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Abstract: Chlorophyll-a (Chl-a), a proxy for phytoplankton biomass, is one of the few biological 

water quality indices detectable using satellite observations. However, models for estimating Chl-a 

from satellite signals are currently unavailable for many lakes. The application of Chl-a prediction 

algorithms may be affected by the variance in optical complexity within lakes. Using Lake Winnipeg 

in Canada as a case study, we demonstrated that separating models by the lake’s basins [north basin 

(NB) and south basin (SB)] can improve Chl-a predictions. By calibrating more than 40 commonly 

used Chl-a estimation models using Landsat data for Lake Winnipeg, we achieved higher 

correlations between in situ and predicted Chl-a when building models with separate Landsat-to-

in-situ matchups from NB and SB (R² = 0.85 and 0.76, respectively; p < 0.05), compared to using 

matchups from the entire lake (R² = 0.38, p < 0.05). In the deeper, clearer waters of the NB, a green-

to-blue band ratio provided better Chl-a predictions, while in the shallower, highly turbid SB, a red-

to-green band ratio was more effective. Our approach can be used for rapid Chl-a modeling in large 

lakes using cloud-based platforms like Google Earth Engine with any available satellite or time 

series length. 

Keywords: phytoplankton blooms; chlorophyll-a; optical properties; Landsat; Google Earth Engine; 

Lake Winnipeg 

 

1. Introduction 

Recent increases in the frequency, prevalence, and intensity of harmful phytoplankton blooms 

in lakes worldwide have raised significant environmental concerns [1–3]. These blooms contribute to 

issues such as toxin production, water odor, taste degradation, and aesthetic decline [4,5]. They also 

reduce biodiversity through habitat degradation and alter energy and nutrient fluxes within food 

webs [5–7]. Addressing these challenges requires a thorough understanding of past, current, and 

potential future occurrences of phytoplankton blooms, necessitating regular, lake-wide monitoring 

of phytoplankton biomass [8]. However, traditional in situ monitoring methods are costly, time-

consuming, and limited in spatial and temporal coverage [9]. 

Satellite sensors offer a cost-effective solution for monitoring chlorophyll-a (Chl-a), a proxy for 

phytoplankton biomass, across lakes by mapping its concentration [10]. Estimating Chl-a from 

satellite spectral data relies on the absorption and scattering of light by phytoplankton at specific 

wavelengths [11]. In waters with straightforward optical properties, phytoplankton and related 

substances predominantly determine the color of the water and thus the signals received by satellite 

sensors [12]. However, in optically complex waters like many inland and coastal areas, non-

phytoplankton optically active constituents (OACs) such as detritus and colored dissolved organic 

matter (CDOM) also influence the color of water, complicating Chl-a estimation from satellite data 
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[12]. These OACs vary widely in type, quantity, and band ratios across different water bodies [13], 

posing challenges for developing universal Chl-a prediction models [14,15]. 

Successful Chl-a estimation from satellite data requires the development of region-specific 

models, known as regional models, which account for the optical characteristics of the target water 

body [11,16,17]. Efforts to create such models often rely on lake-wide approaches that overlook 

within-basin variations in water optical properties [18]. 

This study aims to propose a method for developing simple yet accurate Chl-a prediction models 

that address the optical heterogeneity of lakes. Using Lake Winnipeg (LW), Canada, as a case study, 

we hypothesize that improving Chl-a predictions can be achieved by separating the lake into its 

optically distinct basins. We compare "basin-specific" models against conventional "lake-wide" 

models to evaluate their efficacy. Enhanced Chl-a predictions using basin-specific models could 

facilitate Chl-a modeling on platforms like Google Earth Engine (GEE), which is crucial for processing 

and analyzing long-term satellite data at broad spatial scales using medium- to high-resolution 

imagery, often computationally intensive outside cloud-based environments. 

2. Materials and Methods 

2.1. Case Study Area 

Lake Winnipeg, with a surface area of 23,750 km², is recognized as the world’s 10th largest, 

North America’s 7th largest, and Canada’s 3rd largest freshwater lake [19,20]. It is a shallow, wind-

mixed, polymictic lake, divided into two physically and biogeochemically different basins: the north 

basin (NB) and the south basin (SB) (Figure 1) [19]. Compared to the SB, the NB is larger, 

encompassing 74% of the total lake area, and deeper, with an average depth of 13.3 m and a maximum 

depth of 18.0 m. The water in the NB is relatively transparent. In contrast, the SB, encompasses 11% 

of the total lake area and is shallower, with an average depth of 9.0 m and a maximum depth of 12.0 

m. The Red River transports a large amount of sediments to the SB, combined with sediment 

resuspension, making the SB highly turbid. A deep, narrow channel, known as the Narrows, 

separates the NB and SB. The Narrows is characterized by its relatively rapid water flow, with a 

maximum depth of approximately 60.0 m and a width of around 2.6 km [19]. 

