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Abstract: Chip pad alignment inspection is of great importance in the industrial field. However, due to the fact 

that chip pads are usually small, problems such as misdetection and missed detection often occur. When 

applying deep learning methods for chip pad detection, it is necessary to ensure accurate detection of small 

target chips while meeting the requirements of lightweight detection models for industrial needs. To solve the 

above problems, this paper proposes a lightweight model based on improved YOLOv5s. Firstly, the feature 

extraction part is improved to increase the network’s focus on the target. Secondly, the feature fusion layer is 

improved to double the resolution of the prediction head, and the context-aware network is designed to 

enhance the context-capture ability of key features of small targets. Finally, SIoU is adopted as the loss function 

to improve the speed and accuracy of the regression frame. The experimental results show that the improved 

YOLOv5s algorithm improves the detection accuracy by 2.3% and reduces the network parameters by 81.8% 

compared to the original algorithm. The improved algorithm is combined with image processing techniques 

to design correction methods for alignment anomalies and realize real-time alignment anomaly correction in 

industry. 

Keywords: deep learning; chip detection; small target detection; lightweighting  

 

1. Introduction 

Chip pad inspection is the basis of chip pad alignment inspection, which is a very critical step in 

the semiconductor manufacturing process. It ensures the accuracy and immediacy of chip alignment 

detection and alignment correction, and has a significant impact on subsequent decisions. 

In the actual alignment detection work, the traditional manual detection of alignment usually 

requires manual measurement under a microscope, which cannot meet the demand for high precision 

and high efficiency in industrial assembly lines. In 2010, Chen [1] et al. used pattern recognition and 

image processing techniques for fast positioning of graphic tracking for automatic wafer alignment. 

In 2012, Xiao [2] proposed a simplified algorithm of template matching to extract wafers from the 

edge detection processed image to extract the wafer cut channel, and the wafer cut channel center 

line is obtained by straight line fitting to complete the positioning of the wafer. In 2013, Wu H [3] et 

al. proposed feature selection and two-stage classifier for weld joint detection, which improves the 

recognition rate of weld joints by extracting the color features, average grey level, and template-

matching features. In 2017, Xu[4] et al. proposed a Fourier transform based direction alignment and 

least squares regression for positional pre-alignment, which improves the pre-alignment accuracy. In 

2022, Wang [5] et al. proposed an adaptive Kalman filter with a dual-rate structure for uncalibrated 

visual localisation of wafer chips in LED packages by designing an adaptive Kalman filter for 

estimating the varying calibration parameters, and an introduced dual-rate structure for 

compensating the visual latency and achieving multi-rate sensor The dual-rate structure is 
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introduced to compensate the visual delay and achieve the time synchronisation of multi-rate 

sensors. 

With the development of computer vision in recent years, various deep learning based methods 

have been proposed to be applied in inspection. In 2019, Yu [6] et al. proposed a convolutional neural 

network based method for pattern recognition and analysis of constable defects, which inspects wafer 

defects by building an 8-layer CNN model. In 2020, Chien [7] et al. proposed a deep learning 

convolutional neural network based method that provides a reliable machine vision method instead 

of manual inspection by using Faster-RCNN model for training. In 2021, Bian [8] et al. propose a 

method based on improved YOLOv5s, which improves the detection accuracy by building an 

infrared image database for model training, and introduces an ECA module to enhance the feature 

extraction capability of the network. In 2022, Xu [9] et al. constructed an attention mechanism with 

long dependencies to enhance the correlation between features and proposed a design guideline for 

a single attention layer, which reduces the requirements for hardware devices in real scenarios. The 

target detection algorithm can quickly detect the chip pads and thus indirectly determine the 

alignment of the chip. Target detection uses techniques such as image processing and convolutional 

neural networks to classify and locate targets in images or videos. 

Although some research progress has been made by previous researchers in the detection of chip 

pads, most of the research backgrounds are relatively homogeneous and differ greatly from the 

environment in actual industrial production. In reality, chip pads tend to be more numerous, densely 

arranged, and smaller in size. Although traditional CNN models can obtain a relatively good 

accuracy by stacking layers, their large number of parameters and complex structure lead to the 

inability of inference and deployment in edge devices with limited computational resources. 

Therefore, the requirements for chip pad detection networks are to achieve lightweight network 

models while ensuring detection performance. In 2015, He [10] et al. proposed the residual connection 

method, which effectively solves the problem of gradient disappearance or gradient explosion due 

to the deepening of the network layers. In 2017, Huang [11] et al. proposed the dense connection 

method, which solves the problem of parameter redundancy of the deeper network, and further 

reduces the model size and network size. further reducing the model size and network parameters. 

Subsequently, Howard [12–14] et al. proposed deep separable convolution, which divides the 

convolution process into two parts: channel-by-channel convolution and point-by-point convolution, 

and reduces the computation amount of convolution to 1/3 of the ordinary convolution; Zhang [15,16] 

et al. carry out channel disruption during channel-by-channel convolution, which makes the 

information that was originally not interoperable between the groups flow and interact, and enhances 

model expression. 

