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Simple Summary: Immunotherapy has changed the way we treat triple-negative breast cancer (TNBC), a type 

of breast cancer that doesn’t have common markers like estrogen, progesterone, or HER2. TNBC has the worst 

outlook among breast cancers, but it may respond better to immunotherapy because it often shows higher 

levels of PD-L1 and has more immune cells attacking the tumor. Recently, the FDA approved pembrolizumab 

(Keytruda) combined with chemotherapy for advanced TNBC, offering new hope for patients. However, not 

all patients respond equally well, mainly because not everyone has high PD-L1 levels. To improve treatment 

success, combining immunotherapy with other treatments like chemotherapy, targeted therapies, or radiation 

seems promising. This review explains TNBC and immunotherapy, discusses current and future combination 

treatment strategies, and explores the challenges and potential new approaches that might soon be available 

for treating TNBC. 

Abstract: Triple-negative breast cancer (TNBC) lacks the expression of estrogen receptors, human epidermal 

growth factor receptor 2, and progesterone receptors (PR). TNBC has the poorest prognosis among breast 

cancer subtypes and is more likely to respond to immunotherapy due to its higher expression of PD-L1 and a 

greater percentage of tumor-infiltrating lymphocytes. Immunotherapy has revolutionized TNBC treatment, 

especially with the FDA's approval of pembrolizumab (Keytruda) combined with chemotherapy for advanced 

cases, opening new avenues for treating this deadly disease. Although, immunotherapy can significantly 

improve patient outcomes in a subset of patients, achieving the desired response rate for all remains an unmet 

clinical goal. Strategies that improve responses to immune checkpoint blockade, including combining 

immunotherapy with chemotherapy, molecularly targeted therapy, or radiotherapy may improve response 

rates and clinical outcomes.  In this review, we provide a short background on TNBC and immunotherapy and 

explore the different types of immunotherapy strategies that are currently being evaluated in TNBC. 

Additionally, we review why combination strategies may be beneficial, provide an overview of the 

combination strategies, and discuss the novel immunotherapeutic opportunities that may be approved in the 

near future for TNBC. 

Keywords: TNBC; triple-negative breast cancer; immunotherapy; immune checkpoint inhibitors; 

radiation therapy; chemotherapy 

 

1. Introduction 

Triple-negative breast cancer (TNBC) represents 15-20% of breast cancers (BC) that are newly 

diagnosed and is a subtype with the fewest approved targeted therapies [1]. PARP inhibitors were 

approved by the FDA for patients with metastatic and early TNBC who have germline mutations in 

BRCA1/2 [2,3]. TNBC does not overexpress human epidermal growth factor receptor 2 (HER2) and 
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lacks expression of either estrogen receptor (ER) or progesterone receptor (PR) [4]. Clinically, TNBC 

tumors are typically larger upon diagnosis and tend to develop nodal metastasis to the draining 

lymphatics [5]. This subtype is known for developing more lethal metastases which are more likely 

to originate in viscera, especially the brain and lungs, and less likely to spread to the bone [6]. TNBC 

patients have a higher chance of an early relapse than patients with other subtypes of BC and only a 

subset of TNBC patients respond better to chemotherapy [6,7]. TNBC recurrence often peaks between 

the first- and third year following diagnosis, then sharply declines in the years that follow. Relapses 

after eight or ten years are extremely rare [7]. Developments in treatment strategies remained limited 

for years and cytotoxic chemotherapy continues to be the primary systemic treatment for TNBC and 

is often used in the neoadjuvant setting [1]. This allows for a decrease in the tumor burden and an in 

vivo assessment of treatment response, such that pathological complete response (also known as 

pCR) is a useful prognostic marker for survival [8]. While there are several drugs targeting ER and 

HER2 in clinical subgroups, the paucity of progress in developing targeted therapies for TNBC is 

apparent [1].The understanding of the intricate molecular and genetic basis for TNBC has steadily 

improved over the last decade or so, with several classification schemas for TNBC proposed (5, 9-11). 

Using emerging technologies, such as next-generation sequencing (NGS), Lehmann et al. validated 

both intratumoral and intertumoral heterogeneity and simplified the molecular classification of 

TNBC into 6 different subtypes: basal-like 1 and 2 (BL1 and BL2), immunomodulatory (IM), luminal 

androgen receptor (LAR), mesenchymal (M), and mesenchymal stem-like (MSL) [12]. In 2016, 

Lehmann revised the classification into 4 distinct subtypes: BL1, BL2, M, and LAR. IM and MSL were 

left out due to their low cellularity and dependability on the tumor-infiltrating lymphocytes (TILs) 

and tumor-associated stromal cells [13]. Significant recent advancements have led to FDA approval 

of several drugs for TNBC and non-TNBC breast cancers (Table 1). Novel strategies such as 

immunotherapy [14], ionizing radiation therapy [15], platinum agents [16], and PARP inhibitors [17], 

have been explored to increase the pCR rates. TNBC is most likely to benefit from immunotherapy 

because several studies reported higher tumor mutational burden, increased expression of 

programmed cell death-ligand1 (PD-L1), and higher TILs in the tumor microenvironment (TME) 

compared to the other BC subtypes [18,19]. Based on several clinical trials, the immunotherapy and 

chemotherapy combination was approved in both, early and advanced TNBC settings [20]. In this 

review, we discuss the different types of immunotherapy strategies that are currently employed in 

TNBC, articulate why combination strategies may be beneficial, provide an overview of the 

combination strategies, review the current clinical challenges encountered, and provide insight into 

potential future clinical developments.   

Table 1. Updated list of FDA-approved drugs to treat TNBC and other breast cancers (accessed 

information from https://www.fda.gov/ on 7/26/2024). 

Drug class Subtype Agents 

Cytotoxic 

chemothera

py 

All breast 

cancer 

subtypes 

Carboplatin, Docetaxel, Doxorubicin, Epirubicin, Ixabepilone, Liposomal 

doxorubicin, Nab-paclitaxel, Paclitaxel, Vinorelbine 

  HR+ No approved agents for only HR+ subtype 

  HER2+ Carboplatin 

  HER2- No approved agents for only HER2-subtype 

  TNBC Cisplatin 

Targeted 

therapy 

All breast 

cancer 

subtypes 

No approved agents targeting all subtypes 

  HR+ 

Abemaciclib, Alpelisib, Anastrozole, Capivasertib, Elacestrant, Everolimus, 

Exemestane, Fulvestrant, Lapatinib, Letrozole, Palbociclib, Ribociclib, 

Tamoxifen, Toremifene 

  HER2+ Lapatinib, Margetuximab, Neratinib, Pertuzumab, Tucatinib, Trastuzumab 
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  HER2- 
Abemaciclib, Alpelisib, Bevacizumab, Capivasertib, Elacestrant, 

Everolimus, Fulvestrant, Olaparib, Palbociclib, Ribociclib, Talazoparib     

  TNBC Atezolizumab, Pembrolizumab 

Antibody-

Drug 

Conjugates 

All breast 

cancer 

subtypes 

Sacituzumab govitecan 

  HR+ No approved agents for only HR+ subtype 

  HER2+ Ado-trastuzumab emtansine, Trastuzumab deruxtecan 

  HER2- No approved agents for only HER2- subtype 

  TNBC Trastuzumab deruxtecan (TNBC with low/ultra-low HER2 expression) 

2. Immune Microenvironment of TNBC 

Despite the widely held notion that BC is not immunogenic, numerous studies demonstrated 

that TNBC can activate the immune system. Given that TNBC is associated with BRCA1/2 mutations 

that cause genomic instability and increased mutational burden, its immunogenicity is unsurprising. 

Numerous studies indicate that cancers associated with BRCA1/2 mutations are more highly 

immunogenic than tumors that are BRCA1/2 wild type [21]. Compared to other BC subtypes, TNBC 

displays lower clonal heterogeneity and higher immune gene expression [22]. The immune 

microenvironment of TNBC is a dynamic, intricate network of different immune cell populations, 

cytokines, and signaling pathways [23]. The immunological components of the TNBC tumor 

microenvironment are complex (Figure 1) as described below:  

 

Figure 1. Immunological components of TNBC tumor microenvironment. This illustration set forth 

the immunological components of TNBC tumor microenvironment which includes tumor-infiltrating 

lymphocytes (TILs), regulatory T cells (Tregs), tumor-associated macrophages (TAMs), cancer-

associated fibroblasts (CAFs), tumor associated neutrophils (TANs), dendritic cells (DCs), natural 

killer (NK) cells, myeloid-derived suppressor cells (MDSCs), cancer-associated adipocytes (CAAs), 

and immune checkpoints. 

