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Abstract: Background: Gastrointestinal cancer cells display both morphology and physiology diversity thus
posing a significant challenge for precise representation by a single data model. We herein integrate and
analyze different data types to better understand the heterogeneity of gastrointestinal cancers. Methods: We
used a modified Canny algorithm to identify edges from tumor images, capturing intricate nonlinear
interactions between pixels. These edge features were then combined with differentially expressed mRNA,
miRNA, and immune cell data. Before data integration, we used the K-medoids algorithm to pre-cluster
individual data types. The results of pre-clustering were used to construct the kernel matrix. Finally, we applied
spectral clustering to the fusion matrix to identify different tumor subtypes. Furthermore, we identified hub
genes linked to these subtypes and their biological roles through the application of Weighted correlation
network analysis (WGCNA) and Gene Ontology (GO) enrichment analysis. Results: Our investigation
categorized patients into three distinct tumor subtypes and pinpointed hub genes associated with each. Genes
MAGI2-AS3, MALAT1, and SPARC were identified as having a differential impact on the metastatic and
invasive capabilities of cancer cells. Conclusion: By harnessing multimodal features, our study enhances the
understanding of gastrointestinal tumor heterogeneity and identifies biomarkers for personalized medicine
and targeted treatments. The abstract should be a total of about 250 words and structured to contain the
following headings: Background/Objectives, Methods, Results, Conclusions. Background/Objectives: Place
the question addressed in a broad context and highlight the purpose of the study; Methods: Describe briefly
the main methods or treatments applied. Include any relevant preregistration numbers, and species and strains
of any animals used; Results: Summarize the article’s main findings; Conclusions: Indicate the main
conclusions or interpretations. The abstract should be an objective representation of the article: it must not
contain results which are not presented and substantiated in the main text and should not exaggerate the main
conclusions. Clinical trial abstracts should include items that the CONSORT group has identified as essential.

Keywords: tumor heterogeneity; transcriptome profile; cancer classification; multiomics; cancer
imaging

1. Introduction

Colorectal cancer (CRC) and gastric cancer (STAD) are the foremost gastrointestinal
malignancies, and gastrointestinal cancer has the highest incidence rate among all cancers[1].
Gastrointestinal cancers, including esophageal, stomach, colonic, and rectal malignancies, account
for over a million deaths annually[2,3]. In China, CRC and STAD exhibit heightened incidence and
mortality rates[4]. There is a pronounced reciprocal relationship has developed between CRC and
STAD, by CRC frequently emerges as a subsequent primary malignancy in STAD patients, and STAD
is the most common initial cancer in CRC patients[5-7]. Moreover, CRC and STAD share numerous
similarities including pathogenesis, pathological features, treatment approaches, and cellular
profiles[8,9]. Hence, a comprehensive analysis of samples from CRC and STAD patients would not
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only facilitates the discovery of common features, but would also provide a basis for improving the
relevance and efficacy of therapeutic strategies to treat cancer.

In 2013, Singaporean researchers were the first to classify gastric cancer based on genomic
expression, identifying three primary molecular subtypes: proliferative, metabolic, and
mesenchymal[10]. In the following year, The Cancer Genome Atlas (TCGA) research consortium
expanded this classification by employing six distinct molecular biology techniques to categorize
gastric cancer into four additional molecular subtypes: chromosomal instability (CIN), microsatellite
instability (MSI), genomic stability (GS), and Epstein-Barr Virus positive (EBV+)[11]. Budinska et
al.[12]reported five distinct subtypes of CRC by analyzing the expression profiles of 1113 colorectal
cancer (CRC)-related genes. This expanded classification system presented significant variations in
biological traits, clinical outcomes, pathological features, and survival data. CRC was further
stratified into four Consensus Molecular Subtypes (CMS) at the molecular level, each distinguished
by its oncogenic and oncostatic pathways, mutation profiles, microsatellite instability status, and
clinical outcome expression patterns[13,14]. Utilizing miRNA data from colorectal cancer, Paz-
Cabezas et al.[15] identified three distinct miRNA-driven tumor subtypes via hierarchical cluster
analysis, which showed a strong correlation with mRNA-based tumor classifications (p < 0.001).
These findings underscore the pivotal role of transcriptomic data in the identification of tumor
subtype biomarkers.

