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Abstract: Chip pad alignment inspection is of great importance in the industrial field. However, due to the fact
that chip pads are usually small, problems such as misdetection and missed detection often occur. When
applying deep learning methods for chip pad detection, it is necessary to ensure accurate detection of small
target chips while meeting the requirements of lightweight detection models for industrial needs. To solve the
above problems, this paper proposes a lightweight model based on improved YOLOv5s. Firstly, the feature
extraction part is improved to increase the network’s focus on the target. Secondly, the feature fusion layer is
improved to double the resolution of the prediction head, and the context-aware network is designed to
enhance the context-capture ability of key features of small targets. Finally, SIoU is adopted as the loss function
to improve the speed and accuracy of the regression frame. The experimental results show that the improved
YOLOVv5s algorithm improves the detection accuracy by 2.3% and reduces the network parameters by 81.8%
compared to the original algorithm. The improved algorithm is combined with image processing techniques
to design correction methods for alignment anomalies and realize real-time alignment anomaly correction in
industry.

Keywords: deep learning; chip detection; small target detection; lightweighting

1. Introduction

Chip pad inspection is the basis of chip pad alignment inspection, which is a very critical step in
the semiconductor manufacturing process. It ensures the accuracy and immediacy of chip alignment
detection and alignment correction, and has a significant impact on subsequent decisions.

In the actual alignment detection work, the traditional manual detection of alignment usually
requires manual measurement under a microscope, which cannot meet the demand for high precision
and high efficiency in industrial assembly lines. In 2010, Chen [1] et al. used pattern recognition and
image processing techniques for fast positioning of graphic tracking for automatic wafer alignment.
In 2012, Xiao [2] proposed a simplified algorithm of template matching to extract wafers from the
edge detection processed image to extract the wafer cut channel, and the wafer cut channel center
line is obtained by straight line fitting to complete the positioning of the wafer. In 2013, Wu H [3] et
al. proposed feature selection and two-stage classifier for weld joint detection, which improves the
recognition rate of weld joints by extracting the color features, average grey level, and template-
matching features. In 2017, Xu[4] et al. proposed a Fourier transform based direction alignment and
least squares regression for positional pre-alignment, which improves the pre-alignment accuracy. In
2022, Wang [5] et al. proposed an adaptive Kalman filter with a dual-rate structure for uncalibrated
visual localisation of wafer chips in LED packages by designing an adaptive Kalman filter for
estimating the varying calibration parameters, and an introduced dual-rate structure for
compensating the visual latency and achieving multi-rate sensor The dual-rate structure is
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introduced to compensate the visual delay and achieve the time synchronisation of multi-rate
sensors.

With the development of computer vision in recent years, various deep learning based methods
have been proposed to be applied in inspection. In 2019, Yu [6] et al. proposed a convolutional neural
network based method for pattern recognition and analysis of constable defects, which inspects wafer
defects by building an 8-layer CNN model. In 2020, Chien [7] et al. proposed a deep learning
convolutional neural network based method that provides a reliable machine vision method instead
of manual inspection by using Faster-RCNN model for training. In 2021, Bian [8] et al. propose a
method based on improved YOLOv5s, which improves the detection accuracy by building an
infrared image database for model training, and introduces an ECA module to enhance the feature
extraction capability of the network. In 2022, Xu [9] et al. constructed an attention mechanism with
long dependencies to enhance the correlation between features and proposed a design guideline for
a single attention layer, which reduces the requirements for hardware devices in real scenarios. The
target detection algorithm can quickly detect the chip pads and thus indirectly determine the
alignment of the chip. Target detection uses techniques such as image processing and convolutional
neural networks to classify and locate targets in images or videos.

Although some research progress has been made by previous researchers in the detection of chip
pads, most of the research backgrounds are relatively homogeneous and differ greatly from the
environment in actual industrial production. In reality, chip pads tend to be more numerous, densely
arranged, and smaller in size. Although traditional CNN models can obtain a relatively good
accuracy by stacking layers, their large number of parameters and complex structure lead to the
inability of inference and deployment in edge devices with limited computational resources.
Therefore, the requirements for chip pad detection networks are to achieve lightweight network
models while ensuring detection performance. In 2015, He [10] et al. proposed the residual connection
method, which effectively solves the problem of gradient disappearance or gradient explosion due
to the deepening of the network layers. In 2017, Huang [11] et al. proposed the dense connection
method, which solves the problem of parameter redundancy of the deeper network, and further
reduces the model size and network size. further reducing the model size and network parameters.
Subsequently, Howard [12-14] et al. proposed deep separable convolution, which divides the
convolution process into two parts: channel-by-channel convolution and point-by-point convolution,
and reduces the computation amount of convolution to 1/3 of the ordinary convolution; Zhang [15,16]
et al. carry out channel disruption during channel-by-channel convolution, which makes the
information that was originally not interoperable between the groups flow and interact, and enhances
model expression.