(a) Tumor-Infiltrating Lymphocytes (TILs): TNBC is defined by a high level of TIL infiltration, 

especially helper T cells (CD4+ T cells) and cytotoxic T cells (CD8+ T cells). TILs are associated with 

greater reactivity to immunotherapy and chemotherapy in TNBC patients [24]. Based on a meta-

analysis evaluating TILs' prognostic value in TNBC, researchers found that TIL status should be 

considered as an effective prognostic factor for this subtype of BC as a high TIL level correlates with 

a better outcome [25,26].  

(b) Regulatory T Cells (Tregs): A subpopulation of CD4+ T cells known as "Tregs" inhibits 

immunological responses, particularly those directed against malignancies. Tregs can suppress anti-

tumor immune responses and encourage immune evasion in TNBC which may promote tumor 

growth and metastasis [27]. Presently, Treg infiltration is a predictive factor of TNBC, and treating 

and monitoring Treg infiltration in TNBC may benefit some patients [23]. 
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(c) Tumor-Associated Macrophages (TAMs): TAMs are a diverse group of immune cells that 

infiltrate the TME and are derived from circulating monocytes [28]. TAMs are frequently polarized 

towards an M2-like pro-tumor phenotype in TNBC, which favors tumor development, invasion, and 

metastasis. They also play a role in immunological suppression and treatment resistance [29]. TAMs 

cooperate with Tregs in suppressing the anti-tumor immune activity [30].  

(d) Cancer-Associated Fibroblasts (CAFs): CAFs represent a highly heterogeneous activated 

fibroblast subtype that exhibits dynamic modifications in the growth of tumors. CAFs modulate the 

extracellular matrix (ECM), boost tumor cell invasion and proliferation, induce neoangiogenesis in 

tumor cells, decrease anti-tumor immunity, and aid in the development of an immunosuppressive 

microenvironment [31]. CAFs may promote TNBC growth through inducing TGF-β [32]. 

(e) Tumor-associated neutrophils (TANs): TANs are a crucial part of the TME. Neutrophils can 

be activated in several ways, such as direct tumor cell lysing or cytotoxically inducing antitumor 

activity, thereby functioning as cells that suppress the immune system [33]. In TNBC TANs suppress 

anti-tumor immunity and promote tumor growth, migration, invasion, and metastasis. Furthermore, 

granulocyte-macrophage colony-stimulating factor (GM-CSF), which is secreted by TNBC cells, 

induces TANs to release tumor suppressor M, stimulates angiogenesis, and facilitates tumor cell 

infiltration [34]. 

(f) Dendritic Cells (DCs): DCs are essential for both triggering and controlling immune 

responses. T cells in TNBC may be exposed to tumor antigens by DCs which might trigger an immune 

response against the tumor [35]. Nonetheless, DC function within the TNBC milieu may be 

compromised, resulting in insufficient T cell priming and immunological evasion [36].  

(g) Natural Killer (NK) cells: NK cells are innate immune cells that eliminate tumor cells directly 

without sensitization. Activated NK cells release perforin/granzyme upon encountering tumor cells. 

This causes cytokine secretion including TNF-α and IFN-γ which are involved in cytolysis. Using the 

MHC-I down-regulation mechanism—a common way for cancer cells to evade T cell recognition—

NK cells can target and kill tumor cells with high efficacy [23]. Tumor development and immune 

evasion are facilitated by TNBC tumors, which frequently show reduced infiltration and 

compromised NK cell activity [37].  

(h) Myeloid-Derived Suppressor Cells (MDSCs): MDSCs represent a multitude of immature 

myeloid cells possessing immunosuppressive characteristics [38,39]. In TNBC, MDSCs proliferate in 

the TME where they stifle T cell activation and encourage Treg proliferation, hence impeding anti-

tumor immune responses [40]. 

(i) Cancer-Associated Adipocytes (CAAs): CAAs are adipose cells found within or around 

tumors that have been implicated in promoting cancer progression and metastasis. Adipocytes in the 

TME can release various signaling molecules and factors that support cancer cell growth, invasion, 

and resistance to therapy [41]. These interactions between tumor cells and adipocytes may contribute 

to TNBC aggressiveness. 

(j) Immune checkpoints: Immune checkpoints are vital in regulating T cell activity and 

maintaining immunological homeostasis. Examples of these include cytotoxic T-lymphocyte-

associated protein 4 (CTLA-4) and PD-1 [42]. Immune checkpoint proteins are frequently 

overexpressed in TNBC tumors which cause T cell exhaustion and immune evasion. In TNBC, 

targeting immunological checkpoints has become a potentially effective therapeutic approach, 

especially when combined with chemotherapy or targeted therapy [43]. 

In general, tumor cell elimination usually calls for the onset of several events [19]. Initially, tumor 

cells release specific antigens which are processed by antigen-presenting cells (APCs) primarily DCs. 

To present antigenic signals to T cells, DCs migrate further to lymphoid tissues. Following that, T 

cells proliferate, get activated, migrate, and penetrate tumor tissues. At last, T lymphocytes can 

identify and destroy tumor cells. Tumor cell elimination also requires B cells and innate immune cells 

like NK cells [19]. A thorough understanding of the interactions between tumor cells and the immune 

environment is critical for refining potent immunotherapeutic strategies for TNBC. 

3. Current Clinical Immunotherapy Approaches for TNBC  
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3.1. Cytokines 

Cytokines are small proteins that are essential for immune response and cell signaling [44]. 

While cytokine-based therapies have been explored in several cancers including BC, their role in 

TNBC treatment is still actively explored. Cytokines regulate the host immune response to cancer 

cells and aid in prompting cancer cell death, making cytokine-based immunotherapy an intriguing 

possibility in cancer treatment [45]. The two cytokines approved by the FDA for the treatment of 

cancer, though not breast cancer, are IL-2 and IFN-α; nevertheless, their high toxicity profile has 

limited their use [44]. Several other cytokines including GM-CSF [46], IL-12, IL-15, and TNF are being 

tested in numerous clinical trials for their safety and effectiveness as cancer treatments [47]. 

Moreover, as single-agent immunotherapies, over 40 known cytokines have been approved for a 

restricted range of indications, including the treatment of cancer [48]. A recombinant adenovirus 

expressing IL-12 (AdIL-12) administered intratumorally has been demonstrated to cause substantial 

tumor regression in animal models of BC [48]. Patients with metastatic TNBC (mTNBC) 

demonstrated improved antigen presentation and a treatment-related spike in CD8+ TIL density 

following intratumoral administration of IL-12 (Phase-1 pilot study) [49]. An engineered cytokine 

called empegaldesleukin or NKTR-214 preferentially activates the IL-2 receptor with a focus on 

metastatic solid tumors, including TNBC (Phase-1 trial; NCT02869295) [50]. Cytokine activity 

facilitates both tumor-promoting and tumor-suppressive effects. Proinflammatory cytokines such as 

TNF-α and IL-6 for instance, regulate immunological interactions to promote anticancer effects. 

Cytokines present in the TME promote angiogenesis, epithelial-to-mesenchymal transition, invasion, 

and tumor growth—all processes linked to cancer development [51]. Several factors contribute to the 

poor efficacy of cytokine immune therapy including short half-life, increased toxicity, and low 

efficacy. High intratumoral cytokine dosages might cause systemic adverse effects including renal 

insufficiency, hypotension, neuropsychiatric symptoms, and respiratory failure [52]. Similarly, 

patients do not tolerate systemic treatment of recombinant IFN-α as well [53]. IRX-2, a novel therapy 

comprising numerous cytokines demonstrated activation of TME by elevating TIL numbers, PD-L1 

expression, and lymphocyte activation in early TNBC patients in a phase I study. A phase II follow-

up trial is underway (NCT04373031) [54]. Even though cytokines were thought to have several 

benefits when used as a monotherapy, most clinical trials that employed systemic cytokine 

monotherapy failed. This could be due to inadequate cytokine concentrations in the tumor upon 

parenteral administration, and major toxicities related to the activation of humoral or cellular 

checkpoints [55]. Figure 2 shows the current clinical immunotherapy approaches in TNBC. 

