP TN
Acc

TP FN TN FP




    
(4)

3. Results 

In  this  study,  the  training  and  testing  of  the  PAFNet  model  were  conducted  using  the 

TensorFlow  2.3.0  deep  learning  framework  on  a  desktop  computer  equipped  with  an 

Intel(R)Core(TM)i9‐10900KF CPU@3.70GHz and 64 GB memory. To accelerate processing and reduce 

training and testing time, an NVIDIA GeForce RTX 3080 GPU with 10 GB memory was also utilized. 

Table 3 summarizes the results of the model input size optimization, where three models were 

trained using input sizes of 50, 100, and 200 R‐R intervals, denoted as M1, M2, and M3, respectively. 

The total parameter count is in the range of millions. The testing results of these models showed that 

M2 achieved the highest Sen, Spe, and Acc, with values of 89.92%, 93.24%, and 91.96%, respectively. 

Notably, M2 exhibited a 4% increase in Sen and nearly 1% increase in Spe compared to M1 and M3. 

Accordingly, the Acc of M2 increased by nearly 2%, indicating an overall improvement in the model 

performance.  In  terms of  testing  time, M2 was  the most efficient,  taking only 9.3 milliseconds  to 

process one input sample, whereas M1 and M3 took 13.8 milliseconds and nearly 30 milliseconds, 

respectively, to process a batch of data (i.e., 512 samples). Based on these results, the input size of 100 

was selected, and M2 was identified as the optimized model. 

Table 3. Results of three models with different input sizes of R‐R intervals. 

Model  Input size(n)  Sen (%)  Spe (%)  Acc (%) 
Testing time 

(ms / batch) 

Total 

params 

M1  50  85.44  92.45  89.74  13.8  878,017 

M2  100  89.92  93.24  91.96  23.1  1,271,233 

M3  200  88.17  93.47  91.42  43.0  2,057,665 

Table 4 presents  the  results of  ten‐fold  cross‐validation of  the PAFNet model using 100 R‐R 

intervals as input (M2 in Table 3). The sliding window size is set to 100, with a sliding step of 1 as 

mentioned  in  section  2. During  the  ten‐fold  cross‐validation,  the  113,281  training  and validation 

samples are randomly shuffled and divided into 10 parts, with each part used once for validation and 

nine times for training. The fifth and seventh folds show the highest accuracy of 100.00%, while the 

first fold shows the lowest accuracy of 87.16%, indicating significant variability. Notably, the average 

validation results are substantially higher than the testing results of Sen, Spe, and Acc for M2 in Table 

3, at 97.12%, 97.77%, and 97.45%, respectively. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 15 August 2024                   doi:10.20944/preprints202408.1178.v1

https://doi.org/10.20944/preprints202408.1178.v1


  8 

 

Table 4. Results of ten‐fold cross validation using 100 R‐R intervals overlapped window as input. 

Fold  Training data (rows)  Validation data(rows)  Sen (%)  Spe (%)  Acc (%) 

1  11329‐113281  1‐11328  82.11  92.09  87.16 

2  1‐11328，22656‐113281  11328‐22656  95.34  87.84  91.63 

3  1‐22656, 33984‐113281  22656‐33984  98.74  98.86  98.80 

4  1‐33984, 45312‐113281  33984‐45312  99.39  99.39  99.39 

5  1‐45312, 56640‐113281  45312‐56640  100.00  100.00  100.00 

6  1‐56640, 67968‐113281  56640‐67968  98.76  99.95  99.35 

7  1‐67968, 79296‐113281  67968‐79296  100.00  100.00  100.00 

8  1‐79296, 90624‐113281  79296‐90624  98.47  100.00  99.21 

9  1‐90624, 101952‐113281  90624‐101952  98.43  99.54  98.98 

10  1‐101952  101952‐113281  100.00  100.00  100.00 

Mean  ‐  ‐  97.12  97.77  97.45 

Var *      0.0030  0.0018  0.0019 

* Var = variance. 

