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Article 

Magnetostrophic Flow and Electromagnetic 
Columns in Magneto-Fluid Dynamics 
Peter Vadasz 

Department of Mechanical Engineering, Northern Arizona University, Flagstaff, AZ, USA; 
peter.vadasz@nau.edu 

Abstract :  An analogy between magneto-fluid dynamics (MFD/MHD) and geostrophic flow in a rotating 
frame of reference including the existence of electromagnetic columns identical to Taylor-Proudman columns 
is identified and demonstrated theoretically. The latter occurs in the limit of large values of a dimensionless 
group representing the magnetic field number. Such conditions are shown to be easily satisfied in reality. 
Consequently, the electromagnetic fluid flow subject to these conditions is two dimensional and the streamlines 
are being shown to be identical to the pressure lines in complete analogy to rotating geostrophic flows. An 
experimental setup is suggested to confirm the theoretical results experimentally. 

Keywords: magnetostrophic flow; electromagnetic columns; taylor-proudman columns; 
geostrophic flow 

 

1. Introduction 

Flow of electric charges within or with a fluid or alternatively freely moving in free space is 
being analyzed as part of magneto-fluid dynamics (MFD). The latter appears also under the acronym 
MHD (magneto-hydrodynamics) although inaccurately linked to water (hydro) flow due to historical 
reasons. It applies to plasmas, liquid metals as well as beams of charges moving in free space. The 
present paper deals with the theoretical demonstration of two linked MFD effects that are being 
shown to be analogous to fluid flow in a rotating frame of reference. The flow of fluids in a rotating 
frame of reference has been studied extensively and has applications in geophysics, astrophysics, as 
well as in engineering. The specific effects related to rotating flows are predominantly a result of 
centripetal and Coriolis accelerations (Greenspan [1]) as well as possibly centrifugal buoyancy 
Vadasz [2]. The Coriolis effect and the resulting vortex formations have been identified theoretically 
as well as experimentally. Amar et al. [3] demonstrated the latter numerically as well as analytically 
and compared their results with experimental data. They focused on the separation between 
geostrophic flow and Ekman and Stewartson boundary layers. Asymptotic analyses of rotating flows 
identify Taylor-Proudman columns and two-dimensional flow at the leading order and Ekman as 
well as Stewartson boundary layers for higher order corrections [1], results that were confirmed 
numerically as well as experimentally (Subbotin et al. [4], and Burmann and Noir [5]). The explanation 
of the appearance of von Karman vortex streets around invisible bluff bodies as captured by satellite 
images over certain islands in the Atlantic and Pacific Oceans was provided by Vadasz [6] in terms 
of Taylor-Proudman columns. Sarkar et al. [7] investigated the effect of a magnetic field on Taylor-
Proudman columns in a rotating electrically conducting fluid (MFD). They concluded that the 
“application of a magnetic field” “suppresses the Taylor column” in certain circumstances. In an 
electrically conducting fluid the balance between the Coriolis acceleration and the Lorentz force is 
the mechanism that controls the Taylor-Proudman column. Extensive research results on the problem 
of natural convection due to centrifugal buoyancy in rotating porous media were presented by 
Vadasz [8–13] and by Vadasz and Govender [14]. Vadasz [8] focused on the centrifugal buoyancy in 
a porous layer distant from the axis of rotation, Vadasz [9] analyzed the Coriolis effect on a rotating 
porous layer heated from below via linear as well as weak nonlinear methods. Other investigations 
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of centrifugal buoyancy in rotating porous media were performed by Saravanan and Vigneshwaran 
[15] and Kang et al. [16]. 

The effect of the magnetic field on the flow of conducting fluids has been studied extensively, 
e.g. identifying the law of isorotation (Allen et al. [17]). An analogy between the Taylor-Proudman 
theorem for rotating fluids and the law of isorotation for MFD might evolve as a consequence of the 
present paper’s derivations.  

The analogy between the Coriolis and Lorentz forces is not new, e.g. the analogy between the 
gyrocompass and the magnetic compass was demonstrated by Opat [18]. In the present paper it is 
demonstrated also for fluids rather than compasses. 

The next section describes the analogy between rotating and magnetic (MFD) flows followed by 
the theoretical demonstration on how electromagnetic columns are being created when a flowing 
fluid carrying electric charges is exposed to an externally imposed magnetic field. The consequent 
two-dimensional magnetostrophic flow then emerges. The final section presents the fact that the 
conditions required for the electromagnetic columns and magnetostrophic flow to emerge are well 
satisfied in reality and should then be observable in lab experiments. 