 

Figure 2. Current clinical immunotherapy approaches in TNBC. Clinical immunotherapy approaches 

for TNBC have been diversified in recent years and t his illustration summarizes those strategies 
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which include cytokines, mAbs/ADCs, immune checkpoint inhibitors, vaccines, adoptive cell 

therapies, and oncolytic virus therapy. 

3.2. Monoclonal Antibodies  

The goal of using humanized monoclonal antibodies (mAbs) is to decrease immunotolerance 

and boost the immune response against tumors by blocking immunosuppressive checkpoints that 

the tumor uses to evade immune system control [56]. Trastuzumab was the first FDA-approved 

monoclonal antibody for the treatment of HER2-positive breast cancer [57]. TNBC tumors don’t 

express HER2 thus these patients can’t be treated with trastuzumab or other HER2-specific agents 

[58]. In 2009, the FDA authorized bevacizumab (Avastin), a humanized mAb that specifically targets 

VEGF-A. VEGF regulates tumor-induced immunosuppression in addition to blood vessel 

development [59]. Therefore, bevacizumab's immunomodulatory characteristics open possibilities 

for novel combination treatment approaches [59]. In 2010, the approval of bevacizumab for breast 

cancer was recommended for withdrawal by the Office of New Drugs (OND). Significant benefits 

were not confirmed by the required follow-up trials, and increased serious adverse events with a lack 

of survival benefit were revealed, leading to the conclusion that the risks outweigh the benefits of 

this indication [60]. Aspartic protease Cath-D is an extracellular target unique to TNBC. As a 

promising immunotherapy, an immunomodulatory antibody-based approach against Cath-D is 

presently in its developmental phase to treat TNBC patients [61].  

3.3. Antibody-Drug Conjugates (ADCs) 

ADCs can identify antigens that are tumor-specific or overexpressed in tumors and thus can kill 

cancer cells via antigen-dependent cell-mediated cytotoxicity (ADCC) [62]. ADCs utilize the 

specificity of mAbs on cellular-antigen identification to administer potent cytotoxic drugs in a 

tailored approach [63]. TNF receptor superfamily members such as CD40 can help DCs to stimulate 

anti-tumor T-cells and retrain macrophages to kill tumor stroma. The efficacy of anti-CD40 antibodies 

has been evaluated in several clinical trials [64].  

ADC trastuzumab deruxtecan (DS-8201) is comprised of a cytotoxic topoisomerase I inhibitor 

and an anti-HER2 antibody connected by a cleavable tetrapeptide linker [65]. Its capacity to produce 

cytotoxic action against antigen-negative cells (bystander effect) may have led the FDA to approve it 

in BC patients who have been pretreated with trastuzumab emtansine (TDM1) [66]. The DESTINY-

Breast04 and DESTINY-Breast06 trials have yielded critical data on the efficacy of trastuzumab 

deruxtecan in treating HER2-low breast cancer. DESTINY-Breast04 demonstrated that patients with 

HER2-low breast cancer (IHC 1+ or IHC 2+ without FISH amplification) had significantly superior 

progression-free survival (PFS) when treated with trastuzumab deruxtecan compared to those who 

received the physician’s choice of cytotoxic chemotherapy. This trial established trastuzumab 

deruxtecan as a viable treatment option for HER2-low breast cancer, highlighting its potential to 

change clinical practice [67]. 

Similarly, the DESTINY-Breast06 trial expanded the understanding of trastuzumab deruxtecan 

efficacy by showing benefits for patients with IHC "ultra-low" breast cancer (IHC 0 but with subtle 

HER2 expression). This finding is particularly notable as it extends the applicability of trastuzumab 

deruxtecan to a broader patient population, including those previously not considered for HER2-

targeted therapies (NCT04494425). These results are especially significant for TNBC patients, who 

traditionally have limited treatment options. Moreover, it is important to underscore the CNS activity 

of trastuzumab deruxtecan, as its ability to penetrate the central nervous system could provide 

substantial benefits for patients with brain metastases, a common and challenging complication in 

breast cancer. The TUXEDO-1 trial (NCT04752059) demonstrated that trastuzumab deruxtecan 

achieved a high intracranial response rate in patients with active brain metastases from HER2-

positive breast cancer, establishing it as a viable treatment option for this condition [68]. Another 

ADC, Disitamab vedotin consists of a HER2 mAb conjugated to cytotoxic drug monomethyl 

auristatin E with a cleavable linker and is also being tested in clinical trials for several solid tumors 

including HER2+/low BCs [69].  
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Sacituzumab govitecan is the first ADC to receive FDA approval to treat TNBC which consists 

of a human trophoblast cell-surface antigen-2 (TROP2) antibody that is connected with a 

topoisomerase I inhibitor (SN-38) via a unique hydrolyzable linker [70]. Recently, a Phase III trial 

(ASCENT) demonstrated noticeably prolonged OS and PFS while using sacituzumab govitecan 

instead of single-agent chemotherapy [71]. Apart from HER2 and TROP2-based ADC, the activities 

of folate receptor alpha (FRα) and zinc transporter LIV-1-based ADC have been clinically evaluated 

for TNBC [61]. Ladiratuzumab vedotin is an ADC that targets Syndecan-1 on cancer cells. It binds to 

these cells, is internalized, and releases a cytotoxic agent that disrupts microtubules, leading to cell 

cycle arrest and apoptosis [72]. In early-phase clinical trials, ladiratuzumab vedotin is being explored 

as a monotherapy for patients with BC; some of these studies have already shown encouraging results 

[72]. In a phase I, multi-part, dose-escalation SGNLVA-001 trial mTNBC exhibited superior overall 

response rate (ORR) and disease control rate (DCR) with Ladiratuzumab vedotin [73]. Recently, Tsai 

and colleagues reported an ORR of 28% with Ladiratuzumab vedotin at 1.25 mg/kg indicating the 

favorable activity of the ADC [74].  

Recently, a newly developed ADC (ESG401), which consists of a humanized anti-TROP2 IgG1 

monoclonal antibody connected to the Topoisomerase I Inhibitor SN-38 through a stable cleavable 

linker, demonstrated promising effectiveness and tolerability in the Phase Ia trial [75]. Moreover, the 

effectiveness of ESG401 in treating brain metastases in first-line mTNBC patients corresponds with 

our prior findings in late-line mTNBC and HR+/HER2- BC patients (NCT04892342) [76]. 

Datopotamab deruxtecan (Dato-DXd) is another ADC where the antibody datopotamab, targeting 

TROP2 on breast cancer cells, is linked to the cytotoxic drug DXd. Once datopotamab binds to TROP2 

and is internalized, the linker breaks down, releasing DXd to kill the cancer cell [77]. Dato-DXd's 

ability to recruit immune cells to cancer sites suggests that combining it with durvalumab, which 

blocks PD-L1 and enhances immune cell activity, may enhance its effectiveness. In the phase I study 

of Dato-DXd (NCT03401385), promising antitumor activity and a manageable safety profile were 

observed in patients with heavily pretreated advanced HR+/HER2– breast cancer and TNBC [78]. The 

ongoing TROPION-Breast03 trial (NCT05629585) will compare Dato-DXd alone or with durvalumab 

against standard care in patients with non-mTNBC with residual cancer cells post-surgery [77]. Thus, 

ADCs continue to play an ever-evolving and significant role in the management of mTNBC.  

3.4. Immune Checkpoint Inhibitors 

ICIs kill tumor cells by disabling the immune system's "braking" function on the immune cells 

that attack cancer. ICIs target the three best-characterized targets, PD-L1 (also called as B7 homolog 

1) and PD-1 (also known as CD279) while blocking CTLA-4 (CD152) [79]. The mechanism of action 

of ICIs targeting PD-L1, PD-1, and CTLA-4 is shown in Figure 3. ICIs have the potential to be 

beneficial for both immunoinflammatory and immunological-suppressive types, potentially 

changing the TME from an "immune cold" to an "immune hot” phenotype [80]. The 

immunosuppressive PD-1 protein is mostly expressed on the cell surface (i.e., plasma membrane) of 

B, T, myeloid, and NK cells of the immune system [81]. The FDA-approved PD-1/PD-L1 inhibitors 

include atezolizumab, avelumab, cemiplimab, durvalumab, nivolumab, and pembrolizumab [82]. 