There are two main categories of target detection algorithms, one is region-based second-order
detection algorithms, such as Faster R-CNN [17] and R-CNN [18], etc., which first generate multiple
candidate regions from an image, and then extract features and perform classification and regression
for each region, so as to improve the detection accuracy. However, the disadvantages of this type of
algorithms are many network parameters, complex models, slow detection speed, which are not
suitable for real-time detection scenarios. The other category is the single-order detection algorithms
represented by SSD [19] and YOLO [20-23], which predict and classify candidate frames directly on
the picture, with the advantages of fast speed and simple model, which are more suitable for real-
time detection needs. Currently widely used is the fifth generation algorithm of YOLO series,
YOLOVS5 [24], of which YOLOV5s version is the YOLOV5 in which a good balance between detection
accuracy and model size is achieved. Therefore, in this paper, YOLOvb5s is used as the baseline
network for chip pad alignment detection. When we apply the YOLOv5s network directly on the chip
pad dataset, the detection of small targets is not satisfactory. Zhu [25] et al. introduced Transformer
[26] into the YOLO network for the first time, and the self-attention mechanism captures the
contextual information and improves the detection accuracy of small targets by means of global
composition. Literature [27-31] combines Swin-Transformer [32] into YOLO networks to reduce
network parameters in global composition by using a moving sliding window. However, both
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Transformer and Swin-Transformer, the huge consumption of parameter computation and the highly
complex model structure make the network impossible to be deployed into embedded devices.

In existing work on target detection, the introduction of more efficient convolutional and
attentional modules effectively improves the detection performance of the network, but most of the
work does not take into account the relationship between the image resolution and the feature
receptive field in a small target detection environment. Stacking convolutional kernels to obtain a
larger receptive field can capture richer semantic information about the target, but too deep a network
will increase the network parameters and computation, and increasing the receptive field also leads
to a decrease in resolution and a reduction in the ability to perceive the details of the image, thus
affecting the detection of small targets. And the surrounding of small targets can often provide useful
contextual information to help detect small targets.

To address the chip pad detection problem, this paper proposes a lightweight real-time detection
network based on YOLOvV5s, which not only ensures the detection accuracy of small target chip pads,
but also effectively reduces the network parameters to meet the requirements of automated
production. The main contributions of our work are as follows:

1. Using lightweight convolutional module (GhostNet) and attention module (CBAM), we
improve the feature extraction module of the backbone network, which effectively reduces the
parameter redundancy and computational complexity in feature extraction, enhances the network’s
attention to the target, and improves the detection effect of the network.

2. Propose a lightweight improvement method for small target detection on chip pads. Starting
from the contradictory relationship between resolution and sensory field, the resolution of the
customised prediction head is doubled by fusing shallower backbone network feature layers and
cropping the last extraction layer. The sensing field is improved by introducing the cavity
convolution in the spatial pyramid to enhance the contextual information perception of the key
features of the small targets, so as to improve the detection performance of small targets with chip
pads.

3. A correction method for real-time detection is designed, and the improved network is
deployed in embedded devices to achieve real-time alignment detection and anomaly correction on
industrial assembly lines by combining deep learning target detection algorithms with image
processing techniques.

2. Materials and Methods

2.1. Datasets

The chip pad datasets originated from a semiconductor company in Guangxi. According to the
actual inspection of the chip pads, an industrial camera with a pixel resolution of 6112*3440 was used
to collect images under different lighting conditions with 200 times magnification, so as to construct
the image data set of chip pads. The acquired data are cropped and enhanced, and the 1464 images
are annotated using Labellmg annotation software after filtering and sorting, and finally consist of
6772 pads that require probe alignment (rig), 1610 pads that do not require probe alignment (wro),
and 4237 solder joints (Probe). The chip pad dataset is divided into training set and validation set in
the ratio of 9:1. Figure 1 shows an example of some images of the chip pad datasets.

(b)
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Figure 1. Chip pad datasets.

2.2. Improved YOLOwS algorithm

In the chip pad dataset, which contains a large number of small targets to be detected, the size
of the feature map decreases as the network becomes deeper as feature extraction is continuously
performed in the network, and this change can have a significant impact on the detection of small
objects. In order to achieve a lightweight algorithm and reduce redundant computations and
parameters. To address the problem of low accuracy of small object detection, the network proposed
in this paper makes the following improvements based on the YOLOV5 algorithm to enhance the
detection of chip pads and reduce the network parameters and model size to better suit the
automated detection of chip pads in industry.