There are two main categories of target detection algorithms, one is region-based second-order 

detection algorithms, such as Faster R-CNN [17] and R-CNN [18], etc., which first generate multiple 

candidate regions from an image, and then extract features and perform classification and regression 

for each region, so as to improve the detection accuracy. However, the disadvantages of this type of 

algorithms are many network parameters, complex models, slow detection speed, which are not 

suitable for real-time detection scenarios. The other category is the single-order detection algorithms 

represented by SSD [19] and YOLO [20–23], which predict and classify candidate frames directly on 

the picture, with the advantages of fast speed and simple model, which are more suitable for real-

time detection needs. Currently widely used is the fifth generation algorithm of YOLO series, 

YOLOv5 [24], of which YOLOv5s version is the YOLOv5 in which a good balance between detection 

accuracy and model size is achieved. Therefore, in this paper, YOLOv5s is used as the baseline 

network for chip pad alignment detection. When we apply the YOLOv5s network directly on the chip 

pad dataset, the detection of small targets is not satisfactory. Zhu [25] et al. introduced Transformer 

[26] into the YOLO network for the first time, and the self-attention mechanism captures the 

contextual information and improves the detection accuracy of small targets by means of global 

composition. Literature [27–31] combines Swin-Transformer [32] into YOLO networks to reduce 

network parameters in global composition by using a moving sliding window. However, both 
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Transformer and Swin-Transformer, the huge consumption of parameter computation and the highly 

complex model structure make the network impossible to be deployed into embedded devices. 

In existing work on target detection, the introduction of more efficient convolutional and 

attentional modules effectively improves the detection performance of the network, but most of the 

work does not take into account the relationship between the image resolution and the feature 

receptive field in a small target detection environment. Stacking convolutional kernels to obtain a 

larger receptive field can capture richer semantic information about the target, but too deep a network 

will increase the network parameters and computation, and increasing the receptive field also leads 

to a decrease in resolution and a reduction in the ability to perceive the details of the image, thus 

affecting the detection of small targets. And the surrounding of small targets can often provide useful 

contextual information to help detect small targets. 

To address the chip pad detection problem, this paper proposes a lightweight real-time detection 

network based on YOLOv5s, which not only ensures the detection accuracy of small target chip pads, 

but also effectively reduces the network parameters to meet the requirements of automated 

production. The main contributions of our work are as follows: 

1. Using lightweight convolutional module (GhostNet) and attention module (CBAM), we 

improve the feature extraction module of the backbone network, which effectively reduces the 

parameter redundancy and computational complexity in feature extraction, enhances the network’s 

attention to the target, and improves the detection effect of the network. 

2. Propose a lightweight improvement method for small target detection on chip pads. Starting 

from the contradictory relationship between resolution and sensory field, the resolution of the 

customised prediction head is doubled by fusing shallower backbone network feature layers and 

cropping the last extraction layer. The sensing field is improved by introducing the cavity 

convolution in the spatial pyramid to enhance the contextual information perception of the key 

features of the small targets, so as to improve the detection performance of small targets with chip 

pads. 

3. A correction method for real-time detection is designed, and the improved network is 

deployed in embedded devices to achieve real-time alignment detection and anomaly correction on 

industrial assembly lines by combining deep learning target detection algorithms with image 

processing techniques. 

2. Materials and Methods 

2.1. Datasets 

The chip pad datasets originated from a semiconductor company in Guangxi. According to the 

actual inspection of the chip pads, an industrial camera with a pixel resolution of 6112*3440 was used 

to collect images under different lighting conditions with 200 times magnification, so as to construct 

the image data set of chip pads. The acquired data are cropped and enhanced, and the 1464 images 

are annotated using LabelImg annotation software after filtering and sorting, and finally consist of 

6772 pads that require probe alignment (rig), 1610 pads that do not require probe alignment (wro), 

and 4237 solder joints (Probe). The chip pad dataset is divided into training set and validation set in 

the ratio of 9:1. Figure 1 shows an example of some images of the chip pad datasets. 

  
(a) (b) 
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Figure 1. Chip pad datasets. 

2.2. Improved YOLOv5 algorithm 

In the chip pad dataset, which contains a large number of small targets to be detected, the size 

of the feature map decreases as the network becomes deeper as feature extraction is continuously 

performed in the network, and this change can have a significant impact on the detection of small 

objects. In order to achieve a lightweight algorithm and reduce redundant computations and 

parameters. To address the problem of low accuracy of small object detection, the network proposed 

in this paper makes the following improvements based on the YOLOv5 algorithm to enhance the 

detection of chip pads and reduce the network parameters and model size to better suit the 

automated detection of chip pads in industry. 