PD-L1 expression is directly correlated to histological grade and lymphocyte infiltration and is 

observed in 20–30% of TNBC cases [82]. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 14 August 2024                   doi:10.20944/preprints202408.1061.v1Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 14 August 2024                   doi:10.20944/preprints202408.1061.v1

https://doi.org/10.20944/preprints202408.1061.v1
https://doi.org/10.20944/preprints202408.1061.v1


 8 

 

 

Figure 3. Mechanism of action of ICIs targeting PD-L1, PD-1, and CTLA-4. T cell inactivation and the 

prevention of tumor cell death are caused by their binding to the corresponding ligands on the surface 

of cancer cells. Immune checkpoint inhibition promotes anticancer activity and promotes T cell 

activation. 

Pembrolizumab was found to be safe with good ORR in TNBC patients (KEYNOTE-012; [83]) 

and pembrolizumab monotherapy provided long-lasting antitumor efficacy in patients with both 

early and advanced PD-L1-positive TNBC with a combined positive score ≥ 1 [84,85]. PD-1 

inhibitor JS001 demonstrated good safety and efficacy in mTNBC patients (NCT02838823) who failed 

prior multi-line treatments [86,87]. Pembrolizumab received approval based on the KEYNOTE-355 

trial (NCT02819518), a multicenter, double-blind, randomized, placebo-controlled study involving 

patients with locally recurrent unresectable or metastatic TNBC who had not previously received 

chemotherapy for metastatic disease [88]. Similarly, atezolizumab monotherapy offered enduring 

clinical advantages for patients with mTNBC (NCT01375842; [89]) while avelumab provided an ORR 

of 44.4% (PD-L1≥10%) and 2.6% (PD-L1<10%) in TNBC patients (JAVELIN trial; [90]). The FDA 

initially approved atezolizumab in combination with nab-paclitaxel for first-line treatment of TNBC 

based on the IMpassion130 trial. However, this approval was later withdrawn following the negative 

results of the IMpassion131 trial [91]. 

T cells receive positive and negative feedback from the CD28 and CTLA-4 receptors, respectively 

[92]. CTLA-4 maintains T cell homeostasis since it specifically regulates CD4+ T cell responses [93]. 

Importantly, tissues from lymph node metastases show considerably higher CTLA-4 levels than 

tissue samples from the original breast tumor as seen in axial lymph node (ALN) metastasis [94]. 

There is presently no approved CTLA-4 inhibitor that can be used exclusively for TNBC, but 

ipilimumab is FDA-approved to treat several other cancers.  

3.5. Vaccines 

Known antigens associated with breast tumors are the main target of therapeutic vaccines, 

which work by actively immunizing against the tumor. Patient-specific tumor mutanome is used in 

cutting-edge settings to produce vaccines [95]. Vaccines can modify the TME through chemokines 

which can directly impact tumor growth as well as cytotoxic CD8+ T-cell (CTL) and NK responses. 

Several independent approaches have been used to develop therapeutic vaccines that use DC, DNA, 

RNA, peptides, carbohydrates, or all of the above [96]. CD4+ helper T lymphocytes can be stimulated 

by AE37 which is an Ii-Key hybrid of the MHC class II peptide. The randomized phase II trial 

comparing GM-CSF alone with the AE37 + GM-CSF vaccine to prevent BC recurrence revealed no 
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statistically significant differences in the five-year DFS between the treatment arms [97,98]. Similarly, 

a phase 1 trial with FRα peptide vaccine was well tolerated and produced responses that lasted over 

a year in more than 90% of patients with BC [99]. Poxvirus used in the PANVAC vaccine encodes 

mucin-1 (MUC-1) and carcinoembryonic antigen (CEA) along with T-cell-stimulating proteins LFA-

350, ICAM-1, and B7.1 [100]. Favorable clinical responses to this vaccine have been observed in a 

limited number of patients [101]. Similarly, mixed subtypes of BC subjects treated with autologous 

dendritic cell (DC) vaccine pulsed with various p53 peptides resulted in stable disease in ~ 30% of 

patients, and a small subgroup of these had an increased CD8+ T-cell responses [102]. Autologous 

DC vaccine increased PFS  to over 3 years in a subgroup of ER/PR double negative [103] and PR 

negative stage IV BC subjects [104]. Early clinical investigations of the DC vaccine including hTERT 

[105] peptides and FRα [99] have demonstrated T-cell activation further supporting the role of the 

DC vaccine in BC management. These include a novel alpha-lactalbumin vaccine in patients with 

stage II-III TNBC (phase I) and in individuals at risk for TNBC who are planning to undergo 

preventative bilateral mastectomy (phase I) [106], STEMVAC, a DNA plasmid-based vaccine (phase 

II, NCT05455658) on patients with curatively treated stage I-III TNBC. STEMVAC targets proteins 

expressed on breast cancer stem cells, working to enhance the immune system's ability to detect and 

eliminate the cancer cells responsible for the disease [107]. 

3.6. Adoptive cell therapy (ACT) 

T cells are crucial for cell-mediated immunity. Two forms of ACTs that can alter natural T cells 

ex vivo and reintroduce them into the body to make them more potent tumor-destroying agents are 

chimeric antigen receptor (CAR) T-cell and T-cell receptor (TCR)–engineered T-cell therapies [108]. 

CAR T-cells are designed to identify exclusively surface antigens by fusing antibody fragments on 

the T-cell's antigen-binding region. In contrast, MHC-expressed intracellular antigens are recognized 

by TCRs through the utilization of an alpha-beta chain heterodimer. Consequently, since TCRs may 

target a larger variety of antigens than CAR-T, they might be more advantageous in solid tumors 

[108]. Enhancing CAR-T cell infiltration in tumor tissues is a main obstacle for CAR-T therapy in BC. 

This obstacle may be addressed by combining the delivery of CAR-T cells with strong stimulation of 

APCs to produce chemotactic cytokines [109]. Receptor tyrosine kinase c-Met is overexpressed in 

approximately 50% of BCs. The intratumoral injections of c-Met-CAR-T cells were well tolerated and 

induced an inflammatory response in metastatic BC patients with c-Met-expression in a phase 0 trial 

(NCT01837602) [110]. Mesothelin is overexpressed in TNBC which is linked to a poorer prognosis 

[111]. This led to the development of mesothelin-specific CAR-T cells. Initial findings from a phase 

I/II trial (NCT02414269) in patients with advanced solid tumors demonstrated anti-tumor activity of 

mesothelin-targeted CAR-T cells without any significant toxicities [112]. Similarly, a combination of 

mesothelin-targeted CAR-T cells with pembrolizumab was found to be safe and well tolerated in 

patients with malignant pleural disease (NCT02792114) and demonstrated antitumor efficacy [113]. 

Over 90% of TNBC express high MUC1 protein which is linked to a poor prognosis [114]. An anti-

MUC1 CAR-T cell-based phase I clinical trial is currently underway (NCT04020575) for patients with 

advanced MUC1-positive BC [115]. Another well-known marker for BC adverse prognostic is CEA 

[116]. A phase-I trial that aimed to analyze the safety and tolerability of anti-CEA T cell therapy 

(NCT00673829) in patients with metastatic BC has been suspended without any published results 

[117]. Luen et al. showcased how TILs could be a crucial factor in adapting clinical trial designs. 

Currently, TILs do not have clinical utility in any cancer type, and thus should not be utilized as a 

biomarker to tailor clinical therapies in daily practice. To fully investigate its clinical relevance, the 

next logical progression would be to consider using TILs as an adaptive factor in clinical trials [118]. 

Additional clinical testing of adoptive cell therapies in TNBC is warranted to improve the clinical 

outcome in subjects with TNBC, especially late-stage and mTNBC. 