Tumor imaging data are instrumental in revealing the spatial architecture, tissue composition,
morphology, and internal organization of tumors, offering vital insights for cancer diagnosis. In the
analysis of medical image, edge feature extraction stands out as an essential technique that aids in
the identification and characterization of diseases. Several edge detection algorithms are extensively
utilized, such as the Sobel[16], Roberts[17], Prewitt[18], and Canny[19] operators. Histopathological
images are pivotal in cancer classification and subtyping, enabling a more nuanced understanding of
cancer heterogeneity[20]. For instance, N. K. Pratiwi and colleagues utilized the Canny operator to
extract edge features from colon cancer images and subsequently applied these features to a
classification study of colon cancer[21], thereby validating the efficacy of edge feature extraction in
cancer diagnostics.

Multimodal data fusion effectively complements and integrates insights from different fields,
including pathology, clinical radiology, genetics, and molecular biology[22], resulting in a more
advanced and comprehensive analysis of heterogeneity in gastrointestinal cancers. However,
integration of multi-omics datasets is challenging. In the present work, we addressed this complexity
with an optimized Canny operator to increase the accuracy of extracting image information from
tumor tissue sections. Subsequently, we integrated the extracted differential transcriptomes
associated with gastrointestinal cancers, immune cell data, and corresponding tumor tissue images.
This de novo integrated dataset significantly advanced our cancer classification efforts, delineating
three distinct subtypes, each with a distinct set of gene modules. This integrative approach advances
our understanding of the intrinsic heterogeneity within gastrointestinal (GI) tumors.

2. Materials and Methods

2.1. Datasets

In the present study, we used The Cancer Genome Atlas (TCGA) [23] to amass mRNA and
miRNA expression profiling data taken from primary tumor tissues of gastric and colorectal cancer
patients. The mRNA dataset encompassed 937 samples, comprising 74 samples serving as normal
controls, whereas the miRNA dataset comprised 964 samples with 53 normal controls. These samples
corresponded to 58,387 mRNA transcripts and 2,652 mature miRNAs. Furthermore, leveraging the
LM22 gene set from the CIBERSORT algorithm, we estimated the relative abundance of 22 distinct
immune cell types within the samples based on their mRNA expression profiles.

Imaging data were sourced from the research conducted by Kather et al.[24] and were retrieved
from the publicly accessible Zenodo database at https://zenodo.org/records/2530789.
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In further studies, our analysis of differentially expressed mRNAs, miRNAs, and immune cells
used data from all samples. We specifically focused on gastrointestinal cancer patients, and we
retained the sample at the intersection of the four data types for a total of 515 data samples for in-
depth analysis.

2.2. Data Feature Extraction

2.2.1. Edge Feature Extraction of Tumor Images

¢  Smooth images using bilateral filters

In 1986, John F. Canny introduced an algorithm, which is known as the Canny edge detection
operator[25], for image edge detection. In the present work, we optimized this operator by replacing
the conventional Gaussian filter, which was originally employed for preliminary filtering, with a
more refined bilateral filter.

Bilateral filtering incorporates spatial information about pixel distribution, thus extending
beyond the capability of the original Gaussian filter. This sophisticated method optimally refines
edge and grayscale details, effectively reduces texture noise, and maintains crucial representative
information, thereby efficiently suppressing noise[26]. The formulation of bilateral filtering is as

follows:
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In Equation (1), g(i,j)represents the output point, where S(i,j) denotes the neighborhood
range of size (2X N +1) X (2 X N + 1) centered at point (i,j), and f(m,n) corresponds to the
grayscale value of the pixel located at the matrix coordinates (m,n).

Utilizing the ‘opencv’ library, we loaded each sample image into a 224x224 pixel matrix,
configuring the parametersto N = 2, g, = 1 and o, = 1. The origin of the pixel coordinate system
was set at the lower-left corner and denoted as (0,0). Following this, we applied weighted averaging
to process the pixel matrices of the images.

