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Abstract: Consumer perception of beef is heavily influenced by overall meat quality, a critical factor
in the cattle industry. Genomics has the potential to improve important beef quality traits and
identify genetic markers and causal variants associated with these traits by genomic selection (GS),
and genome-wide association studies (GWAS) approaches. Transcriptomics, proteomics, and
metabolomics provide insights into underlying genetic mechanisms by identifying differentially
expressed genes, proteins, and metabolic pathways linked to quality traits, complementing GWAS
data. Leveraging these functional genomics techniques can optimize beef cattle breeding for
enhanced quality traits to meet high-quality beef demand. This paper provides a comprehensive
overview of the current state of applications of the omics technologies in uncovering functional
variants underlying beef quality complexities. By highlighting the latest findings from GWAS, GS,
transcriptomics, proteomics, and metabolomics studies, this work seeks to serve as a valuable
resource fostering a deeper understanding of the complex relationships between genetics, gene
expression, protein dynamics, and metabolic pathways in shaping beef quality.

Keywords: beef cattle; functional genomics; genomic selection; GWAS; meat quality; molecular
breeding; omics technologies

1. Introduction

Beef quality is defined by several traits that influence the eating experience and desirability of
the meat. Key traits include palatability factors such as tenderness, juiciness, and flavor which
directly impact consumer satisfaction (Esmailizadeh et al., 2011). Tenderness refers to the ease of
chewing and breaking down the meat, while juiciness is the moisture released during mastication
(Purslow et al., 2012). Flavor encompasses the combined sensations of taste and aroma that make the
meat appealing (Mottram, 1998). Visual characteristics like meat color, fat color, and marbling also
play a crucial role in perceived quality (Killinger et al., 2004). The bright, desirable lean color, white
fat color, and intramuscular fat distribution (marbling) enhance the appearance and contribute to
flavor and juiciness (Hocquette et al., 2010). Other traits like water-holding capacity, pH, and
intramuscular fat content further influence overall quality, shelf life, and sensory properties (Pethick
etal., 2011; Warner et al., 2010). This complex array of beef quality traits is shaped by the relationships
between genetic factors, breed influences, nutrition, management practices, and post-harvest
handling procedures (Liu et al., 2022). These factors make beef quality a challenging target for
traditional breeding strategies. However, the availability of the high-quality bovine genome
assembly coupled with the advent of high-throughput sequencing technologies has paved the way
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for the integration of omics technologies, encompassing genomics, transcriptomics, proteomics, and
metabolomics, for unraveling the complex mechanisms underlying beef quality.

Multi-omics approach has the power to resolve the meat quality research into an image of what
is being expressed, translated and produced, which incorporates technologies characterizing various
biological products, including DNA (genomics), RNA (transcriptomics), protein (proteomics) and
metabolites (metabolomics) in biological samples. Genomic approaches, such as genome-wide
association studies (GWAS) and genomic selection (GS), have provided valuable insights into the
genetic architecture of beef quality traits. While these methods have identified several genetic
markers and regions associated with these traits, their practical application in enhancing beef quality
through selective breeding remains limited and requires further research and validation. These
techniques enable the identification and utilization of functional variants associated with desirable
phenotypes, thereby accelerating genetic improvement, and enhancing the efficiency of breeding
programs. Transcriptomics, which examines the expression patterns of genes, provides insights into
the molecular pathways and regulatory networks governing muscle development, metabolism, and
meat quality attributes. Proteomics, on the other hand, offers a comprehensive view of the functional
proteins involved in these processes, elucidating their roles and interactions. Complementing these
approaches, metabolomics unveils the complex metabolic landscapes that shape the biochemical
composition and sensory properties of beef. This article aims to summarize the latest findings from
these advanced scientific approaches in beef quality genetics. By exploring research from GWAS,
genomic selection, transcriptomics, proteomics, and metabolomics, we seek to provide a
comprehensive understanding of how genetic factors, gene expression, proteins, and metabolic
processes influence beef quality. The goal is to offer valuable insights for researchers and industry
professionals, potentially improving breeding strategies and production methods to enhance beef

quality.
2. Functional Mutations and Commercialized DNA Tests for Beef Quality

At the beginning of the genomics era during the 1980s, the primary application of this
technology in livestock breeding revolved around developing standalone genome marker tests,
particularly for identifying inherited diseases and parentage testing. However, as the field
progressed, the focus shifted towards integrating quantitative and genomic approaches to identify
genomic variants with substantial effects on desirable traits of interest. These DNA tests were then
leveraged in breeding programs, enabling breeders to make more informed decisions by selecting
animals with favorable genetic profiles for specific traits, thereby accelerating genetic improvement
in livestock populations.

Kostusiak et al. (2023) provided a comprehensive review of the effects of single nucleotide
polymorphisms (SNPs) in four key genes - myostatin (MSTN), thyroglobulin 5 (TG5), p-calpain
(CAPNTI), and calpastatin (CAST) - on beef cattle productivity and meat quality traits. MSTN is a
negative regulator of muscle growth. Inactivating mutations or suppression of the MSTN gene leads
to a "double-muscled" phenotype with increased muscle mass and reduced fat deposition in cattle
breeds like Belgian Blue and Piedmontese (Fiems, 2012). Meat from MSTN-null cattle exhibits
improved tenderness across all cuts, including typically tougher cuts like chuck and round. This is
likely due to increased muscle fiber hyperplasia rather than just hypertrophy (Aiello et al., 2018).
While inactivating the MSTN gene can dramatically increase muscle yields and tenderness in beef
cattle, it comes at the cost of reduced marbling and juiciness. An optimal approach leverages MSTN
alongside other genes to strike a balance between production efficiency, leanness, and eating quality
traits like tenderness and flavor. Esmailizadeh et al. (2008) investigated the effects of a specific single
nucleotide polymorphism (SNP) in the myostatin (MSTN) gene, resulting in a phenylalanine to
leucine substitution at position 94 (F94L), on various beef production and quality traits. The F94L
variant of MSTN was found to provide a more desirable intermediate phenotype than the severe
double-muscling caused by complete MSTN inactivation, offering improved meat yield while
maintaining acceptable meat quality traits like tenderness (Esmailizadeh et al., 2008).
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Polymorphisms in the thyroglobulin (TG5) gene can significantly impact beef quality,
particularly in terms of intramuscular fat (IMF) content and marbling. The TG5 gene is located on
bovine chromosome 14 and encodes the thyroglobulin protein, which plays a role in fat metabolism.
Wood et al. (2006), in their meta-analysis, found that there was a positive association between the
polymorphic forms of TG5 and the degree of meat marbling. A specific single nucleotide
polymorphism (SNP) in the 5' untranslated region of TGS, characterized by a C>T transition at
position -422 (X05380.1:g.-422C>T), has been widely studied (Kostusiak et al. (2023). The TG5 C allele
has been associated with higher levels of IMF and increased marbling scores in beef cattle across
multiple breeds (Wood et al.,2006). Higher IMF and marbling are desirable traits as they enhance beef
flavor, juiciness, and tenderness, improving overall eating quality and palatability. However, some
consumers, especially those in developed countries, prefer leaner beef with lower fat content for
health reasons, creating a conflict with the preference for marbled, flavorful meat in blind taste tests.

