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Abstract: Consumer perception of beef is heavily influenced by overall meat quality, a critical factor 
in the cattle industry. Genomics has the potential to improve important beef quality traits and 
identify genetic markers and causal variants associated with these traits by genomic selection (GS), 
and genome-wide association studies (GWAS) approaches. Transcriptomics, proteomics, and 
metabolomics provide insights into underlying genetic mechanisms by identifying differentially 
expressed genes, proteins, and metabolic pathways linked to quality traits, complementing GWAS 
data. Leveraging these functional genomics techniques can optimize beef cattle breeding for 
enhanced quality traits to meet high-quality beef demand. This paper provides a comprehensive 
overview of the current state of applications of the omics technologies in uncovering functional 
variants underlying beef quality complexities. By highlighting the latest findings from GWAS, GS, 
transcriptomics, proteomics, and metabolomics studies, this work seeks to serve as a valuable 
resource fostering a deeper understanding of the complex relationships between genetics, gene 
expression, protein dynamics, and metabolic pathways in shaping beef quality. 

Keywords: beef cattle; functional genomics; genomic selection; GWAS; meat quality; molecular 
breeding; omics technologies 

 

1. Introduction 

Beef quality is defined by several traits that influence the eating experience and desirability of 
the meat. Key traits include palatability factors such as tenderness, juiciness, and flavor which 
directly impact consumer satisfaction (Esmailizadeh et al., 2011). Tenderness refers to the ease of 
chewing and breaking down the meat, while juiciness is the moisture released during mastication 
(Purslow et al., 2012). Flavor encompasses the combined sensations of taste and aroma that make the 
meat appealing (Mottram, 1998). Visual characteristics like meat color, fat color, and marbling also 
play a crucial role in perceived quality (Killinger et al., 2004). The bright, desirable lean color, white 
fat color, and intramuscular fat distribution (marbling) enhance the appearance and contribute to 
flavor and juiciness (Hocquette et al., 2010). Other traits like water-holding capacity, pH, and 
intramuscular fat content further influence overall quality, shelf life, and sensory properties (Pethick 
et al., 2011; Warner et al., 2010). This complex array of beef quality traits is shaped by the relationships 
between genetic factors, breed influences, nutrition, management practices, and post-harvest 
handling procedures (Liu et al., 2022). These factors make beef quality a challenging target for 
traditional breeding strategies. However, the availability of the high-quality bovine genome 
assembly coupled with the advent of high-throughput sequencing technologies has paved the way 
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for the integration of omics technologies, encompassing genomics, transcriptomics, proteomics, and 
metabolomics, for unraveling the complex mechanisms underlying beef quality. 

Multi-omics approach has the power to resolve the meat quality research into an image of what 
is being expressed, translated and produced, which incorporates technologies characterizing various 
biological products, including DNA (genomics), RNA (transcriptomics), protein (proteomics) and 
metabolites (metabolomics) in biological samples. Genomic approaches, such as genome-wide 
association studies (GWAS) and genomic selection (GS), have provided valuable insights into the 
genetic architecture of beef quality traits. While these methods have identified several genetic 
markers and regions associated with these traits, their practical application in enhancing beef quality 
through selective breeding remains limited and requires further research and validation. These 
techniques enable the identification and utilization of functional variants associated with desirable 
phenotypes, thereby accelerating genetic improvement, and enhancing the efficiency of breeding 
programs. Transcriptomics, which examines the expression patterns of genes, provides insights into 
the molecular pathways and regulatory networks governing muscle development, metabolism, and 
meat quality attributes. Proteomics, on the other hand, offers a comprehensive view of the functional 
proteins involved in these processes, elucidating their roles and interactions. Complementing these 
approaches, metabolomics unveils the complex metabolic landscapes that shape the biochemical 
composition and sensory properties of beef. This article aims to summarize the latest findings from 
these advanced scientific approaches in beef quality genetics. By exploring research from GWAS, 
genomic selection, transcriptomics, proteomics, and metabolomics, we seek to provide a 
comprehensive understanding of how genetic factors, gene expression, proteins, and metabolic 
processes influence beef quality. The goal is to offer valuable insights for researchers and industry 
professionals, potentially improving breeding strategies and production methods to enhance beef 
quality. 

2. Functional Mutations and Commercialized DNA Tests for Beef Quality 

At the beginning of the genomics era during the 1980s, the primary application of this 
technology in livestock breeding revolved around developing standalone genome marker tests, 
particularly for identifying inherited diseases and parentage testing. However, as the field 
progressed, the focus shifted towards integrating quantitative and genomic approaches to identify 
genomic variants with substantial effects on desirable traits of interest. These DNA tests were then 
leveraged in breeding programs, enabling breeders to make more informed decisions by selecting 
animals with favorable genetic profiles for specific traits, thereby accelerating genetic improvement 
in livestock populations. 

Kostusiak et al. (2023) provided a comprehensive review of the effects of single nucleotide 
polymorphisms (SNPs) in four key genes - myostatin (MSTN), thyroglobulin 5 (TG5), μ-calpain 
(CAPN1), and calpastatin (CAST) - on beef cattle productivity and meat quality traits. MSTN is a 
negative regulator of muscle growth. Inactivating mutations or suppression of the MSTN gene leads 
to a "double-muscled" phenotype with increased muscle mass and reduced fat deposition in cattle 
breeds like Belgian Blue and Piedmontese (Fiems, 2012). Meat from MSTN-null cattle exhibits 
improved tenderness across all cuts, including typically tougher cuts like chuck and round. This is 
likely due to increased muscle fiber hyperplasia rather than just hypertrophy (Aiello et al., 2018). 
While inactivating the MSTN gene can dramatically increase muscle yields and tenderness in beef 
cattle, it comes at the cost of reduced marbling and juiciness. An optimal approach leverages MSTN 
alongside other genes to strike a balance between production efficiency, leanness, and eating quality 
traits like tenderness and flavor. Esmailizadeh et al. (2008) investigated the effects of a specific single 
nucleotide polymorphism (SNP) in the myostatin (MSTN) gene, resulting in a phenylalanine to 
leucine substitution at position 94 (F94L), on various beef production and quality traits. The F94L 
variant of MSTN was found to provide a more desirable intermediate phenotype than the severe 
double-muscling caused by complete MSTN inactivation, offering improved meat yield while 
maintaining acceptable meat quality traits like tenderness (Esmailizadeh et al., 2008). 
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Polymorphisms in the thyroglobulin (TG5) gene can significantly impact beef quality, 
particularly in terms of intramuscular fat (IMF) content and marbling. The TG5 gene is located on 
bovine chromosome 14 and encodes the thyroglobulin protein, which plays a role in fat metabolism. 
Wood et al. (2006), in their meta-analysis, found that there was a positive association between the 
polymorphic forms of TG5 and the degree of meat marbling. A specific single nucleotide 
polymorphism (SNP) in the 5' untranslated region of TG5, characterized by a C>T transition at 
position -422 (X05380.1:g.-422C>T), has been widely studied (Kostusiak et al. (2023). The TG5 C allele 
has been associated with higher levels of IMF and increased marbling scores in beef cattle across 
multiple breeds (Wood et al.,2006). Higher IMF and marbling are desirable traits as they enhance beef 
flavor, juiciness, and tenderness, improving overall eating quality and palatability. However, some 
consumers, especially those in developed countries, prefer leaner beef with lower fat content for 
health reasons, creating a conflict with the preference for marbled, flavorful meat in blind taste tests. 