e  Calculation of gradient change and direction of grayscale values

We applied the Sobel operator to compute the variations and orientations of gray-level values.
The operator was utilized to determine the gradients across both positive and negative vertical axes
on the horizontal plane. This process enabled us to ascertain the direction angle 6 for each pixel, as

detailed in Equation (5):
, Gy
G = |G} + Gj, 0 =arctan (G_) (5)
X

We defined G, = S,+I and G, = S, *I, where | denotes a 3x3 matrix of gray values
centered on the pixel of interest. The Sobel kernels for capturing horizontal and vertical features are

constructed as follows:
-1 0 1 -1 -2 -1
Sy=1-2 0 2(S8=]0 0 0|
-1 0 1 1 2 1

Upon calculating the image gradients, is is possible that multiple directions can satisfy the
threshold conditions. However, we selectively retain the gradient direction with the highest
magnitude, while suppressing the others. The magnitude of the gradient at the current pixel is
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compared with the magnitudes in the four principal directions: 0 (vertical), %(one of the diagonals),
g (horizontal), and —% (the other diagonal). This comparison is based on the common edge

orientations found in images. A pixel is deemed significant and retained if its gradient intensity is
greater than the gradient intensities of the adjacent pixels in all four cardinal directions; if not, the
pixel is discarded.

e  Setting dual thresholds for edge detection

To refine the noise reduction process, we introduce dual thresholds: a high threshold (TH) and
a low threshold (TL). Edge pixels with gradient magnitudes exceeding TH are designated as strong
edges, while those with magnitudes between TH and TL are categorized as weak edges. Pixels not
meeting these criteria are effectively suppressed. The determination of TH and TL is outlined below,
where H*denotes the pixel matrix post nonmaximum suppression:

TL = 0.1 *max(H") (6)
TH = 0.5 * max(H"). 7

Differentiating weak edge pixels that belong to true edges from those caused by noise is essential
for accurate edge detection. To this end, we set a criterion specifying that a weak edge pixel should
be retained and considered part of the image’s edge structure, but only if it is connected to at least
one pixel previously identified as a strong edge pixel.

Upon completing the aforementioned image processing steps, we derived the final matrix
representing the edge features of the image. We then computed the average value across each column
of this matrix to achieve dimensionality reduction for the data corresponding to each sample. This
process led to a dimensionally reduced size of 1x224 for the data of each sample.

2.2.2. Transcriptome Feature Extraction

Given the multitude and complexity of mRNA and miRNA data, the presence of redundant or
irrelevant features can potentially distort analytic outcomes. To address this, we opted for a feature
dimensionality reduction strategy aimed at boosting the precision and efficiency of our research
designed to explore the heterogeneity of GI cancer. Furthermore, we prioritized features that are
significantly differentially expressed between cancer patients and healthy individuals since we
hypothesized that these features might play a crucial role in disease diagnosis and the development
of treatment strategies.

To discern variations in gene expression between cancerous and normal samples, we first
conducted a differential analysis for mRNAs and miRNAs. This analysis was performed utilizing the
“limma” software package within the R programming environment, employing both fold change
(FC) and Bayesian statistical testing approaches[27,28]. More specifically, a gene was flagged as
differentially expressed if it exhibited a foldchange greater than 1 and yielded a p-value below 0.01
from the Bayesian test.

Through our analysis, we have identified 3,360 down-regulated and 2,484 up-regulated genes,
totalling 5,844 differentially expressed mRNAs. Additionally, we found 91 down-regulated and 72
up-regulated miRNAs, totalling 163 differentially expressed miRNAs. As presented in Figure S1, the
heat maps showcase the differential expression profiles based on samples from cancer patients and
normal subjects, and, as such, validate the reliability of our differential characterization approach.

2.3. Multimodal Data Clustering

2.3.1. Soft Threshold Distance Calculation

Soft threshold distance calculations were conducted autonomously for mRNA, miRNA, immune
cell, and image datasets. Let us denote n samples and m features, such as mRNA gene expressions,
by matrix Q,x,, which serves as the sample-feature matrix. We then compute the Pearson correlation
coefficient matrices Sy, xm = [ai f]mxm for each of the omics datasets independently.
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Within the Sy,., matrix, elements undergo a nonlinear mapping process as defined by
Equation 8, which facilitates the incorporation of a soft threshold.

a;j = |aij|ﬁ. (8)
To ascertain the soft threshold, we utilized an approach akin to a grid search, delineating a
spectrum of £ values ranging from 2 to 20. The criteria for selecting the soft threshold were based
on the condition that the coefficient of determination (R?) for the linear regression model should
exceed 0.8. In the absence of a satisfactory soft threshold, one was selected that corresponded to an
average connectivity of fewer than 100 samples.
Soft thresholding was applied across four distinct data categories, yielding the following
outcomes: a threshold of 8 for the mRINA data correlation coefficient matrix, 14 for the miRNNA data
correlation coefficient matrix, 3 for the image data similarity matrix, and 9 for the immune cell data.