CAPN1 and CAST genes encode the calpain and calpastatin enzymes that regulate protein
degradation and meat tenderization post-mortem. CAPN1 encodes the enzyme p-calpain, which is a
calcium-dependent cysteine protease that breaks down muscle proteins during the meat
tenderization process after slaughter. CAST encodes the protein calpastatin, which is an endogenous
inhibitor of p-calpain and other calpain enzymes, thereby modulating the extent of protein
degradation and meat tenderization. Studies across multiple breeds have validated SNP markers in
CAPNI1 (e.g. 316, 530, 4558, 4684) and CAST (e.g. 282, 589) as useful for marker-assisted selection to
improve beef tenderness (Morris et al, 2006; Sun et al., 2018; Lee et al., 2019).

Polymorphisms in CAPN1 that beneficially associate with beef tenderness are reported to
antagonistically associate with calving day in beef heifers (Tait et al., 2018) and post-partum interval
to estrus in beef cows (Collis et al., 2012). However, the results of Cushman et al. (2021) indicate that
molecular breeding for slice shear force, calculated based on CAPNI and calpastatin (CAST)
genotypes, had minimal or no antagonistic association with reproductive performance in heifers.
Table 1 lists some of the commercially available DNA tests for beef quality, although there are more
tests in the literature than are being offered to farmers.

Table 1. A list of some of the commercialized DNA tests for beef quality.

Gene symbol Beef attribute Discovered by Commercialized by
TG Marbling CSIRO/MLA Genetic Solutions Pty Ltd
CAST Meat tenderness CSIRO/MLA/Beef CRC Genetic Solutions Pty Ltd
CAPN1 Meat tenderness USDA/AgResearch NZ Open
GH1 Marbling NIAS, Japan Prescribe Genomics CO
LEP Marbling/fat traits Univ. of Saskatchewan Merial
Multiple tests Marbling - Genetic Solutions Pty Ltd
CAPN3 Meat tenderness CSIRO/MLA/Beef CRC Genetic Solutions Pty Ltd
SCD Fatty acid composition Kobe University Prescribe Genomics CO

The contents of the table were adopted from Hocquette et al. (2007) and adjusted for beef quality traits.

The integration of functional mutations in genes such as MSTN, TG5, CAPN1, and CAST has led
to the development of commercial DNA tests that enhance beef quality traits like tenderness,
marbling, and flavor. However, future research should focus on optimizing these genetic
advancements alongside animal welfare and environmental factors to ensure sustainable production.
Additionally, exploring the interactions between genetic traits and management practices will be
crucial for fully realizing the potential of these genomic tools in the beef industry.

3. Genome-Wide Association Studies for Beef Quality Traits

Initial genome-wide scans to locate quantitative trait loci (QTL) for beef quality traits were based
on linkage analysis within families. For example, Esmailizadeh et al. (2011) reported a whole-genome
scan to detect QTL for meat quality traits like tenderness (measured as shear force on two muscles),
meat color, pH, and cooking loss, as well as metabolic traits in cattle populations from New Zealand
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and Australia. The study used backcross calves with Jersey and Limousin backgrounds, with the New
Zealand cattle reared on pasture and the Australian cattle finished on grain. A total of 18 significant
QTL for meat quality traits and 11 significant QTL for metabolic traits were detected across multiple
chromosomes. Genome-wide association studies (GWAS), available since 2005 in human genetics,
are based on linkage disequilibrium at the level of a population and involve scanning the entire
genome for single nucleotide polymorphisms (SNPs) that are statistically associated with a particular
phenotype of interest. GWAS have been successful in the identification of numerous genetic variants
associated with complex traits for uncovering novel biological pathways and elucidating the genetic
architecture of various traits (Visscher, et al., 2017).

Genome association studies provide knowledge about the genetic architecture of beef-related
traits that allow linking the target phenotype to genomic information aiding breeding decisions.
GWAS in cattle breeds like Hanwoo (Korean native cattle) have identified 107 significant SNPs on
chromosome 14 and candidate genes associated with economically important beef quality traits such
as marbling, meat color, texture, and fat color (Bedhane et al. 2019). Nearby genes like SFT2 Domain
Containing 3 (SFT2D3) and Ectonucleotide Pyrophosphatase/Phosphodiesterase 2 (ENPP2) have
been highlighted as potential candidate genes affecting beef traits such as marbling and meat color
(Bedhane et al., 2019).

GWAS results from the study of Forutan et al. (2023) implicate some interesting candidate genes
(KIF13A and APOB) for eating quality. Kinesin Family 13A (KIF13A) is in a pathway associated with
skeletal muscle cells that increase insulin signaling, glucose uptake, and maximal oxygen
consumption (Massart et al.,, 2021). Apolipoprotein B (APOB) is a building block of a type of
lipoprotein called a chylomicron. As food is digested, chylomicrons form to carry fat and cholesterol
from the intestine into the bloodstream. (Forutan et al., 2023).

A recent study (Arikawa et al., 2024) performed genome-wide association analyses on Nellore
cattle to identify genomic regions and candidate genes influencing carcass traits and meat quality
traits (shear force, marbling score, intramuscular fat content). The top 10 genomic regions explained
8-22% of the additive genetic variance for these traits, harboring a total of 119-155 positional
candidate genes. Relevant genes like CAST, PLAG1, XKR4, PLAGL2, AQP3/AQP7, MYLK2, WWOX,
CARTPT, and PLA2G16 are involved in physiological processes affecting muscle growth, lipid
metabolism, adipose tissue development, and signaling pathways like the insulin/IGF-1 pathway.

Mateescu et al. (2017) explored the complexity of meat quality, by combining GWAS with gene
network analysis to identify genes and pathways associated with meat quality traits like tenderness,
juiciness, and flavor in Angus cattle. They revealed several modules of co-expressed genes associated
with meat quality traits. Key genes identified included CAST and CAPN1 for tenderness, FASN and
SCD for marbling, and MYOZ1, MYOZ3, and CASQ1 for color score. The study highlights the utility
of network analysis for identifying candidate genes from GWAS results in beef cattle. Several beef
cattle studies conducted GWAS to identify genomic regions associated with marbling score,
intramuscular fat deposition, and fatty acid composition and revealed several significant SNPs and
candidate genes on different chromosomes associated with specific fatty acids and fat content (Table
2).

Genome-wide association and gene enrichment analyses on 672 steers from a multibreed Angus-
Brahman beef cattle population have identified membrane anchoring and structural proteins (e.g.
ANO2, NTF3, EVC2, ANXA10, PALLD, PKHD1) associated with meat quality traits like tenderness,
marbling, cooking loss, and sensory panel ratings for tenderness, juiciness, connective tissue amount,
and flavor (Leal-Gutiérrez et al. 2019). A gene network analysis identified EVC2, ANXA10, and
PKHD1 as potentially harboring multiple QTL for meat quality. The results of Leal-Gutiérrez et al.
(2019) suggest that polymorphisms in structural proteins can modulate muscle fiber organization and
postmortem proteolysis, directly impacting meat quality.
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Table 2. Some of the published significant GWAS results for beef quality traits.