 

Figure 1. Map of Lake Winnipeg showing the location of the two basins and the narrows, as well as 

the location of the in situ Chl-a sampling points used for studying turbidity (all the circles shown on 

the map) and those used as Chl-a matchups from different temporal windows (0 to ±3 days shown as 
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white, grey, black, and red circles, respectively). The empty circles represent stations used for cross 

comparing two Landsat sensors (ETM+ and OLI). 

2.2. LW Turbidity 

We used in situ turbidity data (Nephelometric Turbidity Units; NTU) measured throughout LW, 

provided by Manitoba Agriculture and Resource Development during the growing seasons (May to 

October) from 2002 to 2018 (Figure 1). A non-parametric, one-way analysis of variance by ranks 

(Kruskal–Wallis H test) was employed to determine whether the two LW basins (NB and SB) and the 

Narrows differed in their turbidity levels [21]. The choice of a non-parametric test was based on the 

non-normal distribution of the data (Shapiro-Wilcoxon test; p > 0.05). A significant result from the 

Kruskal-Wallis test (p < 0.05) indicated that at least one basin differed from the others. We then 

applied a multi-step a posteriori pairwise testing procedure based on studentized range statistics (non-

parametric multiple comparison Dunn’s procedure) to identify which basins were significantly 

different from each other [22]. 

2.3. Modeling Chl-a 

2.3.1. In Situ Data Acquisition 

In situ Chl-a measurements (μgL⁻¹) were provided by the Manitoba Sustainable Development, 

Water Quality Management Section in 2019. Chl-a data were collected from 32 stations distributed 

throughout the lake (14 stations in the NB, 15 in the SB, and three in the Narrows; Figure 1) during 

the peak phytoplankton biomass season (July to October) between 2002 and 2018 [19]. All Chl-a data 

were measured using spectrophotometric methods (American Public Health Association (APHA) 

10200H [23]). Since satellite-derived Chl-a information is limited to the uppermost water layer, we 

only used samples taken from the surface of the lake (≤ 0.1 m depth). Although using Chl-a samples 

from deeper layers (≤ 0.5 m depth) could have substantially increased the number of in situ and 

satellite matchup points, it reduced the performance of Chl-a models (Figure S1). Our criteria for in 

situ Chl-a sample selection resulted in no samples from the Narrows, as all samples there were from 

deeper than 0.1 m. Due to the log-normal distribution of Chl-a in nature [24], all Chl-a data were 

logarithmically transformed (using natural log) prior to analysis. 

2.3.2. Landsat Data 

Landsat 4-5 Level 1 Collection 2 Thematic Mapper (TM) and Landsat 7 Enhanced Thematic 

Mapper Plus (ETM+) images covering the entirety of LW were used in this study 

(https://www.usgs.gov/landsat-missions/landsat-collection-2). Both sensors (TM and ETM+) have a 

spatial resolution of 30 m. We used four visible bands: blue (B, 450–520 nm), green (G, 520–600 nm), 

red (R, 630–690 nm), and near-infrared (NIR, 770–900 nm). Matchups between Chl-a sample times 

and Landsat image acquisition times were extracted from 9 TM and 20 ETM+ images (6 TM and 6 

ETM+ path/rows). Images with more than 90% cloud or cloud shadow cover were excluded. 

2.3.3. Pre-Processing Landsat Level 1 Data 

Partial atmospheric correction was applied to Landsat Level 1 data (Figure 2) because Level 2 

products may introduce higher uncertainty in aerosol calculations over inland waters, leading to 

erroneous results [25,26]. All pre-processing steps for transforming Landsat data to partially 

corrected satellite top-of-atmosphere (TOA) reflectance were performed in GEE (Figure 2, 

Supplementary Material). Land pixels and those covered by cloud or cloud shadow during satellite 

image acquisition were masked out using a standard LW boundary shapefile and Pixel Quality 

Assessment bands provided with Landsat Level 2 products. The individual pixels were then pre-

processed in three steps. 
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Figure 2. Flowchart of methods used in the study. 

Step 1. Radiometric correction  

Landsat Level-1 data are stored as digital numbers (DNs). During the radiometric correction, we 

recalibrated the DNs to the satellite TOA radiance (𝐿𝜆) using the standard equation [27] (1): 

𝐿λ = (𝐷𝑁λ ×  𝐺λ) + 𝐵λ (1) 

Where:  

L𝜆 is TOA radiance for band 𝜆,  

DN𝜆 is DN for band 𝜆,  

G𝜆 is the multiplicative rescaling factor for band 𝜆, and 

B𝜆 is the additive rescaling factor for band 𝜆.  