Figures 3 and 4 present the results of database‐level testing to evaluate the generalization ability 

of the PAFNet model, where the. Figure 3 shows the prediction accuracy of the trained PAFNet using 

AFPDB , tested using the databases AFDB and NSRDB. Additionally, the evaluation includes input 

samples of different spans before the onset of PAF. The horizontal axis represents the different spans, 

which  started  75 minutes before  the PAF onset, while  the vertical  axis  represents  the prediction 

accuracy.  The  resultant  curve  indicates  that  the  accuracy  fluctuates  around  85%  and  does  not 

significantly  change when  the  span  of  the  sample  varies.  Figure  4 depicts  the  receiver  operator 

characteristic  (ROC) curves of  the  ten models during  the  ten  folds of  the stratified  ten‐fold cross‐

validation.  The  bold  blue  curve  denotes  the  ROC  curve  of  the  average  prediction  results.  The 

proposed PAFNet achieved high performance for both positive and negative samples, and the mean 

area under the curve (AUC) was about 0.93, with AUC values ranging from 0.91 to 0.97 in each fold. 

 

Figure 3. Comparison of  the model classification accuracy using  the ECG signals  in different  time 

periods before the onset of AF as the input data of PAFNet. 
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Figure 4. Receiver operating characteristic (ROC) curves of the ten folds during the model test. 

4. Discussions   

4.1. Real‐Time PAF Onset Prediction 

The HRV analysis was commonly used in studies on the topic of PAF prediction, the extracted 

HRV  features  including  time domain,  frequency,  nonlinear  and  time‐frequency domain  features 

could reflect the variability of RR intervals and indirectly reflect the influence of premature beats and 

other  heart  rhythms.  This  kind  of  method  have  a  relatively  mature  theoretical  system  and 

implementation,  and  could  be well  compatible with  the  feature  selection methods  and machine 

learning classifiers, but the time duration of the ECG signal used for HRV analysis is at least 5 minutes 

which doesn’t meet the requirements of the real‐time monitoring scenarios [36]. 

Unlike the HRV analysis, we proposed a real‐time PAF onset prediction method based on the 

raw RR  interval sequence and sliding window technique, which effectively solves  the problem of 

poor real‐time performance in traditional PAF prediction methods. Compared with the commonly 

used HRV analysis, which requires at least a 5‐minute ECG signal, our method allows for real‐time 

monitoring  scenarios  such  as  ICU  PAF monitoring.  The  sliding window  technique  enables  the 

capture  of RR  intervals  in  a  fixed  number  as  the window moves  on  the  RR  interval  sequence, 

updating with each new R wave detected by the R wave location algorithm. The highly effective PAF 

prediction algorithm, which processes one sample  in only 23.1 milliseconds, allows  for  the whole 

system to make a new prediction with each new heartbeat, meeting the requirements of real‐time 

PAF  onset  prediction  scenarios.  This  method  offers  a  promising  approach  for  real‐time  PAF 

prediction, with potential for further development and application in clinical settings. To explore the 

scalability of the model, we change the number of blocks. As Table V shows, when the number of 

blocks  increases,  the  total parameters and  testing  time  increase, and  the  ten‐fold average ACC  is 

higher. However, when we change the number to 5, the performance doesn’t  improve much with 

double parameters. As a result, we choose 4 blocks.   

4.2. Performance Compared with Other Methods 

Our proposed method for predicting PAF offers several advantages, including the use of deep 

learning  to  improve  prediction  accuracy. We  used  the  CNN  technique  to  achieve  end‐to‐end 

prediction  and  classification, with  raw RR  interval  segments  as  input  samples  to  preserve  ECG 

information.  PAF  prediction  requires  longer  ECG  signals  than AF  detection  or  classification,  as 

shown in Table 3. When the input size was set to 50 (approximately 30‐50 seconds ECG signal), the 

prediction accuracy was 89.74%. Increasing the input size to 100 didnʹt significantly improve accuracy, 

which was 91.42%, approximately equal to the accuracy achieved with an input size of 200. However, 
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increasing the input size results in a smaller total number of samples, which is why deep learning is 

rarely used in related studies. To address this issue, we adopted a sliding window with a step of 1 

RR  interval, generating a sufficient  training database. Using  this methodology, we achieved high 

accuracy in predicting PAF and demonstrated the effectiveness of our approach. 