In the backbone layer, we use GhostNet [33] to replace the original convolutional module in C3, 

and embed the lightweight and efficient CBAM [34] attention mechanism. GhostNet can reduce the 

redundancy generated by feature extraction, which makes the network lighter, and the CBAM 

attention can make the network more focused on the small targets of chip pads from both the channel 

and the spatial dimensions to obtain higher detection accuracy, which is more suitable for industrial 

automation. It is more suitable for industrial automated production. 

In the feature fusion and prediction section, the last layer of the C3 module is trimmed, and a 

customised prediction head is used to double the resolution, reducing the computational effort of the 

network and effectively detecting smaller targets. Meanwhile, hollow convolution [35] is introduced 

in the spatial pyramid to improve the feature sensing field and capture the rich contextual 

information around salient features. The SIoU [36] loss function is used instead of CIoU [37], and the 

SIoU considers the angle, distance, and shape of the bounding box, which is more consistent with the 

actual detection work. The improved YOLOv5 network is shown in Figure 2. 

 

Figure 2. Improved YOLOv5 network structure diagram. 

2.3. Feature Extraction Module Improvement 

2.3.1. GhosetNet 

In target detection, usually only a small part of the region contains the target to be detected, and 

there is a lot of redundant information in the whole image. In order to extract a more comprehensive 

feature map, it is usually necessary to use more convolutional kernels for the feature extraction work, 

but this can lead to redundancy of the convolutional kernels, especially when a large number of 

convolutional kernels are used as well as a too deep number of channels. Therefore, in this paper, 

GhostNet is used to replace the original convolutional layer in the backbone network. As shown in 
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Figure 3, firstly, some feature maps are generated using ordinary convolution, and then the generated 

feature maps are processed by applying deep separable convolution to get more feature maps, and 

finally the original feature maps are spliced with Ghost feature maps. In this way, the feature 

expression can be enhanced with less computation.  

 

Figure 3. GhostNet. 

2.3.2. CBAM Attention Mechanism 

Just as when humans see an image, the brain usually pays attention to the whole image in its 

entirety, and when there is too much information in the image, the brain tends to selectively focus its 

attention on certain parts of the image. It is from the study of human vision that the attention 

mechanism originated and has been widely used in the field of computer vision to process 

information in images. It is based on assigning weights to different parts of the feature map to select 

useful information and ignore most irrelevant information. Attention mechanisms can be classified 

into channel attention, spatial attention, and hybrid attention, in which the channel attention 

represented by SE (Squeeze-and-Excitation Networks) [38] and ECA (Efficient Channel Attention) 

[39] attention focuses only on the channel information of the image, thus ignores the detail 

information in the spatial dimension; and a single spatial attention cannot meet the demand for 

channel feature extraction. 

In the chip pad detection task, there are feature information of pads and probes in terms of color 

and position. The CBAM attention module cited in this paper is a hybrid lightweight attention 

module that combines channel and spatial attention, which makes the detection network more 

focused on small targets, thus obtaining higher detection accuracy. The overall flow structure of the 

CBAM attention module is shown in Figure 4, and the module consists of two independent modules, 

namely, channel attention (CAM) and spatial attention (SAM). Firstly, the channel feature map is 

generated by channel attention, which is multiplied with the residual input features for weighted 

refinement to strengthen the useful channel information; similarly the output results enter the spatial 

attention to get the final results. Adding CBAM attention after feature extraction can effectively 

aggregate the network’s attention to the target and improve the detection of small targets. 

 
Figure 4. CBAM attention mechanism 

2.4. Lightweight Improvement Methods 

2.4.1. Lightweight High-Resolution Prediction Network 

In the chip pad dataset, the target mainly occupies 2% to 8% of the image proportion, and the 

original YOLOv5’s 80x80 resolution prediction head is difficult to complete the work of accurate 
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detection of this smaller target. Small target detection has always been a difficult problem in the field 

of target detection, in the current mainstream detection algorithms, small targets are often detected 

in high-resolution feature maps, while low-resolution feature maps may reduce the network’s ability 

to perceive image details. 

In order to achieve the lightweight of the network while avoiding the influence of low-resolution 

feature maps, as shown in Figure 5, this paper proposes a lightweight high-resolution prediction 

network for chip pad detection, which firstly crops the default P5 of the YOLOv5 backbone network 

in Figure. 5(a), and then doubles the resolution of the prediction header by fusing the information of 

the shallower feature layer to obtain a larger resolution of 160x160 size feature maps, the network is 

shown in Figure 5(b). This strategy achieves the detection of higher resolution images while 

mitigating the model parameters, allowing smaller sized targets to be effectively detected. 

 
(a) Origin YOLOv5 

 
(b) Lightweight high-resolution prediction networks 

Figure 5. Lightweight and high-resolution improvements. 

2.4.2. Context-Aware Networks 

However, the resolution of an image and the feature receptive field are contradictory existences. 