Step 2. Partial atmospheric correction:  

L𝜆 values were corrected for Rayleigh scattering using a partial atmospheric correction algorithm 

[28]. We used an inverse algorithm based on a simplified radiative transfer model to calculate 

Rayleigh scattering radiance (or Rayleigh path radiance) for each band (Lr(𝜆)) [28] (2): 

𝐿𝑟(𝜆) = (
𝐸𝑆𝑈𝑁𝜆  × 𝑐𝑜𝑠𝜃𝑠  × 𝑃𝑟

4𝜋 × (𝑐𝑜𝑠𝜃𝑠 + 𝑐𝑜𝑠 𝜃)
) × (1 − 𝑒𝑥𝑝 (−𝜏𝑟(𝜆) × ((

1

𝑐𝑜𝑠𝜃𝑠
) + (

1

𝑐𝑜𝑠 𝜃
)))) × 𝑡𝑜𝑧 ↑ (𝜆) × 𝑡𝑜𝑧 ↓ (𝜆) (2) 

Where:  

ESUN is the mean solar exo-atmospheric irradiance,   

Pr is the Rayleigh scattering phase function,  

θs is the solar zenith angle (degrees),  

θ is the satellite viewing angle (degrees) (set to 0°),  

τr is the Rayleigh optical thickness, and  

toz↑ and toz↓ are upward and downward ozone transmittance, respectively.   

The phase function Pr was calculated using (3):   

𝑃𝑟 =
3

4
×

1 − 𝛾

1 + 2𝛾
× (1 + 𝑐𝑜𝑠2𝛩) +

3𝛾

1 + 2𝛾
 (3) 

Where:  

Θ (the view zenith angle) is the scattering angle (180° − θs),   

γ = δ/(2- δ) [29], and  

δ is the depolarization factor [30], which denotes the polarization of anisotropic particles at right 

angles and is dependent on the wavelength, atmospheric pressure, and air mass (with the last two 

variables being constant values) [31].  
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The Rayleigh optical thickness, τr, was calculated using [32,33] (4): 

𝜏𝑟 = 0.008569𝜆−4 × (1 + 0.0113𝜆−2 + 0.00013𝜆−4) (4) 

Where:  

λ is the band specific mid-wavelength value (nm).   

toz↑ and toz↓ were calculated using [34] (5,6): 

𝑡𝑜𝑧 ↑ = 𝑒𝑥𝑝(−𝜏𝑜𝑧) (5) 

𝑡𝑜𝑧 ↓= 𝑒𝑥𝑝 (
−𝜏𝑜𝑧

𝑐𝑜𝑠𝜃𝑠
) (6) 

Where:  

toz is the constant ozone optical thickness [35].    

Finally, the Rayleigh-corrected radiance; 𝐿̂𝜆was obtained by subtracting the Rayleigh scattering 

radiance (𝐿r) from the TOA radiance (𝐿𝜆) (7): 

𝐿̂𝜆=𝐿𝜆 − 𝐿𝑟 (7) 

Step 3. Converting radiance to reflectance: 

TOA reflectance for each band (𝜌𝜆), was calculated using (8): 

𝜌𝜆 =
𝜋 × 𝐿̂𝜆 × 𝑑2

𝐸𝑆𝑈𝑁𝜆 × 𝑐𝑜𝑠𝜃𝑠
 (8) 

Where:  

ρλ is TOA reflectance for wavelength range or band λ, and  

d is the Earth-to-sun distance in astronomical units [27]. 

2.3.4. Extracting Matchups 

We extracted remote sensing reflectance (Rrs) for each band (B, G, R, and NIR; Section 2.3.3) and 

paired it with the corresponding sampling points (Section 2.3.1) in GEE (See Supplementary 

Material). To increase the chance of matching satellite observations with sampled Chl-a, we 

considered Landsat images within ±3 days of the sampling dates. Larger temporal windows were not 

used due to the highly dynamic nature of blooms in LW [36]. Satellite data were extracted from 

corresponding pixels to sampling point locations (single pixels; spatial windows of 1 × 1). To mitigate 

potential errors in digitization [37], we also extracted Rrs using the median of pixels corresponding to 

sampling locations and their eight (spatial window of 3 × 3) and 24 neighboring pixels (spatial 

window of 5 × 5). Based on these criteria, a total of 42 samples (18 in the NB and 24 in the SB) from 

28 stations (13 in the NB and 15 in the SB) were identified (Figure 1, Table 1). We found 9 Landsat 

images for the NB, 11 for the SB, and 20 for the entire LW matching the time and location of the 

sampling points, providing 23 matchup points in the NB, 30 in the SB, and 57 for the entire LW (Table 

1). We created 36 sets of matchups with different temporal windows (0 to ±3 days), different spatial 

windows (1 × 1, 3 × 3, and 5 × 5), and in each LW basin (NB-specific and SB-specific) as well as for the 

entire lake (LW-specific). 

