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Abstract: Background: Gastrointestinal cancer cells display both morphology and physiology diversity thus 

posing a significant challenge for precise representation by a single data model. We herein integrate and 

analyze different data types to better understand the heterogeneity of gastrointestinal cancers. Methods: We 

used a modified Canny algorithm to identify edges from tumor images, capturing intricate nonlinear 

interactions between pixels. These edge features were then combined with differentially expressed mRNA, 

miRNA, and immune cell data. Before data integration, we used the K-medoids algorithm to pre-cluster 

individual data types. The results of pre-clustering were used to construct the kernel matrix. Finally, we applied 

spectral clustering to the fusion matrix to identify different tumor subtypes. Furthermore, we identified hub 

genes linked to these subtypes and their biological roles through the application of Weighted correlation 

network analysis (WGCNA) and Gene Ontology (GO) enrichment analysis. Results: Our investigation 

categorized patients into three distinct tumor subtypes and pinpointed hub genes associated with each. Genes 

MAGI2-AS3, MALAT1, and SPARC were identified as having a differential impact on the metastatic and 

invasive capabilities of cancer cells. Conclusion: By harnessing multimodal features, our study enhances the 

understanding of gastrointestinal tumor heterogeneity and identifies biomarkers for personalized medicine 

and targeted treatments. The abstract should be a total of about 250 words and structured to contain the 

following headings: Background/Objectives, Methods, Results, Conclusions. Background/Objectives: Place 

the question addressed in a broad context and highlight the purpose of the study; Methods: Describe briefly 

the main methods or treatments applied. Include any relevant preregistration numbers, and species and strains 

of any animals used; Results: Summarize the article’s main findings; Conclusions: Indicate the main 

conclusions or interpretations. The abstract should be an objective representation of the article: it must not 

contain results which are not presented and substantiated in the main text and should not exaggerate the main 

conclusions. Clinical trial abstracts should include items that the CONSORT group has identified as essential. 

Keywords: tumor heterogeneity; transcriptome profile; cancer classification; multiomics; cancer 

imaging 

 

1. Introduction 

Colorectal cancer (CRC) and gastric cancer (STAD) are the foremost gastrointestinal 

malignancies, and gastrointestinal cancer has the highest incidence rate among all cancers[1]. 

Gastrointestinal cancers, including esophageal, stomach, colonic, and rectal malignancies, account 

for over a million deaths annually[2,3]. In China, CRC and STAD exhibit heightened incidence and 

mortality rates[4]. There is a pronounced reciprocal relationship has developed between CRC and 

STAD, by CRC frequently emerges as a subsequent primary malignancy in STAD patients, and STAD 

is the most common initial cancer in CRC patients[5–7]. Moreover, CRC and STAD share numerous 

similarities including pathogenesis, pathological features, treatment approaches, and cellular 

profiles[8,9]. Hence, a comprehensive analysis of samples from CRC and STAD patients would not 
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only facilitates the discovery of common features, but would also provide a basis for improving the 

relevance and efficacy of therapeutic strategies to treat cancer. 

In 2013, Singaporean researchers were the first to classify gastric cancer based on genomic 

expression, identifying three primary molecular subtypes: proliferative, metabolic, and 

mesenchymal[10]. In the following year, The Cancer Genome Atlas (TCGA) research consortium 

expanded this classification by employing six distinct molecular biology techniques to categorize 

gastric cancer into four additional molecular subtypes: chromosomal instability (CIN), microsatellite 

instability (MSI), genomic stability (GS), and Epstein-Barr Virus positive (EBV+)[11]. Budinska et 

al.[12]reported five distinct subtypes of CRC by analyzing the expression profiles of 1113 colorectal 

cancer (CRC)-related genes. This expanded classification system presented significant variations in 

biological traits, clinical outcomes, pathological features, and survival data. CRC was further 

stratified into four Consensus Molecular Subtypes (CMS) at the molecular level, each distinguished 

by its oncogenic and oncostatic pathways, mutation profiles, microsatellite instability status, and 

clinical outcome expression patterns[13,14]. Utilizing miRNA data from colorectal cancer, Paz-

Cabezas et al.[15] identified three distinct miRNA-driven tumor subtypes via hierarchical cluster 

analysis, which showed a strong correlation with mRNA-based tumor classifications (p < 0.001). 

These findings underscore the pivotal role of transcriptomic data in the identification of tumor 

subtype biomarkers. 

Tumor imaging data are instrumental in revealing the spatial architecture, tissue composition, 

morphology, and internal organization of tumors, offering vital insights for cancer diagnosis. In the 

analysis of medical image, edge feature extraction stands out as an essential technique that aids in 

the identification and characterization of diseases. Several edge detection algorithms are extensively 

utilized, such as the Sobel[16], Roberts[17], Prewitt[18], and Canny[19] operators. Histopathological 

images are pivotal in cancer classification and subtyping, enabling a more nuanced understanding of 

cancer heterogeneity[20]. For instance, N. K. Pratiwi and colleagues utilized the Canny operator to 

extract edge features from colon cancer images and subsequently applied these features to a 

classification study of colon cancer[21], thereby validating the efficacy of edge feature extraction in 

cancer diagnostics. 