In the backbone layer, we use GhostNet [33] to replace the original convolutional module in C3,
and embed the lightweight and efficient CBAM [34] attention mechanism. GhostNet can reduce the
redundancy generated by feature extraction, which makes the network lighter, and the CBAM
attention can make the network more focused on the small targets of chip pads from both the channel
and the spatial dimensions to obtain higher detection accuracy, which is more suitable for industrial
automation. It is more suitable for industrial automated production.

In the feature fusion and prediction section, the last layer of the C3 module is trimmed, and a
customised prediction head is used to double the resolution, reducing the computational effort of the
network and effectively detecting smaller targets. Meanwhile, hollow convolution [35] is introduced
in the spatial pyramid to improve the feature sensing field and capture the rich contextual
information around salient features. The SIoU [36] loss function is used instead of CloU [37], and the
SloU considers the angle, distance, and shape of the bounding box, which is more consistent with the
actual detection work. The improved YOLOvV5 network is shown in Figure 2.
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Figure 2. Improved YOLOV5 network structure diagram.
2.3. Feature Extraction Module Improvement

2.3.1. GhosetNet

In target detection, usually only a small part of the region contains the target to be detected, and
there is a lot of redundant information in the whole image. In order to extract a more comprehensive
feature map, it is usually necessary to use more convolutional kernels for the feature extraction work,
but this can lead to redundancy of the convolutional kernels, especially when a large number of
convolutional kernels are used as well as a too deep number of channels. Therefore, in this paper,
GhostNet is used to replace the original convolutional layer in the backbone network. As shown in
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Figure 3, firstly, some feature maps are generated using ordinary convolution, and then the generated
feature maps are processed by applying deep separable convolution to get more feature maps, and
finally the original feature maps are spliced with Ghost feature maps. In this way, the feature
expression can be enhanced with less computation.
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Figure 3. GhostNet.

2.3.2. CBAM Attention Mechanism

Just as when humans see an image, the brain usually pays attention to the whole image in its
entirety, and when there is too much information in the image, the brain tends to selectively focus its
attention on certain parts of the image. It is from the study of human vision that the attention
mechanism originated and has been widely used in the field of computer vision to process
information in images. It is based on assigning weights to different parts of the feature map to select
useful information and ignore most irrelevant information. Attention mechanisms can be classified
into channel attention, spatial attention, and hybrid attention, in which the channel attention
represented by SE (Squeeze-and-Excitation Networks) [38] and ECA (Efficient Channel Attention)
[39] attention focuses only on the channel information of the image, thus ignores the detail
information in the spatial dimension; and a single spatial attention cannot meet the demand for
channel feature extraction.

In the chip pad detection task, there are feature information of pads and probes in terms of color
and position. The CBAM attention module cited in this paper is a hybrid lightweight attention
module that combines channel and spatial attention, which makes the detection network more
focused on small targets, thus obtaining higher detection accuracy. The overall flow structure of the
CBAM attention module is shown in Figure 4, and the module consists of two independent modules,
namely, channel attention (CAM) and spatial attention (SAM). Firstly, the channel feature map is
generated by channel attention, which is multiplied with the residual input features for weighted
refinement to strengthen the useful channel information; similarly the output results enter the spatial
attention to get the final results. Adding CBAM attention after feature extraction can effectively
aggregate the network’s attention to the target and improve the detection of small targets.

Channel
Attention Spatial
Module Attention
S IR X Module | ;

Input Feature Refined Feature

Figure 4. CBAM attention mechanism
2.4. Lightweight Improvement Methods

2.4.1. Lightweight High-Resolution Prediction Network

In the chip pad dataset, the target mainly occupies 2% to 8% of the image proportion, and the
original YOLOv5's 80x80 resolution prediction head is difficult to complete the work of accurate
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detection of this smaller target. Small target detection has always been a difficult problem in the field
of target detection, in the current mainstream detection algorithms, small targets are often detected
in high-resolution feature maps, while low-resolution feature maps may reduce the network’s ability
to perceive image details.

In order to achieve the lightweight of the network while avoiding the influence of low-resolution
feature maps, as shown in Figure 5, this paper proposes a lightweight high-resolution prediction
network for chip pad detection, which firstly crops the default P5 of the YOLOv5 backbone network
in Figure. 5(a), and then doubles the resolution of the prediction header by fusing the information of
the shallower feature layer to obtain a larger resolution of 160x160 size feature maps, the network is
shown in Figure 5(b). This strategy achieves the detection of higher resolution images while
mitigating the model parameters, allowing smaller sized targets to be effectively detected.