Table 1. Matchups for sensitivity tests for the lake (NB-specific, SB-specific, and LW-specific) and 

temporal windows (0 to ±3 days). The values are the same for different spatial windows (1×1, 3×3, and 

5×5). 

Basin  

Temporal 

window 

(days)  

# of 

matchups  

In situ Chl-a 

(µgL-1)  

# of 

stations  

# of 

samples  

# of 

images  

Landsat 

sensors  
Landsat scenes (path/row)  Year  Month  

NB 

0  2  10.1 - 147  2  2  1  5 3322 2011 9 

±1  10  1.91 - 147  6  8  6  5, 7 3223, 3322/23 2010, 2011 7, 8, 9, 10 
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±2  17  1.91 - 147  11  13  8  5, 7 3223, 3322/23 2010, 2011 7, 8, 9, 10 

±3  23  1.91 - 147  13  18  9  5, 7 3223, 3322/23 2010, 2011 7, 8, 9, 10 

SB  

0  3  3.05 – 4.01  2  2  2  5, 7 3124/25 2010 7, 8 

±1  7  3.05 – 6.68  5  5  5  5, 7 3025, 3124/25 2010, 2011 7, 8 

±2  20  2.67 – 9.55  12  15  8  5, 7 3025, 3124/25 2010, 2011 7, 8, 10 

±3  30  2.67 - 147  15  24  11  5, 7 3025, 3124/25 2010, 2011 7, 8, 9, 10 

LW 

0  5  3.05 - 147  4  4  3  5, 7 3322, 3124/25 2010, 2011 7, 8, 9 

±1  17  1.91 - 147  11  13  11  5, 7 3223, 3025, 3124/25, 3322/23 2010, 2011 7, 8, 9, 10 

±2  27  1.91 - 147  23  28  16  5, 7 3223, 3025, 3124/25, 3322/23 2010, 2011 7, 8, 9, 10 

±3  57  1.91 - 147  28  42  20  5, 7 3223, 3025, 3124/25, 3322/23 2010, 2011 7, 8, 9, 10 

2.3.5. Model Calibration 

For each set of matchups (Section 2.3.4), we tested the performance of 44 models, including all 

possible bands and band ratios, as well as various commonly used multiband combinations 

(Supplementary Material, Table S1) to predict Chl-a in LW using regression analyses. Each model 

was fitted using the matchup natural log-transformed in situ Chl-a values against the partially 

corrected Rrs (with and without natural log-transformation) using simple linear regression equations 

(Table S1). We then identified the Best Performing Model (BPM) for each set of matchups as the model 

that exhibited the highest coefficient of determination (R²) and was statistically significant (p < 0.05). 

Model calibration on the BPMs was performed using 5-fold cross-validation, chosen to balance bias 

and variance given the number of matchups available [38,39]. During model calibration, for each fold 

of the 5-fold cross-validation, the models were fitted to the training dataset (natural log-transformed 

in situ Chl-a values against partially corrected Rrs) using simple linear regression equations. We then 

estimated the average predictive performance of each model during the calibration stage using the 

average R² of the five cross-validation folds. 

2.3.6. Model Validation 

To assess the predictive capacity of the BPMs identified during the initial calibration phase for 

each set of matchups (Section 2.3.5), we validated each model by applying the slope and intercept 

from each calibration to its associated test matchup set in the cross-validation fold (k = 5).  The 

predictive performance of the BPMs was measured the predictive performance of the BPMs using 

Root Mean Square Error (RMSE; µgL-1) for each cross-validation fold as follows (9):             

RMSE = √∑ (
((𝑦𝑜 − 𝑦𝑝)

2
)

𝑛
)

𝑛

𝑖=1

 (9) 

Where:  

𝑦𝑜 represents the observed Chl-a values, and  

𝑦𝑝 represents the predicted Chl-a values.  

We normalized the RMSE (NRMSE) for each cross-validation fold as follows (10): 

NRMSE =

√∑ (
((𝑦𝑜 − 𝑦𝑝)

2
)

𝑛
)𝑛

𝑖=1

𝑦𝑜̅̅ ̅
 

(10) 

Where:  

𝑦𝑜̅̅ ̅ is average observed Chl-a.  