Beef attribute Population Sample Size Genotyping platform Significant Genomic Regions/Genes Reference
Tenderness Angus cattle 1833 Illumina BovineSNP50 CAST and CAPNI1 for tenderness Mateescu et al., 2017
BeadChip
Marbling score Simmental bulls 785 INlumina BovineHD TUBB1 and RPL27A for marbling score Xia et al., 2017
BeadChip
Warner-Bratzler Shear Multibreed Angus- 672 GGP Bovine F-250 chip LRP5, COL3A1, GRIP1, RECQL5, ANO2, NTF3, CD36, Leal-Gutiérrez et al.,
Force (WBSF), marbling, Brahman steers containing 221,077 SNPs GPR98, MMRN?2 and GOSR2. 2019
cooking loss, tenderness,
juiciness, connective tissue
and flavor
Marbling score, meat Hanwoo steers 2110 [llumina Bovine SNP50  SFT2D3 (marbling) located on BTA2, ENPP2 (meat color) Bedhane et al., 2019
texture, meat color, and fat BeadChip imputed to  on BTA14, CPAMDS on BTA7 and RHCG on BTAZ21 for fat
color higher density of 15,536,497 color
SNPs
Tenderness, marbling, and Angus-sired population 2268 Bovine SNP50 Infinium II  Tenderness: CAST and CAPN1; WBSF: CAPN1, AGAP1, Leal-Gutiérrez et al.,
flavor. of steers, bulls and cows BeadChip imputed to 443  ANXA10, CCDC80, Connective Tissue: UTRN, TMX1, 2020
marbling, Warner-Bratzler progeny million SNPs TMEM170B; Marbling: EGR2, RNF130, CIQTNFS, SOXS,
shear force (WBSEF), SSTR5, TEKT4, SLC20A2
tenderness, and connective
tissue
Meat color, purge loss, Piedmontese young 1166 GeneSeek Genomic Profiler SNPs on BTA4 (at ~112.51 Mb), BTA23 (at ~3.91 and ~7.25  Pegolo et al., 2020
cooking loss, meat Ph, bulls Bovine LD’ (GGP Bovine Mb), BTA24 (at ~19.87 Mb) and BTA25 (at ~11.96 Mb) for
Warner-Bratzler shear LD) array containing 30111 meat color. Water holding capacity: one SNP located on
force. SNPs BTA9 (at ~48.33 Mb) for purge loss, and two SNPs located
on BTA6 (at ~29.23 Mb) and on BTA10 (at ~14.57 Mb) for
cooking loss, one SNP on BTAS8 (at ~28.46 Mb) for meat
pH.
Color, aroma, tenderness, Hanwoo steers 250 Affymetrix Bovine Axiom Three pleiotropic SNPs (AX-26703353 and AX-26742891 on Hyeonga et al., 2014
juiciness, palatability Array 640K SNP chip BTA6, and AX-18624743 on BTA10) influenced multiple
traits like tenderness, juiciness, and palatability
Oleic acid (C18:1) content  Japanese Black cattle 160 BovineSNP50 BeadChip A total of 32 SNPs, including the FASN gene, had Uemoto et al., 2011

in the intramuscular fat

significant effects on C18:1 levels, with 30 SNPs located
between 49 and 55 Mbp on chromosome 19

Y
®
E
=
=t
2
g
Q@
=
=
2
=
D
©
=
=t
J
g
=
Z
o
—
T
m
m
e
2y
m
<
m
=
m
O
o
o
)
D
=
[y
(&)
>
=
«Q
c
n
—
N
(@]
N
~

TA'BE0T 80tc0csiuLidal



https://doi.org/10.20944/preprints202408.1038.v1

Fatty acid composition =~ Chinese Simmental beef 723 [NMumina BovineHD SNPs near the FASN gene on BTA19 for C14:0 and C14:1, Zhu et al., 2017
cattle BeadChip and the ELOVL5 gene on BTA23 for C14:0.
Marbling score, tenderness crossbred beef cattle 747 BovineSNP50 BeadChip ~ One SNP (BTA-60019) on BTA25 accounted for 2.67% of Luetal., 2013
the variation in tenderness.
Fatty acid composition Japanese Black cattle 461 BovineSNP50 BeadChip  FASN gene on BTA19, one SNP for C18:1 on BTA23, two Ishii et al., 2013
SNPs for C16:0 on BTA25, and two SNDPs for C14:1 near
the SCD gene on BTA26.
Fatty acid composition Angus beef cattle, 1713 BovineSNP50 Bead Chip FASN, SCD and THRSP genes Saatchi et al., 2013
Intramuscular fat Nellore steers 585 INlumina BovineHD SNPs near the FASN gene on BTA19 for C16:0 and C18:1 Cesar et al., 2014
deposition and BeadChip fatty acids, and SNPs on BTA7 for intramuscular fat
composition percentage
Fatty acid composition =~ American Black Angus 2177 574,662 SNPs imputed from Candidate genes FABP2, FASN, FADS2, FADS3 and SCD  Dawood et al., 2021
calves BovineSNP50 BeadChip and
BovineHD BeadChip
Fatty acid composition Nellore cattle 1057 [Nlumina BovineHD SNPs near the FASN gene on BTA19 for C16:0 and C18:1  Feitosa et al., 2021
BeadChip and the SCD gene on BTA26 for C14:1 and C16:1., THRSP,
ELOVL6 and FADS?2
Eating quality traits: scores Steers, heifers, and bulls 1701 7,09,068 Imputed SNPs Tenderness: CAPN1, CAST genes; juiciness and flavor: Forutan et al., 2023
for tenderness, juiciness, from Brahman, Angus, from the [llumina HD array MOXD1 APOB, KIF13A
flavor overall liking Hereford, Shorthorn,
Holstein, Jersey,
Belmont Red, Santa
Gertrudis composite,
crossbred unknown
breed.
Shear force, marbling score, Nellore cattle 6910 young bulls 435,447 Imputed SNPs from Several candidate genes located on chromosomes BTA1, 2, Arikawa et al., 2024
intramuscular fat with phenotypic  multiple Bead chip assay 5,7, 9, 10, 19, and 25 for Shear force, on BTA4, 7, 10, 11, 12,
information and densities 13, 15, and 20 for marbling score, and BTAS, 9, 10, 12, 13,
23859 genotyped and 28 for intramuscular fat
animals

BTA: Bovine chromosome.
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Despite their remarkable success, GWAS have faced several challenges, including the need for
larger sample sizes to detect variants with smaller effect sizes and the limited representation of
diverse ancestral populations (Mills and Rahal, 2019). Additionally, many GWAS are descriptive
rather than functionally identifying causal variants. Efforts have been made to increase the diversity
of GWAS cohorts and to conduct meta-analyses combining data from multiple studies to enhance
statistical power in human genetics (Visscher et al., 2017) and recently in beef cattle (Sanchez et al.,
2023). As GWAS continue to evolve, integrating complementary approaches such as functional
genomics, epigenomics, and proteomics will be crucial for translating genetic associations into
mechanistic insights and understanding the molecular mechanisms underlying beef quality traits.