80*50

10%40

P2 B3 P4 P5 Conv+Upsam ple
ConcatC3 Conv+Concat+C3

(a) Origin YOLOvV5

;| | 160*160

80*80

40%40

n2 P3 B4 Comv+Upsample Com+Concat+C3
+Concat+C3

(b) Lightweight high-resolution prediction networks

Figure 5. Lightweight and high-resolution improvements.

2.4.2. Context-Aware Networks

However, the resolution of an image and the feature receptive field are contradictory existences.
Although a larger receptive field can be obtained by stacking convolutional kernels to capture richer
semantic information, this also leads to a reduction in resolution, which in turn affects the detection
of small targets. The P5 of the cropping backbone network ensures that the image resolution is no
longer degraded by the downsampling operation, but at the same time it results in insufficient
extraction of semantic information.

In the chip pad detection task, pads and probes have obvious color and edge features relative to
the background. In order to make full use of these features, this paper constructs a context-aware
network CSPP (Context Spatial Pyramid Pooling) by introducing void convolution after the
maximum pooling layer of SPPF. The maximum pooling layer is responsible for extracting the most
significant features in the chip pads, while the cavity convolution uses the retained feature
information to expand the sensory field by introducing the expansion rate in the convolution to
obtain more contextual information from the local area. The context-aware network is shown in
Figure. 6. CSPP expands the receptive field while keeping the resolution constant, which effectively
retains more feature information, reduces information loss, and improves the expressive ability of
the network.
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Figure 6. CSPP.

2.5. SloU Loss Function

The loss function for target detection consists of two parts, Classification Loss and Bounding Box
Regression Loss.YOLOvV5 uses the binary cross-entropy loss function to calculate the probability of
the category and the loss of the confidence score of the target, and in the regression loss calculation,
the CloU serves as the current stage of the commonly used form of YOLOVS5 regression loss, which
is calculated as shown in Equations (1) and (2).

2 b,b‘gt
CloU = 'D(C—Z) + av D
p?(b,b9%)
Losscioy =1 —10U + CloU = —z + av (2)

In Equations. (2) IoU represents the intersection and concurrency ratio of the real and predicted
frames, b,b"gt represents the centroids of the predicted and real frames, respectively, 0”2 (b,b"gt )
computes the Euclidean distance of the two centroids, and c represents the diagonal distance of the
smallest closed region that can contain both the predicted and the real frames. a is a weight
parameter, and v is used to measure the similarity of the width to height ratios, and the computation
of ac and v is shown in Equations (3) and (4) are shown.

v

= 3
R G 7 ®
_ 4 wIt w,
v=— (arctan hat arctan E) 4)

In Equations. (4), (w,h) and (w”gth"gt ) are the width and height of the predicted and real
frames, respectively. CloU takes into account the overlap area, the distance from the centroid, and
the aspect ratio, but the difference in the aspect ratio that it responds to is not the difference between
the real width and height and the confidence level, and this shortcoming leads to a slower
convergence during training. The SloU chosen in this paper takes the angle of the vector to be
regressed into consideration, and consists of four loss functions: angle loss, distance loss, shape loss,
and IoU loss, and the SIoU is defined as shown in Equation (5).

A+ 10
Lossgioy =1 — 10U + — (5)

In Equations. (5), A and () denote the distance and shape loss, respectively, which are defined as
shown in Equations. (6) and (7).

A=Y (1-eP) 6)

t=x,y
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0= (-e %)
t=w,h
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In Equations. (6), py = (CXC—WX> , Py = < 2 - y) ,and y = 2 — A. A is the angular loss, which
is defined in Equation. (8).
—1_ c2 (o1 S T
A=1-2xsin (sm 5 4) (8)
In Equation (8),
2 2

o= J (b b)) + (bf; - bcy) )
Cp, = max (bfyt, bcy) — min (bcgyt, bcy) (10)

In Equation. (7), wy = —2*"L and w, = "L 11 Equation. (9), o is the dist
n Equation. (7), w, = ————= an Wn = o ety - 0 Equation. (9), o is the distance

max(w,w9t)
between the centroid of the true frame and the prediction frame, and ¢, in Equation. (10) is the height
difference between the centroid of the true frame and the prediction frame, where
bfxt\ bfyt\ bc,.~ bcy denote the x,y coordinates of the centroid of the true frame and the prediction
frame, respectively. SIoU redefines the regression angle of the prediction frame by calculating the
distance loss and accelerates network convergence.