CAPN1 and CAST genes encode the calpain and calpastatin enzymes that regulate protein 
degradation and meat tenderization post-mortem. CAPN1 encodes the enzyme μ-calpain, which is a 
calcium-dependent cysteine protease that breaks down muscle proteins during the meat 
tenderization process after slaughter. CAST encodes the protein calpastatin, which is an endogenous 
inhibitor of μ-calpain and other calpain enzymes, thereby modulating the extent of protein 
degradation and meat tenderization. Studies across multiple breeds have validated SNP markers in 
CAPN1 (e.g. 316, 530, 4558, 4684) and CAST (e.g. 282, 589) as useful for marker-assisted selection to 
improve beef tenderness (Morris et al, 2006; Sun et al., 2018; Lee et al., 2019). 

Polymorphisms in CAPN1 that beneficially associate with beef tenderness are reported to 
antagonistically associate with calving day in beef heifers (Tait et al., 2018) and post-partum interval 
to estrus in beef cows (Collis et al., 2012). However, the results of Cushman et al. (2021) indicate that 
molecular breeding for slice shear force, calculated based on CAPN1 and calpastatin (CAST) 
genotypes, had minimal or no antagonistic association with reproductive performance in heifers. 
Table 1 lists some of the commercially available DNA tests for beef quality, although there are more 
tests in the literature than are being offered to farmers. 

Table 1. A list of some of the commercialized DNA tests for beef quality. 

Gene symbol Beef attribute Discovered by Commercialized by 
TG Marbling CSIRO/MLA Genetic Solutions Pty Ltd 

CAST Meat tenderness CSIRO/MLA/Beef CRC Genetic Solutions Pty Ltd 
CAPN1 Meat tenderness USDA/AgResearch NZ Open 

GH1 Marbling NIAS, Japan Prescribe Genomics CO 
LEP Marbling/fat traits Univ. of Saskatchewan Merial 

Multiple tests Marbling - Genetic Solutions Pty Ltd 
CAPN3 Meat tenderness CSIRO/MLA/Beef CRC Genetic Solutions Pty Ltd 

SCD Fatty acid composition Kobe University Prescribe Genomics CO 
The contents of the table were adopted from Hocquette et al. (2007) and adjusted for beef quality traits. 

The integration of functional mutations in genes such as MSTN, TG5, CAPN1, and CAST has led 
to the development of commercial DNA tests that enhance beef quality traits like tenderness, 
marbling, and flavor. However, future research should focus on optimizing these genetic 
advancements alongside animal welfare and environmental factors to ensure sustainable production. 
Additionally, exploring the interactions between genetic traits and management practices will be 
crucial for fully realizing the potential of these genomic tools in the beef industry. 

3. Genome-Wide Association Studies for Beef Quality Traits 

Initial genome-wide scans to locate quantitative trait loci (QTL) for beef quality traits were based 
on linkage analysis within families. For example, Esmailizadeh et al. (2011) reported a whole-genome 
scan to detect QTL for meat quality traits like tenderness (measured as shear force on two muscles), 
meat color, pH, and cooking loss, as well as metabolic traits in cattle populations from New Zealand 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 15 August 2024                   doi:10.20944/preprints202408.1038.v1

https://doi.org/10.20944/preprints202408.1038.v1


 4 

 

and Australia. The study used backcross calves with Jersey and Limousin backgrounds, with the New 
Zealand cattle reared on pasture and the Australian cattle finished on grain. A total of 18 significant 
QTL for meat quality traits and 11 significant QTL for metabolic traits were detected across multiple 
chromosomes. Genome-wide association studies (GWAS), available since 2005 in human genetics, 
are based on linkage disequilibrium at the level of a population and involve scanning the entire 
genome for single nucleotide polymorphisms (SNPs) that are statistically associated with a particular 
phenotype of interest. GWAS have been successful in the identification of numerous genetic variants 
associated with complex traits for uncovering novel biological pathways and elucidating the genetic 
architecture of various traits (Visscher, et al., 2017). 

Genome association studies provide knowledge about the genetic architecture of beef-related 
traits that allow linking the target phenotype to genomic information aiding breeding decisions. 
GWAS in cattle breeds like Hanwoo (Korean native cattle) have identified 107 significant SNPs on 
chromosome 14 and candidate genes associated with economically important beef quality traits such 
as marbling, meat color, texture, and fat color (Bedhane et al. 2019). Nearby genes like SFT2 Domain 
Containing 3 (SFT2D3) and Ectonucleotide Pyrophosphatase/Phosphodiesterase 2 (ENPP2) have 
been highlighted as potential candidate genes affecting beef traits such as marbling and meat color 
(Bedhane et al., 2019). 

GWAS results from the study of Forutan et al. (2023) implicate some interesting candidate genes 
(KIF13A and APOB) for eating quality. Kinesin Family 13A (KIF13A) is in a pathway associated with 
skeletal muscle cells that increase insulin signaling, glucose uptake, and maximal oxygen 
consumption (Massart et al., 2021). Apolipoprotein B (APOB) is a building block of a type of 
lipoprotein called a chylomicron. As food is digested, chylomicrons form to carry fat and cholesterol 
from the intestine into the bloodstream. (Forutan et al., 2023). 

A recent study (Arikawa et al., 2024) performed genome-wide association analyses on Nellore 
cattle to identify genomic regions and candidate genes influencing carcass traits and meat quality 
traits (shear force, marbling score, intramuscular fat content). The top 10 genomic regions explained 
8-22% of the additive genetic variance for these traits, harboring a total of 119-155 positional 
candidate genes. Relevant genes like CAST, PLAG1, XKR4, PLAGL2, AQP3/AQP7, MYLK2, WWOX, 
CARTPT, and PLA2G16 are involved in physiological processes affecting muscle growth, lipid 
metabolism, adipose tissue development, and signaling pathways like the insulin/IGF-1 pathway. 

Mateescu et al. (2017) explored the complexity of meat quality, by combining GWAS with gene 
network analysis to identify genes and pathways associated with meat quality traits like tenderness, 
juiciness, and flavor in Angus cattle. They revealed several modules of co-expressed genes associated 
with meat quality traits. Key genes identified included CAST and CAPN1 for tenderness, FASN and 
SCD for marbling, and MYOZ1, MYOZ3, and CASQ1 for color score. The study highlights the utility 
of network analysis for identifying candidate genes from GWAS results in beef cattle. Several beef 
cattle studies conducted GWAS to identify genomic regions associated with marbling score, 
intramuscular fat deposition, and fatty acid composition and revealed several significant SNPs and 
candidate genes on different chromosomes associated with specific fatty acids and fat content (Table 
2). 

Genome-wide association and gene enrichment analyses on 672 steers from a multibreed Angus-
Brahman beef cattle population have identified membrane anchoring and structural proteins (e.g. 
ANO2, NTF3, EVC2, ANXA10, PALLD, PKHD1) associated with meat quality traits like tenderness, 
marbling, cooking loss, and sensory panel ratings for tenderness, juiciness, connective tissue amount, 
and flavor (Leal-Gutiérrez et al. 2019). A gene network analysis identified EVC2, ANXA10, and 
PKHD1 as potentially harboring multiple QTL for meat quality. The results of Leal-Gutiérrez et al. 
(2019) suggest that polymorphisms in structural proteins can modulate muscle fiber organization and 
postmortem proteolysis, directly impacting meat quality. 
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Table 2. Some of the published significant GWAS results for beef quality traits. 

Beef attribute Population Sample Size Genotyping platform Significant Genomic Regions/Genes Reference 
Tenderness Angus cattle 1833 Illumina BovineSNP50 

BeadChip 
CAST and CAPN1 for tenderness Mateescu et al., 2017 

Marbling score Simmental bulls 785 Illumina BovineHD 
BeadChip 

TUBB1 and RPL27A for marbling score Xia et al., 2017 

Warner-Bratzler Shear 
Force (WBSF), marbling, 
cooking loss, tenderness, 

juiciness, connective tissue 
and flavor 

Multibreed Angus-
Brahman steers 

672 GGP Bovine F-250 chip 
containing 221,077 SNPs 

LRP5, COL3A1, GRIP1, RECQL5, ANO2, NTF3, CD36, 
GPR98, MMRN2 and GOSR2. 