4. Genomic Prediction and Selection for Beef Quality

Genomic selection (GS) which was first introduced by Lande and Thompson (2000) and
popularized by Meuwissen et al. (2001) utilizes genome-wide marker data to predict so-called
genome-enhanced or genomic estimated breeding values (GEBV) of the selection candidates. It
involves developing prediction models from a training population with both genotypic and
phenotypic data and then applying these models to predict the breeding values of individuals in a
separate population based solely on their genotypic information. This approach enables more
accurate selection of superior individuals at an early stage, accelerating the rate of genetic gain
compared to traditional phenotypic selection. GS relies on capturing the effects of all QTL through
linkage disequilibrium between markers and QTL, as well as leveraging genetic relationships
between the training and prediction populations (Lee et al., 2017). Key factors influencing the
accuracy of genomic predictions include the size and genetic diversity of the training population, the
heritability of the trait, and the extent of relatedness between the training and prediction sets (Lee et
al., 2017; Dekkers et al. 2021). GS holds the promise to be particularly beneficial in selecting for traits
such as beef quality traits that are difficult and expensive to measure.

Fernandes Janior et al. (2022) highlighted the long generation interval of beef cattle and the
importance of genomic selection in accelerating genetic gains for meat quality traits. Beef tenderness
is a significant challenge in the Zebu beef cattle industry. Reported heritability estimates for meat
tenderness ranged from 0.11 to 0.45 (Wheeler et al. 2010; Gordo et al., 2018). However, selection for
meat quality has only recently (last 10-15 years) been implemented, and due to the long generation
interval of beef cattle, substantial genetic improvement is yet to be realized. Additionally, this trait is
costly and difficult to measure, and slaughterhouses do not offer differential payment for tender beef.
Furthermore, breeding programs have focused more on improving meat quantity over quality
attributes. Considering various methods (Bayesian ridge regression, Bayesian LASSO, Bayes A, Bayes
B, and Bayes Crt) and a training population of 426 Nellore animals, Magnabosco et al. (2016) reported
prediction accuracies for beef tenderness ranging from 0.52 to 0.59 . Moderate accuracies for beef
tenderness (0.57 to 0.60) have also been reported considering GBLUP, LASSO, and Bayes Cmt in a
Nellore training population (n = 4,500 animals) (Fernandes Junior et al., 2022). Accuracies between
0.23 and 0.73 were also described by the authors for lipid content, marbling, and meat color (Table
3).

The fatty acid profile is an important indicator of beef quality and studies have revealed the
possibility of genetic improvement of fatty acid composition by selection of both major candidate
genes and genomic selection strategies in beef cattle (Chiaia et al., 2017; Magalhaes et al. 2019).

Table 3. Genomic prediction accuracies for beef quality traits'.

Trait Accuracy N Reference
Meat tenderness 0.52 to 0.59 427 Magnabosco et al. (2016)
Meat tenderness 0.57 to 0.60 5062 Magalhaes et al. (2019)

Lipids 0.23 3812 Magalhaes et al. (2019)

d0i:10.20944/preprints202408.1038.v1
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Marbling 0.32 5039 Magalhaes et al. (2019)
Carcass intramuscular fat % 0.20 1031 Johnston et al. (2012)
Marbling score 0.08 to 0.56 4228 Bolormaa et al. (2013)
a* color 0.40 5052 Magalhaes et al. (2019)
b* color 0.49 to0 0.53 5046 Magalhaes et al. (2019)
L* color 0.68 to 0.73 5071 Magalhaes et al. (2019)
Sum of SFA 0.04 to 0.24 868 Chiaia et al. (2017)
Sum of MUFA 0.05t0 0.13 868 Chiaia et al. (2017)
Sum of PUFA 0.15 to 0.56 868 Chiaia et al. (2017)

! The table was partially adopted from Fernandes Junior et al. (2022). a*, b* and L* color refer to the redness,
yellowness, and lightness of the meat, respectively. Sum of SFA: Sum of Saturated Fatty Acids, Sum of MUFA :
Sum of Monounsaturated Fatty Acids, Sum of PUFA: Sum of Polyunsaturated Fatty Acids.

Forutan et al. (2023) discussed the use of genomic selection to improve meat quality in beef cattle.
They highlighted the shift from producer-driven to consumer-driven beef production and the
importance of consumer satisfaction in beef quality. Forutan et al. (2023) determined the most
accurate method for predicting phenotypes of beef eating quality traits from genotypes and other
factors such as carcass weight and days aged. They found that the accuracy of phenotype prediction
for beef eating quality traits was sufficiently high that such predictions could be useful in predicting
eating quality from samples taken from an animal/carcass as it enters the processing plant, to sort for
markets with different quality. Forutan et al. (2023) emphasized that future predictions should be
expanded to incorporate all the parameters in the Meat Standards Australia (MSA) models (Watson
et al., 2008) as well as genotype information.

It has been challenging to implement genomic selection in multi-breed tropical beef cattle
populations. If commercial (often crossbred) animals could be used in the reference population for
these genomic evaluations, this could allow for very large reference populations. In tropical beef
systems, such animals often have no pedigree information. Hayes et al. (2023) addressed the
challenges of implementing genomic selection in multi-breed tropical beef cattle populations,
especially when no pedigree information is available. They evaluated potential models using marker
heterozygosity and breed composition derived from genetic markers. The study demonstrated that
moderately accurate genomic estimated breeding values (GEBV) can be calculated using these
models, with BayesR resulting in the highest accuracy.

The limitations, complexity, and loss of information associated with the multiple-step genomic
selection approach (Legarra et al.,, 2009) have led to the development of single-step approaches
(Aguilar et al., 2010; Christensen and Lund, 2010). Single-step genomic best linear unbiased
prediction (ssGBLUP) is a widely used method that combines the pedigree-based numerator
relationship matrix (A) and the genomic relationship matrix (G) to construct a combined relationship
matrix (H). This allows information from genotyped and non-genotyped individuals to be used
simultaneously in one step. The key advantage of single-step methods is that all available information
(phenotypic, pedigree, and genomic) is used optimally, leading to greater accuracy and persistence
of genomic predictions across generations. It avoids the need for separate evaluations for genotyped
and non-genotyped individuals and accounts for potential pre-selection biases. Adekale et al. (2023)
used the ssGBLUP approach and combined pedigree, genomic, and phenotypic data into one
evaluation, and genomic evaluations increased the accuracy of estimated breeding values (EBVs)
compared to pedigree-based evaluations alone. They demonstrated the successful implementation of
single-step genomic evaluations for improving the accuracy of EBVs in German beef cattle breeding
programs across multiple breeds (Adekale et al.,2023).