Multimodal data fusion effectively complements and integrates insights from different fields, 

including pathology, clinical radiology, genetics, and molecular biology[22], resulting in a more 

advanced and comprehensive analysis of heterogeneity in gastrointestinal cancers. However, 

integration of multi-omics datasets is challenging. In the present work, we addressed this complexity 

with an optimized Canny operator to increase the accuracy of extracting image information from 

tumor tissue sections. Subsequently, we integrated the extracted differential transcriptomes 

associated with gastrointestinal cancers, immune cell data, and corresponding tumor tissue images. 

This de novo integrated dataset significantly advanced our cancer classification efforts, delineating 

three distinct subtypes, each with a distinct set of gene modules. This integrative approach advances 

our understanding of the intrinsic heterogeneity within gastrointestinal (GI) tumors. 

2. Materials and Methods 

2.1. Datasets 

In the present study, we used The Cancer Genome Atlas (TCGA) [23] to amass mRNA and 

miRNA expression profiling data taken from primary tumor tissues of gastric and colorectal cancer 

patients. The mRNA dataset encompassed 937 samples, comprising 74 samples serving as normal 

controls, whereas the miRNA dataset comprised 964 samples with 53 normal controls. These samples 

corresponded to 58,387 mRNA transcripts and 2,652 mature miRNAs. Furthermore, leveraging the 

LM22 gene set from the CIBERSORT algorithm, we estimated the relative abundance of 22 distinct 

immune cell types within the samples based on their mRNA expression profiles. 

Imaging data were sourced from the research conducted by Kather et al.[24] and were retrieved 

from the publicly accessible Zenodo database at https://zenodo.org/records/2530789. 
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In further studies, our analysis of differentially expressed mRNAs, miRNAs, and immune cells 

used data from all samples. We specifically focused on gastrointestinal cancer patients, and we 

retained the sample at the intersection of the four data types for a total of 515 data samples for in-

depth analysis. 

2.2. Data Feature Extraction 

2.2.1. Edge Feature Extraction of Tumor Images 

• Smooth images using bilateral filters 

In 1986, John F. Canny introduced an algorithm, which is known as the Canny edge detection 

operator[25], for image edge detection. In the present work, we optimized this operator by replacing 

the conventional Gaussian filter, which was originally employed for preliminary filtering, with a 

more refined bilateral filter. 

Bilateral filtering incorporates spatial information about pixel distribution, thus extending 

beyond the capability of the original Gaussian filter. This sophisticated method optimally refines 

edge and grayscale details, effectively reduces texture noise, and maintains crucial representative 

information, thereby efficiently suppressing noise[26]. The formulation of bilateral filtering is as 

follows: 

𝑔(𝑖, 𝑗) =
Σ(𝑚,𝑛)∈𝑆(𝑖,𝑗)𝑓(𝑚, 𝑛) ∗ 𝑤(𝑖, 𝑗, 𝑚, 𝑛)

Σ(𝑚,𝑛)∈𝑆(𝑖,𝑗)𝑤(𝑖, 𝑗, 𝑚, 𝑛)
(1) 

𝑤(𝑖, 𝑗, 𝑚, 𝑛) = 𝑑(𝑖, 𝑗, 𝑚, 𝑛) ∗ 𝑟(𝑖, 𝑗, 𝑚, 𝑛) (2) 

𝑑(𝑖, 𝑗, 𝑚, 𝑛) = 𝑒𝑥𝑝 (−
(𝑖 − 𝑚)2 + (𝑗 − 𝑛)2

2 ∗ 𝜎𝑑
2 ) (3) 

(𝑖, 𝑗, 𝑚, 𝑛) = 𝑒𝑥𝑝 (−
∥ 𝑓(𝑖, 𝑗) − 𝑓(𝑚, 𝑛) ∥2

2 ∗ 𝜎𝑟
2

) . (4) 

In Equation (1), 𝑔(𝑖, 𝑗)represents the output point, where 𝑆(𝑖, 𝑗)  denotes the neighborhood 

range of size (2 × 𝑁 + 1) × (2 × 𝑁 + 1)  centered at point (𝑖, 𝑗) , and 𝑓(𝑚, 𝑛)  corresponds to the 

grayscale value of the pixel located at the matrix coordinates (𝑚, 𝑛). 