Leal-Gutiérrez et al., 
2019 

Marbling score, meat 
texture, meat color, and fat 

color 

Hanwoo steers 2110 Illumina Bovine SNP50 
BeadChip imputed to 

higher density of 15,536,497 
SNPs 

SFT2D3 (marbling) located on BTA2, ENPP2 (meat color) 
on BTA14, CPAMD8 on BTA7 and RHCG on BTA21 for fat 

color 

Bedhane et al., 2019 

Tenderness, marbling, and 
flavor. 

marbling, Warner-Bratzler 
shear force (WBSF), 

tenderness, and connective 
tissue 

Angus-sired population 
of steers, bulls and cows 

progeny 

2268 Bovine SNP50 Infinium II 
BeadChip imputed to 44.3 

million SNPs 

Tenderness: CAST and CAPN1; WBSF: CAPN1, AGAP1, 
ANXA10, CCDC80, Connective Tissue: UTRN, TMX1, 

TMEM170B; Marbling: EGR2, RNF130, C1QTNF8, SOX8, 
SSTR5, TEKT4, SLC20A2 

Leal-Gutiérrez et al., 
2020 

Meat color, purge loss, 
cooking loss, meat Ph, 
Warner-Bratzler shear 

force. 

Piedmontese young 
bulls 

1166 GeneSeek Genomic Profiler 
Bovine LD’ (GGP Bovine 

LD) array containing 30111 
SNPs 

SNPs on BTA4 (at ~112.51 Mb), BTA23 (at ~3.91 and ~7.25 
Mb), BTA24 (at ~19.87 Mb) and BTA25 (at ~11.96 Mb) for 
meat color. Water holding capacity: one SNP located on 

BTA9 (at ~48.33 Mb) for purge loss, and two SNPs located 
on BTA6 (at ~29.23 Mb) and on BTA10 (at ~14.57 Mb) for 
cooking loss, one SNP on BTA8 (at ~28.46 Mb) for meat 

pH. 

Pegolo et al., 2020 

Color, aroma, tenderness, 
juiciness, palatability 

Hanwoo steers 250 Affymetrix Bovine Axiom 
Array 640K SNP chip 

Three pleiotropic SNPs (AX-26703353 and AX-26742891 on 
BTA6, and AX-18624743 on BTA10) influenced multiple 

traits like tenderness, juiciness, and palatability 

Hyeonga et al., 2014 

Oleic acid (C18:1) content 
in the intramuscular fat 

Japanese Black cattle 160 BovineSNP50 BeadChip A total of 32 SNPs, including the FASN gene, had 
significant effects on C18:1 levels, with 30 SNPs located 

between 49 and 55 Mbp on chromosome 19 

Uemoto et al., 2011 
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Fatty acid composition Chinese Simmental beef 
cattle 

723 Illumina BovineHD 
BeadChip 

SNPs near the FASN gene on BTA19 for C14:0 and C14:1, 
and the ELOVL5 gene on BTA23 for C14:0. 

Zhu et al., 2017 

Marbling score, tenderness 
 

crossbred beef cattle 747 BovineSNP50 BeadChip One SNP (BTA-60019) on BTA25 accounted for 2.67% of 
the variation in tenderness. 

Lu et al., 2013 

Fatty acid composition Japanese Black cattle 461 BovineSNP50 BeadChip FASN gene on BTA19, one SNP for C18:1 on BTA23, two 
SNPs for C16:0 on BTA25, and two SNPs for C14:1 near 

the SCD gene on BTA26. 

Ishii et al., 2013 

Fatty acid composition Angus beef cattle, 1713 BovineSNP50 BeadChip FASN, SCD and THRSP genes Saatchi et al., 2013 
Intramuscular fat 

deposition and 
composition 

Nellore steers 585 Illumina BovineHD 
BeadChip 

SNPs near the FASN gene on BTA19 for C16:0 and C18:1 
fatty acids, and SNPs on BTA7 for intramuscular fat 

percentage 

Cesar et al., 2014 

Fatty acid composition American Black Angus 
calves 

2177 574,662 SNPs imputed from 
BovineSNP50 BeadChip and

BovineHD BeadChip 

Candidate genes FABP2, FASN, FADS2, FADS3 and SCD Dawood et al., 2021 

Fatty acid composition Nellore cattle 1057 Illumina BovineHD 
BeadChip 

SNPs near the FASN gene on BTA19 for C16:0 and C18:1 
and the SCD gene on BTA26 for C14:1 and C16:1., THRSP, 

ELOVL6 and FADS2 

Feitosa et al., 2021 

Eating quality traits: scores 
for tenderness, juiciness, 

flavor overall liking 

Steers, heifers, and bulls 
from Brahman, Angus, 
Hereford, Shorthorn, 

Holstein, Jersey, 
Belmont Red, Santa 

Gertrudis composite, 
crossbred unknown 

breed. 

1701 7,09,068 Imputed SNPs 
from the Illumina HD array 

Tenderness: CAPN1, CAST genes; juiciness and flavor: 
MOXD1 APOB, KIF13A 

Forutan et al., 2023 

Shear force, marbling score, 
intramuscular fat 

Nellore cattle 6910 young bulls 
with phenotypic 
information and 
23859 genotyped 

animals 

435,447 Imputed SNPs from 
multiple Bead chip assay 

densities 

Several candidate genes located on chromosomes BTA1, 2, 
5, 7, 9, 10, 19, and 25 for Shear force, on BTA4, 7, 10, 11, 12, 
13, 15, and 20 for marbling score, and BTA8, 9, 10, 12, 13, 

and 28 for intramuscular fat 

Arikawa et al., 2024 

BTA: Bovine chromosome. 
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Despite their remarkable success, GWAS have faced several challenges, including the need for 
larger sample sizes to detect variants with smaller effect sizes and the limited representation of 
diverse ancestral populations (Mills and Rahal, 2019). Additionally, many GWAS are descriptive 
rather than functionally identifying causal variants. Efforts have been made to increase the diversity 
of GWAS cohorts and to conduct meta-analyses combining data from multiple studies to enhance 
statistical power in human genetics (Visscher et al., 2017) and recently in beef cattle (Sanchez et al., 
2023). As GWAS continue to evolve, integrating complementary approaches such as functional 
genomics, epigenomics, and proteomics will be crucial for translating genetic associations into 
mechanistic insights and understanding the molecular mechanisms underlying beef quality traits. 

4. Genomic Prediction and Selection for Beef Quality 

Genomic selection (GS) which was first introduced by Lande and Thompson (2000) and 
popularized by Meuwissen et al. (2001) utilizes genome-wide marker data to predict so-called 
genome-enhanced or genomic estimated breeding values (GEBV) of the selection candidates. It 
involves developing prediction models from a training population with both genotypic and 
phenotypic data and then applying these models to predict the breeding values of individuals in a 
separate population based solely on their genotypic information. This approach enables more 
accurate selection of superior individuals at an early stage, accelerating the rate of genetic gain 
compared to traditional phenotypic selection. GS relies on capturing the effects of all QTL through 
linkage disequilibrium between markers and QTL, as well as leveraging genetic relationships 
between the training and prediction populations (Lee et al., 2017). Key factors influencing the 
accuracy of genomic predictions include the size and genetic diversity of the training population, the 
heritability of the trait, and the extent of relatedness between the training and prediction sets (Lee et 
al., 2017; Dekkers et al. 2021). GS holds the promise to be particularly beneficial in selecting for traits 
such as beef quality traits that are difficult and expensive to measure. 