3. Experiments and Results

This experiment was conducted on a graphics processor workstation equipped with an Intel
Core i7-12700K processor and NVIDIA GeForce RTX 3090 with 24G of video memory. We used a 64-
bit Ubuntu operating system with version number 18.04.6LTS and Linux kernel version 5.4.0-126-
generic.The experiments were conducted using the PyTorch deep learning framework configured
with CUDA with version number 11.1, and Python version 3.6.10.The experiments were conducted
using SGD (Stochastic Gradient Descent) as the optimisation algorithm, with weight decay set to
0.0005, learning rate initial value of 0.01, image fixed input size of 640x640, batch size of 32 and
training batch epoch of 300.

3.1. Feature extraction module comparison experiment

In order to verify the effectiveness of the improved feature extraction module to improve the
detection effect, this paper introduces GhostNet to replace the C3 module of the backbone network
on the basis of the YOLOv5s model, GhostNet can effectively reduce the redundancy of feature maps
in the process of feature extraction, and the improved model is named YOLOv5s-g. Comparison
experiments are conducted on the chip pad dataset. set to experiment on the two algorithms, and the
experimental results are shown in Table 1.

Table 1. Comparison experiment of feature extraction module.

Method Model Parameters FLOPs mAP@0.5
YOLOv5s 13.75M 7.0M 16.0G 0.867
YOLOvb5s-g 11.57M 5.8M 12.6 0.872

As can be seen in Table 1, the detection accuracy of the network for chip pads is improved by
0.5%, and the network parameters are reduced by 1.2M, which verifies that the introduction of
GhostNet in the feature extraction part can effectively reduce the computational cost of the network
and improve the expressive ability of the model. In order to further improve the feature extraction
ability of the model, on the basis of YOLOv5s-g, the attention design scheme in the literature is used
to introduce the CBAM attention mechanism, and a side-by-side comparison is made with the
mainstream attention methods, and the comparison experiments are shown in Table 2.


https://doi.org/10.20944/preprints202408.1058.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 August 2024 d0i:10.20944/preprints202408.1058.v1

Table 2. Attention cross-sectional comparison experiment.

Method rig wWro Probe mAP@0.5
YOLOvb5s-g 0.913 0.853 0.851 0.872
+SE 0.917 0.849 0.858 0.875
+ECA 0.918 0.855 0.856 0.876
+CBAM 0.914 0.873 0.851 0.879

From the experimental results, it can be seen that the embedded attention mechanism can have
a positive gain for chip pad alignment detection, in which the embedded CBAM attention has the
largest improvement of 87.9% on the detection performance, in which the accuracy is 91.4% for the
need to align the solder joints rig, 87.3% for the need not to align the solder joints wro, and 85.1% for
the detection accuracy of the probes Probe. The side-by-side comparison experiments verify the
effectiveness of embedded CBAM attention for improving the detection accuracy.

3.2. Comparison Experiment of Lightweight Improvement Methods

In order to verify the effectiveness of the proposed lightweight improvement method on the
detection effect as well as the lightweight, based on Section 3.1, the deep feature extraction layer is
firstly cropped, the shallower features are fused, and the resolution of the prediction head is doubled,
and the final outputs are detected on the high-resolution feature maps. The improved model is named
YOLOvV5s-HR(high resolution). Comparative experiments are taken to test the two algorithms on the
chip pad dataset, and the experimental results are shown in Table 3.

Table 3. Lightweight high-resolution prediction network.

Method rig wro Probe mAP@0.5 Model Parameters FLOPs
YOLOv5s-CBAM 0914 0.873  0.851 0.879 7.2M 3.3M 12.6G
YOLOv5s-HR 0918 0.892 0.844 0.884 3.25M 1.27M 10.2G

As can be seen from Table 3, the size of the lightweight high-resolution prediction network
model obtained by trimming the deep feature extraction layer and fusing the shallower features is
reduced by 3.95M, the amount of parameters is reduced by 2.03M, and the detection accuracy is
improved by 0.5%, of which the detection accuracy is 91.8% for the pad rig that needs to be aligned,
and the detection accuracy for the pad wro that does not need to be aligned is 89.2%, which is higher
than the improvement of the former algorithm. The detection accuracy for probe Probe is 84.4%,
which is slightly lower than that of the previous algorithm. This is because the improved high-
resolution prediction network method reduces the ability to capture rich semantic information, and
by adopting the context-aware network approach, richer semantic information can be captured to
improve the detection performance of probes as well as targets to be inspected, and the experimental
results are shown in Table 4.

Table 4. CSPP comparison experiments.