Utilizing the ‘opencv’ library, we loaded each sample image into a 224x224 pixel matrix, 

configuring the parameters to 𝑁 =  2, 𝜎𝑑 =  1 and 𝜎𝑟 = 1. The origin of the pixel coordinate system 

was set at the lower-left corner and denoted as (0,0). Following this, we applied weighted averaging 

to process the pixel matrices of the images. 

• Calculation of gradient change and direction of grayscale values 

We applied the Sobel operator to compute the variations and orientations of gray-level values. 

The operator was utilized to determine the gradients across both positive and negative vertical axes 

on the horizontal plane. This process enabled us to ascertain the direction angle 𝜃 for each pixel, as 

detailed in Equation (5): 

𝐺 = √𝐺𝑥
2 + 𝐺𝑦

2, 𝜃 = 𝑎𝑟𝑐𝑡𝑎𝑛 (
𝐺𝑦

𝐺𝑥
) . (5) 

We defined 𝑮𝒙  =  𝑺𝒙 ∗ 𝑰  and 𝑮𝒚  =  𝑺𝒚 ∗ 𝑰 , where  𝐼  denotes a 3x3 matrix of gray values 

centered on the pixel of interest. The Sobel kernels for capturing horizontal and vertical features are 

constructed as follows: 

𝑆𝑥 = [
−1 0 1
−2 0 2
−1 0 1

] 𝑆𝑦 = [
−1 −2 −1
0 0 0
1 2 1

]. 

Upon calculating the image gradients, is is possible that multiple directions can satisfy the 

threshold conditions. However, we selectively retain the gradient direction with the highest 

magnitude, while suppressing the others. The magnitude of the gradient at the current pixel is 
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compared with the magnitudes in the four principal directions: 0 (vertical), 
𝜋

4
(one of the diagonals), 

𝜋

2
 (horizontal), and −

𝜋

4
 (the other diagonal). This comparison is based on the common edge 

orientations found in images. A pixel is deemed significant and retained if its gradient intensity is 

greater than the gradient intensities of the adjacent pixels in all four cardinal directions; if not, the 

pixel is discarded. 

• Setting dual thresholds for edge detection 

To refine the noise reduction process, we introduce dual thresholds: a high threshold (TH) and 

a low threshold (TL). Edge pixels with gradient magnitudes exceeding TH are designated as strong 

edges, while those with magnitudes between TH and TL are categorized as weak edges. Pixels not 

meeting these criteria are effectively suppressed. The determination of TH and TL is outlined below, 

where 𝐻∗denotes the pixel matrix post nonmaximum suppression: 

𝑇𝐿 = 0.1 ∗ 𝑚𝑎𝑥(𝐻∗) (6) 

𝑇𝐻 = 0.5 ∗ 𝑚𝑎𝑥(𝐻∗). (7) 

Differentiating weak edge pixels that belong to true edges from those caused by noise is essential 

for accurate edge detection. To this end, we set a criterion specifying that a weak edge pixel should 

be retained and considered part of the image’s edge structure, but only if it is connected to at least 

one pixel previously identified as a strong edge pixel. 

Upon completing the aforementioned image processing steps, we derived the final matrix 

representing the edge features of the image. We then computed the average value across each column 

of this matrix to achieve dimensionality reduction for the data corresponding to each sample. This 

process led to a dimensionally reduced size of 1×224 for the data of each sample. 

2.2.2. Transcriptome Feature Extraction 

Given the multitude and complexity of mRNA and miRNA data, the presence of redundant or 

irrelevant features can potentially distort analytic outcomes. To address this, we opted for a feature 

dimensionality reduction strategy aimed at boosting the precision and efficiency of our research 

designed to explore the heterogeneity of GI cancer. Furthermore, we prioritized features that are 

significantly differentially expressed between cancer patients and healthy individuals since we 

hypothesized that these features might play a crucial role in disease diagnosis and the development 

of treatment strategies. 

To discern variations in gene expression between cancerous and normal samples, we first 

conducted a differential analysis for mRNAs and miRNAs. This analysis was performed utilizing the 

“limma” software package within the R programming environment, employing both fold change 

(FC) and Bayesian statistical testing approaches[27,28]. More specifically, a gene was flagged as 

differentially expressed if it exhibited a foldchange greater than 1 and yielded a p-value below 0.01 

from the Bayesian test. 

Through our analysis, we have identified 3,360 down-regulated and 2,484 up-regulated genes, 

totalling 5,844 differentially expressed mRNAs. Additionally, we found 91 down-regulated and 72 

up-regulated miRNAs, totalling 163 differentially expressed miRNAs. As presented in Figure S1, the 

heat maps showcase the differential expression profiles based on samples from cancer patients and 

normal subjects, and, as such, validate the reliability of our differential characterization approach. 