d0i:10.20944/preprints202408.1038.v1
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In summary, challenges in obtaining high-quality and adequately detailed phenotype data,
along with frequently incomplete pedigree information, hamper traditional genetic evaluations for
beef quality traits. The challenges in collecting beef quality data for genetic evaluations can be
attributed to several factors, such as the complexity and variability of the traits being measured, the
need for specialized equipment or expertise, and the time and resources required to gather data from
a large number of individuals. Additionally, the lack of standardized protocols and the potential for
human error in data collection can contribute to the challenges in obtaining high-quality phenotypic
data for beef quality traits. Therefor, GS has the potential to substantially increase the genetic gain by
increased selection accuracy at an early age (Montaldo et al. 2012; Stock and Reents, 2013). However,
the heterogeneity of breeds, less developed breeding programs and infrastructures, the
predominance of natural service, and the population substructures with frequent crossbreeding in
commercial herds have restricted the widespread implementation of GS in beef cattle. Multi-breed
genomic evaluation and single-step GS are the most recent developments in implementing GS in beef
cattle breeding. Challenges include access to large phenotypic datasets across breeds/environments
and low-cost genotyping for widespread adoption (Garrick, 2011). Extension of genomic predictions
to beef quality traits influencing consumer satisfaction will further require a focus on the collection
of reliable phenotypic information across the broad range of traits. Collecting such information will
likely rely on public funding efforts. The novel high-throughput phenotyping technologies that
facilitate the collection of phenotypes on large cohorts will also be invaluable (Garrick, 2011).

5. Transcriptomics of Beef Quality

Transcriptomics, one of the most developed fields in the post-genomic era, is the genome-wide
study of the complete set of transcribed sequences, including messenger RNA (mRNA), ribosomal
RNA (rRNA), transfer RNA (tRNA), and regulatory noncoding RNA in a tissue or a specific cell type
at a given time or under a specific physiological condition. Transcriptomics focuses on RNA
expression levels to reveal the molecular mechanisms involved in specific biological processes. High-
throughput sequencing technologies like bulk RN A-Seq and single-cell RNA-Seq (scRNA-Seq) have
transformed transcriptomics research, including studies related to beef quality. Bulk RNA-Seq
characterizes average gene expression profiles across samples, enabling the identification of
differentially expressed genes and splicing variants associated with meat traits. scRNA-Seq captures
cell-type-specific transcriptomes in muscle tissues, revealing cellular heterogeneity and facilitating
the discovery of novel cell populations linked to meat quality traits. Together, these complementary
high-throughput approaches provide comprehensive insights into transcriptome landscapes and
accelerate the development of transcriptome resources for improving beef quality. In addition, the
available transcriptomics datasets in cattle such as the transcriptome atlas (Fang et al., 2020) can serve
as a primary source for biological interpretation and functional validation of transcriptomics studies
addressing beef quality complexities.

Intramuscular fat (IMF) deposition has been a central focus of numerous transcriptomics
investigations aimed at elucidating the molecular determinants of beef quality (e.g., Liu et al., 2020;
Yu et al., 2024). A significant proportion of transcriptome research in the realm of beef quality has
concentrated on unraveling the genetic and regulatory mechanisms underlying variations in
intramuscular fat content, given its pivotal role in influencing meat tenderness, juiciness, and flavor.
The study by Yu et al. (2024) employed an integrated transcriptomics and metabolomics approach to
elucidate the regulatory mechanisms underlying intramuscular fat deposition in three cattle breeds -
Qinchuan, Nanyang, and Japanese Black. The Japanese Black breed had significantly higher IMF
content compared to the Chinese indigenous breeds. Transcriptomic analysis revealed genes like
ITGB1 were enriched in pathways related to fatty acid metabolism, suggesting their roles in
regulating IMF content.

Several key regulatory genes have been identified that influence adipocyte differentiation and
intramuscular fat deposition, which are important for beef quality. For example, transcription factors
like C/EBPa and PPARYy play crucial roles in promoting adipocyte development and fatty acid
biosynthesis in beef cattle (Liu et al., 2020). Kriippel-like factors (KLFs) are a family of transcription
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factors that regulate adipogenesis in cattle. KLFs can act as positive or negative regulators of
adipocyte differentiation through crosstalk with C/EBP and PPARYy (Raza et al., 2022). Adipogenic
genes like DGAT1, FABP3, FABP4, and FASN are upregulated during early adipocyte differentiation
in cattle (Hausman et al., 2009). In summary, transcription factors like C/EBP, PPARYy and KLFs, fatty
acid metabolism genes, and growth-related genes play key regulatory roles in controlling adipocyte
differentiation and intramuscular fat deposition, which are crucial determinants of beef quality.
Identifying genetic markers in these pathways can help improve meat quality through breeding
programs.

A recent study (Zhang et al., 2023) suggests that long non-coding RNAs (IncRNA) may have
critical functional roles in intramuscular fat accumulation. Zhang et al. (2023) reported that a IncRNA
named long non-coding RNA BNIP3 (IncBNIP3) inhibited the proliferation of bovine intramuscular
preadipocytes through the cell cycle pathway, revealing potential new strategies for improving beef
quality.

Transcriptomics has been widely exploited to study the effects of diverse feeding systems,
production practices, and rearing conditions on beef quality. Researchers have investigated the
transcriptomic profiles associated with different dietary regimes, feed restriction and compensatory
growth, production systems, and environmental stressors (heat, transportation). These studies aim
to elucidate the molecular mechanisms underlying variations in beef quality traits influenced by
various production factors. For example, the study by Zhao et al. (2012) investigated the effects of
acute stress on beef tenderness and the underlying molecular mechanisms in Angus cattle using a
functional genomics approach. They found that acute stress significantly increased beef tenderness,
measured by the Warner-Bratzler shear force (WBSF). Microarray analysis identified 147
differentially expressed genes (DEGs) between the stressed and control groups, with the majority of
DEGs being downregulated in the stressed group. Functional annotation revealed that these DEGs
were enriched in pathways related to muscle structure and integrity, including cytoskeletal
organization, muscle contraction, and calcium signaling. Key DEGs included CAPN1, CAPN2, CAST,
and CALM, which are involved in the calpain-calpastatin system regulating protein degradation and
tenderization. The study also identified potential transcriptional regulators, such as NFKB1, CREB1,
and FOXO3, that may mediate the stress response and influence beef tenderness. Overall, this
functional genomics study provided insights into the molecular mechanisms by which acute stress
improves beef tenderness, highlighting the role of the calpain system and related pathways (Zhao et
al. (2012). Sweeney et al. (2016) identified 26 differentially expressed (DE) genes related to lipid
metabolism between pasture-fed and concentrate-fed cattle. The expression of ALAD, EIF4EBP1 and
NPNT could be used to classify the samples based on the production system with 95-100% accuracy
(Sweeney et al., 2016). In addition, Deng et al. (2024) analyzed transcriptomes of cattle under varied
restricted feeding conditions to study compensatory growth effects on meat quality. Compensatory
growth was observed in the restricted groups, accompanied by alterations in meat quality traits like
pH, cooking loss, and fat content compared to the ad libitum group. Transcriptome analysis
identified DEGs unique to each feeding group as well as shared DEGs involved in pathways related
to muscle growth, lipid metabolism, and nutrient utilization. Gene set enrichment analysis further
highlighted pathways associated with compensatory growth, such as protein synthesis, cell cycle
regulation, and energy metabolism.