3.7. Oncolytic Virus Therapy 

Natural or genetically engineered viruses that can proliferate selectively in cancer cells without 

harming healthy cells are known as oncolytic viruses (OVs) [119,120]. OV may lyse tumor cells by 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 14 August 2024                   doi:10.20944/preprints202408.1061.v1Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 14 August 2024                   doi:10.20944/preprints202408.1061.v1

https://doi.org/10.20944/preprints202408.1061.v1
https://doi.org/10.20944/preprints202408.1061.v1


 10 

 

infecting them directly, multiplying within them, or stimulating the immune system [121]. OVs are 

designed to target several stages in the cancer-immunity cycle. Oncolytic viruses cause immunogenic 

cell death, which triggers the innate and adaptive immune systems by releasing danger signals and 

neo-antigens [122]. At present, the only type of OV authorized for cancer therapy is talimogene 

laherparepvec (T-VEC), a herpes simplex virus-1 (HSV) modified to express GM-CSF [123]. An 

additional phase II trial (NCT02658812) assessed the effectiveness of intratumoral T-VEC as 

monotherapy for locoregionally inoperable BC recurrence, irrespective of whether there was a distant 

recurrence. The results demonstrated that uncontrolled disease development made intratumoral T-

VEC monotherapy less effective, and concurrent systemic treatment administration may be necessary 

[124]. The most researched OV for BC management is adenovirus. The ICOVIR-7 trial included 

patients with advanced and refractory solid cancer including BC. Although the OV was declared safe 

and a majority of subjects (16 out of 18) developed neutralizing antibodies, all BC subjects (n=3) failed 

to reach efficacy endpoints [125]. Conversely, Ad5/3-D24-GMCSF, an OV that codes for GM-CSF 

effectively immunized patients with advanced BCs including TNBC [126]. Currently, an OV MEM-

288 that carries recombinant chimeric CD40 (MEM40) and human interferon beta (IFN) is being 

investigated (NCT05076760) in various solid cancers including TNBC [127]. In vivo and ex vivo 

testing of several different OVs, including Coxsackie, Maraba, Measles, Newcastle disease, Polio, and 

Vaccinia has cleared the path for human safety studies [128]. A phase I clinical trial (NCT01846091) 

using a measles virus that encodes human thyroidal sodium iodide symporter (MV-NIS) is presently 

being evaluated in a range of cancers including mTNBC [129]. 

4. Rationale of Combining Immunotherapy with Other Therapies 

TNBC is an aggressive disease and often develops resistance to standard of care (SOC) 

treatment. Thus, immunotherapy in combination with SOC is expected to improve the outcome for 

several reasons: 1) Different therapies target cancer cells through distinct mechanisms. Combining 

immunotherapy with chemotherapy, targeted therapy or radiation therapy can attack cancer cells 

through multiple pathways simultaneously resulting in a robust response [130]; 2) Some therapies 

can increase the immune system's capacity to identify and target cancer cells. For example, 

chemotherapy can induce immunogenic cell death, releasing tumor antigens that activate the 

immune response thereby synergizing with immunotherapy [131]; 3) TNBC often develops resistance 

to single-agent therapies [132]. Combination therapies can target several pathways implicated in 

tumorigenesis and immune evasion, reducing the likelihood of developing resistance [133]; 4) Not all 

patients respond to immunotherapy alone. Combining immunotherapy with other therapies may 

broaden the spectrum of patients who benefit from treatment, improving overall outcomes [134]; 5) 

Combining lower doses of different therapies may reduce individual treatment-related toxicities 

while maintaining efficacy, improving patients' quality of life [133]; 6) Targeting TNBC with a 

combination of therapies can potentially decrease the risk of metastasis or recurrence by eradicating 

residual cancer cells that may metastasize to other tissues/organs [135]. Overall, combination 

strategies with immunotherapy represent a comprehensive approach to treating TNBC, addressing 

its heterogeneity and resistance mechanisms while maximizing therapeutic efficacy and minimizing 

toxicity. Several key TNBC clinical trials that include(d) immunotherapy in combination with other 

treatment modalities are listed in Table 2 (non-exhaustive list). 

Table 2. Combination of immunotherapy with other treatment modalities evaluated in clinical trials 

for TNBC (accessed information from https://www.clinicaltrials.gov/ on 6/17/2024). 

Target Interventions 
Clinical status & 

Identifier 
Status 

PARP and PD-1 
Drug: Niraparib  

Biological: Pembrolizumab 

Phase I/II 

NCT02657889 

Compl

eted 

PARP and PD-L1 
Drug: Avelumab Phase 1b 

Drug: Talazoparib Phase 1b 

Phase Ib/II  

NCT03330405 

Compl

eted 
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Drug: Avelumab Phase 2 

Drug: Talazoparib Phase 2 

PD-1 

Biological: Pembrolizumab 

Drug: Nab-paclitaxel 

Drug: Paclitaxel 

Drug: Gemcitabine 

Drug: Carboplatin 

Drug: Normal Saline Solution 

Phase III  

NCT02819518 

Compl

eted 

PD-1 
Drug: Eribulin Mesylate  

Drug: Pembrolizumab 

Phase Ib/II  

NCT02513472 

Compl

eted 

PD-L1 

Drug: Atezolizumab (MPDL3280A), an 

engineered anti-PDL1 antibody  

Drug: Nab-Paclitaxel 

Drug: Placebo 

Phase III  

NCT02425891 

Compl

eted 

PD-L1 
Drug: Atezolizumab  

Drug: Nab-paclitaxel 

Phase Ib  

NCT01633970 

Compl

eted 

PD-L1 

Drug: Atezolizumab (MPDL3280A), an 

engineered anti-PDL1 antibody 

Drug: Atezolizumab Placebo 

Drug: Paclitaxel 

Phase III  

NCT03125902 

Compl

eted 

PD-1  

Drug: Nivolumab 

Radiation: Radiation therapy 

Drug: Low dose doxorubicin 

Drug: Cyclophosphamide 

Drug: Cisplatin 

Phase II  

NCT02499367 

Ongoin

g 

PD-1 

Biological: Pembrolizumab 

Drug: Nab-paclitaxel 

Drug: Anthracycline (doxorubicin) 

Drug: Cyclophosphamide 

Drug: Carboplatin 

Drug: Paclitaxel 

Phase I 

NCT02622074 

Compl

eted 

PD-1 

Biological: Pembrolizumab 

Drug: Carboplatin 

Drug: Paclitaxel 

Drug: Doxorubicin 

Drug: Epirubicin 

Drug: Cyclophosphamide 

Drug: Placebo 

Biological: GM-CSF 

Phase III 

NCT03036488 

Ongoin

g 

PD-L1 

Drug: MEDI4736 (Durvalumab) 

Drug: Placebo 

Drug: Nab-Paclitaxel 

Drug: Epirubicin 

Drug: Cyclophosphamide 

Phase II 

NCT02685059 

Compl

eted 

PD-L1 

Drug: Carboplatin 

Drug: Abraxane 

Drug: MPDL3280A (Atezolizumab) 

Procedure: Surgery 

Drug: Anthra 

Phase III 

NCT02620280 

Ongoin

g 

PD-L1 

Drug: Atezolizumab (MPDL3280A), an 

engineered anti-PDL1 antibody 

Drug: Placebo 

Phase III 

NCT03197935 

Compl

eted 
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Drug: Nab-paclitaxel 

Drug: Doxorubicin 

Drug: Cyclophosphamide 

Drug: Filgrastim 

Drug: Pegfilgrastim 

PD-1  
Drug: Pembrolizumab 

Radiation: Radiotherapy 

Phase II 

NCT02730130 

Compl

eted 

PD-L1  
Radiation: SABR 

Drug: Atezolizumab 

Phase II 

NCT03464942 

Compl

eted 

PD-1 and LIV-1 
Drug: Ladiratuzumab vedotin 

Drug: Pembrolizumab 

Phase Ib/II 

NCT03310957 

Ongoin

g 

PD-L1 and AKT 

Drug: Atezolizumab 

Drug: Ipatasertib 

Drug: Paclitaxel 

Drug: Placebo for Atezolizumab 

Drug: Placebo for Ipatasertib 

Phase III 

NCT04177108 

Compl

eted 

PD-1, PARP, and VEGFR-2 Drug: SHR-1210 + Apatinib +Fluzoparib 
Phase I  

NCT03945604 

Compl

eted 

PD-1, VEGFR-2,c-KIT, and 

PDGFRb 

Drug: Camrelizumab in combination with 

nab-paclitaxel and famitinib 

Phase II  

NCT04129996 

Compl

eted 

PD-L1 and CD73 

Drug: Paclitaxel 

Drug: Carboplatin 

Drug: MEDI4736 

Drug: MEDI9447 

Phase I/II 

NCT03616886 

Ongoin

g 

PD-L1 and modified 

oncolytic herpes virus 

Biological: Talimogene Laherparepvec  

Biological: Atezolizumab 

Phase Ib 

NCT03256344 

Ongoin

g 

PD-L1 
Avelumab, SBRT, haNK and 15 other 

interventions/treatments 

Phase I/II 

NCT03387085 

Compl

eted 

4.1. Combination of Immunotherapy with PARP Inhibitors 

The combination of Poly ADP-ribose polymerase (PARP) inhibitors (PARPi) with 

immunotherapy is an active area of investigation for TNBC therapeutics. PARP plays an important 

role in the DNA repair process. Niraparib, olaparib, and talazoparib are key PARPi approved to treat 

BRCA1/2 mutant cancers [136]. However, recent studies have shown that PARPi may also have 

immunomodulatory effects that could enhance the efficacy of immunotherapy in TNBC [137]. TNBCs 

with BRCA mutations or other DNA repair deficiencies are significantly more sensitive to PARPi 

[138]. Several clinical trials are currently investigating the combination of PARPi with 

immunotherapy in TNBC.  