Although a larger receptive field can be obtained by stacking convolutional kernels to capture richer 

semantic information, this also leads to a reduction in resolution, which in turn affects the detection 

of small targets. The P5 of the cropping backbone network ensures that the image resolution is no 

longer degraded by the downsampling operation, but at the same time it results in insufficient 

extraction of semantic information. 

In the chip pad detection task, pads and probes have obvious color and edge features relative to 

the background. In order to make full use of these features, this paper constructs a context-aware 

network CSPP (Context Spatial Pyramid Pooling) by introducing void convolution after the 

maximum pooling layer of SPPF. The maximum pooling layer is responsible for extracting the most 

significant features in the chip pads, while the cavity convolution uses the retained feature 

information to expand the sensory field by introducing the expansion rate in the convolution to 

obtain more contextual information from the local area. The context-aware network is shown in 

Figure. 6. CSPP expands the receptive field while keeping the resolution constant, which effectively 

retains more feature information, reduces information loss, and improves the expressive ability of 

the network. 
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Figure 6. CSPP. 

2.5. SIoU Loss Function 

The loss function for target detection consists of two parts, Classification Loss and Bounding Box 

Regression Loss.YOLOv5 uses the binary cross-entropy loss function to calculate the probability of 

the category and the loss of the confidence score of the target, and in the regression loss calculation, 

the CIoU serves as the current stage of the commonly used form of YOLOv5 regression loss, which 

is calculated as shown in Equations (1) and (2). 

𝐶𝐼𝑜𝑈 =
𝜌2(𝑏, 𝑏𝑔𝑡)

𝑐2
+ 𝛼𝑣 (1) 

𝐿𝑜𝑠𝑠𝐶𝐼𝑜𝑈 = 1 − 𝐼𝑜𝑈 + 𝐶𝐼𝑜𝑈 =
𝜌2(𝑏, 𝑏𝑔𝑡)

𝑐2
+ 𝛼𝑣 (2) 

In Equations. (2) IoU represents the intersection and concurrency ratio of the real and predicted 

frames, b,b^gt represents the centroids of the predicted and real frames, respectively, ρ^2 (b,b^gt ) 

computes the Euclidean distance of the two centroids, and c represents the diagonal distance of the 

smallest closed region that can contain both the predicted and the real frames. α is a weight 

parameter, and v is used to measure the similarity of the width to height ratios, and the computation 

of α and v is shown in Equations (3) and (4) are shown. 

𝛼 =
𝑣

(1 − 𝐼𝑜𝑈) + 𝑣
(3) 

𝑣 =
4

𝜋2
(𝑎𝑟𝑐𝑡𝑎𝑛

𝑤𝑔𝑡

ℎ𝑔𝑡
− 𝑎𝑟𝑐𝑡𝑎𝑛

𝑤

ℎ
)2 (4) 

In Equations. (4), (w,h) and (w^gt,h^gt ) are the width and height of the predicted and real 

frames, respectively. CIoU takes into account the overlap area, the distance from the centroid, and 

the aspect ratio, but the difference in the aspect ratio that it responds to is not the difference between 

the real width and height and the confidence level, and this shortcoming leads to a slower 

convergence during training. The SIoU chosen in this paper takes the angle of the vector to be 

regressed into consideration, and consists of four loss functions: angle loss, distance loss, shape loss, 

and IoU loss, and the SIoU is defined as shown in Equation (5). 

𝐿𝑜𝑠𝑠𝑆𝐼𝑜𝑈 = 1 − 𝐼𝑜𝑈 +
∆ + 𝛺

2
(5) 

In Equations. (5), ∆ and Ω denote the distance and shape loss, respectively, which are defined as 

shown in Equations. (6) and (7). 

∆= ∑ (1 − 𝑒−𝛾𝑝𝑡)

𝑡=𝑥,𝑦

(6) 
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Ω = ∑ (1 − 𝑒−𝜔𝑡)𝜃

𝑡=𝑤,ℎ

(7) 

In Equations. (6), 𝜌𝑥 = (
𝑏𝑐𝑥
𝑔𝑡
−𝑏𝑐𝑥

𝑐𝑤
)

2

, 𝜌𝑦 = (
𝑏𝑐𝑦
𝑔𝑡
−𝑏𝑐𝑦

𝑐ℎ
)

2

, and 𝛾 = 2 − Λ. Λ is the angular loss, which 

is defined in Equation. (8). 