Method rig Wro Probe mAP@0.5
YOLOv5s-HR 0.918 0.892 0.844 0.884
+CSPP 0.919 0.893 0.852 0.888

As can be seen in Table 4, the CSPP module can effectively improve the detection performance
of the network, verifying the effectiveness of the lightweight improvement method in the chip pad
detection task.
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3.3. Ablation Experiment

Based on the chip pad detection task, the model size, parameters, the number of floating-point
operations and the average accuracy, etc., as an indicator to assess the model performance, the
ablation experiment on each module has verified the effectiveness of the algorithm proposed in this
paper, the experimental results are shown in Table 5.

Table 5. Ablation experiment.

Ghost+tCBAM HR CSPP SIoU Model Parameters FLOPs mAP@0.5
13.75M 7.0M 16.0G 0.867
\ 7.2M 3.3M 12.6G 0.879
\ \ 3.25M 1.27M 10.2G 0.884
\ \ \ 3.46M 1.3M 10.6G 0.888
\ \ \ \ 3.46M 1.3M 10.6G 0.89

According to the experimental results in Table 5, it can be found that after the improvement of
the feature extraction part, compared with the original network, the detection accuracy is improved
by 1.2%, and the network parameters, model weights, and model complexity are reduced by 3.7M,
6.55M, and 3.4G, respectively, which proves that the Ghost and the CBAM can effectively mitigate
the redundant features and focus the attention. Next, we propose a lightweight improvement method
for chip pad detection, which improves the detection accuracy by 0.5% through a lightweight high-
resolution prediction network, and reduces the network parameters, model weights, and model
complexity by 2.03M, 3.95M, and 2.4G, respectively, which demonstrates that the proposed
lightweight improvement method is effective in improving the performance of the detection of chip
pads, and at the same time makes the network more lightweight. Introducing the CSPP composed of
cavity convolution in SPPF, the detection accuracy reaches 88.8% despite the slight increase in
network weights, model parameters and model complexity, proving that the proposed CSPP is
capable of extracting the semantic information of key features; finally, the SIoU Loss is used as the
regression loss function to form the final model, and compared with the initial model, the detection
accuracy of the proposed algorithm increases by 2.3%, the network weights increase by 2.3%, and the
network weights increase by 2.3%, and the network weights increase by 2.3%. improves by 2.3%, the
network weights are reduced by 74.8%, the model parameters are reduced by 81.4%, and the model
complexity is reduced by 5.4 G. This indicates that the algorithm proposed in this paper achieves a
good balance between the detection accuracy and the model size, and the improved network reduces
the cost of the hardware and is easy to be deployed on the edge devices, which ensures the practical
use in the industry. In summary, the improved algorithm proposed in this paper has very high
practical value.

3.4. Mainstream algorithm comparison experiment

In order to evaluate the performance of the improved algorithm proposed in this study, the
network was compared with the classical mainstream algorithms, mainly SSD, Efficientdet-d0 [40],
YoloX-s [41] and Yolo-lite-g [42], as shown in Table 6.

Table 6. Mainstream algorithm comparison experiment.

Method rig Wro Probe mAP@0.5 Parameters  Model
SSD-mobile 0.6 0.35 0.49 0.482 25.06M 15.32M
Efficientdet-d0  0.76 0.48 0.688 0.641 3.7M 15.08M
YOLOX-s 0.854 0.847 0.752 0.818 9.IM 34.36M
YOLOv5-lite-g ~ 0.908 0.855 0.826 0.863 5.5M 10.76M
YOLOvV5s 0.906 0.853 0.84 0.867 7.0M 13.7M
YOLOR 0.903 0.851 0.793 0.849 9.0M 17.46M

YOLOv3-tiny  0.879 0.791 0.807 0.826 8.7M 16.63M
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YOLOv7-tiny  0.911 0.87 0.855 0.879 6.0M 11.72M
Ours 0.922 0.887 0.863 0.89 1.3M 3.46M

As can be seen from the indicators in the table, the improved model in this paper improves the
average accuracy by 2.3% compared to the original Yolov5s and outperforms the new popular
algorithms of YOLO series, YOLOX-s and YOLOR, with a performance improvement of 7.2% and
0.41%, respectively; compared to the same lightweight algorithms, Efficientdet-d0, YOLOv5-lite-g,
YOLOV3-tiny and YOLOv7-tiny[44], the proposed algorithm in this paper improves detection
accuracy by 34.9%, 2.7%, 6.4% and 1.1%, respectively, and the model parameters and network
weights are reduced. In summary, the improved method in this paper has higher accuracy in the
alignment detection of chip pads while achieving a lighter model, which proves its superiority and
is more suitable for the deployment of reasoning in the real industry.