Patients with germline BRCA1/2 mutation-associated HER2-negative BC undergoing treatment 

in the first- through third-line of therapy were randomized to receive either olaparib or chemotherapy 

in phase 3 OLYMPIAD trial [139]. Olaparib did not considerably increase OS in the study population 

as compared to chemotherapy, but the median PFS was 2.8 months longer. However, among patients 

receiving first-line treatment, olaparib increased OS by 7.9 months compared to chemotherapy alone 

[140]. This led to FDA approval for Olaparib therapy in women with TNBC with germline BRCA 

mutations. In the OlympiA trial (NCT02032823), adjuvant olaparib significantly enhanced invasive 

and distant disease-free survival in patients with high-risk, HER2-negative early breast cancer and 

germline BRCA1 or BRCA2 mutations, compared to placebo. However, olaparib had minimal impact 

on the overall patient-reported quality of life [141]. Likewise, patients receiving first- through fourth-

line therapy for germline BRCA1/2 mutation-associated HER2-negative BC in the phase 3 EMBRACA 

trial were randomly assigned to receive talazoparib or chemotherapy [140]. In comparison to 

chemotherapy, talazoparib had a greater ORR and mPFS, but talazoparib did not considerably 

increase OS when compared to chemotherapy [140]. Based on these results PARPi monotherapy was 
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suggested as SOC for metastatic HER2-negative BC patients with BRCA1/2 mutations [142]. Despite 

having strong response rates, PARPi-induced responses are generally less durable. Although 

checkpoint inhibitor monotherapy has a lower response rate than PARPi, it produces longer-lasting 

effects in mTNBC [143].  

Comparing the results of the phase II KEYNOTE-162 trial [144] that combined PD-1 checkpoint 

inhibitor pembrolizumab with PARPi niraparib to trials with PARPi monotherapy, it became evident 

that patients with BRCA1 or BRCA2 pathogenic variants (PVs) displayed long-lasting responses with 

combination treatment [145]. In the phase I/II MEDIOLA basket trial combining olaparib and 

durvalumab the patients with metastatic HER-2-negative BC with a germline BRCA1/2 PVs were 

explicitly included in one of the four cohorts [146]. Overall, the combined regimen was well tolerated 

but it is unclear if the combined approach would be more effective in this group of patients with 

germline BRCA1/2 PVs than the PARP inhibitor alone, especially in terms of extending the duration 

of response [146]. Avelumab in combination with talazoparib has been assessed in two JAVELIN 

basket trials for patients with previously treated solid malignancies, including BC. The JAVELIN 

trials showed an acceptable level of safety [147]. While initial results from early-phase clinical trials 

have shown promising activity, larger randomized controlled trials are needed to establish the 

optimal combination regimen, patient selection criteria, and long-term outcomes. Combining PARP 

inhibitors with immunotherapy may also pose challenges, such as increased toxicity or the 

development of resistance. Therefore, careful monitoring and management of adverse events are 

essential moving forward. 

4.2. Combination of Immunotherapy with Chemotherapy 

Based on several preclinical and clinical studies it is clear that several chemotherapies kill tumor 

cells by promoting the recruitment and maturation of APCs, enhancing the antigen presentation, and 

encouraging T-cell activation [148]. Additionally, by releasing MHC molecules and cell surface 

antigens, chemotherapy drugs improve the immunogenicity of tumors [149]. Chemotherapy-induced 

transient immunosuppression results in an enormous release of cyto- and chemokines which boosts 

immune cell infiltration and activation. Therefore, the combination of PD-(L)1 inhibitor and 

chemotherapy is a viable strategy to improve immunotherapy efficacy and promote synergistic anti-

tumor activity [19]. Numerous clinical trials combining immunotherapy and chemotherapy are being 

carried out based on this concept with significant clinical advantage attained.  

Most clinical trials currently use immunotherapy and chemotherapy together in part because 

the response to ICIs is slower, whereas chemotherapeutic agents kill tumor cells and alter TME 

during the therapy period [19]. Previously untreated, advanced TNBC patients were treated with 

pembrolizumab plus chemotherapy or placebo plus chemotherapy as the first-line treatment in 

KEYNOTE-355. The chemotherapy regimens were chosen by the treating physicians and included 

gemcitabine/carboplatin, paclitaxel, and nab-paclitaxel [88]. Patients treated with pembrolizumab, 

and chemotherapy combination had a significant and clinically meaningful increase in PFS compared 

to the placebo-chemotherapy group with a combined positive score (CPS) ≥ 10. CPS is determined by 

the ratio of PD-L1 positive cells (tumor cells, lymphocytes, and macrophages) to the total number of 

tumor cells using the 22C3 assay [150]. The release of follow-up data showed that when 

pembrolizumab was added to chemotherapy, OS increased by about 7 months in the CPS ≥ 10 group 

and side effects were tolerable [150]. In the phase IB/II KEYNOTE-150 trial, patients with mTNBC 

who had undergone at least two lines of previous therapy were treated with pembrolizumab plus 

eribulin mesylate. Of the 167 patients recruited, 40% were categorized as stratum 1 since they had 

not previously received systemic therapy. In this group of patients, the survival was greatest for PD-

L1-positive individuals [151]. The IMpassion130 phase III trial [87], further validated the efficacy of 

this immuno-chemotherapy combination for mTNBC patients who did not receive systemic therapy, 

following a phase Ib trial (NCT01633970) that showed the safety of atezolizumab plus nab-paclitaxel 

in patients with locally recurrent or mTNBC [152]. Based on preliminary findings, adding 

atezolizumab was associated with a benefit for PFS in both PD-L1-positive and intention-to-treat 

(ITT) populations. Atezolizumab was found to significantly enhance OS in the PD-L1-positive group 
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from 18.0 months to 25.0 months in the second set of intermediate findings; however, in the ITT 

population, there was no significant difference [153]. As a result, the FDA approved atezolizumab in 

March 2019 for use as a first-line treatment for patients with late-stage TNBC in combination with 

nab-paclitaxel [154]. The combination of AKT inhibitor ipatasertib with atezolizumab + 

paclitaxel/nab-paclitaxel demonstrated excellent efficacy in treating advanced and mTNBC [155]. 

Nevertheless, these different results were noted in the phase III IMpassion131 trial which 

examined atezolizumab plus paclitaxel as first-line therapy for patients with advanced or mTNBC 

and compared the results to placebo plus paclitaxel. This study did not find any discernible 

differences in PFS between the two groups based on PD-L1 expression [156]. Based on recent single-

cell sequencing (scSeq) data, paclitaxel may decrease critical anti-tumor immune cells in the TME 

while it may increase immunosuppressive macrophages which could impact the efficacy of 

atezolizumab [157]. However, additional investigations are warranted to validate these findings. In 

addition to concurrent chemotherapy, another novel approach for the immuno-chemotherapy 

combination is to induce low-dose chemotherapy before immunotherapy. Patients with mTNBC 

received no induction or 2 weeks of low-dose cyclophosphamide, cisplatin, doxorubicin, and hypo 

fractionated irradiation, followed by nivolumab in the phase II TONIC trial. The results suggested 

that doxorubicin or cisplatin induction, even for a short period, can shift the TIME toward an 

inflammatory state and enhance the response to nivolumab in TNBC [158]. Pembrolizumab and 

chemotherapy combination has consistently increased pCR in multiple clinical trials (I-SPY2 [159], 

KEYNOTE-173 [160], and KEYNOTE-522 [87]) in patients with early-stage TNBC. In July 2021, the 

FDA approved pembrolizumab as a neoadjuvant treatment for early-stage, high-risk TNBC alongside 

chemotherapy based on the improved pCR rates noted in these trials [161]. 