Λ = 1 − 2 ∗ sin2 (sin−1
𝑐ℎ
σ
−
𝜋

4
) (8) 

In Equation (8), 

𝜎 = √(𝑏𝑐𝑥
𝑔𝑡
− 𝑏𝑐𝑥)

2
+ (𝑏𝑐𝑦

𝑔𝑡
− 𝑏𝑐𝑦)

2
(9) 

𝑐ℎ = max (𝑏𝑐𝑦
𝑔𝑡
, 𝑏𝑐𝑦) − 𝑚𝑖𝑛 (𝑏𝑐𝑦

𝑔𝑡
, 𝑏𝑐𝑦) (10) 

In Equation. (7), 𝑤𝑤 =
|𝑤−𝑤𝑔𝑡|

𝑚𝑎𝑥(𝑤,𝑤𝑔𝑡)
 and 𝑤ℎ =

|ℎ−ℎ𝑔𝑡|

𝑚𝑎𝑥(ℎ,ℎ𝑔𝑡)
. In Equation. (9), 𝜎  is the distance 

between the centroid of the true frame and the prediction frame, and 𝑐ℎ in Equation. (10) is the height 

difference between the centroid of the true frame and the prediction frame, where 

𝑏𝑐𝑥
𝑔𝑡
、𝑏𝑐𝑦

𝑔𝑡
、𝑏𝑐𝑥、𝑏𝑐𝑦  denote the 𝑥, 𝑦 coordinates of the centroid of the true frame and the prediction 

frame, respectively. SIoU redefines the regression angle of the prediction frame by calculating the 

distance loss and accelerates network convergence. 

3. Experiments and Results 

This experiment was conducted on a graphics processor workstation equipped with an Intel 

Core i7-12700K processor and NVIDIA GeForce RTX 3090 with 24G of video memory. We used a 64-

bit Ubuntu operating system with version number 18.04.6LTS and Linux kernel version 5.4.0-126-

generic.The experiments were conducted using the PyTorch deep learning framework configured 

with CUDA with version number 11.1, and Python version 3.6.10.The experiments were conducted 

using SGD (Stochastic Gradient Descent) as the optimisation algorithm, with weight decay set to 

0.0005, learning rate initial value of 0.01, image fixed input size of 640x640, batch size of 32 and 

training batch epoch of 300. 

3.1. Feature extraction module comparison experiment 

In order to verify the effectiveness of the improved feature extraction module to improve the 

detection effect, this paper introduces GhostNet to replace the C3 module of the backbone network 

on the basis of the YOLOv5s model, GhostNet can effectively reduce the redundancy of feature maps 

in the process of feature extraction, and the improved model is named YOLOv5s-g. Comparison 

experiments are conducted on the chip pad dataset. set to experiment on the two algorithms, and the 

experimental results are shown in Table 1. 

Table 1. Comparison experiment of feature extraction module. 

Method Model Parameters FLOPs mAP@0.5 

YOLOv5s 13.75M 7.0M 16.0G 0.867 

YOLOv5s-g 11.57M 5.8M 12.6 0.872 

As can be seen in Table 1, the detection accuracy of the network for chip pads is improved by 

0.5%, and the network parameters are reduced by 1.2M, which verifies that the introduction of 

GhostNet in the feature extraction part can effectively reduce the computational cost of the network 

and improve the expressive ability of the model. In order to further improve the feature extraction 

ability of the model, on the basis of YOLOv5s-g, the attention design scheme in the literature is used 

to introduce the CBAM attention mechanism, and a side-by-side comparison is made with the 

mainstream attention methods, and the comparison experiments are shown in Table 2. 
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Table 2. Attention cross-sectional comparison experiment. 

Method rig wro Probe mAP@0.5 

YOLOv5s-g 

+SE 

+ECA 

+CBAM 

0.913 

0.917 

0.918 

0.914 

0.853 

0.849 

0.855 

0.873 

0.851 

0.858 

0.856 

0.851 

0.872 

0.875 

0.876 

0.879 

From the experimental results, it can be seen that the embedded attention mechanism can have 

a positive gain for chip pad alignment detection, in which the embedded CBAM attention has the 

largest improvement of 87.9% on the detection performance, in which the accuracy is 91.4% for the 

need to align the solder joints rig, 87.3% for the need not to align the solder joints wro, and 85.1% for 

the detection accuracy of the probes Probe. The side-by-side comparison experiments verify the 

effectiveness of embedded CBAM attention for improving the detection accuracy. 

3.2. Comparison Experiment of Lightweight Improvement Methods 

In order to verify the effectiveness of the proposed lightweight improvement method on the 

detection effect as well as the lightweight, based on Section 3.1, the deep feature extraction layer is 

firstly cropped, the shallower features are fused, and the resolution of the prediction head is doubled, 

and the final outputs are detected on the high-resolution feature maps. The improved model is named 

YOLOv5s-HR(high resolution). Comparative experiments are taken to test the two algorithms on the 

chip pad dataset, and the experimental results are shown in Table 3. 

Table 3. Lightweight high-resolution prediction network. 