2.3.2. Calculation of DissTOM Distance for the Soft Threshold Matrix

We employed the Topological Overlap Matrix (TOM)[29-31] to delineate correlations among
samples within the sample network. Thereafter, in the relational equation, we converted the
adjacency matrix into the TOM to more precisely capture the complex intersample relationships
(Equation 9).

- Lij + a;j
bomin(k, k) +1—ay;

)

In this context, the association between samples i and j is represented by I;; = ¥, a;, * a,; , and
the association of sample i with the remaining samples is given by k; = ¥, a;, , u # i, which is a direct
relationship indicative of exclusive connectivity or related pathways that exist between samples i and
j when wy; = 1. Conversely, w;; = 0 signifies the nonexistence of a relationship. Subsequently, we
defined the dissimilarity measure d; ; = 1 — wj; to construct the dissimilarity matrix, dissTOM.

We employed the k-medoids algorithm to cluster disTOM and utilized the elbow method to
identify the optimal number of clusters for each class. To prevent an excessively high number of
classes, we limited the range of k to between 2 and 10. The chosen value of k represents the point of
maximum deviation in the sum of squared errors (SSE) for each data type. The clustering analysis
concluded with k set to 5 for mRNA data, 4 for miRNA data, 4 for image data, and 3 for immune cell
data.

2.3.3. Construction of Similarity and Kernel Matrices

Using the dissTOM, we performed data transformation following the procedure specified in

Equations (10) and (11):
2
_ dj
i = exp <_ 0.5 * €ij> 10

mean(d;, N;) + mean(dj, Nj) +dj
Eij = 3 .

The value mean(d;,N;) represents the mean distance of sample i from all other samples,

(11

excluding itself. Incorporating this step was influenced by the approach pioneered by Bo Wang et
al.[32] in 2014, who utilized the Similarity Network Fusion (SNF) model. Distances between samples
were transformed using a scaled exponential similarity kernel function, an adaptation of the Gaussian
kernel. This transformation adeptly remaps the data onto a specific distribution within a smooth
convex space, resulting in a more concentrated depiction of the information[33].

A similarity matrix among samples was established, as detailed in equation (12):
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qij .
— L F]
p,={%" Z'{*i Qe (12)
7 1=
Utilizing the preclustered data, we formulated the kernel matrix as presented in Equation (13):
qij ,
—J _jec
Sij = Ykec; dik L (13)

0, otherwise

where C, denotes the cluster assignment of sample i within the preclustered data categories, such

as mRNA.

We iteratively refined P, for each data modality v = {mRNA, miRNA,image data,
immune cell data } using Equation (14) and quantified the iterative changes in the data in terms of
Frobenius norms, as described by Equation (15):

zk:#v Pk
3
=

! m
HA = | > laylz. (15)
\] =
i=1

MY =S¥ x x (SV)T (14)

Z Q)
v

4

The final consistent similarity matrix was derived by computing the mean value T =

where the summation is over the four data modalities.
3. Results

3.1. Identification of the Three Subtypes Based on Sample Omics Data

The violin plots depicting the top ten most significantly differentially expressed mRNAs are
presented in Figure 1(A). It is of particular interest that elevated expression levels of CLDN3 in gastric
cancer influence tumor cell permeability, facilitating their traversal across the basement membrane
and extracellular matrix, thus potentially contributing to oncogenesis[34,35]. CDH3, a gene
predominantly overexpressed in gastric cancer, is associated with cancer invasion and metastasis.
The protein it encodes facilitates the proliferation and mobility of cancer cells[36].
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Figure 1. Significantly different characteristics between cancer and normal samples: (A) top ten most
significant mRNAs; (B) most significant differential miRNAs; (C) differential boxplots of 22 immune
cells.

Figure 1(B) illustrates the general up-regulation of hsa-miR-21-5p, a microRNA (miRNA) that
expressed in a variety of cancers, especially in colorectal cancer, in which hsa-miR-21-5p contributes
to tumor development and progression of tumors through the modulation of multiple biological
processes, such as apoptosis and inflammatory responses[37].

Box plots of immune cell percentages for the two samples showed considerable variation in the
proportion of certain immune cells, leading to the selection of data from 12 specific immune cells for
further analysis.