We calculated the Root Mean Squared Logarithmic Error (RMSLE; µgL-1) as follows (11): 
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RMSLE = √
1

𝑛
 ∑(𝑙𝑜𝑔[1 + 𝑦𝑜] − 𝑙𝑜𝑔[1 + 𝑦𝑝])2

𝑛

𝑖=1

 (11) 

We also calculated the Mean Absolute Error (MAE; µgL-1) and Mean Absolute Percentage Error 

(MAPE; %) for the five cross-validation folds to measure the predictive performance of the models as 

follows (12,13): 

MAE =  
∑ |𝑦𝑜 − 𝑦𝑝|𝑛

𝑖=1

𝑛
 (12) 

MAPE = 100 × median of [ 
|𝑦𝑜 − 𝑦𝑝|

𝑦𝑝
] 𝑓𝑜𝑟 1 = 1, … , 𝑛. (13) 

Bias was measured as follows (14): 

Bias =  
∑ (𝑦𝑜 − 𝑦𝑝)𝑛

𝑖=1

𝑛
 (14) 

Finally, we compared the performances of the models based on the average errors for all the 

cross-validation folds [40]. 

2.4. Application of the BPMs to Landsat OLI 

The Landsat TM and ETM+ were launched in 1984 and 1999 (respectively), and the Landsat 

Operational Land Imager (OLI) was launched in 2013. In our study, all matchups since 2013 were 

discarded because the in situ Chl-a data in those years were taken from depths below 0.1 m, which 

did not meet our matchup selection criteria (Section 2.3.1). To test the applicability of our BPMs for 

predicting Chl-a using OLI, we applied the models to concurrent OLI and ETM+ samples (with 1 to 

8 days of difference between the two sensors overpassing times) from 19 stations distributed 

throughout LW between 2013 to 2017 (Figure 1).  

For each OLI matchup, Level 1 Collection 2 OLI data (https://www.usgs.gov/landsat-

missions/landsat-collection-2) for the bands used in the BPMs (i.e., B (450–515 nm), G (595–600 nm), 

and Red (630–680 nm)) were pre-processed in GEE using the same approach as for Landsat TM and 

ETM+ (Section 2.3.3). After applying the BPMs to ETM+ and their concurrent OLI data, we compared 

the modeled Chl-a derived from each sensor (a total of 26 matching points) using a simple linear 

regression model. 

2.5. Comparing Chl-a Predictions Using Basin-Scale vs. Lake-Scale BPMs 

To compare Chl-a predictions using basin-specific versus lake-specific BPMs, we applied the 

BPMs from each approach to all Landsat images during the peak Chl-a period (July–October) from 

1984 to 2023 in GEE. We then compared the ability of the predictions from the two approaches to 

capture spatial and temporal changes in peak Chl-a in LW. All Landsat images were pre-processed 

to partially corrected Rrs in GEE (section 2.3.3) prior to model application. 

To study spatial changes in peak Chl-a in LW, we calculated the median of peak Chl-a for each 

pixel within each basin for all years from 1984 to 2023. To study temporal changes in peak Chl-a in 

LW, we calculated the median peak Chl-a for all pixels within each basin for each year from 1984 to 

2003. 

3. Results 

3.1. Spatial Heterogeneity in LW Turbidity 

Our results revealed significant differences in turbidity levels among different regions of LW 

during the growing season (May-October). Specifically, turbidity in the NB was consistently lower 
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than in the SB and the Narrows (p < 0.05), whereas no significant difference was observed between 

the SB and the Narrows (p ≥ 0.05; Table 2). 

Table 2. Comparing turbidity (Nephelometric Turbidity Units; NTU) in the two basins and the 

narrows (median values); number of sampling data are added in the parenthesis next to the median 

values. The letters a and b on the values within each month show if the basins/narrows were 

significantly different from each other based on the Dunn’s multiple comparison test results (p < 0.05). 

All months   May   June   July   Aug   Sep   Oct   All months   

NB 5.5a (723) - 5.39a (205) 5.53a (176) 3.81a (95) 5.55a (207) 9.44a (41) 

SB 15.00b (396) 10.60a (20) 8.06b (107) 19,00b (58) 14.90b (73) 19.75b (58) 20.50a,b (80) 

Narrows 16.1b (243) 5.50b (2) 9.10b (78) 21.80b (62) 17.45b (70) 17.90b (23) 14.70b (8) 

Source: Raw in situ data from Manitoba Agriculture and Resource Development; Kruskal-Wallis and 

Dunn’s test (p < 0.05). Data were not normally distributed (Shapiro Wilcoxon test; p > 0.05). 

3.2. Best Performng Models 

The performance of basin-specific models in predicting Chl-a was superior to that of lake-

specific models (Figure 3 and Table S1). The NB-specific and SB-specific BPMs achieved R2 values of 

0.85 (n = 10) and 0.76 (n = 7), respectively (p < 0.05; Figure 3 and Tables S2, S3). In contrast, the lake-

specific BPM showed a lower R2 of 0.38 (p < 0.05; n = 17; Figure 3 and Table S4). 