Fernandes Júnior et al. (2022) highlighted the long generation interval of beef cattle and the 
importance of genomic selection in accelerating genetic gains for meat quality traits. Beef tenderness 
is a significant challenge in the Zebu beef cattle industry. Reported heritability estimates for meat 
tenderness ranged from 0.11 to 0.45 (Wheeler et al. 2010; Gordo et al., 2018). However, selection for 
meat quality has only recently (last 10–15 years) been implemented, and due to the long generation 
interval of beef cattle, substantial genetic improvement is yet to be realized. Additionally, this trait is 
costly and difficult to measure, and slaughterhouses do not offer differential payment for tender beef. 
Furthermore, breeding programs have focused more on improving meat quantity over quality 
attributes. Considering various methods (Bayesian ridge regression, Bayesian LASSO, Bayes A, Bayes 
B, and Bayes Cπ) and a training population of 426 Nellore animals, Magnabosco et al. (2016) reported 
prediction accuracies for beef tenderness ranging from 0.52 to 0.59 . Moderate accuracies for beef 
tenderness (0.57 to 0.60) have also been reported considering GBLUP, LASSO, and Bayes Cπ in a 
Nellore training population (n = 4,500 animals) (Fernandes Júnior et al., 2022). Accuracies between 
0.23 and 0.73 were also described by the authors for lipid content, marbling, and meat color (Table 
3). 

The fatty acid profile is an important indicator of beef quality and studies have revealed the 
possibility of genetic improvement of fatty acid composition by selection of both major candidate 
genes and genomic selection strategies in beef cattle (Chiaia et al., 2017; Magalhães et al. 2019). 

Table 3. Genomic prediction accuracies for beef quality traits1. 

Trait Accuracy N Reference 

Meat tenderness 0.52 to 0.59 427 Magnabosco et al. (2016) 

Meat tenderness 0.57 to 0.60 5062 Magalhães et al. (2019) 

Lipids 0.23 3812 Magalhães et al. (2019) 
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Marbling 0.32 5039 Magalhães et al. (2019) 

Carcass intramuscular fat % 0.20 1031 Johnston et al. (2012) 

Marbling score 0.08 to 0.56 4228 Bolormaa et al. (2013) 

a* color 0.40 5052 Magalhães et al. (2019) 

b* color 0.49 to 0.53 5046 Magalhães et al. (2019) 

L* color 0.68 to 0.73 5071 Magalhães et al. (2019) 

Sum of SFA 0.04 to 0.24 868 Chiaia et al. (2017) 

Sum of MUFA 0.05 to 0.13 868 Chiaia et al. (2017) 

Sum of PUFA 0.15 to 0.56 868 Chiaia et al. (2017) 
1 The table was partially adopted from Fernandes Júnior et al. (2022). a*, b* and L* color refer to the redness, 
yellowness, and lightness of the meat, respectively. Sum of SFA: Sum of Saturated Fatty Acids, Sum of MUFA : 
Sum of Monounsaturated Fatty Acids, Sum of PUFA: Sum of Polyunsaturated Fatty Acids. 

Forutan et al. (2023) discussed the use of genomic selection to improve meat quality in beef cattle. 
They highlighted the shift from producer-driven to consumer-driven beef production and the 
importance of consumer satisfaction in beef quality. Forutan et al. (2023) determined the most 
accurate method for predicting phenotypes of beef eating quality traits from genotypes and other 
factors such as carcass weight and days aged. They found that the accuracy of phenotype prediction 
for beef eating quality traits was sufficiently high that such predictions could be useful in predicting 
eating quality from samples taken from an animal/carcass as it enters the processing plant, to sort for 
markets with different quality. Forutan et al. (2023) emphasized that future predictions should be 
expanded to incorporate all the parameters in the Meat Standards Australia (MSA) models (Watson 
et al., 2008) as well as genotype information. 

It has been challenging to implement genomic selection in multi-breed tropical beef cattle 
populations. If commercial (often crossbred) animals could be used in the reference population for 
these genomic evaluations, this could allow for very large reference populations. In tropical beef 
systems, such animals often have no pedigree information. Hayes et al. (2023) addressed the 
challenges of implementing genomic selection in multi-breed tropical beef cattle populations, 
especially when no pedigree information is available. They evaluated potential models using marker 
heterozygosity and breed composition derived from genetic markers. The study demonstrated that 
moderately accurate genomic estimated breeding values (GEBV) can be calculated using these 
models, with BayesR resulting in the highest accuracy. 

The limitations, complexity, and loss of information associated with the multiple-step genomic 
selection approach (Legarra et al., 2009) have led to the development of single-step approaches 
(Aguilar et al., 2010; Christensen and Lund, 2010). Single-step genomic best linear unbiased 
prediction (ssGBLUP) is a widely used method that combines the pedigree-based numerator 
relationship matrix (A) and the genomic relationship matrix (G) to construct a combined relationship 
matrix (H). This allows information from genotyped and non-genotyped individuals to be used 
simultaneously in one step. The key advantage of single-step methods is that all available information 
(phenotypic, pedigree, and genomic) is used optimally, leading to greater accuracy and persistence 
of genomic predictions across generations. It avoids the need for separate evaluations for genotyped 
and non-genotyped individuals and accounts for potential pre-selection biases. Adekale et al. (2023) 
used the ssGBLUP approach and combined pedigree, genomic, and phenotypic data into one 
evaluation, and genomic evaluations increased the accuracy of estimated breeding values (EBVs) 
compared to pedigree-based evaluations alone. They demonstrated the successful implementation of 
single-step genomic evaluations for improving the accuracy of EBVs in German beef cattle breeding 
programs across multiple breeds (Adekale et al.,2023). 
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In summary, challenges in obtaining high-quality and adequately detailed phenotype data, 
along with frequently incomplete pedigree information, hamper traditional genetic evaluations for 
beef quality traits. The challenges in collecting beef quality data for genetic evaluations can be 
attributed to several factors, such as the complexity and variability of the traits being measured, the 
need for specialized equipment or expertise, and the time and resources required to gather data from 
a large number of individuals. Additionally, the lack of standardized protocols and the potential for 
human error in data collection can contribute to the challenges in obtaining high-quality phenotypic 
data for beef quality traits. Therefor, GS has the potential to substantially increase the genetic gain by 
increased selection accuracy at an early age (Montaldo et al. 2012; Stock and Reents, 2013). However, 
the heterogeneity of breeds, less developed breeding programs and infrastructures, the 
predominance of natural service, and the population substructures with frequent crossbreeding in 
commercial herds have restricted the widespread implementation of GS in beef cattle. Multi-breed 
genomic evaluation and single-step GS are the most recent developments in implementing GS in beef 
cattle breeding. Challenges include access to large phenotypic datasets across breeds/environments 
and low-cost genotyping for widespread adoption (Garrick, 2011). Extension of genomic predictions 
to beef quality traits influencing consumer satisfaction will further require a focus on the collection 
of reliable phenotypic information across the broad range of traits. Collecting such information will 
likely rely on public funding efforts. The novel high-throughput phenotyping technologies that 
facilitate the collection of phenotypes on large cohorts will also be invaluable (Garrick, 2011). 

5. Transcriptomics of Beef Quality 

Transcriptomics, one of the most developed fields in the post-genomic era, is the genome-wide 
study of the complete set of transcribed sequences, including messenger RNA (mRNA), ribosomal 
RNA (rRNA), transfer RNA (tRNA), and regulatory noncoding RNA in a tissue or a specific cell type 
at a given time or under a specific physiological condition. Transcriptomics focuses on RNA 
expression levels to reveal the molecular mechanisms involved in specific biological processes. High-
throughput sequencing technologies like bulk RNA-Seq and single-cell RNA-Seq (scRNA-Seq) have 
transformed transcriptomics research, including studies related to beef quality. Bulk RNA-Seq 
characterizes average gene expression profiles across samples, enabling the identification of 
differentially expressed genes and splicing variants associated with meat traits. scRNA-Seq captures 
cell-type-specific transcriptomes in muscle tissues, revealing cellular heterogeneity and facilitating 
the discovery of novel cell populations linked to meat quality traits. Together, these complementary 
high-throughput approaches provide comprehensive insights into transcriptome landscapes and 
accelerate the development of transcriptome resources for improving beef quality. In addition, the 
available transcriptomics datasets in cattle such as the transcriptome atlas (Fang et al., 2020) can serve 
as a primary source for biological interpretation and functional validation of transcriptomics studies 
addressing beef quality complexities. 