Method rig wro Probe mAP@0.5 Model Parameters FLOPs 

YOLOv5s-CBAM 0.914 0.873 0.851 0.879 7.2M 3.3M 12.6G 

YOLOv5s-HR 0.918 0.892 0.844 0.884 3.25M 1.27M 10.2G 

As can be seen from Table 3, the size of the lightweight high-resolution prediction network 

model obtained by trimming the deep feature extraction layer and fusing the shallower features is 

reduced by 3.95M, the amount of parameters is reduced by 2.03M, and the detection accuracy is 

improved by 0.5%, of which the detection accuracy is 91.8% for the pad rig that needs to be aligned, 

and the detection accuracy for the pad wro that does not need to be aligned is 89.2%, which is higher 

than the improvement of the former algorithm. The detection accuracy for probe Probe is 84.4%, 

which is slightly lower than that of the previous algorithm. This is because the improved high-

resolution prediction network method reduces the ability to capture rich semantic information, and 

by adopting the context-aware network approach, richer semantic information can be captured to 

improve the detection performance of probes as well as targets to be inspected, and the experimental 

results are shown in Table 4. 

Table 4. CSPP comparison experiments. 

Method rig wro Probe mAP@0.5 

YOLOv5s-HR 0.918 0.892 0.844 0.884 

+CSPP 0.919 0.893 0.852 0.888 

As can be seen in Table 4, the CSPP module can effectively improve the detection performance 

of the network, verifying the effectiveness of the lightweight improvement method in the chip pad 

detection task. 
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3.3. Ablation Experiment 

Based on the chip pad detection task, the model size, parameters, the number of floating-point 

operations and the average accuracy, etc., as an indicator to assess the model performance, the 

ablation experiment on each module has verified the effectiveness of the algorithm proposed in this 

paper, the experimental results are shown in Table 5. 

Table 5. Ablation experiment. 

Ghost+CBAM HR CSPP SIoU Model Parameters FLOPs mAP@0.5 

    13.75M 7.0M 16.0G 0.867 

√    7.2M 3.3M 12.6G 0.879 

√ √   3.25M 1.27M 10.2G 0.884 

√ √ √  3.46M 1.3M 10.6G 0.888 

√ √ √ √ 3.46M 1.3M 10.6G 0.89 

According to the experimental results in Table 5, it can be found that after the improvement of 

the feature extraction part, compared with the original network, the detection accuracy is improved 

by 1.2%, and the network parameters, model weights, and model complexity are reduced by 3.7M, 

6.55M, and 3.4G, respectively, which proves that the Ghost and the CBAM can effectively mitigate 

the redundant features and focus the attention. Next, we propose a lightweight improvement method 

for chip pad detection, which improves the detection accuracy by 0.5% through a lightweight high-

resolution prediction network, and reduces the network parameters, model weights, and model 

complexity by 2.03M, 3.95M, and 2.4G, respectively, which demonstrates that the proposed 

lightweight improvement method is effective in improving the performance of the detection of chip 

pads, and at the same time makes the network more lightweight. Introducing the CSPP composed of 

cavity convolution in SPPF, the detection accuracy reaches 88.8% despite the slight increase in 

network weights, model parameters and model complexity, proving that the proposed CSPP is 

capable of extracting the semantic information of key features; finally, the SIoU Loss is used as the 

regression loss function to form the final model, and compared with the initial model, the detection 

accuracy of the proposed algorithm increases by 2.3%, the network weights increase by 2.3%, and the 

network weights increase by 2.3%, and the network weights increase by 2.3%. improves by 2.3%, the 

network weights are reduced by 74.8%, the model parameters are reduced by 81.4%, and the model 

complexity is reduced by 5.4 G. This indicates that the algorithm proposed in this paper achieves a 

good balance between the detection accuracy and the model size, and the improved network reduces 

the cost of the hardware and is easy to be deployed on the edge devices, which ensures the practical 

use in the industry. In summary, the improved algorithm proposed in this paper has very high 

practical value. 

3.4. Mainstream algorithm comparison experiment 

In order to evaluate the performance of the improved algorithm proposed in this study, the 

network was compared with the classical mainstream algorithms, mainly SSD, Efficientdet-d0 [40], 

YoloX-s [41] and Yolo-lite-g [42], as shown in Table 6. 

Table 6. Mainstream algorithm comparison experiment. 

Method rig wro Probe mAP@0.5 Parameters Model 

SSD-mobile 0.6 0.35 0.49 0.482 25.06M 15.32M 

Efficientdet-d0 0.76 0.48 0.688 0.641 3.7M 15.08M 

YOLOX-s 0.854 0.847 0.752 0.818 9.1M 34.36M 

YOLOv5-lite-g 0.908 0.855 0.826 0.863 5.5M 10.76M 

YOLOv5s 0.906 0.853 0.84 0.867 7.0M 13.7M 

YOLOR 0.903 0.851 0.793 0.849 9.0M 17.46M 

YOLOv3-tiny 0.879 0.791 0.807 0.826 8.7M 16.63M 
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YOLOv7-tiny 0.911 0.87 0.855 0.879 6.0M 11.72M 

Ours 0.922 0.887 0.863 0.89 1.3M 3.46M 

As can be seen from the indicators in the table, the improved model in this paper improves the 

average accuracy by 2.3% compared to the original Yolov5s and outperforms the new popular 

algorithms of YOLO series, YOLOX-s and YOLOR, with a performance improvement of 7.2% and 

0.41%, respectively; compared to the same lightweight algorithms, Efficientdet-d0, YOLOv5-lite-g, 

YOLOv3-tiny and YOLOv7-tiny[44], the proposed algorithm in this paper improves detection 

accuracy by 34.9%, 2.7%, 6.4% and 1.1%, respectively, and the model parameters and network 

weights are reduced. In summary, the improved method in this paper has higher accuracy in the 

alignment detection of chip pads while achieving a lighter model, which proves its superiority and 

is more suitable for the deployment of reasoning in the real industry. 