2. Analogy between Magneto-Fluid Dynamics (MFD/MHD) and Rotating Flows 

The equations governing the isothermal compressible flow in a rotating frame of reference are 
the continuity and momentum equations presented in the form   

  (1) 

 (2) 

where  is the velocity vector, , êy , and êz  are unit vectors in the 

x, y , and z  directions, respectively,  is the constant angular velocity of rotation, p  is pressure, 
μ  is the dynamic viscosity, and X = xêx + yêy + zêz  is the position vector. By assuming the fluid 

to be barotropic and using a linear relationship between pressure and density (this assumption 
applies to isothermal conditions for an ideal gas, and approximately also for isentropic conditions of 
the latter, and for liquids) in the form 

  (3) 

where  or . Moving the Coriolis and centripetal terms to the right-

hand side of the equation, and dividing equation (2) by ρ  it yields  

 (4) 

where ν = μ ρ  is the kinematic viscosity. The centripetal acceleration term  has a 
potential and can be therefore moved under the gradient term in the form 

  (5) 

It becomes appealing now to define a generalized reduced pressure term (a specific kinetic 
energy) in the form 

  (6) 

êx
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Substituting (6) into (5) leads to 

  (7) 

The momentum equation for an MFD fluid, i.e. a fluid that carries electric charges (even when 
as a whole it is neutrally charged) includes the electric and magnetic fields via the Lorentz force, and 
when neglecting the gravitational field, the latter being much weaker than the electromagnetic fields 
can be presented in the form 

ρ ∂V
∂t

+ V ⋅∇( )V







 = −∇p + ρqE + ρq V × Bi( ) + μ∇2V

  (8) 
where E t, x, y,z( ) is the electric field due to the distributed charges in the fluid, V  is the 

velocity of the charges, and ρq V × Bi( ) is the induced magnetic field that results from the electric 

current due to the moving charges. When the fluid is exposed to an external magnetic field then an 
additional term in the form ρq V × Bf( )  is to be added in equation (8). Substituting equation (3) 

into equation (8), dividing equation (8) by ρ , and using the definition of the generalized reduced 
pressure (6) for the case without rotation (i.e. ) produces  

∂V
∂t

+ V ⋅∇( )V = −∇pr + sqβq
−1E + sqβq

−1 V × Bi( ) +ν∇2V
  (9) 

where βq = ρ ρq  is assumed to be constant and equal to the ratio between the total mass of 

the electric charges to the total electric charge, i.e. βq = ρ ρq = mq q , and  

sq =
1 ∀ ρq > 0

−1 ∀ ρq < 0




   (10) 
is the electric charge sign function. Comparing equation (9) for the magnetic-fluid dynamics flow 

to equation (7) for non-magnetic fluid dynamics in a rotating frame of reference one observes the 
analogy where the gravitational field term g  was replaced by the electric field term sqβq

−1E , and 

the Coriolis acceleration term  was replaced by the magnetic term sqβq
−1 V × Bi( ) . 

Consequently it is plausible to anticipate that the magnetic field term Bi βq  in MFD has an 

identical effect as the angular velocity of rotation term  in the Coriolis acceleration of the rotating 

flow. Note that even the units of Bi βq  are T C kg[ ] = s−1   identical to the units of . Since 

the analogy between MFD flow and rotating flows was established by this comparison, one can 
therefore anticipate similar effects in MFD flow as in the corresponding Coriolis effects for rotating 
flow.  

A similar analogy applies if the fluid is exposed to an externally imposed magnetic field. Then 
equation (9) takes the form 

∂V
∂t

+ V ⋅∇( )V = −∇pr + sqβq
−1E + sqβq

−1 V × Bi( ) + sqβq
−1 V × Bf( ) +ν∇2V

  (11) 
where Bf = Bf ê f  is the imposed magnetic field, which is constant, i.e. Bf = const., and ê f  

is a unit vector in the direction of the imposed magnetic field.  
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3. Emerging Electromagnetic Columns in an Electrically Charged Fluid Flowing Subject to an 
Imposed Magnetic Field 

When the fluid is incompressible, or when the fluid can be assumed to be weakly compressible 
(i.e. the density does not change but only when in a body force term in the momentum equation) the 
continuity equation (1) transforms into 