Intramuscular fat (IMF) deposition has been a central focus of numerous transcriptomics 
investigations aimed at elucidating the molecular determinants of beef quality (e.g., Liu et al., 2020; 
Yu et al., 2024). A significant proportion of transcriptome research in the realm of beef quality has 
concentrated on unraveling the genetic and regulatory mechanisms underlying variations in 
intramuscular fat content, given its pivotal role in influencing meat tenderness, juiciness, and flavor. 
The study by Yu et al. (2024) employed an integrated transcriptomics and metabolomics approach to 
elucidate the regulatory mechanisms underlying intramuscular fat deposition in three cattle breeds - 
Qinchuan, Nanyang, and Japanese Black. The Japanese Black breed had significantly higher IMF 
content compared to the Chinese indigenous breeds. Transcriptomic analysis revealed genes like 
ITGB1 were enriched in pathways related to fatty acid metabolism, suggesting their roles in 
regulating IMF content. 

Several key regulatory genes have been identified that influence adipocyte differentiation and 
intramuscular fat deposition, which are important for beef quality. For example, transcription factors 
like C/EBPα and PPARγ play crucial roles in promoting adipocyte development and fatty acid 
biosynthesis in beef cattle (Liu et al., 2020). Krüppel-like factors (KLFs) are a family of transcription 
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factors that regulate adipogenesis in cattle. KLFs can act as positive or negative regulators of 
adipocyte differentiation through crosstalk with C/EBP and PPARγ (Raza et al., 2022). Adipogenic 
genes like DGAT1, FABP3, FABP4, and FASN are upregulated during early adipocyte differentiation 
in cattle (Hausman et al., 2009). In summary, transcription factors like C/EBP, PPARγ and KLFs, fatty 
acid metabolism genes, and growth-related genes play key regulatory roles in controlling adipocyte 
differentiation and intramuscular fat deposition, which are crucial determinants of beef quality. 
Identifying genetic markers in these pathways can help improve meat quality through breeding 
programs. 

A recent study (Zhang et al., 2023) suggests that long non-coding RNAs (lncRNA) may have 
critical functional roles in intramuscular fat accumulation. Zhang et al. (2023) reported that a lncRNA 
named long non-coding RNA BNIP3 (lncBNIP3) inhibited the proliferation of bovine intramuscular 
preadipocytes through the cell cycle pathway, revealing potential new strategies for improving beef 
quality. 

Transcriptomics has been widely exploited to study the effects of diverse feeding systems, 
production practices, and rearing conditions on beef quality. Researchers have investigated the 
transcriptomic profiles associated with different dietary regimes, feed restriction and compensatory 
growth, production systems, and environmental stressors (heat, transportation). These studies aim 
to elucidate the molecular mechanisms underlying variations in beef quality traits influenced by 
various production factors. For example, the study by Zhao et al. (2012) investigated the effects of 
acute stress on beef tenderness and the underlying molecular mechanisms in Angus cattle using a 
functional genomics approach. They found that acute stress significantly increased beef tenderness, 
measured by the Warner-Bratzler shear force (WBSF). Microarray analysis identified 147 
differentially expressed genes (DEGs) between the stressed and control groups, with the majority of 
DEGs being downregulated in the stressed group. Functional annotation revealed that these DEGs 
were enriched in pathways related to muscle structure and integrity, including cytoskeletal 
organization, muscle contraction, and calcium signaling. Key DEGs included CAPN1, CAPN2, CAST, 
and CALM, which are involved in the calpain-calpastatin system regulating protein degradation and 
tenderization. The study also identified potential transcriptional regulators, such as NFKB1, CREB1, 
and FOXO3, that may mediate the stress response and influence beef tenderness. Overall, this 
functional genomics study provided insights into the molecular mechanisms by which acute stress 
improves beef tenderness, highlighting the role of the calpain system and related pathways (Zhao et 
al. (2012). Sweeney et al. (2016) identified 26 differentially expressed (DE) genes related to lipid 
metabolism between pasture-fed and concentrate-fed cattle. The expression of ALAD, EIF4EBP1 and 
NPNT could be used to classify the samples based on the production system with 95-100% accuracy 
(Sweeney et al., 2016). In addition, Deng et al. (2024) analyzed transcriptomes of cattle under varied 
restricted feeding conditions to study compensatory growth effects on meat quality. Compensatory 
growth was observed in the restricted groups, accompanied by alterations in meat quality traits like 
pH, cooking loss, and fat content compared to the ad libitum group. Transcriptome analysis 
identified DEGs unique to each feeding group as well as shared DEGs involved in pathways related 
to muscle growth, lipid metabolism, and nutrient utilization. Gene set enrichment analysis further 
highlighted pathways associated with compensatory growth, such as protein synthesis, cell cycle 
regulation, and energy metabolism. 

The study by Zhang et al. (2022) employed comparative transcriptomics to characterize region-
specific gene expression patterns across five different beef cuts (tenderloin, longissimus lumborum, 
rump, neck, chuck) from cattle. They identified a total of 80 region-specific genes (RSGs) and 25 
transcription factors regulating these RSGs. Through co-expression network analysis, seven region-
specific modules were detected, including three positively and four negatively correlated modules. 
Their analysis revealed 91 candidate genes associated with meat quality traits, enriched in pathways 
related to muscle fiber structure, fatty acid metabolism, amino acid metabolism, ion channel binding, 
protein processing, and energy production. Key genes identified included TNNI1, TNNT1 (muscle 
structure), SCD, LPL (fatty acids metabolism), ALDH2, IVD, ACADS (amino acids metabolism), 
PHPT1, SNTA1, SUMO1, CNBP (ion binding), CDC37, GAPDH, NRBP1 (protein processing), and 
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ATP8, COX8B, NDUFB6 (energy metabolism) (Zhang et al., 2022). The differential expression of these 
RSGs and candidate genes across beef cuts suggests they play a key role in determining region-
specific differences in nutrient profiles like fatty acid composition and amino acid content, as well as 
meat quality traits like tenderness and flavor. 

Transcriptomics can provide insights into the molecular mechanisms regulating beef quality 
traits such as water-holding capacity (WHC). In this regard, Du et al. (2021) investigated the 
molecular mechanisms underlying WHC in Chinese Simmental beef cattle through transcriptome 
profiling. The longissimus dorsi muscles from 49 cattle were evaluated for meat quality traits, 
including WHC, water loss, intramuscular fat content, shear force, and pH. Eight individuals with 
extreme WHC values were selected for RNA-sequencing analysis. A total of 865 DEGs were identified 
between the high and low WHC groups. These DEGs were involved in pathways related to muscle 
structure, energy metabolism, and protein folding. The study confirmed seven previously known 
genes (HSPA12A, HSPA13, PPARγ, MYL2, MYPN, TPI, and ATP2A1) and identified six novel 
candidate genes (ATP2B4, ACTN1, ITGAV, TGFBR1, THBS1, and TEK) potentially affecting WHC (Du 
et al., 2021). 

In summary, the recent high-throughput transcriptomic studies have identified differentially 
expressed genes and pathways involved in lipid metabolism, muscle fiber properties, energy 
production, and other processes that influence beef quality traits like tenderness, fatty acid 
composition, and nutrient content across different production systems, feeding regimes, and muscle 
cuts. This knowledge on the region-specific, breed-specific, and production system-specific gene 
expression patterns that regulate various aspects of beef quality can guide targeted breeding 
programs and optimized management practices to improve beef quality. 