2.3. Multimodal Data Clustering 

2.3.1. Soft Threshold Distance Calculation 

Soft threshold distance calculations were conducted autonomously for mRNA, miRNA, immune 

cell, and image datasets. Let us denote n samples and m features, such as mRNA gene expressions, 

by matrix 𝑄𝑚×𝑛, which serves as the sample-feature matrix. We then compute the Pearson correlation 

coefficient matrices 𝑆𝑚×𝑚  =  [𝑎𝑖𝑗]𝑚×𝑚 for each of the omics datasets independently. 
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Within the 𝑆𝑚×𝑚  matrix, elements undergo a nonlinear mapping process as defined by 

Equation 8, which facilitates the incorporation of a soft threshold. 

𝑎𝑖𝑗 = |𝑎𝑖𝑗|
𝛽
. (8) 

To ascertain the soft threshold, we utilized an approach akin to a grid search, delineating a 

spectrum of 𝛽 values ranging from 2 to 20. The criteria for selecting the soft threshold were based 

on the condition that the coefficient of determination (𝑅2) for the linear regression model should 

exceed 0.8. In the absence of a satisfactory soft threshold, one was selected that corresponded to an 

average connectivity of fewer than 100 samples. 

Soft thresholding was applied across four distinct data categories, yielding the following 

outcomes: a threshold of 8 for the mRNA data correlation coefficient matrix, 14 for the miRNA data 

correlation coefficient matrix, 3 for the image data similarity matrix, and 9 for the immune cell data. 

2.3.2. Calculation of DissTOM Distance for the Soft Threshold Matrix 

We employed the Topological Overlap Matrix (TOM)[29–31] to delineate correlations among 

samples within the sample network. Thereafter, in the relational equation, we converted the 

adjacency matrix into the TOM to more precisely capture the complex intersample relationships 

(Equation 9).  

𝑤ij =
𝐼𝑖𝑗 + 𝑎𝑖𝑗

𝑚𝑖𝑛(𝑘𝑖 , 𝑘𝑖) + 1 − 𝑎𝑖𝑗
. (9) 

In this context, the association between samples i and j is represented by 𝐼𝑖𝑗 = ∑ 𝑎𝑖𝑢 ∗ 𝑎𝑢𝑗𝜇  , and 

the association of sample i with the remaining samples is given by 𝑘𝑖 = ∑ 𝑎𝑖𝑢𝜇 , 𝜇 ≠ 𝑖, which is a direct 

relationship indicative of exclusive connectivity or related pathways that exist between samples i and 

j when wij = 1. Conversely, wij = 0 signifies the nonexistence of a relationship. Subsequently, we 

defined the dissimilarity measure 𝑑𝑖,𝑗 = 1 − wij to construct the dissimilarity matrix, dissTOM. 

We employed the k-medoids algorithm to cluster disTOM and utilized the elbow method to 

identify the optimal number of clusters for each class. To prevent an excessively high number of 

classes, we limited the range of k to between 2 and 10. The chosen value of k represents the point of 

maximum deviation in the sum of squared errors (SSE) for each data type. The clustering analysis 

concluded with k set to 5 for mRNA data, 4 for miRNA data, 4 for image data, and 3 for immune cell 

data. 

2.3.3. Construction of Similarity and Kernel Matrices 

Using the dissTOM, we performed data transformation following the procedure specified in 

Equations (10) and (11): 

𝑞𝑖𝑗 = 𝑒𝑥𝑝 (−
dij
2

0.5 ∗ 𝜀𝑖𝑗
) (10) 

𝜀ij =
mean(di,Ni) + mean(dj,Nj) + dij

3
. (11) 

The value mean(di, Ni)  represents the mean distance of sample i from all other samples, 

excluding itself. Incorporating this step was influenced by the approach pioneered by Bo Wang et 

al.[32] in 2014, who utilized the Similarity Network Fusion (SNF) model. Distances between samples 

were transformed using a scaled exponential similarity kernel function, an adaptation of the Gaussian 

kernel. This transformation adeptly remaps the data onto a specific distribution within a smooth 

convex space, resulting in a more concentrated depiction of the information[33]. 

A similarity matrix among samples was established, as detailed in equation (12): 
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𝑃𝑖𝑗 = {

𝑞𝑖𝑗

2 ∗ ∑ 𝑞𝑖𝑘𝑘≠𝑖

, 𝑖 ≠ 𝑗

1

2 
, 𝑖 = 𝑗

. (12) 

Utilizing the preclustered data, we formulated the kernel matrix as presented in Equation (13): 

𝑆𝑖𝑗 = {

𝑞𝑖𝑗
∑ 𝑞𝑖𝑘𝑘∈𝐶𝑖

, 𝑗 ∈ 𝐶𝑖

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

. (13) 

where iC  denotes the cluster assignment of sample i within the preclustered data categories, such 

as mRNA. 