Following four fusion iterations of the four data models, convergence was successfully attained.
The iterative process, as depicted in Figure S2, illustrates the progressive convergence of the four
similarity matrices across iterations. Subsequently, spectral clustering was employed to confine the
class count (k) within the range of [2,5], utilizing the elbow method to ascertain optimal k. In total,
the study classified 515 samples into three subtypes, comprising 212, 132, and 171 samples,
respectively. To more vividly exhibit the characteristic differences among the subtypes, the top
twenty differential features of mRNA and RNA, along with the comprehensive data of immune cells,
were filtered using the Kruskal-Wallis test.

Figures 2(A) and (C) illustrate the expression profiles of samples across different subtypes under
the top twenty DEGS, with (C) presenting the mean expression values for samples within each
subtype. In these mRNA expressions, samples from subtype I exhibit relatively high levels, while
samples from subtype II show comparatively lower levels, and samples from subtype III have the
lowest expression. Figures 2(B) and (D) depict the expression of the first twenty differential miRNAs
among samples of various subtypes, with (D) also presenting the average expression values for
samples of each subtype. For the initial nine miRNA features, the expression levels across the three
subtypes are presented in descending order, in alignment with the mRNA results. However, for the
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last eleven miRNA features, the expression outcomes are nearly inversely related. Corresponding

box plots for the first six features are provided in

Figure 3, revealing significant differences among

subtypes, thereby preliminarily confirming the validity of the cancer typing methodology followed

in this study.
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Figure 2. Heatmaps of the top 20 significantly differentially expressed genes(DEGs): (A) mRNA
expression heatmap; (B) miRNA expression heatmap; (C) mRNA expression heatmap after taking the

mean for the corresponding feature of the same

subtype sample; (D) miRNA expression heatmap

after taking the mean for the corresponding feature of the same subtype sample.
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Figure 3. Six features with the most significant differences among the three subtypes: (A) top six most

significantly differentially expressed mRNAs; (B) top six most significantly differentially expressed

miRNAs.

Figure 4 illustrates the expression patterns of various subtypes of immune cells, focusing on the
first 11 classes identified through p-value testing. In subtype I, specific immune cells such as resting


https://doi.org/10.20944/preprints202408.1076.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 August 2024 d0i:10.20944/preprints202408.1076.v1

10

NK cells and plasma cells exhibit reduced activity (blue), whereas M2 macrophages and regulatory
T cells (Tregs) display heightened activity (red). Subtype II presents a pattern distinct from that of
subtype I, and subtype III diverges from subtype I in the activity of most cell types, with M1 and M2
macrophages demonstrating moderate to high activity, and resting NK cells and Tregs showing
lower activity. As depicted in Figure 4(B), subtype I is characterized by a higher proportion of M2
macrophages and Tregs, which may indicate a more potent anti-inflammatory or
immunomodulatory role. Subtype II is marked by an increased presence of CD8 T cells and plasma
cells, potentially linked to a more robust immune response or antibody production. In contrast,
subtype III exhibits a higher proportion of M1 and M2 macrophages, which could be associated with
tissue repair and modulation of the tumor microenvironment.
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Figure 4. Immune cell characteristics of different subtypes: (A) Heat map of immune cell
characteristics of samples of the same subtype after taking the mean value; (B) Difference in the
percentage of immune cells in samples of different subtypes.

3.2. Identification of Hub Genes of Different Subtypes by WGCNA

Weighted Gene Co-expression Network Analysis (WGCNA) was conducted on mRNA data
based on the samples from three subtypes, encompassing a total of 515 samples and 5844 genes.
Initially, during the analysis, 5000 genes with the highest variability were selected. Using the
histogram algorithm, the soft-thresholding power 3=3 was identified, thereby achieving an R? value
of 0.88 and an average connectivity below 100 to meet our criteria (Figure S3). It can be observed in
Figure 5(A) that 1) most mRNAs exhibit low connectivity, 2) only a minority demonstrates high
connectivity, and 3) the constructed network exhibits scale-free properties. The dissTOM matrix was
constructed by leveraging the topological overlap matrix (TOM) similarities to quantify gene
expression dissimilarities. This matrix forms the foundation for clustering and subsequent module
identification, and the “cutreeDynamic” algorithm from the WGCNA package was employed for
dynamic pruning to discern 16 modules encompassing all genes. Module sizes ranged from a
minimum of 33 genes to a maximum of 1747 genes with only 25 genes included in the gray module.
The gray module was excluded from subsequent analyses, and the number of genes in each module
is detailed in Table S1.
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Figure 5. Results of weighted gene co-expression network analysis (WGCNA): (A) Scale-Free
Topology Analysis, frequency distribution of the number of connections (i.e., node degree, k) in the
network (left), and a test of the scale-independent nature of the network (right);(B) Clustering of
Module Eigengenes;(C) Gene Dendrogram and Module Colors and (D) Module Eigengene
Correlation Heatmap.