The actual detection of chip pads is shown in Figure. 7, where (a) shows the detection effect of
the improved algorithm and (b) shows the detection effect of the YOLOVS5 algorithm. It can be seen
that compared with the original YOLOVS5 network, the improved algorithm in this paper has a higher
detection rate on the same solder pad detection, and at the same time, the algorithm proposed in this
paper can detect more targets. This implies that in practice, our method detects better and is more
robust.

ig 065  fig 069
S ; o
= ~ et -
.m: .83~ Froba 655 Brofs .52 -Probe 089 Brobe 0.5z T1o08 047
. ‘ L

g 0.54 09 033 g BES g 036 rig 0.84 !

°~ef e p}d;- oez P_:vltf 025 4 J . 5
A VR
A !

3
Frobe 057 E
- ' ) |

(a) (b)
Figure 7. Chip pad detection effect. (a) ours. (b) YOLOvb5s.

3.5. Model Deployment and Calibration Detection Methods

3.5.1. Real-Time Detection Processing

Digital images in the process of acquisition, transmission and processing, often subject to the
shooting equipment and the external environment, the inevitable impact on the image, the
identification of the target in the image will have a greater impact.

In this section, we combine the chip pad detection video screen, select any frame and greyscale
it to get the image shown in Figure 8, and use the fast Fourier transform to get the frequency domain
spectrum of the image, after centering as shown in Figure 9 (a). After centring, the low frequency
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signals are distributed in the middle part of the frequency domain spectrum and the high frequency
signals are distributed around.

Grayscale Image

/n, detection.begins

Figure 8. Grayscaled image.

Magnitude Spectrum Magnitude Spectrum

(a) (b)

Figure 9. Image frequency domain spectrum.

As can be seen in Figure. 9 (a), the low-frequency portion of the frequency domain spectrum of
the original image is obvious and the high-frequency portion is not prominent enough. The low-
frequency part of the image corresponds to the overall brightness and color respectively, smooth
changes in large areas, etc., while the high-frequency part corresponds to the edges and details of the
object as well as the noise in the image. When the chip pad is detected, the overall image becomes
smoothed due to the distortion of the image caused by the data line transmission, which also causes
the loss of the target edges and details of the chip pad and the probe, which is required. In order to
enhance the high frequency component of the image screen, the enhancement of the high frequency
component is achieved by using high pass filtering in the spatial domain.

High-pass filtering enhances the edge information of the target in the image and improves the
clarity of the image, so it is also often referred to as image sharpening. In this paper, a 3x3 sharpening
convolution kernel is used to enhance the video at high frequencies, in order to try to avoid the
interference of noise brought by sharpening on detection, the sharpening convolution kernel is
designed in the form as shown in Equation. (11), and the frequency spectrum of the image after high-
pass filtering is shown in Figure. 9 (b). It can be seen that the high-frequency enhancement of the
image after high-pass filtering, the low-frequency a little weakened, in line with requirements.
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Figure 10. Comparison effect of filtering effect.

After comparative analysis, in the chip pad alignment detection, high-pass filtering, although it
will introduce a small amount of noise, but due to the data transmission after the picture will be with
a small amount of distortion and cause image smoothing, high-pass filtering method is clearer than
the original picture, the target characteristics of the information is more obvious. The experimental
comparison results of high-pass filtering are shown in Figure 10.

3.5.2. Real-Time Anomaly Correction Method

Previous work has successfully deployed the improved lightweight network to edge devices for
chip pad alignment detection. However, in practice, the alignment detection of chip pads and probes
often has anomalies, and the detection can only get the coordinate information and category of the
target to be inspected, while the offset of the detected pads and probes is unknown, so the real-time
anomaly calibration task is difficult to complete. In order to solve this problem and improve the
efficiency and accuracy of chip pad alignment testing, this paper proposes a matching scheme aimed
at real-time anomaly calibration.

The matching scheme for real-time detection and calibration is divided into sequential marking
and determining the matching relationship. It is as follows: firstly, the video stream is acquired by an
industrial camera, and the real-time detection of each frame is performed using the improved
network in this paper to obtain the detection results of each frame. The targets to be inspected in the
inspection frame are labelled according to the horizontal coordinates, and the targets with horizontal
coordinates from small to large are obtained. Subsequently, we need to ensure the correspondence
between pads and probes.

In the actual alignment detection process, the pads and probes may have certain angle and
distance deviations, so we adopt a more flexible method to determine their matching relationship.


https://doi.org/10.20944/preprints202408.1058.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 August 2024 d0i:10.20944/preprints202408.1058.v1

14

Specifically, the reference target is determined by determining the offset direction of the probe. When
the probes as a whole are offset to the right, we select the pad as the category benchmark and match
the nearest probe within a certain offset range. And when the probes are shifted to the left as a whole,
we select the probes as the category datum and match the nearest pads within a certain offset range.