6. Proteomics of Beef Quality 

Although transcriptomics tools such as RNA-seq offer a massively parallel approach to genome-
wide mRNA expression analysis, there is often no direct relationship between the in vivo 
concentration of an mRNA and its encoded protein. The association of protein expression levels with 
biological changes is one of the most fundamental approaches to understanding the functions of 
individual proteins in complex cellular processes. Proteomics, a large-scale study of proteins, is a 
biomarker approach for the identification and quantification of all proteins, the proteome, of a given 
biological system (cell, tissue, organ, biological fluid, or organism) at a specific point in time. Mass 
spectrometry (Rozanova et al., 2021) coupled with advanced separation techniques like two-
dimensional gel electrophoresis and liquid chromatography is the technique most often used for 
proteomics. In the context of beef quality, proteomics provides insights into the molecular 
mechanisms influencing meat tenderness, flavor, and other quality attributes. By analyzing the 
proteome of beef muscles, researchers can identify biomarkers associated with desirable traits, 
elucidate pathways regulating meat characteristics, and develop strategies to improve beef quality 
through breeding or processing methods. 

Over the last two decades, proteomics has been employed to decipher the underlying factors 
contributing to variation in beef tenderness. Table 4 summarizes some of the published proteomic 
studies on beef quality. Functional proteomic analysis was used to associate electrophoretic bands 
from the myofibrillar muscle fraction with meat tenderness to understand the mechanisms 
controlling tenderness (Zapata et al., 2009). Six significant electrophoretic bands were characterized 
and sequenced, revealing proteins involved in structural, metabolic, chaperone, and developmental 
functions (Zapata et al., 2009). 
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Table 4. Summary of some of the published proteomic studies on beef quality. 

Beef attribute Animal and Age at Slaughter Sample 
size 

Protein extracts Proteomics platform N. of identified 
proteins 

Reference 

Sensory Attributes 
(Tenderness, 

Chewiness, Stringiness, 
Flavor) 

Limousin-sired bulls, 16 months 34 Total LD muscle proteins LC-MS/MS 84 Zhu et al. (2023) 

pH, instrumental color, 
cooking loss, WBSF 

Immunocastrated F1 Montana-
Nellore, heifers + steers, 15 months 

16 Myofibrillar and sarcoplasmic proteins 2D-PAGE, MS (ESI-MS/MS) 
 

23 Severino et al. 
(2022) 

Tenderness (WBSF) 
Nellore cattle, steers, and bulls, 

27.7 months 155 Whole LD muscle proteins 
2DE and mass spectrometry, 

MALDI-TOF/TOF MS/MS 
 

40 Rosa et al. (2018) 

Tenderness (WBSF) Nellore bulls, 27 months  cytoplasmatic proteins 2D-PAGE, MS (ESI-MS/MS) 
 

29 Malheiros et al. 
(2021) 

pH, WBSF, WHC 
 

Angus × Simmental beef cattle 
(USDA Select; A maturity) 

8 Whole muscle protein Western blots, SDS-PAGE 14 Ma and Kim, 
(2020) 

Beef tenderness Angus Steers, 18 months 
 

6 Myofibrillar proteins 1DE + nano-LC-MS/MS 19 Zapata et al. 
(2009) 

Beef tenderness Angus Steers, 12 months 
 

19 High salt and low salt soluble proteins 1DE + LC-MS/MS 8 Zhao et al. (2014) 

Beef tenderness Angus Steers 
 

15 Myofibrillar & sarcoplasmic proteins 2D-DiGE + Linear Ion Trap MS 28 Malheiros et al. 
(2019) 

Beef tenderness and 
intramuscular fat 

Nellore Bulls+Steers 
 

12 Myofibrillar & sarcoplasmic proteins 2DE + MALDI-TOF/TOF 9 Silva et al. (2019) 

Beef tenderness 
Charolais x Aubrac Heifers, 33 ± 3 

months 
 

10 Myofibrillar & sarcoplasmic proteins Label free + Nano-LC-MS/MS 40 
Boudon et al. 

(2020) 

Beef tenderness Charolais Bulls, 17 months 
 

8 Myofibrillar and sarcoplasmic proteins 2DE + MALDI-TOF/TOF 23 Picard and 
Gagaoua (2020) 

Beef Tenderness and 
Marbling 

PDO Maine Anjou Cows, 67.4 
months 

 
188 Myofibrillar & sarcoplasmic proteins RPPA 10 

Gagaoua et al. 
(2020a) 
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Tenderness (shear 
force) Piedmontese bulls, 7 months 10 cytoplasmatic proteins SWATH-MS 43 

López-Pedrouso 
et al. (2021) 

Dark-cutting 
Asturiana de los Valles x Friesian 

yearling bulls, 14–15 months 
12 
 

Liquid isoelectric focusing (OFFGEL) 
pH range 4–7, and mass spectrometry Myofibrillar proteins 

5 
 

Fuente-Garcia et 
al. 2020 

Dark-cutting 
6 dark-cutters and 6 normal-pH 

beef, other information not visible 12 
Label-free quantitative proteomics 

using LC-MS/MS Total protein extract 
57 
 

Kiyimba et al. 
(2021) 

Dark-cutting 
 

Beef cattle, other information not 
visible 22 LD muscle mitochondrial proteins LC-MS/MS 12 Kiyimba et al. 

(2022) 
WHC: water-holding capacity, WBSF: Warner-Bratzler shear force, 2D-PAGE: Two-dimensional electrophoresis, MS: Mass spectrometry. ESI–MS/MS: Electrospray ionization-tandem mass 
spectrometry, SWATH-MS: Sequential Windowed Acquisition of All Theoretical Fragment Ion Mass Spectra, LC-MS/MS: Label-free shotgun proteomics combined with liquid chromatography-
tandem mass spectrometry. 
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An integromics study was performed to review the status of protein biomarker discovery 
targeting beef tenderness, gathering and proposing a comprehensive list of 124 putative protein 
biomarkers derived from 28 independent proteomics-based experiments (Gagaoua et al., 2020a). In 
the study of Gagaoua et al. (2020a) 33 robust candidates were identified as worthy of evaluation using 
targeted or untargeted data-independent acquisition proteomic methods. The study provides an 
overview of the interconnection of the main biological pathways impacting tenderness 
determination, including structural proteins, enzymes, heat shock proteins, and proteins involved in 
energy metabolism, response to oxidative stress, and apoptosis (Gagaoua et al., 2020a). Gagaoua et 
al. (2020a) identified MYOZ3 (Myozenin 3), BIN1 (Bridging Integrator-1), and OGN (Mimecan) as the 
primary proteins, which accounted for 79% of the variability in shear force values. 

Functional proteomic and interactome analysis was used to identify protein biomarkers and 
biological pathways associated with beef tenderness in Angus cattle (Zhao et al., 2014). The study 
compared the proteome of longissimus thoracis muscle samples from Angus cattle with divergent 
tenderness phenotypes. Several proteins involved in structural integrity, energy metabolism, stress 
response, and proteolysis were found to be differentially abundant between tender and tough meat 
samples. Interactome analysis revealed complex interactions among these proteins, providing 
insights into the molecular mechanisms underlying beef tenderness variation. The results of Zhao et 
al. (2014) suggest that a combination of protein biomarkers could be used to predict and improve beef 
tenderness in Angus cattle. In addition, proteomic techniques have been applied to investigate 
different degrees of meat tenderness in the Nellore breed, a Bos indicus breed of cattle (Rosa et al, 
2018; Malheiros et al., 2021). The results demonstrate that meat tenderness in Nellore cattle depends 
on the modulation and expression of a set of proteins. For example, the results of Rosa et al. (2018) 
demonstrated that polymorphisms at UOGCAST and CAPN4751 SNPs (located on CAST and 
CAPN1, respectively) are associated with the variability in the expression of proteins that are 
involved in muscle metabolism, and consequently affect meat tenderness. Malheiros et al. (2021) also 
identified proteins PFN1, LAP3, PRDX1, PRDX2, HSPD1, and ARHGDIA to be associated with beef 
tenderness. 