We iteratively refined 𝑃𝑣  for each data modality 𝑣 = { 𝑚𝑅𝑁𝐴,𝑚𝑖𝑅𝑁𝐴, 𝑖𝑚𝑎𝑔𝑒 𝑑𝑎𝑡𝑎, 

𝑖𝑚𝑚𝑢𝑛𝑒 𝑐𝑒𝑙𝑙 𝑑𝑎𝑡𝑎 } using Equation (14) and quantified the iterative changes in the data in terms of 

Frobenius norms, as described by Equation (15): 

𝑀𝑣 = 𝑆𝑣 ×
∑ 𝑃𝑘

𝑘≠𝑣

3
× (𝑆𝑣)𝑇 (14) 

∥ 𝐴 ∥𝐹=

√
  
  
  
  
 

∑∑|𝑎𝑖𝑗|
2

𝑚

𝑗=1

𝑚

𝑖=1

. (15) 

The final consistent similarity matrix was derived by computing the mean value 𝑇 =
∑ 𝑀(𝑣)

𝑣

4
 

where the summation is over the four data modalities. 

3. Results 

3.1. Identification of the Three Subtypes Based on Sample Omics Data 

The violin plots depicting the top ten most significantly differentially expressed mRNAs are 

presented in Figure 1(A). It is of particular interest that elevated expression levels of CLDN3 in gastric 

cancer influence tumor cell permeability, facilitating their traversal across the basement membrane 

and extracellular matrix, thus potentially contributing to oncogenesis[34,35]. CDH3, a gene 

predominantly overexpressed in gastric cancer, is associated with cancer invasion and metastasis. 

The protein it encodes facilitates the proliferation and mobility of cancer cells[36]. 
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Figure 1. Significantly different characteristics between cancer and normal samples: (A) top ten most 

significant mRNAs; (B) most significant differential miRNAs; (C) differential boxplots of 22 immune 

cells. 

Figure 1(B) illustrates the general up-regulation of hsa-miR-21-5p, a microRNA (miRNA) that 

expressed in a variety of cancers, especially in colorectal cancer, in which hsa-miR-21-5p contributes 

to tumor development and progression of tumors through the modulation of multiple biological 

processes, such as apoptosis and inflammatory responses[37]. 

Box plots of immune cell percentages for the two samples showed considerable variation in the 

proportion of certain immune cells, leading to the selection of data from 12 specific immune cells for 

further analysis. 

Following four fusion iterations of the four data models, convergence was successfully attained. 

The iterative process, as depicted in Figure S2, illustrates the progressive convergence of the four 

similarity matrices across iterations. Subsequently, spectral clustering was employed to confine the 

class count (k) within the range of [2,5], utilizing the elbow method to ascertain optimal k. In total, 

the study classified 515 samples into three subtypes, comprising 212, 132, and 171 samples, 

respectively. To more vividly exhibit the characteristic differences among the subtypes, the top 

twenty differential features of mRNA and RNA, along with the comprehensive data of immune cells, 

were filtered using the Kruskal-Wallis test. 

Figures 2(A) and (C) illustrate the expression profiles of samples across different subtypes under 

the top twenty DEGS, with (C) presenting the mean expression values for samples within each 

subtype. In these mRNA expressions, samples from subtype I exhibit relatively high levels, while 

samples from subtype II show comparatively lower levels, and samples from subtype III have the 

lowest expression. Figures 2(B) and (D) depict the expression of the first twenty differential miRNAs 

among samples of various subtypes, with (D) also presenting the average expression values for 

samples of each subtype. For the initial nine miRNA features, the expression levels across the three 

subtypes are presented in descending order, in alignment with the mRNA results. However, for the 
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last eleven miRNA features, the expression outcomes are nearly inversely related. Corresponding 

box plots for the first six features are provided in Figure 3, revealing significant differences among 

subtypes, thereby preliminarily confirming the validity of the cancer typing methodology followed 

in this study. 

 

Figure 2. Heatmaps of the top 20 significantly differentially expressed genes(DEGs): (A) mRNA 

expression heatmap; (B) miRNA expression heatmap; (C) mRNA expression heatmap after taking the 

mean for the corresponding feature of the same subtype sample; (D) miRNA expression heatmap 

after taking the mean for the corresponding feature of the same subtype sample. 
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Figure 3. Six features with the most significant differences among the three subtypes: (A) top six most 

significantly differentially expressed mRNAs; (B) top six most significantly differentially expressed 

miRNAs. 