The study by Zhang et al. (2022) employed comparative transcriptomics to characterize region-
specific gene expression patterns across five different beef cuts (tenderloin, longissimus lumborum,
rump, neck, chuck) from cattle. They identified a total of 80 region-specific genes (RSGs) and 25
transcription factors regulating these RSGs. Through co-expression network analysis, seven region-
specific modules were detected, including three positively and four negatively correlated modules.
Their analysis revealed 91 candidate genes associated with meat quality traits, enriched in pathways
related to muscle fiber structure, fatty acid metabolism, amino acid metabolism, ion channel binding,
protein processing, and energy production. Key genes identified included TNNI1, TNNT1 (muscle
structure), SCD, LPL (fatty acids metabolism), ALDH2, IVD, ACADS (amino acids metabolism),
PHPT1, SNTA1, SUMO1, CNBP (ion binding), CDC37, GAPDH, NRBP1 (protein processing), and
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ATPS, COX8B, NDUFB6 (energy metabolism) (Zhang et al., 2022). The differential expression of these
RSGs and candidate genes across beef cuts suggests they play a key role in determining region-
specific differences in nutrient profiles like fatty acid composition and amino acid content, as well as
meat quality traits like tenderness and flavor.

Transcriptomics can provide insights into the molecular mechanisms regulating beef quality
traits such as water-holding capacity (WHC). In this regard, Du et al. (2021) investigated the
molecular mechanisms underlying WHC in Chinese Simmental beef cattle through transcriptome
profiling. The longissimus dorsi muscles from 49 cattle were evaluated for meat quality traits,
including WHC, water loss, intramuscular fat content, shear force, and pH. Eight individuals with
extreme WHC values were selected for RN A-sequencing analysis. A total of 865 DEGs were identified
between the high and low WHC groups. These DEGs were involved in pathways related to muscle
structure, energy metabolism, and protein folding. The study confirmed seven previously known
genes (HSPA12A, HSPA13, PPARy, MYL2, MYPN, TPI, and ATP2A1) and identified six novel
candidate genes (ATP2B4, ACTN1, ITGAV, TGFBR1, THBS1, and TEK) potentially affecting WHC (Du
et al., 2021).

In summary, the recent high-throughput transcriptomic studies have identified differentially
expressed genes and pathways involved in lipid metabolism, muscle fiber properties, energy
production, and other processes that influence beef quality traits like tenderness, fatty acid
composition, and nutrient content across different production systems, feeding regimes, and muscle
cuts. This knowledge on the region-specific, breed-specific, and production system-specific gene
expression patterns that regulate various aspects of beef quality can guide targeted breeding
programs and optimized management practices to improve beef quality.

6. Proteomics of Beef Quality

Although transcriptomics tools such as RN A-seq offer a massively parallel approach to genome-
wide mRNA expression analysis, there is often no direct relationship between the in vivo
concentration of an mRNA and its encoded protein. The association of protein expression levels with
biological changes is one of the most fundamental approaches to understanding the functions of
individual proteins in complex cellular processes. Proteomics, a large-scale study of proteins, is a
biomarker approach for the identification and quantification of all proteins, the proteome, of a given
biological system (cell, tissue, organ, biological fluid, or organism) at a specific point in time. Mass
spectrometry (Rozanova et al., 2021) coupled with advanced separation techniques like two-
dimensional gel electrophoresis and liquid chromatography is the technique most often used for
proteomics. In the context of beef quality, proteomics provides insights into the molecular
mechanisms influencing meat tenderness, flavor, and other quality attributes. By analyzing the
proteome of beef muscles, researchers can identify biomarkers associated with desirable traits,
elucidate pathways regulating meat characteristics, and develop strategies to improve beef quality
through breeding or processing methods.

Over the last two decades, proteomics has been employed to decipher the underlying factors
contributing to variation in beef tenderness. Table 4 summarizes some of the published proteomic
studies on beef quality. Functional proteomic analysis was used to associate electrophoretic bands
from the myofibrillar muscle fraction with meat tenderness to understand the mechanisms
controlling tenderness (Zapata et al., 2009). Six significant electrophoretic bands were characterized
and sequenced, revealing proteins involved in structural, metabolic, chaperone, and developmental
functions (Zapata et al., 2009).
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An integromics study was performed to review the status of protein biomarker discovery
targeting beef tenderness, gathering and proposing a comprehensive list of 124 putative protein
biomarkers derived from 28 independent proteomics-based experiments (Gagaoua et al., 2020a). In
the study of Gagaoua et al. (2020a) 33 robust candidates were identified as worthy of evaluation using
targeted or untargeted data-independent acquisition proteomic methods. The study provides an
overview of the interconnection of the main biological pathways impacting tenderness
determination, including structural proteins, enzymes, heat shock proteins, and proteins involved in
energy metabolism, response to oxidative stress, and apoptosis (Gagaoua et al., 2020a). Gagaoua et
al. (2020a) identified MYOZ3 (Myozenin 3), BIN1 (Bridging Integrator-1), and OGN (Mimecan) as the
primary proteins, which accounted for 79% of the variability in shear force values.

Functional proteomic and interactome analysis was used to identify protein biomarkers and
biological pathways associated with beef tenderness in Angus cattle (Zhao et al., 2014). The study
compared the proteome of longissimus thoracis muscle samples from Angus cattle with divergent
tenderness phenotypes. Several proteins involved in structural integrity, energy metabolism, stress
response, and proteolysis were found to be differentially abundant between tender and tough meat
samples. Interactome analysis revealed complex interactions among these proteins, providing
insights into the molecular mechanisms underlying beef tenderness variation. The results of Zhao et
al. (2014) suggest that a combination of protein biomarkers could be used to predict and improve beef
tenderness in Angus cattle. In addition, proteomic techniques have been applied to investigate
different degrees of meat tenderness in the Nellore breed, a Bos indicus breed of cattle (Rosa et al,
2018; Malheiros et al., 2021). The results demonstrate that meat tenderness in Nellore cattle depends
on the modulation and expression of a set of proteins. For example, the results of Rosa et al. (2018)
demonstrated that polymorphisms at UOGCAST and CAPN4751 SNPs (located on CAST and
CAPNI1, respectively) are associated with the variability in the expression of proteins that are
involved in muscle metabolism, and consequently affect meat tenderness. Malheiros et al. (2021) also
identified proteins PFN1, LAP3, PRDX1, PRDX2, HSPD1, and ARHGDIA to be associated with beef
tenderness.

The study by Lépez-Pedrouso et al. (2021) employed a quantitative proteomic approach using
SWATH-MS (Sequential Window Acquisition of all Theoretical Mass Spectra) to investigate the
molecular factors influencing beef tenderness in young Piedmontese bulls. They analyzed the
proteome of Longissimus thoracis muscle samples from 10 animals, categorized as tough or tender
based on Warner-Bratzler shear force measurements. The SWATH-MS analysis identified and
quantified over 1,200 proteins, revealing significant differences in the abundance of 43 proteins
between the tough and tender groups. Most of these differentially abundant proteins were associated
with energy metabolism pathways. Functional analysis suggested that gluconeogenesis, glycolysis,
and the citric acid cycle are key pathways influencing tenderness in Piedmontese beef, with proteins
like ACO2, MDH1, MDH?2, CS, FBP2, PFKL, LDHA, TPI1, and GAPDH/S playing crucial roles
(Lopez-Pedrouso et al.. 2021).