Utilizing the characteristics of Module Eigengenes (MEs), the correlation between individual
genes and their corresponding modules can be precisely quantified. This correlation coefficient serves
as a pivotal metric for assessing whether a gene functions as a hub gene within its module.

Figure 5(B) presents the correlation clustering tree dendrograms for the 15 identified modules,
indicating a similarity threshold below 0.7 (with merge heights exceeding 0.3), thereby avoiding
dynamic pruning. To pinpoint the key modules with the most robust correlations to sample traits,
notably tumor subtypes, we assessed the gene module-sample subtype correlations (Figure 6). In this
evaluation, categorical labels were assigned a value of 1, with non-relevant categories receiving 0.
Employing a distinctive heat coding strategy for labels, we conducted three separate analyses to
determine the most pertinent central genes for each category. Pearson correlation coefficients were
employed to gauge the relationship between feature genes, i.e., those linked to sample characteristics
and the categorical variables denoting tumor subtypes. This methodology resulted in quantifying the
correlation between tumor subtypes and feature genes across modules. The “Turquoise,” “Brown,”
and “Black” modules demonstrated the most pronounced correlation with the three tumor subtypes.
Within these pivotal modules, we initially determined the intramodular connectivity (kWithin) for
each gene, reflecting the strength of its interaction with other genes within the same module, as
calculated using the following formula:
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ki = Zlci]‘| (16)

jeM
where, ¢;; = corr(x;,x;) is the Pearson correlation coefficient within the module for the two genes.
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Figure 7. Correlation of different modules with different subtypes.

The greater a gene’s intramodular connectivity, the more pivotal its role within the module and
the more closely it interacts with other genes. We assessed each gene’s correlation with tumor
subtypes (GS) and its agreement with the module’s signature genes (MM). Hub genes are
characterized by high GS, high MM, and high within. Accordingly, for subtype I samples, genes were
selected with GS>0.45 and IMM>0.8; for subtype II samples, with G5>0.2 and IMM1>0.7; and for
subtype III samples, with GS>0.4 and IMM|>0.8. Thereafter, by ranking genes based on kWithin in
descending order, the study identified 16 hub genes for Subtype I, 9 for Subtype II, and 8 for Subtype
I

Table 1 presents an exhaustive compilation of hub genes for the three sample subtypes. Among
the hub genes of subtype I, MAGI2-AS3 facilitates the progression of gastric cancer by sequestering
miR-141/200a, thereby sustaining the overexpression of ZEBI1[38], an epitranscription factor that
plays a role in the regulation of epithelial-mesenchymal transition (EMT), a pivotal process in cancer
metastasis and invasion. MAGI2-AS3, through its interaction with miRNAs, is implicated in the
modulation of the tumor microenvironment, impacting tumor cell proliferation, migration, and
invasion. Concurrently, MAGI2-AS3 advances the progression of colorectal cancer by manipulating
the miR-3163/TMEM106B axis. It functions as a molecular sponge for miR-3163, inhibiting the
suppressive effect of miR-3163 on TMEM106B, which results in the upregulation of TMEM106B
expression and consequently fuels tumor cell proliferation and migration[39].

Table 1. Hub genes for the three subtypes (sorted according to Kwithin).

Subtype I kWithin Subtype 11 kWithin Subtype III kWithin
MAGI2-AS3 371.7129 RP11-416A17.6 55.3853 SPARC 34.4698
TTC28 345.3234 RP11-166B2.3 52.2037 FAP 33.0935
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RBMS3 345.2273 RP11-192H23.7 50.8855 BGN 29.6813

CNRIP1 338.6266 MALAT1 46.6874 SULF1 29.6049

PLEKHO1 323.7333 RP11-49014.2 46.2525 CDH11 28.0017

GYPC 315.0139 CTD-2014D20.1 46.0766 PRRX1 26.9047

C200rf194 313.7970 LA16c-431H6.6 45.3105 THY1 26.4728

CLIP4 312.4037 NPIPB5 40.0239 NOX4 25.9135

FOXN3 309.4977 RYKP1 39.8201

ATP8B2 300.8144
RP11-875011.1 286.9392
PDE1A 254.0221
NR3C1 249.1351
SLC9A9 248.7150
NR2F2-AS1 245.9516
RP11-730A19.9 226.7302