The study by López-Pedrouso et al. (2021) employed a quantitative proteomic approach using 
SWATH-MS (Sequential Window Acquisition of all Theoretical Mass Spectra) to investigate the 
molecular factors influencing beef tenderness in young Piedmontese bulls. They analyzed the 
proteome of Longissimus thoracis muscle samples from 10 animals, categorized as tough or tender 
based on Warner-Bratzler shear force measurements. The SWATH-MS analysis identified and 
quantified over 1,200 proteins, revealing significant differences in the abundance of 43 proteins 
between the tough and tender groups. Most of these differentially abundant proteins were associated 
with energy metabolism pathways. Functional analysis suggested that gluconeogenesis, glycolysis, 
and the citric acid cycle are key pathways influencing tenderness in Piedmontese beef, with proteins 
like ACO2, MDH1, MDH2, CS, FBP2, PFKL, LDHA, TPI1, and GAPDH/S playing crucial roles 
(López-Pedrouso et al.. 2021). 

Zhu et al. (2023) used label-free proteomics to identify molecular mechanisms and biomarkers 
related to beef sensory texture and flavor traits in early post-mortem muscle. The authors revealed 
34 putative protein biomarkers that discriminated between tender and tough meat groups, belonging 
to biological pathways associated with muscle structure, heat shock proteins, energy metabolism, 
response to oxidative stress, and apoptosis. Many of these proteins were previously identified as 
biomarkers of beef tenderness in an integromics data mining approach (Gagaoua et al., 2021a). Heat 
shock protein beta-6 (HSPB6) has been identified as being negatively correlated with tenderness and 
flavor and positively with stringiness (Zhu et al., 2023). It belongs to small heat shock proteins (HSPs) 
that are widely considered as useful biomarkers of beef tenderness, color, water-holding capacity, 
and other quality traits (Gagaoua et al, 2020a; 2020b; Ma, and Kim, 2020). 

To provide insights into the molecular mechanisms underlying dark-cutting beef and identify 
potential biomarkers for predicting and managing this meat quality defect, Gagaoua et al. (2021b) 
conducted an integromics meta-analysis of proteomics data from eight studies on dark-cutting beef. 
The authors curated a list of 130 proteins that differed between dark-cutting and normal-pH beef and 
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analyzed them using bioinformatics tools. Key pathways involved in dark-cutting beef development 
included muscle structure, heat shock proteins, energy metabolism, oxidative stress response, and 
apoptosis. Also, Kiyimba et al. (2022) compared the mitochondrial proteomes of dark-cutting and 
normal-pH beef using LC-MS/MS proteomics and found that dark-cutting beef has up-regulation of 
proteins involved in mitochondrial biogenesis, oxidative phosphorylation, intracellular protein 
transport, and calcium homeostasis. Mitochondria isolated from dark-cutting beef showed greater 
mitochondrial complex II respiration and uncoupled oxidative phosphorylation, but no differences 
in membrane integrity or respiration at complexes I and IV. These results indicate that dark-cutting 
beef has greater mitochondrial biogenesis proteins, increasing mitochondrial content and 
contributing to the dark color. The study provides insights into the mechanistic basis of dark-cutting 
beef and identifies potential candidate markers for detecting pre-slaughter events leading to this meat 
quality defect. 

In summary, proteomics has been extensively applied to study the molecular basis of various 
beef quality traits, including tenderness, marbling, color, water-holding capacity, and dark-cutting 
beef. These studies have utilized advanced proteomics techniques, such as 2D-PAGE, mass 
spectrometry, and bioinformatics, to identify differentially expressed proteins and their associated 
biological pathways. Key proteins and pathways linked to meat quality include those involved in 
glycolysis, oxidative phosphorylation, the tricarboxylic acid (TCA) cycle, muscle structure, heat 
shock response, energy metabolism, oxidative stress, and apoptosis. Proteomics has provided 
valuable insights into post-mortem changes in muscle proteins and their relation to the development 
of meat quality traits, as well as identified potential biomarkers for predicting and managing beef 
quality. Future research should focus on integrating proteomic analyses with other omics 
approaches, such as transcriptomics and metabolomics, to gain a more comprehensive view of the 
regulatory networks influencing beef quality. 

7. Metabolomics of Beef Quality 

Metabolomics is a valuable analytical approach for studying the small molecule metabolites 
present in biological samples including beef and meat products. It utilizes two major platforms: mass 
spectrometry (MS) and nuclear magnetic resonance (NMR) to comprehensively profile the metabolite 
composition. The resulting metabolomic data provide insights into the metabolic state of the beef 
samples, enabling the discovery of biomarkers associated with desirable beef quality traits like 
tenderness, flavor, and shelf-life. Additionally, metabolomics elucidates the underlying biochemical 
pathways that produce key metabolites influencing beef quality characteristics. Metabolomic profile 
data can also be used to explore the genes responsible for specific metabolite-featured phenotypes in 
genome-wide association studies. Therefore, by associating metabolite profiles with sensory 
evaluation, production conditions, and postmortem changes, metabolomics offers a powerful tool for 
monitoring and predicting beef quality, optimizing animal breeding, and feeding strategies, and 
improving meat processing methods. Some of the published applications of metabolomics in 
assessing beef quality are summarized in Table 5. 
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Table 5. Summary of some of the applications of metabolomics in beef quality analysis. 

Beef attribute Analytical Techniques Multivariate analysis 
Techniques 

Metabolites Reference 

Sensory evaluation of beef 
taste 

GC/MS PCA Cold storage led to increased free fatty acids and 
Glutamic acid, and decreased creatinine and inosinic acid 

Ueda et al. (2024) 

Meat color, pH, Water holding 
capacity, Shear force, Texture 

NMR PCA, OPLS-DA Beef quality differences related to acetylcholine, valine, 
adenine, leucine, phosphocreatine, β-hydroxypyruvate, ethanol, 

adenosine diphosphate, creatine, acetylcholine, and lactate 

Phoemchalard et al. 
(2022) 

Beef fat color LC-MS PCA, PLS-DA 3-hydroxyoctanoic acid, anethofuran, 9,10-DiHODE, 
furanoeremophilane, pregeijerene, N-glycolylneuraminic acid, 

and glycocholic acid were identified as potential biomarkers for 
differentiating fat color 

Tian et al. (2023) 

Marbling NMR PLS-DA Carnosine, creatine, glucose, and lactate were associated with 
higher marbling 

Jeong et al. (2020) 

Marbling Mass spectrometry-
based untargeted and 
targeted metabolomics 

ASCA Unconjugated-BA and Glucocorticoids were associated with 
marbling 

Artegoitia et al. (2022) 

Aroma of cooked beef SPME and GC–MS 
 

Linear and logarithmic 
regression model 

Benzeneacetaldehyde and Heterocyclic compounds Watanabe et al. (2015) 

Meat freshness NMR PCA, PLS 60 identified metabolites, metabolomics classified meat samples 
according to their storage time 

Castejón et al. (2015) 

Intramuscular fat NMR PCA, OPLS-DA The unsaturation degree of triacylglycerol was estimated by the 
1H NMR spectra and was correlated with the content ratio of 
unsaturated fatty acids and the melting point of IMF. Leucine 

and creatine were found as biomarkers, positively and 
negatively correlated with aging duration, respectively. 