  (12) 
By considering the flow subject to an imposed magnetic field, then equation (11) is to be solved 

together with Maxwell equations presented in the form 
Coulomb law in field form 

∇ E = 1
εo

ρq
  (13) 

where εo  is the permittivity of vacuum. 
Ampere law 

co
2∇ × Bi = 1

εo
ρqV + ∂E

∂t   (14) 
where co

2 = 1 εoμo  is the speed of light in vacuum, and μo  is the permeability of free space. 
Faraday law of induction 

∇ × E = − ∂Bi
∂ t   (15) 

Gauss law for the magnetic field 
∇ Bi = 0   (16) 
Note that Bf  does not appear in equations (14), (15), and (16) because it is constant and 

therefore its derivatives vanish. 
Converting the equations into a dimensionless form requires the introduction of scales or 

characteristic values. The only requirement from such scales is that they are non-zero constants. 
Selecting lc , ρc , ρqc > 0 , , qc > 0 , and m  as the length, mass density, charge density, 

velocity, electric charge, and mass scales, respectively, one can introduce the following additional 

scales in terms of the latter , , Ec = qc εolc
2 , Bic = μoqc

2 mεolc
5( )1 2

, 

Bfc = Bf = Bf . One can also relate the mass density scale to the mass scale, i.e. ρc = m lc
3  and the 

charge density scale to the charge scale, i.e. ρqc = qc lc
3 . By using these scales the following 

dimensionless variables are being defined as follows x* = x lc , , ρ* = ρ ρc , 

ρq* = ρq ρqc , , , E* = Eεolc
2 qc , Bi* = Bi mεolc

5( )1 2
μoqc

2 , 

Bf* = ê f . Substituting these dimensionless variables into equations (12) and (11) transforms the 

latter into the following dimensionless form 

 (17) 
∂V*

∂t*
+ V* ⋅∇*( )V* = − 1

Ma2 ∇*pr* +
sq
ME

E* +
sq
Mi

2 V* × Bi*( ) + sqMB V* × ê f( ) + 1
Re

∇*
2V*

  
(18) 

where the following dimensionless groups emerged 

• the Mach number  

 (19) 
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• the electric field number 

  (20) 

 

• the induced magnetic field number 

  (21) 

• the imposed magnetic field number 

  (22) 

• the Reynolds number 

  (23) 

Dividing equation (18) by MB  produces (after dropping the symbol * as now all variables are 
dimensionless) 

 
 (24) 

where a rescaled pressure was introduced in the form  and where new 
dimensionless groups emerged as follows 

• the magnetic Rossby number 

  (25) 

• the magnetic Ekman number 

EkM = MB
−1Re−1 = ν

Bf βq( )lc2   (26) 
Assuming steady state, and MB >> 1  which implies RoM << 1. Then if also Re =O 1( )  (or 

Re >> 1) which implies Ek << 1, and if ME =O 1( )  (or ME >> 1), and if also Mi
2 =O 1( ) (or 

Mi
2 >> 1) then neglecting the terms in equation (24) corresponding to the small coefficients leads to 

  (27) 

since sq = 1 sq  by definition presented in equation (10). Selecting the coordinates axes in a 

such a way that the direction of the imposed magnetic field Bf  is aligned with the negative 

direction of the z -axis, i.e. ê f = −êz  transforms (27) into 

  (28) 
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Taking the curl ( ∇ × ) of equation (28) produces 
∇ × êz ×V( ) = 0

  (29) 
However, by using equation (17) and evaluating the curl in (29) leads to 
∇ × êz ×V( ) = − êz ∇( )V = 0

  (30) 
Evaluating the dot product yields 

êz ∇( )V = ∂V
∂ z

= 0
  (31) 

Equation (31) is the electromagnetic equivalent to the Taylor-Proudman theorem from rotating 
flows. It implies in particular that ∂w ∂z = 0  and since w = 0  at z = 0  due to impermeability 
boundary conditions it means that w = 0  for all values of z . This indicates that a flow over an 
object aligned with the imposed magnetic field as presented in Figure 1 is impossible because it 
introduces a vertical component of velocity, w ≠ 0 , and consequently is violating equation (31). The 
conclusion is that the flow will adjust around the object as presented in Figure 2a. 

 

Figure 1. An impossible type of flow above a small object aligned with the magnetic field. 