Among the hub genes of subtype II, MALATI has been identified as intimately linked to the
development, progression, and metastasis of various human cancers. It exhibits elevated expression
in colorectal cancer tissues, contributing to the enhanced growth of SW480 and HCT116 colorectal
cancer cells[40,41]. Additionally, MALATI is deeply implicated in gastric carcinogenesis through
diverse molecular pathways. For instance, it augments the proliferation of gastric cancer cells by
downregulating the expression of miRNAs such as miR-122, miR-1297, miR-22-3p, and miR-202, and
by repressing the activity of the oncogene PCDH10, thereby promoting the growth and invasiveness
of gastric cancer[42].

Within the hub genes of subtype III, SPARC was shown to amplify the chemosensitivity of 5-FU
by facilitating apoptosis. Our findings indicate that both cleaved PARP and cleaved caspase-3 levels
were increased after overexpression of SPARC protein. Additionally, Bax, a pivotal protein in the
apoptotic process, was significantly upregulated in SGC-7901 and BGC-823 cells with heightened
SPARC expression. These outcomes implicate that SPARC may induce apoptosis in gastric cancer
through the activation of the PARP/caspase-3 pathway[43]. Expression levels of the SPARC gene are
notably correlated with clinical attributes of colorectal cancer, such as tumor stage, suggesting its
potential as a biomarker for colorectal cancer[44].

3.3. Impact of Hub Genes on the Development of Gastrointestinal Tumors

Gene Ontology (GO), established by the Gene Ontology Consortium, serves as a comprehensive
database that catalogs the functional roles of genes and their transcriptional and translational
products within biological processes. Our analysis of the pathways involving hub genes in
gastrointestinal cancer subtypes aims to delineate their biological functions and the pathways in
which they participate.

Figure 7(A) illustrates the outcomes of GO analysis for subtype I with a primary focus on the
Molecular Function (MF) category of GO. In this representation, dots correspond to distinct biological
processes, and the magnitude of each dot is proportional to the gene count associated with the
process. In addition, the color gradient reflects the adjusted p-value (p.adjust), denoting the statistical
significance of enrichment. Cannabinoid receptors contribute to various intestinal physiological
processes, including peristalsis, secretion, and epithelial barrier function. Research indicates that the
deletion of cannabinoid receptor 1 can result in intestinal inflammation and cancer[45]. Activated
cannabinoid receptors, notably CB1 and CB2, are recognized for their role in modulating
inflammatory responses and tumor cell proliferation[46]. Glucocorticoid receptors are pivotal in
regulating immune responses, inflammation, and cell survival. In the context of gastrointestinal
cancers, glucocorticoids may modulate the tumor microenvironment via their receptors, potentially
impacting tumor growth and metastasis by suppressing inflammation and regulating immune cell
activity. Specifically, in colorectal cancer, glucocorticoids might facilitate cancer cell proliferation and
invasion through the GR-CDK1 signaling pathway[47].


https://doi.org/10.20944/preprints202408.1076.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 August 2024 d0i:10.20944/preprints202408.1076.v1

type 1 cannabinoid receptor binding [ ] regulation of ne
cannabinoid receptor binding 1 .
nuclear glucocorticoid receptor activity [ ] p.adjust
0.0100
muscle cell projection membrane [ ] p.adjust negative regulation of en
- A 00125
®
. 00150
calmodulin-activate .
" 0.02 cell-substrate junction assembly * 00175
_% ® é cell-substrate junction c . 0.0200
8 003 2
? L 5 2]
3
@
a ® s ® Count
phosphaiyich ° ) -
Count ® 225
i @ [ ]
° [ 2 ® ® 250
! 2 ® 25
® @ ®:n
o @
sodium:proton antiporter activity | @ on 1 @
500 1000 1500 ) 50 ) 100 150
Fold Enrichment Fold Enrichment

Figure 7. GO analysis results: (A) subtype I (B) subtype III.