Table 4 shows the benchmarking results of our proposed method against other previous studies. 

Our PAFNet performed better  than most studies using machine  learning methods. These studies 

used  input  sizes  varying  from  5  to  30 minutes  to  extract different HRV  features  and  employed 

classifiers such as SVM and KNN to predict PAF. Compared to these studies, our proposed PAFNet 

achieved  higher  Sen,  Spe,  and Acc  than  studies  using  input  sizes  of  5  and  15 minutes    [3,5,6]. 

However, the study by Mohebbi    [1] showed better performance than ours, likely due to their use 

of the whole 30 minutes ECG from each record, which sacrificed real‐time performance for improved 

prediction  accuracy.  Additionally,  their  studies  didn’t  conduct  database‐level  tests. Wang    [8] 

developed models with competitive performance on  testing, but  their model  requires a 5‐minute 

input and hand‐crafted P wave, which is significantly longer than the input length required for our 

proposed method. Overall, our proposed PAFNet demonstrates the effectiveness of deep learning 

approach, outperforming most previous studies using machine learning methods. 

4.3. Study Limitations and Future Works 

Although  this  study  proposed  a  real‐time  PAF  prediction model  that  outperformed many 

previous  studies,  there are  still  some  limitations. Firstly, while  the  total number of R‐R  intervals 

samples is enough for training the PAFNet model and the demonstrated competitive performance 

outperforms most previous studies validated in the same publicly accessible database of AFPDB, the 

number of ECG records of patients is limited, resulting in insufficient variation in the ECG signals 

and a fluctuation in the performance in the inter‐database testing. It indicates that the generalization 

ability of  the PAFNet  could  to be  further  improved with a  larger  scale of patients  in  the  future. 

Secondly, all the programs were deployed on a desktop computer with an efficient GPU in this study. 

Future  studies  could  focus on hardware  implementation  to  test  the  real‐time performance of  the 

model  on  embedded  systems  with  limited  resources  and  processing  performance. Making  the 

PAFNet lighter could be achieved by reducing the number of blocks, the size of the sliding window, 

and  increasing  the  step  length.  These  limitations  highlight  opportunities  for  further  research  to 

improve the performance and applicability of the PAF prediction model. 

5. Conclusions 

The ability to predict PAF at least 45 minutes in advance can help clinicians assess the risk of 

PAF events and provide timely intervention for patients. However, previous PAF prediction studies 

based  on HRV  analysis  and  traditional machine  learning methods  have  had  limitations  such  as 

unsatisfactory real‐time processing speed and prediction performance. This study proposes a novel 

deep learning based PAFNet model that integrates the sliding window to achieve a real‐time PAF 

onset prediction. This integration enable the CNN model to accommodate the size of sliding windows 

by only altering the input layer, specifically its effectiveness in making a new prediction with each 

new heartbeat. Meanwhile, the model requires only a single‐lead ECG signal as input to extract the 

R‐R  interval  sequence, making  it  suitable  for  clinical  application  even  in  scenarios with  limited 

medical resources and conditions. Our results suggest that the customized lightweight 26‐layer CNN, 

with  five weighted  layers paired with a  sliding window of  length 100 R‐R  intervals, can achieve 

relatively high performance and may offer a  real‐time, accurate, and  inexpensive clinical  tool  for 

predicting PAF events. In conclusion, the PAFNet provides a promising approach to improve PAF 

prediction performance and has the potential to be a valuable tool for clinicians in identifying and 

treating PAF events. 
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