Kodani et al. (2017) 

NMR: Magnetic resonance spectroscopy, PCA: Principal Component Analysis, PLS-DA: Partial least squares discriminant analysis, SPME: Solid-phase microextraction, and GC–MS: Gas 
chromatography-mass spectrometry, LC-MS: Liquid chromatography-mass spectrometry, OPLS-DA: Orthogonal signal correction–projection to latent structures–discriminant analysis, ASCA: 
ANOVA-simultaneous component analysis. 
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Muroya et al. (2020) introduced the concept of “MEATabolomics” - the application of 
metabolomics to study skeletal muscle and meat in domestic animals. Muscle metabolites, as the 
major phenotypic components, determine the physiological characteristics of muscle and meat 
quality traits. Since raw and cooked meat are rich in flavor-associated volatile compounds and 
precursors (Muroya et al., 2020), MEATabolomics studies in combination with sensory evaluation 
can be used to explore biomarker candidates associated with eating quality of beef. 

Jeong et al. (2020) used NMR spectroscopy to investigate the meat metabolite profiles related to 
differences in beef quality attributes, specifically comparing high-marbled and low-marbled groups. 
High-marbled meat had higher levels of taste compounds compared to low-marbled meat. 
Metabolite analysis revealed differences between the two marbling groups based on partial least 
square discriminant analysis (PLS-DA). Metabolites identified by PLS-DA, such as N, N-
dimethylglycine, creatine, lactate, carnosine, carnitine, sn-glycero-3-phosphocholine, betaine, 
glycine, glucose, alanine, tryptophan, methionine, taurine, and tyrosine, were directly linked to 
marbling groups. These potential markers were involved in beef taste-related pathways, including 
carbohydrate and amino acid metabolism. The findings of Jeong et al. (2020) provide an important 
understanding of the roles of taste-related metabolites in beef quality attributes and suggest that 
metabolomics analysis of taste compounds and meat quality may be a powerful method for 
evaluating beef quality. 

Zhang et al. (2021) described recent applications of metabolomics in evaluating meat freshness, 
composition, authenticity, and origin, highlighting its potential as a powerful tool for meat quality 
assessment. They discussed the challenges faced, such as sample complexity, lack of specialized 
databases, and the need for harmonized methods. Finally, they outlined future trends, including the 
development of standardized protocols, meat metabolome databases, and advanced data analysis 
tools to fully exploit the potential of metabolomics in meat science (Zhang et al., 2021). Moreover, 
Ramanathan et al. (2023) provided a recent comprehensive overview of the current state of 
metabolomics research in meat quality and highlighted the immense potential of metabolomics in 
advancing meat quality research and its practical applications in the meat industry. 

Yu et al. (2024) compared the metabolome of two Chinese indigenous cattle breeds (Qinchuan 
and Nanyang), and Japanese Black cattle. They reported that the Japanese Black breed had 
significantly higher IMF content compared to the Chinese indigenous breeds. Metabolomic analysis 
showed higher levels of monounsaturated and polyunsaturated fatty acids, as well as amino acids 
like creatine, lysine, and glutamine in the Japanese Black breed, contributing to better flavor 
formation (Yu et al., 2024). 

Metabolomics, especially focusing on volatile compounds, has changed our understanding of 
beef aroma and flavor. Using techniques like gas chromatography-mass spectrometry (GC-MS), 
researchers can quantify and correlate metabolites with flavor preferences. This analysis identifies 
key flavor compounds and their precursors, revealing mechanisms like the Maillard reaction, thermal 
lipid degradation, and oxidation. In beef, metabolomics shows that flavor results from interactions 
between aromatics and taste components, with meaty and roasted notes from Maillard reactions 
(Diez-Simon et al. 2019). This knowledge helps food scientists predict and manipulate flavor profiles, 
enhancing product development and quality control. 

Castejón et al. (2015) investigated the potential of using metabolomics analysis of meat exudate 
to evaluate beef conservation and aging. These researchers analyzed the exudate from beef samples 
stored at different temperatures and aging times using NMR spectroscopy. They found that the 
metabolite profile of the exudate changed significantly with storage temperature and aging time, 
allowing them to discriminate between fresh and aged meat samples. Specific metabolites like 
creatine, carnosine, and anserine were identified as potential biomarkers for monitoring meat aging 
and conservation, demonstrating that metabolomics of meat exudate could be a rapid and non-
destructive approach to assessing beef quality during storage and aging processes (Castejón et al., 
2015). 

Tian et al. (2023) performed a comparative metabolomics analysis on subcutaneous fat samples 
from crossbred cattle with white and yellow fat color. Through liquid chromatography-mass 
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spectrometry, 235 significant metabolites across five categories were identified, with principal 
component analysis showing distinct clustering of white and yellow fat samples. White fat exhibited 
greater metabolite variation, with 163 metabolites having higher and 72 having lower relative 
abundance compared to yellow fat. Notably, 3-hydroxyoctanoic acid, anethofuran, 9,10-DiHODE, 
furanoeremophilane, pregeijerene, N-glycolylneuraminic acid, and glycocholic acid were identified 
as potential biomarkers for differentiating fat color. The findings provide insights into the metabolic 
mechanisms underlying fat color variation and suggest potential biomarkers for selective breeding 
programs aimed at achieving desired beef fat color traits. 

Next-generation phenotyping (NGP) using metabolomics is becoming a fundamental approach 
to refine trait description and improve the prediction of breeding values aligned with beef industry 
objectives. For example, non-invasive urinary biomarkers have been identified for beef production 
efficiency and carcass quality traits (Artegoitia et al. 2022). These biomarkers are indicative of various 
aspects of beef quality, such as taste, and appearance that can be used to predict and improve beef 
quality through targeted breeding and nutrition. 

In summary, metabolomics has emerged as a powerful tool for profiling meat quality attributes, 
such as flavor, color, and texture. Recent studies have successfully applied metabolomics to identify 
biomarkers related to meat quality and taste, using techniques like nuclear magnetic resonance 
spectroscopy and mass spectrometry. However, challenges remain in correlating metabolites to 
specific meat quality traits and elucidating the underlying mechanisms (Zhang et al., 2021; 
Ramanathan et al.,2023). Future research should focus on developing generic validation schemes for 
metabolomics-based meat quality control, as well as integrating metabolomics with other omics 
technologies to provide a more holistic understanding of beef quality. 

8. Challenges and Future Directions 

While a wide range of omics technologies have been applied to study beef quality traits, several 
challenges remain in fully harnessing their potential: 

-Integrating Multi-Omics Data: Combining genomics, transcriptomics, proteomics, and 
metabolomics data to elucidate the complex biological networks underlying meat quality is a 
challenging task that requires robust bioinformatic pipelines and systems biology approaches. 

-Implementing Integromics: Integromics, which uses advanced computational and statistical 
methods to integrate diverse data types, offers a promising platform for advancing beef quality 
research. However, the implementation of an integromics approach is still in its early stages and 
requires further development and validation. 

-Identifying Causal Functional Mutations: The identification and validation of causal functional 
mutations through gene editing techniques is crucial for precise genomic selection and breeding 
programs. While gene editing technologies like CRISPR/Cas9 have been developed, their application 
in beef quality research is still limited. 

-Overcoming Challenges through Interdisciplinary Research: Addressing the challenges in 
applying omics technologies to beef quality research will require interdisciplinary research efforts 
and public-private partnerships. The lack of collaboration between different disciplines and 
stakeholders has hindered progress in this field. 

-Translating Multi-Omics Findings into Practical Applications: While multi-omics findings have 
the potential to improve breeding strategies and genomic predictions for beef quality, the translation 
of these findings into practical applications is still limited. More research is needed to bridge the gap 
between research and industry. 

Despite these challenges, there have been notable successes, such as the identification of specific 
genetic variants that have been incorporated into breeding strategies, leading to measurable 
improvements in meat quality. Future research should focus on refining these techniques, improving 
data integration methods, and addressing the economic feasibility of implementing functional 
genomics in commercial cattle breeding. By doing so, we can better harness the potential of these 
advanced technologies to meet the growing demand for high-quality beef. 
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