For the matched pads and probes in each frame, the average pixel distance and average angle
are calculated and the data is published in real time. This enables the robotic arm module to subscribe
and resolve the abnormal distance and angle of the alignment situation for real-time calibration. This
approach not only improves the flexibility of alignment detection, but also provides the basis for real-
time calibration of the robotic arm.
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Figure 11. Real-time anomaly calibration matching comparison results.

In Figure. 11, (a) shows the results without pad-probe matching, and it can be seen that it is not
possible to determine the offset when the one-to-one correspondence is not determined. (b) is the
result of determining the matching relationship based only on the coordinates, and it can be seen that
there is a large detection error. (c) and (d) are the results after carrying out the matching scheme, and
it can be seen that after designing the anomaly calibration matching scheme can effectively improve
the accuracy of calibration,

3.5.3. Actual Detection Effect

Subsequently, the designed calibration detection method was deployed into the edge device to
perform chip pad alignment detection for the ongoing chip test work The actual detection is shown
in Figure 12.
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Figure 12. Actual detection effect.

In Figure 12, the display on the right shows the output screen obtained by the industrial camera,
and the display on the left shows the alignment detection results of the real-time screen after passing
the calibration detection method, with an average offset distance of 32.88px and an average offset
angle of 50.05 degrees. The proposed chip pad calibration detection method performs well and meets
the demand for real-time and high accuracy of chip pad alignment detection. Therefore, the method
can be applied to the environment of actual industrial inspection and provide a data base for
subsequent automatic calibration.

4. Discussion

In this section, we will further discuss the capability of the proposed algorithm on other datasets
to evaluate whether the proposed algorithm is generalizable for small target detection, and then
determine whether the improvements therein have a wide range of application scenarios. In this
section, the VisDrone [45], WIDER FACE [46] public datasets are selected for testing. the VisDrone
and WIDER FACE datasets contain a large number of small targets, which are suitable for the
validation of the proposed algorithm in this paper. The comparison results are shown in Table 7 and
Table 8.

Table 7. Performance comparison of VisDrone dataset.

Method mAP FLOPs Parameters
YOLOv5s 0.35 16.0G 7.0M
Ours 0.387 10.6G 1.3M
Improve +3.7% -5.4G -81.4%

Table 8. Performance comparison of WIDER FACE dataset.

Method mAP FLOPs Parameters
YOLOvV5s 0.736 16.0G 7.0M
Ours 0.75 10.6G 1.3M
Improve +1.4% -5.4G -81.4%

Through the experimental validation on VisDrone dataset and WIDER FACE dataset, it can be
seen that the improved algorithm proposed in this paper still improves in detection accuracy and
comprehensive performance. This indicates that the improved method has obvious improvement
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effect in the direction of small target detection and has certain universality. The experimental results
are shown in Figures 13 and 14.
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Figure 13. Comparison of detection accuracy on the VisDrone dataset.
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Figure 14. Comparison of detection accuracy on the WIDER FACE dataset.

The above experiments verify the effectiveness and universality of the method proposed in this
paper. In addition, the lightweight design of the model can still be handled by model compression
for lightweighting, such as knowledge distillation, in addition to the network structure design.
Therefore, our future work will explore in the knowledge distillation technique.

5. Conclusions

This paper is dedicated to solving the problem of chip pad alignment detection in industry and
proposes a lightweight detection algorithm based on the improved YOLOv5s. In order to solve the
problem of poor alignment detection in the case of dense distribution and small percentage of chips
in industrial production, we have optimized the YOLOv5s network in many aspects. First, the feature
extraction part is improved by introducing the lightweight and efficient Ghost convolution with
CBAM attention mechanism, which effectively reduces the redundancy of feature extraction in the
convolution process and improves the network’s ability to pay attention to the target. Starting from
the contradictory relationship between resolution and sensory field, we double the resolution of the
prediction header and introduce a context-aware network to improve the detailed grasp of key
information and achieve a balance between resolution and sensory field. Finally, we choose SloU
Loss as the loss function to accelerate the model convergence and improve the accuracy. In order to
verify the effectiveness of the improved model, we conduct a large number of ablation experiments
and comparison experiments. The experimental results show that the average accuracy is improved
by 2.3% on the chip pad dataset. The detection accuracy is also improved on the public datasets
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VisDrone and WIDER Face. The improved network has fewer parameters and is more suitable for
industrial applications.

6. Patents
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