Figure 4 illustrates the expression patterns of various subtypes of immune cells, focusing on the 

first 11 classes identified through p-value testing. In subtype I, specific immune cells such as resting 
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NK cells and plasma cells exhibit reduced activity (blue), whereas M2 macrophages and regulatory 

T cells (Tregs) display heightened activity (red). Subtype II presents a pattern distinct from that of 

subtype I, and subtype III diverges from subtype I in the activity of most cell types, with M1 and M2 

macrophages demonstrating moderate to high activity, and resting NK cells and Tregs showing 

lower activity. As depicted in Figure 4(B), subtype I is characterized by a higher proportion of M2 

macrophages and Tregs, which may indicate a more potent anti-inflammatory or 

immunomodulatory role. Subtype II is marked by an increased presence of CD8 T cells and plasma 

cells, potentially linked to a more robust immune response or antibody production. In contrast, 

subtype III exhibits a higher proportion of M1 and M2 macrophages, which could be associated with 

tissue repair and modulation of the tumor microenvironment. 

 

Figure 4. Immune cell characteristics of different subtypes: (A) Heat map of immune cell 

characteristics of samples of the same subtype after taking the mean value; (B) Difference in the 

percentage of immune cells in samples of different subtypes. 

3.2. Identification of Hub Genes of Different Subtypes by WGCNA 

Weighted Gene Co-expression Network Analysis (WGCNA) was conducted on mRNA data 

based on the samples from three subtypes, encompassing a total of 515 samples and 5844 genes. 

Initially, during the analysis, 5000 genes with the highest variability were selected. Using the 

histogram algorithm, the soft-thresholding power β=3 was identified, thereby achieving an R² value 

of 0.88 and an average connectivity below 100 to meet our criteria (Figure S3). It can be observed in 

Figure 5(A) that 1) most mRNAs exhibit low connectivity, 2) only a minority demonstrates high 

connectivity, and 3) the constructed network exhibits scale-free properties. The dissTOM matrix was 

constructed by leveraging the topological overlap matrix (TOM) similarities to quantify gene 

expression dissimilarities. This matrix forms the foundation for clustering and subsequent module 

identification, and the “cutreeDynamic” algorithm from the WGCNA package was employed for 

dynamic pruning to discern 16 modules encompassing all genes. Module sizes ranged from a 

minimum of 33 genes to a maximum of 1747 genes with only 25 genes included in the gray module. 

The gray module was excluded from subsequent analyses, and the number of genes in each module 

is detailed in Table S1. 
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Figure 5. Results of weighted gene co-expression network analysis (WGCNA)： (A) Scale-Free 

Topology Analysis, frequency distribution of the number of connections (i.e., node degree, k) in the 

network (left), and a test of the scale-independent nature of the network (right);(B) Clustering of 

Module Eigengenes;(C) Gene Dendrogram and Module Colors and (D) Module Eigengene 

Correlation Heatmap. 

Utilizing the characteristics of Module Eigengenes (MEs), the correlation between individual 

genes and their corresponding modules can be precisely quantified. This correlation coefficient serves 

as a pivotal metric for assessing whether a gene functions as a hub gene within its module. 

Figure 5(B) presents the correlation clustering tree dendrograms for the 15 identified modules, 

indicating a similarity threshold below 0.7 (with merge heights exceeding 0.3), thereby avoiding 

dynamic pruning. To pinpoint the key modules with the most robust correlations to sample traits, 

notably tumor subtypes, we assessed the gene module-sample subtype correlations (Figure 6). In this 

evaluation, categorical labels were assigned a value of 1, with non-relevant categories receiving 0. 

Employing a distinctive heat coding strategy for labels, we conducted three separate analyses to 

determine the most pertinent central genes for each category. Pearson correlation coefficients were 

employed to gauge the relationship between feature genes, i.e., those linked to sample characteristics 

and the categorical variables denoting tumor subtypes. This methodology resulted in quantifying the 

correlation between tumor subtypes and feature genes across modules. The “Turquoise,” “Brown,” 

and “Black” modules demonstrated the most pronounced correlation with the three tumor subtypes. 

Within these pivotal modules, we initially determined the intramodular connectivity (kWithin) for 

each gene, reflecting the strength of its interaction with other genes within the same module, as 

calculated using the following formula: 
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𝒌𝒊 =∑|𝒄𝒊𝒋|

𝒋∈𝑴

(𝟏𝟔) 

where, 𝑐𝑖𝑗 = 𝑐𝑜𝑟𝑟(𝑥𝑖 , 𝑥𝑗) is the Pearson correlation coefficient within the module for the two genes. 

 

Figure 7. Correlation of different modules with different subtypes. 

The greater a gene’s intramodular connectivity, the more pivotal its role within the module and 

the more closely it interacts with other genes. We assessed each gene’s correlation with tumor 

subtypes (GS) and its agreement with the module’s signature genes (MM). Hub genes are 

characterized by high GS, high MM, and high within. Accordingly, for subtype I samples, genes were 

selected with GS>0.45 and |MM|>0.8; for subtype II samples, with GS>0.2 and |MM|>0.7; and for 

subtype III samples, with GS>0.4 and |MM|>0.8. Thereafter, by ranking genes based on kWithin in 

descending order, the study identified 16 hub genes for Subtype I, 9 for Subtype II, and 8 for Subtype 

III. 