 

Figure 3. Correlation coefficients (R2) of the best performing model among 44 tested algorithms for 36 

sets of matchups with different temporal windows (0 to ±3 days) and different spatial windows (1 × 

1, 3 × 3, and 5 × 5) in each Lake Winnipeg basin (i.e., NB- and SB-specific) and in the entire lake (i.e., 

LW-specific). No values on the plot refers to correlation coefficients with no significant relationship 

between in situ and satellite Chl-a (p ≥ 0.05) or to the number of matchups below 10. 

The NB-specific BPM (R2 = 0.85) used matchups from ±1 day with a 1 × 1 spatial window (Figure 

3 and Table S2). Increasing the spatial window to 3 × 3 and 5 × 5 decreased the R2 to 0.70 and 0.60, 

respectively, while increasing the temporal window to ±2 and ±3 days decreased the R2 to 0.75 and 

0.57, respectively. Despite these changes, increasing the temporal window to ±2 days still provided a 

high R2 of 0.75 with reduced errors (NRMSE decreased from 1.98 to 0.73; bias reduced from 9.39 to 

2.04). 

The SB-specific BPM (R2 = 0.76) used matchups from ±1 day with a 1 × 1 spatial window (Figure 

3 and Table S3). Increasing the spatial window to 3 x 3 and 5 x 5 decreased the R2 to 0.74 and 0.63, 

respectively, while increasing the temporal window to ±2 and ±3 days decreased the R2 to 0.61 and 
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0.32, respectively. The temporal window of ±2 days provided 17 matchups with an R2 of 0.61 and 

reduced bias (bias decreased from 0.25 to 0.23). 

Like the basin-specific models, the LW-specific model (R2 = 0.38, based on matchups from ±1 day 

with a 1 × 1 spatial window) exhibited decreasing R2 values with larger spatial and temporal 

windows (Figure 3 and Table S4). 

3.3. Best Chl-a Prediction Models 

From the BPMs in section 3.2, the basin-specific models (NB and SB) using a 1 × 1 spatial window 

and a temporal window of ±2 days were selected for their balanced performance (high R2 and low 

errors) and increased confidence due to a larger number of matchups used. 

In the NB, a 2-band model based on the Rrs of the band ratio of G to B showed the highest 

performance (R2 = 0.74) (Table 3 and Figure 4a) (15):  

ln Chl − 𝑎 = 8.153 × [𝐺/𝐵] − 5.622 (15) 

In the SB, a 2-band model based on the Rrs of the band ratio of R to G performed best (R2 = 0.62) 

(Table 3 and Figure 4b) (16):  

ln Chl − 𝑎 = 4.313 × [𝑅/𝐺] − 2.603 (16) 

In the entire LW, a 2-band model based on the Rrs of the band ratio of G to B achieved the highest 

performance (R2 = 0.38) (Table 3 and Figure 4c) (17):  

ln Chl − 𝑎 = 5.836 × [𝐺/𝐵] − 4.005 (17) 

Table 3. Calibration and validation results for the NB- and SB-specific BPMs (spatial window of 1× 1 

and temporal window of ±2 days) and the LW-specific BPM (spatial window of 1× 1 and temporal 

window of ±1 days). All the calibrations R2 are significant at p < 0.05. 

Basin  Model  Calibration R2  RMSE (µgL-1)  RMSLE (µgL-1)  NRMSE   MAE (µgL-1)   MAPE (%)  

NB  G/B 0.74  20.53   0.65  0.88  14.51 55.43   

SB  R/G   0.62  1.14  0.20  0.24  1  22.81    

LW G/B 0.38 21.57 0.87 1.29 13.57 64.27  

 

   

(a) (b) (c) 

Figure 4. Regression of observed ln Chl-a (y axis; µgL-1) to modeled ln Chl-a (x axis; µgL-1) using the 

(a) NB-, (b) SB-, and (c) LW-specific best performing models. 

Validation tests using 5-fold cross-validation further supported the superiority of basin-specific 

models over the LW-specific model (Table 3). 

3.4. Application of the Models to Landsat OLI 

Cross-comparison between ETM+ and OLI sensors indicated a strong linear relationship 

between Chl-a predictions using OLI (dependent variable) and those using ETM+ (independent 
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variable) (R2 = 0.87, p < 0.05) (Figure 5). Notably, the correlation was stronger in the NB (R2 = 0.83, p 

< 0.05) compared to the SB (R2 = 0.75, p < 0.05) (Figure 5). 

 

Figure 5. Chl-a predictions using OLI (y axis; µgL-1) and ETM+ (x axis; µgL-1) for NB (blue dots and 

line; R2 = 0.83), SB (orange dots and line; R2 = 0.75) and the entire Lake Winnipeg (LW) (black line; R2 

= 0.87). The red line shows the intercept (p < 0.05). 