In the phase II GeparNuevo trial, durvalumab or placebo was administered every 4 weeks in 

addition to chemotherapy and their efficacy was assessed. Addition of durvalumab significantly 

increased the pCR rates in the window cohort but not in the overall study population [162]. In the 

NeoTRIP trial, a separate trial of the PD-L1 inhibitor atezolizumab, the efficacy of 8 cycles of 

carboplatin and nab-paclitaxel with or without atezolizumab was examined in high-risk TNBC. As 

an adjuvant treatment, 4 cycles of anthracycline regimen chemotherapy were given. The pCR rate in 

the ITT group was not significantly different with the addition of atezolizumab in a neoadjuvant 

setting [163]. Conversely, in the IMpassion031 study, atezolizumab given as a single drug with a 

standard chemotherapy regimen including doxorubicin and paclitaxel significantly increased pCR 

from 41% in the chemotherapy alone arm to 58% in the ateza-plus chemotherapy arm [164]. The 

IMpassion130 phase 3 trial, reported in 2018, showed that first-line treatment with atezolizumab plus 

nab-paclitaxel significantly improved PFS compared to placebo plus nab-paclitaxel in mTNBC. While 

the overall survival boundary was not crossed in this interim analysis and was not formally tested 

for statistical significance, numerical increases in median OS were observed in both the intention-to-

treat and PD-L1-positive subgroups [165]. However, the FDA approval of atezolizumab was 

withdrawn due to the negative results from the IMpassion131 trial [166]. It should also be noted that 

the IMpassion130 and IMpassion131 trials used the SP142 assay for PD-L1 expression, which differs 

from other assays in detecting PD-L1 levels.  

4.3. Combination of Immunotherapy with Radiotherapy 

Radiotherapy (RT) is still a major treatment modality in TNBC even after recent advancements 

in endocrine therapy, chemotherapy, and targeted therapy for BC [134]. Numerous randomized trials 

have demonstrated that adjuvant radiation therapy decreases locoregional recurrence and improves 

survival in women with both early-stage and advanced-stage breast cancer. The impact of 

radiotherapy on immune signaling is still being elucidated [167,168]. Immune cells are attracted to 

the TME by radiation in several ways. It triggers the release of warning signals from dying tumor 

cells. DCs consume antigens from cancerous cells and deliver them to lymph nodes. The T cells are 

then exposed to them, which activates CD8 + and CD4 + T cells. Consequently, chemokines drive 

effector T-cell recruitment to tumors [169]. In BC patients, RT plus immunotherapy may produce 

systemic antitumor effects especially when RT is administered at higher doses using more advanced 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 14 August 2024                   doi:10.20944/preprints202408.1061.v1Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 14 August 2024                   doi:10.20944/preprints202408.1061.v1

https://doi.org/10.20944/preprints202408.1061.v1
https://doi.org/10.20944/preprints202408.1061.v1


 15 

 

techniques. Potential explanations for these systemic effects include the growth and dissemination of 

effector immune cells to distant sites because of the local immune priming by RT [170].  

The adaptive phase-2 TONIC study, however, demonstrated a limited increase (~10%) in ORR 

with low-dose radiation combination as compared to nivolumab alone [158]. The best ORRs were 

observed with nivolumab and chemotherapy combinations (doxorubicin 35%, cisplatin ORR 23%) in 

this trial as mentioned above. A multi-center phase 2 trial assessed the safety and efficacy of 

pembrolizumab plus RT in patients with mTNBC (NCT02730130) [171]. This study discovered that 

the unselected PD-L1 population's ORR in the ITT cohort was 17.6%, which was greater than the ORR 

of mTNBC patients who had previously received ICI monotherapy. Fifty patients who had received 

fewer than two lines of systemic therapy were included in a phase II AZTEC trial to receive 

atezolizumab plus RT (NCT03464942) [172]. Patients were randomized to receive either 24-Gy 

stereotactic ablative radiotherapy (SABR) in three fractions or 20 Gy SABR in one fraction. Five days 

following the last RT segment, atezolizumab was initiated. There was no discernible variation in 

median progression-free survival (mPFS) between the two cohorts. TIL levels of 5% and the PD-L1 

expression had little impact on the efficacy [172]. It would be interesting to see the results of 

numerous trials that are currently investigating the clinical benefit of RT in combination with ICI in 

women with TNBC. 

4.4. Dual Antibody Combinations and Dual Immunotherapies 

ADCs can interact with anti-PD-(L)1 agents to improve tumor control [173]. Sacituzumab 

govitecan targets TROP2 and delivers topoisomerase I inhibitor SN38 to the tumor. The clinical 

efficiency of this agent with pembrolizumab as a first-line treatment for mTNBC is currently being 

assessing [19]. Similarly, the safety and efficacy of ladiratuzumab vedotin an ADC that targets LIV-1 

[174] is being evaluated in combination with pembrolizumab in a phase Ib/II trial [175]. 

VEGF is a crucial factor in vascular endothelial cells that promotes angiogenesis, cell invasion, 

migration, proliferation, and survival, and enhances vascular permeability [176]. The combination of 

low-dose VEGFR inhibitor apatinib with anti-PD-1 agent camrelizumab and PARP1/2i fuzoloparib 

demonstrated a manageable safety profile and preliminary antitumor activity in patients with 

advanced TNBC [177]. FUTURE-C-Plus trial demonstrated that CD8+ and/or PD-L1 positive patients 

benefit more from the combination of famitinib (VEGFRi), camrelizumab (ICI), and chemotherapy 

(nab-paclitaxel) combinations [178]. The trial validated the safety, efficacy, and feasibility of triple 

therapy in TNBC and identified CD8+ positivity as a marker of favorable response with the triple 

therapy combination in the clinical setting [178]. 

Dual ICI therapies have been designed to overcome PD-(L)1 inhibitor resistance and reverse the 

tumor immunosuppressive microenvironment [179]. Durvalumab plus tremelimumab showed 

preliminary effectiveness and a manageable safety profile (NCT02536794) only in mTNBC patients 

(ORR 43%) while there was no response in ER+ BC [180]. Responders had higher expression of CD8, 

granzyme A, and perforin-1 post-therapy as compared to non-responders [180]. In the phase I/II 

SYNERGY (NCT03616886) trial locally advanced or mTNBC patients were treated with a 

combination of oleclumab (anti-CD73 antibody), durvalumab, and chemotherapy (carboplatin and 

paclitaxel). The phase II part of this trial was randomized 1:1 with/without oleclumab. However, this 

trial did not meet its primary endpoint (insignificant clinical benefit at 24 weeks) [181]. 

Similarly, in patients with mTNBC, a phase I trial (NCT03256344) assessed the safety of 

intrahepatic injection of T-VEC in combination with intravenous atezolizumab [182]. The five TNBC 

patients in their DLT cohorts did not have any dose-limiting toxicities (DLT), however, the majority 

of TNBC patients (90%) in this trial presented with grade 3 adverse events (AEs) with limited 

evidence of antitumor activity [182]. A first-in-human trial that included multimodality treatments 

including chemoradiation, NK cells therapy, typhoid conjugate vaccine (TCV), and a PD-L1 inhibitor 

as third-line therapy for mTNBC (NCT03387085) found the combination treatment to be safe, well 

tolerated, and achieved a 56% ORR in early efficacy results [183]. These encouraging results suggest 

that multimodal treatment will be the way forward for the management of recurrent and metastatic 

TNBC and may lead to the development of additional multimodality clinical trials.  
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5. Conclusion and Future Perspectives 

The advancements in immunotherapy have brought renewed optimism for women battling 

local, recurrent, and metastatic triple-negative breast cancer (TNBC). Despite the success of 

integrating immunogenic chemotherapy with immune checkpoint inhibitors (ICI), particularly in 

late-stage and metastatic TNBC, trials evaluating adjuvant immune checkpoint inhibitors in operable 

TNBC like IMpassion030 (NCT03498716) have yielded unsatisfactory outcomes. These innovative 

treatments provide additional therapeutic options for patients who have undergone extensive prior 

therapies and developed resistance. Over the past few years a growing number of small molecule 

inhibitors including tyrosine kinase (EGFR and VEGFR), serine/threonine kinase (ATM, ATR, AKT, 

CDK1, CDK4/6, CHK1, DNA-PKcs, mTOR, PI3K, and WEE1), dual specific kinase inhibitors (TTK1, 

MEK), proteasome (PARP), and epigenetic (HDAC) have been tested in TNBC as monotherapy or in 

combination with other targeted agents or ICI [184,185]. While several of these therapeutic 

combinations are still in the experimental stage or undergoing clinical trials, they represent promising 

avenues for the treatment of TNBC (Table 3). Despite the clinical success of targeted small-molecule 

treatments for TNBC, drug resistance is still an ongoing challenge. Other possibilities include 

combination treatments, novel mutation inhibitors, and multi-targeted drugs. Novel therapeutic 

targets, such as BUB1, LIG4, Hh, and XPO1 are being investigated in preclinical or clinical studies for 

targeting TNBC [185–189]. It is anticipated that in the near future, these small-molecule inhibitors 

and immunotherapy will be able to work together to increase the anti-tumor activity of these drugs. 