Table 1 presents an exhaustive compilation of hub genes for the three sample subtypes. Among 

the hub genes of subtype I, MAGI2-AS3 facilitates the progression of gastric cancer by sequestering 

miR-141/200a, thereby sustaining the overexpression of ZEB1[38], an epitranscription factor that 

plays a role in the regulation of epithelial-mesenchymal transition (EMT), a pivotal process in cancer 

metastasis and invasion. MAGI2-AS3, through its interaction with miRNAs, is implicated in the 

modulation of the tumor microenvironment, impacting tumor cell proliferation, migration, and 

invasion. Concurrently, MAGI2-AS3 advances the progression of colorectal cancer by manipulating 

the miR-3163/TMEM106B axis. It functions as a molecular sponge for miR-3163, inhibiting the 

suppressive effect of miR-3163 on TMEM106B, which results in the upregulation of TMEM106B 

expression and consequently fuels tumor cell proliferation and migration[39]. 

Table 1. Hub genes for the three subtypes (sorted according to Kwithin). 

Subtype I kWithin Subtype II kWithin Subtype III kWithin 

MAGI2-AS3 371.7129  RP11-416A17.6 55.3853  SPARC 34.4698  

TTC28 345.3234  RP11-166B2.3 52.2037  FAP 33.0935  
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RBMS3 345.2273  RP11-192H23.7 50.8855  BGN 29.6813  

CNRIP1 338.6266  MALAT1 46.6874  SULF1 29.6049  

PLEKHO1 323.7333  RP11-49O14.2 46.2525  CDH11 28.0017  

GYPC 315.0139  CTD-2014D20.1 46.0766  PRRX1 26.9047 

C20orf194 313.7970  LA16c-431H6.6 45.3105  THY1 26.4728 

CLIP4 312.4037 NPIPB5 40.0239  NOX4 25.9135 

FOXN3 309.4977 RYKP1 39.8201    

ATP8B2 300.8144     

RP11-875O11.1 286.9392     

PDE1A 254.0221     

NR3C1 249.1351     

SLC9A9 248.7150     

NR2F2-AS1 245.9516     

RP11-730A19.9 226.7302     

Among the hub genes of subtype II, MALAT1 has been identified as intimately linked to the 

development, progression, and metastasis of various human cancers. It exhibits elevated expression 

in colorectal cancer tissues, contributing to the enhanced growth of SW480 and HCT116 colorectal 

cancer cells[40,41]. Additionally, MALAT1 is deeply implicated in gastric carcinogenesis through 

diverse molecular pathways. For instance, it augments the proliferation of gastric cancer cells by 

downregulating the expression of miRNAs such as miR-122, miR-1297, miR-22-3p, and miR-202, and 

by repressing the activity of the oncogene PCDH10, thereby promoting the growth and invasiveness 

of gastric cancer[42]. 

Within the hub genes of subtype III, SPARC was shown to amplify the chemosensitivity of 5-FU 

by facilitating apoptosis. Our findings indicate that both cleaved PARP and cleaved caspase-3 levels 

were increased after overexpression of SPARC protein. Additionally, Bax, a pivotal protein in the 

apoptotic process, was significantly upregulated in SGC-7901 and BGC-823 cells with heightened 

SPARC expression. These outcomes implicate that SPARC may induce apoptosis in gastric cancer 

through the activation of the PARP/caspase-3 pathway[43]. Expression levels of the SPARC gene are 

notably correlated with clinical attributes of colorectal cancer, such as tumor stage, suggesting its 

potential as a biomarker for colorectal cancer[44]. 

3.3. Impact of Hub Genes on the Development of Gastrointestinal Tumors 

Gene Ontology (GO), established by the Gene Ontology Consortium, serves as a comprehensive 

database that catalogs the functional roles of genes and their transcriptional and translational 

products within biological processes. Our analysis of the pathways involving hub genes in 

gastrointestinal cancer subtypes aims to delineate their biological functions and the pathways in 

which they participate. 

Figure 7(A) illustrates the outcomes of GO analysis for subtype I with a primary focus on the 

Molecular Function (MF) category of GO. In this representation, dots correspond to distinct biological 

processes, and the magnitude of each dot is proportional to the gene count associated with the 

process. In addition, the color gradient reflects the adjusted p-value (p.adjust), denoting the statistical 

significance of enrichment. Cannabinoid receptors contribute to various intestinal physiological 

processes, including peristalsis, secretion, and epithelial barrier function. Research indicates that the 

deletion of cannabinoid receptor 1 can result in intestinal inflammation and cancer[45]. Activated 

cannabinoid receptors, notably CB1 and CB2, are recognized for their role in modulating 

inflammatory responses and tumor cell proliferation[46]. Glucocorticoid receptors are pivotal in 

regulating immune responses, inflammation, and cell survival. In the context of gastrointestinal 

cancers, glucocorticoids may modulate the tumor microenvironment via their receptors, potentially 

impacting tumor growth and metastasis by suppressing inflammation and regulating immune cell 

activity. Specifically, in colorectal cancer, glucocorticoids might facilitate cancer cell proliferation and 

invasion through the GR-CDK1 signaling pathway[47]. 
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Figure 7. GO analysis results: (A) subtype I (B) subtype III. 