Zhu et al. (2023) used label-free proteomics to identify molecular mechanisms and biomarkers
related to beef sensory texture and flavor traits in early post-mortem muscle. The authors revealed
34 putative protein biomarkers that discriminated between tender and tough meat groups, belonging
to biological pathways associated with muscle structure, heat shock proteins, energy metabolism,
response to oxidative stress, and apoptosis. Many of these proteins were previously identified as
biomarkers of beef tenderness in an integromics data mining approach (Gagaoua et al., 2021a). Heat
shock protein beta-6 (HSPB6) has been identified as being negatively correlated with tenderness and
flavor and positively with stringiness (Zhu et al., 2023). It belongs to small heat shock proteins (HSPs)
that are widely considered as useful biomarkers of beef tenderness, color, water-holding capacity,
and other quality traits (Gagaoua et al, 2020a; 2020b; Ma, and Kim, 2020).

To provide insights into the molecular mechanisms underlying dark-cutting beef and identify
potential biomarkers for predicting and managing this meat quality defect, Gagaoua et al. (2021b)
conducted an integromics meta-analysis of proteomics data from eight studies on dark-cutting beef.
The authors curated a list of 130 proteins that differed between dark-cutting and normal-pH beef and
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analyzed them using bioinformatics tools. Key pathways involved in dark-cutting beef development
included muscle structure, heat shock proteins, energy metabolism, oxidative stress response, and
apoptosis. Also, Kiyimba et al. (2022) compared the mitochondrial proteomes of dark-cutting and
normal-pH beef using LC-MS/MS proteomics and found that dark-cutting beef has up-regulation of
proteins involved in mitochondrial biogenesis, oxidative phosphorylation, intracellular protein
transport, and calcium homeostasis. Mitochondria isolated from dark-cutting beef showed greater
mitochondrial complex II respiration and uncoupled oxidative phosphorylation, but no differences
in membrane integrity or respiration at complexes I and IV. These results indicate that dark-cutting
beef has greater mitochondrial biogenesis proteins, increasing mitochondrial content and
contributing to the dark color. The study provides insights into the mechanistic basis of dark-cutting
beef and identifies potential candidate markers for detecting pre-slaughter events leading to this meat
quality defect.

In summary, proteomics has been extensively applied to study the molecular basis of various
beef quality traits, including tenderness, marbling, color, water-holding capacity, and dark-cutting
beef. These studies have utilized advanced proteomics techniques, such as 2D-PAGE, mass
spectrometry, and bioinformatics, to identify differentially expressed proteins and their associated
biological pathways. Key proteins and pathways linked to meat quality include those involved in
glycolysis, oxidative phosphorylation, the tricarboxylic acid (TCA) cycle, muscle structure, heat
shock response, energy metabolism, oxidative stress, and apoptosis. Proteomics has provided
valuable insights into post-mortem changes in muscle proteins and their relation to the development
of meat quality traits, as well as identified potential biomarkers for predicting and managing beef
quality. Future research should focus on integrating proteomic analyses with other omics
approaches, such as transcriptomics and metabolomics, to gain a more comprehensive view of the
regulatory networks influencing beef quality.

7. Metabolomics of Beef Quality

Metabolomics is a valuable analytical approach for studying the small molecule metabolites
present in biological samples including beef and meat products. It utilizes two major platforms: mass
spectrometry (MS) and nuclear magnetic resonance (NMR) to comprehensively profile the metabolite
composition. The resulting metabolomic data provide insights into the metabolic state of the beef
samples, enabling the discovery of biomarkers associated with desirable beef quality traits like
tenderness, flavor, and shelf-life. Additionally, metabolomics elucidates the underlying biochemical
pathways that produce key metabolites influencing beef quality characteristics. Metabolomic profile
data can also be used to explore the genes responsible for specific metabolite-featured phenotypes in
genome-wide association studies. Therefore, by associating metabolite profiles with sensory
evaluation, production conditions, and postmortem changes, metabolomics offers a powerful tool for
monitoring and predicting beef quality, optimizing animal breeding, and feeding strategies, and
improving meat processing methods. Some of the published applications of metabolomics in
assessing beef quality are summarized in Table 5.
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Table 5. Summary of some of the applications of metabolomics in beef quality analysis.

Beef attribute Analytical Techniques = Multivariate analysis Metabolites Reference
Techniques
Sensory evaluation of beef GC/MS PCA Cold storage led to increased free fatty acids and Ueda et al. (2024)
taste Glutamic acid, and decreased creatinine and inosinic acid
Meat color, pH, Water holding NMR PCA, OPLS-DA Beef quality differences related to acetylcholine, valine, Phoemchalard et al.
capacity, Shear force, Texture adenine, leucine, phosphocreatine, 3-hydroxypyruvate, ethanol, (2022)
adenosine diphosphate, creatine, acetylcholine, and lactate
Beef fat color LC-MS PCA, PLS-DA 3-hydroxyoctanoic acid, anethofuran, 9,10-DiHODE, Tian et al. (2023)
furanoeremophilane, pregeijerene, N-glycolylneuraminic acid,
and glycocholic acid were identified as potential biomarkers for
differentiating fat color
Marbling NMR PLS-DA Carnosine, creatine, glucose, and lactate were associated with Jeong et al. (2020)
higher marbling
Marbling Mass spectrometry- ASCA Unconjugated-BA and Glucocorticoids were associated with ~ Artegoitia et al. (2022)

based untargeted and
targeted metabolomics

marbling

Aroma of cooked beef

SPME and GC-MS

Linear and logarithmic
regression model

Benzeneacetaldehyde and Heterocyclic compounds Watanabe et al. (2015)

Meat freshness NMR PCA, PLS 60 identified metabolites, metabolomics classified meat samples Castejon et al. (2015)
according to their storage time
Intramuscular fat NMR PCA, OPLS-DA The unsaturation degree of triacylglycerol was estimated by the Kodani et al. (2017)

'H NMR spectra and was correlated with the content ratio of
unsaturated fatty acids and the melting point of IMF. Leucine
and creatine were found as biomarkers, positively and
negatively correlated with aging duration, respectively.

NMR: Magnetic resonance spectroscopy, PCA: Principal Component Analysis, PLS-DA: Partial least squares discriminant analysis, SPME: Solid-phase microextraction, and GC-MS: Gas
chromatography-mass spectrometry, LC-MS: Liquid chromatography-mass spectrometry, OPLS-DA: Orthogonal signal correction—projection to latent structures—discriminant analysis, ASCA:

ANOVA-simultaneous component analysis.
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Muroya et al. (2020) introduced the concept of “MEATabolomics” - the application of
metabolomics to study skeletal muscle and meat in domestic animals. Muscle metabolites, as the
major phenotypic components, determine the physiological characteristics of muscle and meat
quality traits. Since raw and cooked meat are rich in flavor-associated volatile compounds and
precursors (Muroya et al., 2020), MEATabolomics studies in combination with sensory evaluation
can be used to explore biomarker candidates associated with eating quality of beef.