Combination therapy may prove effective, but uncertainties still exist relating to method, sequence, 

dosage, and duration with a careful eye toward balancing toxicity and affordability.  

Table 3. List of non-immune therapies under clinical trials for TNBC treatment (accessed information 

from https://www.clinicaltrials.gov/ on 6/17/2024). 

Target Interventions Clinical status & Identifier Status 

EGFR 
Drug: Metformin 

Drug: Erlotinib 

Phase I  

NCT01650506 
Completed 

PI3K Drug: BKM120 
Phase II  

NCT01790932 
Completed 

PI3K 

Drug: BKM120 and 

Olaparib  

Drug: BYL719 and 

Olaparib 

Phase I  

NCT01623349 
Completed 

PI3K Drug: BYl719 
Phase II  

NCT02506556 
Completed 

AKT 

Drug: Ipatasertib  

Drug: Paclitaxel 

Drug: Placebo 

Phase II 

NCT02301988 
Completed 

AKT 

Drug: Ipatasertib 

Drug: Paclitaxel 

Drug: Placebo 

Phase II 

NCT02162719 
Completed 

AKT 

Drug: Paclitaxel 

Drug: AZD5363 

Drug: Placebo 

Phase II 

NCT02423603 
Unknown 

AKT 

Drug: Capivasertib 

Drug: Paclitaxel 

Drug: Placebo 

Phase III 

NCT03997123 
On-going 

AKT 

Drug: Capivasertib 

Other: Laboratory 

Biomarker Analysis 

Drug: Olaparib 

Other: Pharmacological 

Phase Ib 

NCT02208375 
On-going 
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Study 

Drug: Vistusertib 

AKT 
Drug: GSK1120212 

Drug: GSK2141795 

Phase I 

NCT01138085 
Completed 

mTOR 

Drug: Doxil 

Drug: Bevacizumab 

Drug: Temsirolimus 

Phase I 

NCT00761644 
Completed 

mTOR Drug: Everolimus 
Phase II 

NCT01931163 
Completed 

mTOR 

Drug: Everolimus 

Drug: Eribulin 

mesylate 

Other: Pharmacological 

study 

Other: Laboratory 

biomarker analysis 

Phase I 

NCT02120469 
Completed 

mTOR 
Drug: Everolimus 

Drug: Eribulin 

Phase I 

NCT02616848 
Completed 

CDK4/6 

Drug: Trilaciclib 

Drug: Gemcitabine 

Drug: Carboplatin 

Phase 2 

NCT02978716 
Completed 

CDK4/6 

Drug: Trilaciclib 

Drug: Gemcitabine 

Drug: Carboplatin 

Phase 2 

NCT02978716 
Completed 

ATR 

Drug: M6620 

Drug: Gemcitabine 

Drug: Cisplatin 

Drug: Etoposide 

Drug: Carboplatin 

Drug: Irinotecan 

Phase I 

NCT02157792 
Completed 

ATR 

Drug: Olaparib 

Drug: Ceralasertib  

Drug: Adavosertib  

Phase 2 

NCT03330847 
On-going 

ATR 

Procedure: Biopsy 

Drug: Capivasertib 

Drug: Ceralasertib 

Biological: Durvalumab 

Drug: Olaparib 

Other: Quality-of-Life 

Assessment 

Drug: Selumetinib 

Phase II 

NCT03801369 
On-going 

CHK1 Drug: LY2606368 
Phase II 

NCT02203513 
Completed 

WEE1 
Drug: Cisplatin 

Drug: AZD1775 

Phase II 

NCT03012477 
Completed 

MEK 
Drug: GSK1120212 

Drug: GSK2141795 

Phase I 

NCT01138085 
Completed 

MEK 

Drug: Akt Inhibitor 

GSK2141795 

Other: Laboratory 

Biomarker Analysis 

Drug: Trametinib 

Phase II 

NCT01964924 
Completed 
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MEK 
Drug: Ipatasertib 

Drug: Cobimetinib 

Phase I 

NCT01562275 
Completed 

MET, VEGFR2, RET, AXL, FTL3, etc. Drug: Cabozantinib 
Phase II 

NCT01738438 
Completed 

VEGF, PDGFR, HGF, etc. 

Drug: Paclitaxel 

Drug: Carboplatin 

Drug: Sunitinib 

Phase I/II  

NCT00887575 
Completed 

VEGF, PDGFR, HGF, etc. 
Drug: SU011248 

Drug: Chemotherapy 

Phase II  

NCT00246571 
Completed 

Aurora-A, VEGFR, FGFR Drug: ENMD-2076 
Phase II  

NCT01639248 
Completed 

EGFR, HER2 
Drug: Combination of 

Veliparib + Lapatinib 

Phase: N/A 

NCT02158507 
On-going 

PI3K, mTOR 

Drug: Prexasertib 

Drug: Cisplatin 

Drug: Cetuximab 

Drug: G-CSF 

Drug: Pemetrexed 

Drug: Fluorouracil 

Drug: LY3023414 

Drug: Leucovorin 

Phase I 

NCT02124148 
Completed 

PARP Drug: Pamiparib 
Phase I/II 

NCT03333915 
Completed 

PARP Drug: Talazoparib 
Phase II  

NCT03499353 
Completed 

PARP Drug: Olaparib 
Phase II 

NCT02681562 
Completed 

PARP 

Drug: Olaparib 

Radiation: Radiation 

therapy 

Phase I 

NCT03109080 
Completed 

PARP 

Drug: Iniparib 

Drug: Gemcitabine 

Drug: Carboplatin 

Phase II 

NCT01045304 
Completed 

PARP 

Drug: 

Cyclophosphamide 

Drug: Placebo 

Drug: Doxorubicin 

Drug: Paclitaxel 

Drug: Carboplatin 

Drug: Veliparib 

Drug: Placebo 

Phase III 

NCT02032277 
Completed 

HDAC 

Drug: Chidamide 

combined with 

Cisplatin 

Phase II 

NCT04192903 
Completed 

HDAC Drug: Entinostat 
Phase I 

NCT03361800 
Terminated 

HDAC 

Drug: Romidepsin 

Drug: Cisplatin 

Drug: Nivolumab 

Phase I/II 

NCT02393794 
On-going 

SMO 
Drug: LDE225 

Drug: Docetaxel 

Phase I 

NCT02027376 
Completed 
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XPO1 Drug: Selinexor 
Phase II 

NCT02402764 
Completed 

Integrating artificial intelligence (AI) in treatment planning may revolutionize the prediction of 

therapeutic outcomes, enabling personalized precision medicine. High-throughput sequencing and 

AI can identify novel molecular markers and gene signatures, aiding clinicians in selecting the most 

effective patient-specific therapies. This may then assist the clinical care team in optimally selecting 

a “tailored patient-specific” therapy that is most likely to work thus opening new horizons in 

precision medicine [190]. This will require scientists, organizations, and medical professionals to 

work together to develop databases, remove technological obstacles, and support the creation of AI-

assisted systems that can precisely identify the target populations/patients, predict the efficacy and 

prognosis, and strongly support the use of AI-assisted treatment. We anticipate that with the 

development of novel drug discovery/prediction datasets, large-scale genomic/genetic datasets, and 

immune signatures combined with large multicenter clinical trials will soon make significant strides 

in treating TNBC efficiently [191–195]. 
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