3.5. Comparing Chl-a Predictions Using the Basin-Scale vs Lake-Scale BPMs 

Figure 6 illustrates the median (1984-2023) of natural log-transformed peak Chl-a (µgL-1) in the 

NB and SB using basin-specific (Figure 6a) and lake-specific BPMs (Figure 6b). Basin-specific models 

predicted higher Chl-a concentrations in the NB compared to the SB (Figure 6a), while lake-specific 

models showed the opposite pattern (Figure 6b) 

           
(a) (b) 

Figure 6. Chl-a predictions using OLI (y axis; µgL-1) and ETM+ (x axis; µgL-1) for NB (blue dots and 

line; R2 = 0.83), SB (orange dots and line; R2 = 0.75) and the entire Lake Winnipeg (LW) (black line; R2 

= 0.87). The red line shows the intercept (p < 0.05). 
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Figure 7 illustrates the annual time series of peak Chl-a in the NB and SB derived from basin-

specific and lake-specific BPMs. In the NB, lake-specific models consistently predicted lower Chl-a 

concentrations compared to basin-specific models (Figure 7). Conversely, in the SB, lake-specific 

models predicted higher Chl-a concentrations compared to basin-specific models (Figure 7). 

Temporal variations in peak Chl-a from 2002 to 2019 also exhibited distinct patterns between basin-

specific and lake-specific models, reflecting different spatial dynamics within LW (Figure 7). 

 

Figure 7. Annual time series (1984 to 2023) of peak Chl-a (µgL-1) in the NB (black lines) and SB (red 

lines) using basin-specific (solid lines) and lake-specific (dashed lines) models. 

4. Discussion 

Remote sensing is a crucial tool for the rapid and consistent monitoring of spatial and temporal 

changes in surface water Chl-a. Limnologists often use global satellite-derived level-2 or level-3 Chl-

a products designed for optically complex waters [36,41,42] without considering variations in water 

optical properties among lakes [40]. Chl-a prediction using remote sensing reflectance can be 

improved by developing models that account for potential within-lake variance in optical properties. 

Such models can be delineated based on optical properties or, as in our study, by morphometric 

characteristics that distinguish lake basins with unique optical properties. Our study demonstrates 

that by considering within-basin differences in optical properties and dividing the lake into optically 

distinct parts, Chl-a prediction can be improved.  

4.1. Basin-Specific Chl-a Prediction Models 

The physical and biogeochemical differences between LW’s NB and SB [19,36] create different 

optical properties, favoring basin-specific models over lake-specific models in both basins. BPMs in 

both basins used band ratios. Compared to single bands, band ratios enhance Chl-a estimations by 

reducing the atmospheric, irradiance, and air-water surface effects on reflectance [43]. Band ratios 

also minimize the impact of non-phytoplankton OACs found in inland waters, which can alter the 

spectral profile observed by the sensor [44,45]. This is significant because the varying concentrations 

of these constituents can explain the lack of correlation between observed Chl-a and single bands in 

lakes [43], as observed in our study (Supplementary Material). 

Many models based on band ratios have been proposed for estimating Chl-a in inland, coastal, 

and open ocean waters [11,46]. These models leverage the reflection and absorption patterns of 
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sunlight by Chl-a. With increasing Chl-a, the relative energy between 520 and 600 nm (Landsat G 

band) increases, while the energy between 450 and 520 nm (Landsat B band) decreases [47]. In our 

study, while BPMs in both NB and SB included the G band, the second band in the ratio differed 

between the two basins. 

In the NB, where the water is deeper and clearer [19], Chl-a reaches higher concentrations during 

bloom events [19,35]. In this basin, the B to G band ratio provided the highest correlation with 

observed Chl-a (R² > 0.80). The B to G band ratio is widely used in estimating Chl-a in lakes with low 

concentrations of inorganic suspended matter or in eutrophic and hypertrophic waters where 

phytoplankton are the predominant constituents and non-phytoplankton constituents have a smaller 

effect on reflectance [48–50]. 

In the SB, where the water is shallow, well-mixed, and highly turbid [19,36], the R to G band 

ratio provided the highest correlation with observed Chl-a (R² > 0.70). The SB creates optically 

complex water conditions, where non-phytoplankton OACs interfere with spectral bands – 

particularly the B band. The concentrations of these constituents do not always correlate with Chl-a 

[51]. This interference complicates Chl-a estimation in optically complex turbid waters using the B 

band [44,52,53]. To account for the overlaps of the absorption of non-phytoplankton particles, the R 

to G band ratio is commonly used for estimating Chl-a in highly turbid waters [43,54–56]. Many Chl-

a prediction models developed for turbid, optically complex waters are also based on the red and 

near-infrared regions of the electromagnetic spectrum [43,57]. Like the red region, the near-infrared 

region (near 700 nm wavelength) shows less sensitivity to non-phytoplankton particles' interference 

compared to the blue region [58]. However, near-infrared-based models are successful with satellites 

having a band centered at the red- near-infrared edge, like MERIS [58,59]. Multispectral sensors like 

Landsat have broad NIR bands (770–900 nm in TM and ETM+ and 845–885 nm in OLI), which have 

been shown to be unsuitable for estimating Chl-a [43]. In our study, we could not improve the 

relationship between observed and modeled Chl-a using NIR in either basin-specific or lake-specific 

models. 