(a)          (b)        

Figure 2. (a) The flow will adjust around the object (b) The flow pattern extends over the whole height 
creating a fluid column above the object, which behaves like a solid body. 

However, this flow pattern is also independent of z  because equation (31) implies  

 (32) 
and consequently the flow pattern extends over the whole height creating a fluid column above 

the object which behaves like a solid body, as presented in Figure 2b.  
  

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 14 August 2024                   doi:10.20944/preprints202408.0971.v1

https://doi.org/10.20944/preprints202408.0971.v1


 7 

 

4. Magnetostrophic Flow 

The lack of a vertical component of velocity leads to two-dimensional flow and then it becomes 
appealing to introduce a stream function that causes the continuity equation (17) to be identically 
satisfied, i.e.  

u = − ∂ψ
∂ y  ;  ;  w = 0   (33) 

Substituting (33) in equation (28) after performing the vector product on its left-hand side 
produces 

  (34) 
where ∇H = ∂ ∂x êx + ∂ ∂y êy  is the horizontal gradient operator. 

As both the generalized reduced pressure, , and the stream function, ψ , can be related to 
an arbitrary reference value, the conclusion from (34) is that the stream function and the generalized 
reduced pressure are the same in the limit of small magnetic Ekman and Rossby numbers. This type 
of magnetostrophic flow (in analogy to the geostrophic type in rotating flows) means thar isobars 
represent streamlines at the leading order for EkM << 1 and RoM << 1, i.e. for MB >> 1 .  

5. Parameter Estimation and Suggested Experimental Setup 

In this section an evaluation of the conditions for electromagnetic columns and magnetostrophic 
flow to exist are tested via parameter estimation and a suggested experimental setup is proposed. 
The main condition for the emergence of electromagnetic columns and magnetostrophic flow was 
derived as 

MB >> 1 
vc

Bf βq( )lc << 1 
Bf
βq

>> vc
lc   (35) 

For the flow of free charges one can estimate the value of βq ≈ me e = 5.7 ⋅10−12 kg C[ ] as 

the ratio between the mass of the elementary charge (the electron) and the absolute value of its 
electrical charge. For flow of charges via fluids one has to account for the mass of the fluid too when 
evaluating the mass, however for rarified gases the former estimation still applies as an 
approximation. Then for an imposed magnetic field of Bf = 1 T[ ]  the ratio 

Bf βq ≅ 1.75 ⋅1011 s−1   and condition (35) implies . This means that 

for length scales of , lc = 10−2 m[ ] , and lc = 10−3 m[ ] , the condition that the average 

fluid velocity should satisfy is , , and 

, respectively. The first two values exceed the speed of light in vacuum. These 

conditions are easily satisfied in any realistic experimental setups. Even if the value of βq  turns out 

to be much larger even by a few orders of magnitude it should not be difficult to satisfy this condition, 
which on extreme cases will require stronger magnetic fields. Estimates for the secondary conditions, 
i.e. Re =O 1( )  (or Re >> 1), ME =O 1( )  (or ME >> 1 ), Mi

2 =O 1( )  (or Mi
2 >> 1) indicate 

that they can also be satisfied in reality. For example, for plasmas large velocities are required such 
that for length scales of , lc = 10−2 m[ ] , and lc = 10−3 m[ ] , the condition that the 
average fluid velocity should satisfy when combined with the condition for MB >> 1  is 

, , and 

, respectively. For liquid metals the conditions are much 

less constrained as , , 
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and . Therefore experiments to confirm the emergence of 
electromagnetic columns and magnetostrophic flow are being suggested and planned by using the 
constraints evlauated in this section and an experimental setup as described in Figures 1 and 2. Using 
earth magnets for creating the imposed magnetic field is also quite practical given the estimated 
parameters values. 

6. Conclusions 

The theoretical derivation identifying an analogy between magneto-fluid dynamics 
(MFD/MHD) and geostrophic flow in a rotating frame of reference was presented. The latter includes 
the existence of electromagnetic columns identical to Taylor-Proudman columns. The emergence of 
these columns is conditional upon very small magnetic Rossby numbers or alternatively very large 
values of its reciprocal, the electromagnetic number. This condition was shown to be possible to 
satisfy in reality. 

As a result, the electromagnetic fluid flow is two dimensional and the streamlines are being 
shown to be identical to the pressure lines in complete analogy to rotating geostrophic flows. A 
possible setup is suggested to confirm the theoretical results experimentally. 
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