Figure 8(B) shows the results of GO analysis for subtype III, focusing mainly on the GO category 

‘Biological Process (BP)’. Most of these functions are associated with extracellular matrix (ECM) 

interactions, cell migration, and tissue development. Engagement with the extracellular matrix is an 

essential component of the tumor microenvironment in gastrointestinal cancers, influencing the 

invasive and migratory capacities of tumor cells. The interaction between tumor cells and the ECM 

has the potential to either advance or retard tumor progression[48]. 

Genes like MAGI2 that encodes long non-coding RNA MAGI2-AS3 and RBMS3 that encodes the 

RNA Binding Motif Single Stranded Interacting protein3 participate in a spectrum of regulatory 

processes, encompassing signal transduction, gene expression modulation, and intercellular 

communication. This participation may indicate that subtype I is particularly dynamic in the realms 

of cellular signaling and gene expression regulation. Genes within subtype II might be more engaged 

in specialized regulatory roles, such as the involvement of non-coding RNA in transcriptional 

regulation, and could be pivotal in specific physiological or pathological contexts, including the 

modulation of gene expression in response to environmental stresses or disease conditions. Genes 

implicated in extracellular matrix interactions and tissue remodeling, such as SPARC and FAP, 

frequently contribute to tissue development, repair, and the cancer microenvironment. The roles of 

these genes suggest that subtype III may be instrumental in governing extracellular matrix dynamics 

and adaptations under pathological conditions. 

This section may be divided by subheadings. It should provide a concise and precise description 

of the experimental results, their interpretation, as well as the experimental conclusions that can be 

drawn. 

4. Discussion 

The prevalence of gastrointestinal cancers is escalating, most notably among younger 

demographics, constituting a substantial segment of malignant neoplasms within the digestive tract. 

The emergence of multiomics has unveiled the profuse heterogeneity of these tumors, a key 

determinant in their evolution, therapeutic response, and metastatic propensity. Our study harnesses 

multimodal data analysis, integrating diverse technical approaches and data modalities, to deepen 

our understanding of the intrinsic tumor architecture, molecular makeup, and biological activities. 

In our methodology, we integrate edge features derived from the optimized Canny operator in 

detecting a wide range of edge in images, along with transcriptomic and immunological data. To 

forge a sample similarity network, we conduct preliminary clustering on disparate data modalities 

to amplify the significance of localized similarities. This involves an iterative optimization of the 

similarity and kernel matrices, culminating in convergence. We then deploy spectral clustering on 

this integrated network to delineate distinct tumor subtypes. 
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The fusion of diverse data offers a comprehensive view of gene expression profiles, while also 

yielding insights into cellular and tissue architectures. This dual methodology highlights the tumor’s 

genotypic and phenotypic traits, leads to a comprehensive elaboration of distinct tumor subtypes 

and, hence, establishes a foundation for the development of therapeutic modalities. 

We conducted an analysis of mRNA gene expression profiles utilizing Weighted Gene Co-

expression Network Analysis (WGCNA), identifying distinct gene modules. Synthesizing these 

findings with the outcomes of sample subtyping, we pinpointed the associated hub genes. These 

genes constitute critical regulatory pathways, the dysregulation or aberrant expression of which can 

significantly advance disease progression. Moreover, they represent promising therapeutic targets 

with the potential to modulate diverse network and pathway activities. 

While our optimized Canny operator has demonstrated remarkable efficacy in delineating 

tumor margin features, it might not encapsulate the full complexity of the tumor microenvironment. 

Therefore, while not within the scope of the present paper, we plan to pursue more sophisticated 

image processing methodologies, including deep learning algorithms, with the aim of strengthening 

the detection and profiling of biomarkers within histopathological assessments. 

5. Conclusions 

Our study underscores the profound utility of multimodal data analysis in the study of 

gastrointestinal cancers, and demonstrates that the integration of omics data can be achieved by 

seamlessly merging the edge features of tumor images with differential transcriptomic and immune 

cell data. The discovery of hub genes across various tumor subtypes paves the way for innovative 

diagnostic methods and tailored therapeutic strategies. Moreover, the integration multimodal data 

deepens insights into the intrinsic heterogeneity of gastrointestinal tumors. Overall, our results lay a 

robust groundwork for further investigating the complexities of GI cancers with the promise of 

advancing personalized medicine to achieve superior patient outcomes. 
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