Figure 8(B) shows the results of GO analysis for subtype III, focusing mainly on the GO category
‘Biological Process (BP)". Most of these functions are associated with extracellular matrix (ECM)
interactions, cell migration, and tissue development. Engagement with the extracellular matrix is an
essential component of the tumor microenvironment in gastrointestinal cancers, influencing the
invasive and migratory capacities of tumor cells. The interaction between tumor cells and the ECM
has the potential to either advance or retard tumor progression[48].

Genes like MAGI2 that encodes long non-coding RNA MAGI2-AS3 and RBMS3 that encodes the
RNA Binding Motif Single Stranded Interacting protein3 participate in a spectrum of regulatory
processes, encompassing signal transduction, gene expression modulation, and intercellular
communication. This participation may indicate that subtype I is particularly dynamic in the realms
of cellular signaling and gene expression regulation. Genes within subtype II might be more engaged
in specialized regulatory roles, such as the involvement of non-coding RNA in transcriptional
regulation, and could be pivotal in specific physiological or pathological contexts, including the
modulation of gene expression in response to environmental stresses or disease conditions. Genes
implicated in extracellular matrix interactions and tissue remodeling, such as SPARC and FAP,
frequently contribute to tissue development, repair, and the cancer microenvironment. The roles of
these genes suggest that subtype IIl may be instrumental in governing extracellular matrix dynamics
and adaptations under pathological conditions.

This section may be divided by subheadings. It should provide a concise and precise description
of the experimental results, their interpretation, as well as the experimental conclusions that can be
drawn.

4. Discussion

The prevalence of gastrointestinal cancers is escalating, most notably among younger
demographics, constituting a substantial segment of malignant neoplasms within the digestive tract.
The emergence of multiomics has unveiled the profuse heterogeneity of these tumors, a key
determinant in their evolution, therapeutic response, and metastatic propensity. Our study harnesses
multimodal data analysis, integrating diverse technical approaches and data modalities, to deepen
our understanding of the intrinsic tumor architecture, molecular makeup, and biological activities.

In our methodology, we integrate edge features derived from the optimized Canny operator in
detecting a wide range of edge in images, along with transcriptomic and immunological data. To
forge a sample similarity network, we conduct preliminary clustering on disparate data modalities
to amplify the significance of localized similarities. This involves an iterative optimization of the
similarity and kernel matrices, culminating in convergence. We then deploy spectral clustering on
this integrated network to delineate distinct tumor subtypes.
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The fusion of diverse data offers a comprehensive view of gene expression profiles, while also
yielding insights into cellular and tissue architectures. This dual methodology highlights the tumor’s
genotypic and phenotypic traits, leads to a comprehensive elaboration of distinct tumor subtypes
and, hence, establishes a foundation for the development of therapeutic modalities.

We conducted an analysis of mRNA gene expression profiles utilizing Weighted Gene Co-
expression Network Analysis (WGCNA), identifying distinct gene modules. Synthesizing these
findings with the outcomes of sample subtyping, we pinpointed the associated hub genes. These
genes constitute critical regulatory pathways, the dysregulation or aberrant expression of which can
significantly advance disease progression. Moreover, they represent promising therapeutic targets
with the potential to modulate diverse network and pathway activities.

While our optimized Canny operator has demonstrated remarkable efficacy in delineating
tumor margin features, it might not encapsulate the full complexity of the tumor microenvironment.
Therefore, while not within the scope of the present paper, we plan to pursue more sophisticated
image processing methodologies, including deep learning algorithms, with the aim of strengthening
the detection and profiling of biomarkers within histopathological assessments.

5. Conclusions

Our study underscores the profound utility of multimodal data analysis in the study of
gastrointestinal cancers, and demonstrates that the integration of omics data can be achieved by
seamlessly merging the edge features of tumor images with differential transcriptomic and immune
cell data. The discovery of hub genes across various tumor subtypes paves the way for innovative
diagnostic methods and tailored therapeutic strategies. Moreover, the integration multimodal data
deepens insights into the intrinsic heterogeneity of gastrointestinal tumors. Overall, our results lay a
robust groundwork for further investigating the complexities of GI cancers with the promise of
advancing personalized medicine to achieve superior patient outcomes.

Supplementary Materials: Figure S1: Differences between cancer and normal samples; Figure S2: Figure S2.
Reference chart for selecting soft thresholds for WGCNA analysis. Figure S3: Iterative process for four types of
data; Table S1: Modules obtained from WGCNA analysis and the number of genes they contain.
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