Jeong et al. (2020) used NMR spectroscopy to investigate the meat metabolite profiles related to
differences in beef quality attributes, specifically comparing high-marbled and low-marbled groups.
High-marbled meat had higher levels of taste compounds compared to low-marbled meat.
Metabolite analysis revealed differences between the two marbling groups based on partial least
square discriminant analysis (PLS-DA). Metabolites identified by PLS-DA, such as N, N-
dimethylglycine, creatine, lactate, carnosine, carnitine, sn-glycero-3-phosphocholine, betaine,
glycine, glucose, alanine, tryptophan, methionine, taurine, and tyrosine, were directly linked to
marbling groups. These potential markers were involved in beef taste-related pathways, including
carbohydrate and amino acid metabolism. The findings of Jeong et al. (2020) provide an important
understanding of the roles of taste-related metabolites in beef quality attributes and suggest that
metabolomics analysis of taste compounds and meat quality may be a powerful method for
evaluating beef quality.

Zhang et al. (2021) described recent applications of metabolomics in evaluating meat freshness,
composition, authenticity, and origin, highlighting its potential as a powerful tool for meat quality
assessment. They discussed the challenges faced, such as sample complexity, lack of specialized
databases, and the need for harmonized methods. Finally, they outlined future trends, including the
development of standardized protocols, meat metabolome databases, and advanced data analysis
tools to fully exploit the potential of metabolomics in meat science (Zhang et al., 2021). Moreover,
Ramanathan et al. (2023) provided a recent comprehensive overview of the current state of
metabolomics research in meat quality and highlighted the immense potential of metabolomics in
advancing meat quality research and its practical applications in the meat industry.

Yu et al. (2024) compared the metabolome of two Chinese indigenous cattle breeds (Qinchuan
and Nanyang), and Japanese Black cattle. They reported that the Japanese Black breed had
significantly higher IMF content compared to the Chinese indigenous breeds. Metabolomic analysis
showed higher levels of monounsaturated and polyunsaturated fatty acids, as well as amino acids
like creatine, lysine, and glutamine in the Japanese Black breed, contributing to better flavor
formation (Yu et al., 2024).

Metabolomics, especially focusing on volatile compounds, has changed our understanding of
beef aroma and flavor. Using techniques like gas chromatography-mass spectrometry (GC-MS),
researchers can quantify and correlate metabolites with flavor preferences. This analysis identifies
key flavor compounds and their precursors, revealing mechanisms like the Maillard reaction, thermal
lipid degradation, and oxidation. In beef, metabolomics shows that flavor results from interactions
between aromatics and taste components, with meaty and roasted notes from Maillard reactions
(Diez-Simon et al. 2019). This knowledge helps food scientists predict and manipulate flavor profiles,
enhancing product development and quality control.

Castejon et al. (2015) investigated the potential of using metabolomics analysis of meat exudate
to evaluate beef conservation and aging. These researchers analyzed the exudate from beef samples
stored at different temperatures and aging times using NMR spectroscopy. They found that the
metabolite profile of the exudate changed significantly with storage temperature and aging time,
allowing them to discriminate between fresh and aged meat samples. Specific metabolites like
creatine, carnosine, and anserine were identified as potential biomarkers for monitoring meat aging
and conservation, demonstrating that metabolomics of meat exudate could be a rapid and non-
destructive approach to assessing beef quality during storage and aging processes (Castejon et al.,
2015).

Tian et al. (2023) performed a comparative metabolomics analysis on subcutaneous fat samples
from crossbred cattle with white and yellow fat color. Through liquid chromatography-mass
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spectrometry, 235 significant metabolites across five categories were identified, with principal
component analysis showing distinct clustering of white and yellow fat samples. White fat exhibited
greater metabolite variation, with 163 metabolites having higher and 72 having lower relative
abundance compared to yellow fat. Notably, 3-hydroxyoctanoic acid, anethofuran, 9,10-DiHODE,
furanoeremophilane, pregeijerene, N-glycolylneuraminic acid, and glycocholic acid were identified
as potential biomarkers for differentiating fat color. The findings provide insights into the metabolic
mechanisms underlying fat color variation and suggest potential biomarkers for selective breeding
programs aimed at achieving desired beef fat color traits.

Next-generation phenotyping (NGP) using metabolomics is becoming a fundamental approach
to refine trait description and improve the prediction of breeding values aligned with beef industry
objectives. For example, non-invasive urinary biomarkers have been identified for beef production
efficiency and carcass quality traits (Artegoitia et al. 2022). These biomarkers are indicative of various
aspects of beef quality, such as taste, and appearance that can be used to predict and improve beef
quality through targeted breeding and nutrition.

In summary, metabolomics has emerged as a powerful tool for profiling meat quality attributes,
such as flavor, color, and texture. Recent studies have successfully applied metabolomics to identify
biomarkers related to meat quality and taste, using techniques like nuclear magnetic resonance
spectroscopy and mass spectrometry. However, challenges remain in correlating metabolites to
specific meat quality traits and elucidating the underlying mechanisms (Zhang et al., 2021;
Ramanathan et al.,2023). Future research should focus on developing generic validation schemes for
metabolomics-based meat quality control, as well as integrating metabolomics with other omics
technologies to provide a more holistic understanding of beef quality.

8. Challenges and Future Directions

While a wide range of omics technologies have been applied to study beef quality traits, several
challenges remain in fully harnessing their potential:

-Integrating Multi-Omics Data: Combining genomics, transcriptomics, proteomics, and
metabolomics data to elucidate the complex biological networks underlying meat quality is a
challenging task that requires robust bioinformatic pipelines and systems biology approaches.

-Implementing Integromics: Integromics, which uses advanced computational and statistical
methods to integrate diverse data types, offers a promising platform for advancing beef quality
research. However, the implementation of an integromics approach is still in its early stages and
requires further development and validation.

-Identifying Causal Functional Mutations: The identification and validation of causal functional
mutations through gene editing techniques is crucial for precise genomic selection and breeding
programs. While gene editing technologies like CRISPR/Cas9 have been developed, their application
in beef quality research is still limited.

-Overcoming Challenges through Interdisciplinary Research: Addressing the challenges in
applying omics technologies to beef quality research will require interdisciplinary research efforts
and public-private partnerships. The lack of collaboration between different disciplines and
stakeholders has hindered progress in this field.

-Translating Multi-Omics Findings into Practical Applications: While multi-omics findings have
the potential to improve breeding strategies and genomic predictions for beef quality, the translation
of these findings into practical applications is still limited. More research is needed to bridge the gap
between research and industry.

Despite these challenges, there have been notable successes, such as the identification of specific
genetic variants that have been incorporated into breeding strategies, leading to measurable
improvements in meat quality. Future research should focus on refining these techniques, improving
data integration methods, and addressing the economic feasibility of implementing functional
genomics in commercial cattle breeding. By doing so, we can better harness the potential of these
advanced technologies to meet the growing demand for high-quality beef.
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