4.2. Application of the Models to Landsat OLI 

Our matchup selection criteria excluded in situ matchups concurrent with the period of Landsat 

OLI operation (2013 to present). OLI differs from TM/ETM+ in image quality and the number and 

width of spectral bands. Despite these differences, the similar spatial and spectral resolutions allow 

for intercalibration between these sensors [60]. Our cross-comparison analysis showed that the 

models developed in this study are applicable for predicting Chl-a using OLI. Other studies have also 

successfully applied models developed based on TM or ETM+ to OLI images or vice versa [3,61]. 

The matchup selection criteria in our study left out in situ matchups concurrent with the period 

of Landsat OLI operation (2013 to present). OLI is different from TM/ETM+ for image quality and 

number and width of spectral bands. Despite the differences between TM/ETM+ and OLI, the similar 

spatial and spectral resolutions allow intercalibration between these sensors [60].  Our cross-

comparison analysis showed the models developed in this study are applicable to predict Chl-a using 

OLI. Similarly, other studies successfully applied models developed based on TM or ETM+ to OLI 

images or vis versa [e.g., 3,61]. 

4.3. Future Applications 

Overall, the high correlation between modeled and observed Chl-a obtained using the basin-

specific models suggests these models can reliably capture relative changes in Chl-a in LW. Therefore, 

the models can be used for predicting Chl-a in LW with Landsat data to study spatial and temporal 

variabilities of Chl-a [61,62]. However, the lack of in situ Chl-a data with concentrations above 10 µgL-

1 in the SB due to our matchup selection criteria may affect the accuracy of absolute Chl-a predictions 

in this basin [61]. More in situ Chl-a data can also enable Chl-a predictions using an optical water 

types (OWTs) approach, which requires large in situ Chl-a data for training. Using this approach, 

lakes are classified into OWTs before prediction [40,63,64], with unique Chl-a prediction models 

developed for each water type. Our matchup selection criteria also excluded any samples from the 
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Narrows. Like the SB, the Narrows is optically complex, where non-phytoplankton particles are 

primary determinants of water transparency [19]. However, applying the SB-specific model to the 

Narrows requires in situ Chl-a data to validate these models' performance in this part of the lake. 

Applying models to Landsat imagery (available since 1984) in GEE (see Supplementary Material 

for the code) can provide the longest available Chl-a time series for most water bodies. The length of 

this time series (40 years) allows for the study of long-term climate trends or oscillations' impacts on 

changes in Chl-a. At least 30-40 years of continuous and consistent data on water temperature (a 

critical indicator of climate change) and Chl-a is required to separate climate change signals from 

natural variability [64–67]. This information will also provide ecosystem managers and scientists with 

a better understanding of the sensitivity of different regions of their study area to environmental 

perturbations. This can lead to more accurate predictions of future lake ecosystem responses to 

increasing anthropogenic pressures in the face of a changing climate. Ecosystem managers can use 

this knowledge to design contextual and more efficient management strategies towards 

eutrophication and phytoplankton blooms in lakes. 

5. Conclusion 

In this study, we predicted relative concentrations of Chl-a in a large lake using simple empirical 

equations applied to Landsat data. Our results highlight the importance of considering optical 

differences within lakes when developing Chl-a prediction models. By separating a lake into basins 

with distinct water optical properties, we significantly improved the relationships between in situ 

and modeled Chl-a. These models can be easily applied in cloud-based platforms like Google Earth 

Engine (GEE) for computationally intensive modeling of Chl-a on broad spatial and temporal scales. 

The user-friendly GEE code requiring minimal adjustments of the times and locations of in situ Chl-

a samples that was developed for this study is freely available, facilitating the development of models 

for optically distinct lakes world-wide. 

Supplementary Materials: The following supporting information can be downloaded at the website of this 

paper posted on Preprints.org. Figure S1: Best performing models’ R2 using in situ matchups from different 

depth, Table S1: Best calibration results for each tested model, Table S2: Calibration and validation results for 

the NB-specific Best Performing Models (BPMs), Table S3: Calibration and validation results for the SB-specific 

Best Performing Models (BPMs), Table S4: Calibration and validation results for the Lake-scale Best Performing 

Models (BPMs). Google Earth Engine codes for atmospheric correction of Landsat Level 1 data, masking land 

and low-quality pixels, extracting satellite matchups, applying Chl-a model to the Landsat time series, and 

exporting the modeled Chl-a images. 
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