The actual detection of chip pads is shown in Figure. 7, where (a) shows the detection effect of 

the improved algorithm and (b) shows the detection effect of the YOLOv5 algorithm. It can be seen 

that compared with the original YOLOv5 network, the improved algorithm in this paper has a higher 

detection rate on the same solder pad detection, and at the same time, the algorithm proposed in this 

paper can detect more targets. This implies that in practice, our method detects better and is more 

robust. 

  

  
(a) (b) 

Figure 7. Chip pad detection effect. (a) ours. (b) YOLOv5s. 

3.5. Model Deployment and Calibration Detection Methods 

3.5.1. Real-Time Detection Processing 

Digital images in the process of acquisition, transmission and processing, often subject to the 

shooting equipment and the external environment, the inevitable impact on the image, the 

identification of the target in the image will have a greater impact. 

In this section, we combine the chip pad detection video screen, select any frame and greyscale 

it to get the image shown in Figure 8, and use the fast Fourier transform to get the frequency domain 

spectrum of the image, after centering as shown in Figure 9 (a). After centring, the low frequency 
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signals are distributed in the middle part of the frequency domain spectrum and the high frequency 

signals are distributed around. 

 

Figure 8. Grayscaled image. 

  

(a) (b) 

Figure 9. Image frequency domain spectrum. 

As can be seen in Figure. 9 (a), the low-frequency portion of the frequency domain spectrum of 

the original image is obvious and the high-frequency portion is not prominent enough. The low-

frequency part of the image corresponds to the overall brightness and color respectively, smooth 

changes in large areas, etc., while the high-frequency part corresponds to the edges and details of the 

object as well as the noise in the image. When the chip pad is detected, the overall image becomes 

smoothed due to the distortion of the image caused by the data line transmission, which also causes 

the loss of the target edges and details of the chip pad and the probe, which is required. In order to 

enhance the high frequency component of the image screen, the enhancement of the high frequency 

component is achieved by using high pass filtering in the spatial domain. 

High-pass filtering enhances the edge information of the target in the image and improves the 

clarity of the image, so it is also often referred to as image sharpening. In this paper, a 3×3 sharpening 

convolution kernel is used to enhance the video at high frequencies, in order to try to avoid the 

interference of noise brought by sharpening on detection, the sharpening convolution kernel is 

designed in the form as shown in Equation. (11), and the frequency spectrum of the image after high-

pass filtering is shown in Figure. 9 (b). It can be seen that the high-frequency enhancement of the 

image after high-pass filtering, the low-frequency a little weakened, in line with requirements. 

𝐻 = [
−0.25 −0.5 −0.25
−0.5 4 −0.5
−0.25 −0.5 −0.25

] (11) 
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(a) Original image 

 

(b) Image after high pass filtering 

Figure 10. Comparison effect of filtering effect. 

After comparative analysis, in the chip pad alignment detection, high-pass filtering, although it 

will introduce a small amount of noise, but due to the data transmission after the picture will be with 

a small amount of distortion and cause image smoothing, high-pass filtering method is clearer than 

the original picture, the target characteristics of the information is more obvious. The experimental 

comparison results of high-pass filtering are shown in Figure 10. 

3.5.2. Real-Time Anomaly Correction Method 

Previous work has successfully deployed the improved lightweight network to edge devices for 

chip pad alignment detection. However, in practice, the alignment detection of chip pads and probes 

often has anomalies, and the detection can only get the coordinate information and category of the 

target to be inspected, while the offset of the detected pads and probes is unknown, so the real-time 

anomaly calibration task is difficult to complete. In order to solve this problem and improve the 

efficiency and accuracy of chip pad alignment testing, this paper proposes a matching scheme aimed 

at real-time anomaly calibration. 

The matching scheme for real-time detection and calibration is divided into sequential marking 

and determining the matching relationship. It is as follows: firstly, the video stream is acquired by an 

industrial camera, and the real-time detection of each frame is performed using the improved 

network in this paper to obtain the detection results of each frame. The targets to be inspected in the 

inspection frame are labelled according to the horizontal coordinates, and the targets with horizontal 

coordinates from small to large are obtained. Subsequently, we need to ensure the correspondence 

between pads and probes. 

In the actual alignment detection process, the pads and probes may have certain angle and 

distance deviations, so we adopt a more flexible method to determine their matching relationship. 
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Specifically, the reference target is determined by determining the offset direction of the probe. When 

the probes as a whole are offset to the right, we select the pad as the category benchmark and match 

the nearest probe within a certain offset range. And when the probes are shifted to the left as a whole, 

we select the probes as the category datum and match the nearest pads within a certain offset range. 

For the matched pads and probes in each frame, the average pixel distance and average angle 

are calculated and the data is published in real time. This enables the robotic arm module to subscribe 

and resolve the abnormal distance and angle of the alignment situation for real-time calibration. This 

approach not only improves the flexibility of alignment detection, but also provides the basis for real-

time calibration of the robotic arm. 

  
(a) (b) 

  
(c) (d) 

Figure 11. Real-time anomaly calibration matching comparison results. 

In Figure. 11, (a) shows the results without pad-probe matching, and it can be seen that it is not 

possible to determine the offset when the one-to-one correspondence is not determined. (b) is the 

result of determining the matching relationship based only on the coordinates, and it can be seen that 

there is a large detection error. (c) and (d) are the results after carrying out the matching scheme, and 

it can be seen that after designing the anomaly calibration matching scheme can effectively improve 

the accuracy of calibration。 

3.5.3. Actual Detection Effect 

Subsequently, the designed calibration detection method was deployed into the edge device to 

perform chip pad alignment detection for the ongoing chip test work The actual detection is shown 

in Figure 12. 
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Figure 12. Actual detection effect. 

In Figure 12, the display on the right shows the output screen obtained by the industrial camera, 

and the display on the left shows the alignment detection results of the real-time screen after passing 

the calibration detection method, with an average offset distance of 32.88px and an average offset 

angle of 50.05 degrees. The proposed chip pad calibration detection method performs well and meets 

the demand for real-time and high accuracy of chip pad alignment detection. Therefore, the method 

can be applied to the environment of actual industrial inspection and provide a data base for 

subsequent automatic calibration. 

4. Discussion 

In this section, we will further discuss the capability of the proposed algorithm on other datasets 

to evaluate whether the proposed algorithm is generalizable for small target detection, and then 

determine whether the improvements therein have a wide range of application scenarios. In this 

section, the VisDrone [45], WIDER FACE [46] public datasets are selected for testing. the VisDrone 

and WIDER FACE datasets contain a large number of small targets, which are suitable for the 

validation of the proposed algorithm in this paper. The comparison results are shown in Table 7 and 

Table 8. 

Table 7. Performance comparison of VisDrone dataset. 

Method mAP FLOPs Parameters 

YOLOv5s 0.35 16.0G 7.0M 

Ours 0.387 10.6G 1.3M 

Improve +3.7% -5.4G -81.4% 

Table 8. Performance comparison of WIDER FACE dataset. 

Method mAP FLOPs Parameters 

YOLOv5s 0.736 16.0G 7.0M 

Ours 0.75 10.6G 1.3M 

Improve +1.4% -5.4G -81.4% 

Through the experimental validation on VisDrone dataset and WIDER FACE dataset, it can be 

seen that the improved algorithm proposed in this paper still improves in detection accuracy and 

comprehensive performance. This indicates that the improved method has obvious improvement 
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effect in the direction of small target detection and has certain universality. The experimental results 

are shown in Figures 13 and 14. 

 

Figure 13. Comparison of detection accuracy on the VisDrone dataset. 

 

Figure 14. Comparison of detection accuracy on the WIDER FACE dataset. 

The above experiments verify the effectiveness and universality of the method proposed in this 

paper. In addition, the lightweight design of the model can still be handled by model compression 

for lightweighting, such as knowledge distillation, in addition to the network structure design. 

Therefore, our future work will explore in the knowledge distillation technique. 

5. Conclusions 

This paper is dedicated to solving the problem of chip pad alignment detection in industry and 

proposes a lightweight detection algorithm based on the improved YOLOv5s. In order to solve the 

problem of poor alignment detection in the case of dense distribution and small percentage of chips 

in industrial production, we have optimized the YOLOv5s network in many aspects. First, the feature 

extraction part is improved by introducing the lightweight and efficient Ghost convolution with 

CBAM attention mechanism, which effectively reduces the redundancy of feature extraction in the 

convolution process and improves the network’s ability to pay attention to the target. Starting from 

the contradictory relationship between resolution and sensory field, we double the resolution of the 

prediction header and introduce a context-aware network to improve the detailed grasp of key 

information and achieve a balance between resolution and sensory field. Finally, we choose SIoU 

Loss as the loss function to accelerate the model convergence and improve the accuracy. In order to 

verify the effectiveness of the improved model, we conduct a large number of ablation experiments 

and comparison experiments. The experimental results show that the average accuracy is improved 

by 2.3% on the chip pad dataset. The detection accuracy is also improved on the public datasets 
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VisDrone and WIDER Face. The improved network has fewer parameters and is more suitable for 

industrial applications. 

6. Patents 

一种基于 YOLOv5 的轻量级芯片焊盘对准检测方法 202310891662.1 
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