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Abstract: Chlorophyll-a (Chl-a), a proxy for phytoplankton biomass, is one of the few biological
water quality indices detectable using satellite observations. However, models for estimating Chl-a
from satellite signals are currently unavailable for many lakes. The application of Chl-a prediction
algorithms may be affected by the variance in optical complexity within lakes. Using Lake Winnipeg
in Canada as a case study, we demonstrated that separating models by the lake’s basins [north basin
(NB) and south basin (SB)] can improve Chl-a predictions. By calibrating more than 40 commonly
used Chl-a estimation models using Landsat data for Lake Winnipeg, we achieved higher
correlations between in situ and predicted Chl-a when building models with separate Landsat-to-
in-situ matchups from NB and SB (R? = 0.85 and 0.76, respectively; p < 0.05), compared to using
matchups from the entire lake (R? = 0.38, p < 0.05). In the deeper, clearer waters of the NB, a green-
to-blue band ratio provided better Chl-a predictions, while in the shallower, highly turbid SB, a red-
to-green band ratio was more effective. Our approach can be used for rapid Chl-z modeling in large
lakes using cloud-based platforms like Google Earth Engine with any available satellite or time
series length.

Keywords: phytoplankton blooms; chlorophyll-a; optical properties; Landsat; Google Earth Engine;
Lake Winnipeg

1. Introduction

Recent increases in the frequency, prevalence, and intensity of harmful phytoplankton blooms
in lakes worldwide have raised significant environmental concerns [1-3]. These blooms contribute to
issues such as toxin production, water odor, taste degradation, and aesthetic decline [4,5]. They also
reduce biodiversity through habitat degradation and alter energy and nutrient fluxes within food
webs [5-7]. Addressing these challenges requires a thorough understanding of past, current, and
potential future occurrences of phytoplankton blooms, necessitating regular, lake-wide monitoring
of phytoplankton biomass [8]. However, traditional in situ monitoring methods are costly, time-
consuming, and limited in spatial and temporal coverage [9].

Satellite sensors offer a cost-effective solution for monitoring chlorophyll-a (Chl-a), a proxy for
phytoplankton biomass, across lakes by mapping its concentration [10]. Estimating Chl-a from
satellite spectral data relies on the absorption and scattering of light by phytoplankton at specific
wavelengths [11]. In waters with straightforward optical properties, phytoplankton and related
substances predominantly determine the color of the water and thus the signals received by satellite
sensors [12]. However, in optically complex waters like many inland and coastal areas, non-
phytoplankton optically active constituents (OACs) such as detritus and colored dissolved organic
matter (CDOM) also influence the color of water, complicating Chl-a estimation from satellite data
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[12]. These OACs vary widely in type, quantity, and band ratios across different water bodies [13],
posing challenges for developing universal Chl-a prediction models [14,15].

Successful Chl-a estimation from satellite data requires the development of region-specific
models, known as regional models, which account for the optical characteristics of the target water
body [11,16,17]. Efforts to create such models often rely on lake-wide approaches that overlook
within-basin variations in water optical properties [18].

This study aims to propose a method for developing simple yet accurate Chl-a prediction models
that address the optical heterogeneity of lakes. Using Lake Winnipeg (LW), Canada, as a case study,
we hypothesize that improving Chl-a predictions can be achieved by separating the lake into its
optically distinct basins. We compare "basin-specific’ models against conventional "lake-wide"
models to evaluate their efficacy. Enhanced Chl-a predictions using basin-specific models could
facilitate Chl-a modeling on platforms like Google Earth Engine (GEE), which is crucial for processing
and analyzing long-term satellite data at broad spatial scales using medium- to high-resolution
imagery, often computationally intensive outside cloud-based environments.

2. Materials and Methods
2.1. Case Study Area

Lake Winnipeg, with a surface area of 23,750 km?, is recognized as the world’s 10th largest,
North America’s 7th largest, and Canada’s 3rd largest freshwater lake [19,20]. It is a shallow, wind-
mixed, polymictic lake, divided into two physically and biogeochemically different basins: the north
basin (NB) and the south basin (SB) (Figure 1) [19]. Compared to the SB, the NB is larger,
encompassing 74% of the total lake area, and deeper, with an average depth of 13.3 m and a maximum
depth of 18.0 m. The water in the NB is relatively transparent. In contrast, the SB, encompasses 11%
of the total lake area and is shallower, with an average depth of 9.0 m and a maximum depth of 12.0
m. The Red River transports a large amount of sediments to the SB, combined with sediment
resuspension, making the SB highly turbid. A deep, narrow channel, known as the Narrows,
separates the NB and SB. The Narrows is characterized by its relatively rapid water flow, with a
maximum depth of approximately 60.0 m and a width of around 2.6 km [19].
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Figure 1. Map of Lake Winnipeg showing the location of the two basins and the narrows, as well as
the location of the in situ Chl-a sampling points used for studying turbidity (all the circles shown on
the map) and those used as Chl-a matchups from different temporal windows (0 to +3 days shown as
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white, grey, black, and red circles, respectively). The empty circles represent stations used for cross
comparing two Landsat sensors (ETM+ and OLI).

2.2. LW Turbidity

We used in situ turbidity data (Nephelometric Turbidity Units; NTU) measured throughout LW,
provided by Manitoba Agriculture and Resource Development during the growing seasons (May to
October) from 2002 to 2018 (Figure 1). A non-parametric, one-way analysis of variance by ranks
(Kruskal-Wallis H test) was employed to determine whether the two LW basins (NB and SB) and the
Narrows differed in their turbidity levels [21]. The choice of a non-parametric test was based on the
non-normal distribution of the data (Shapiro-Wilcoxon test; p > 0.05). A significant result from the
Kruskal-Wallis test (p < 0.05) indicated that at least one basin differed from the others. We then
applied a multi-step a posteriori pairwise testing procedure based on studentized range statistics (non-
parametric multiple comparison Dunn’s procedure) to identify which basins were significantly
different from each other [22].

2.3. Modeling Chl-a

2.3.1. In Situ Data Acquisition

In situ Chl-a measurements (ugL-') were provided by the Manitoba Sustainable Development,
Water Quality Management Section in 2019. Chl-a data were collected from 32 stations distributed
throughout the lake (14 stations in the NB, 15 in the SB, and three in the Narrows; Figure 1) during
the peak phytoplankton biomass season (July to October) between 2002 and 2018 [19]. All Chl-a data
were measured using spectrophotometric methods (American Public Health Association (APHA)
10200H [23]). Since satellite-derived Chl-a information is limited to the uppermost water layer, we
only used samples taken from the surface of the lake (< 0.1 m depth). Although using Chl-a samples
from deeper layers (< 0.5 m depth) could have substantially increased the number of in situ and
satellite matchup points, it reduced the performance of Chl-a models (Figure S1). Our criteria for in
situ Chl-a sample selection resulted in no samples from the Narrows, as all samples there were from
deeper than 0.1 m. Due to the log-normal distribution of Chl-a in nature [24], all Chl-a data were
logarithmically transformed (using natural log) prior to analysis.

2.3.2. Landsat Data

Landsat 4-5 Level 1 Collection 2 Thematic Mapper (TM) and Landsat 7 Enhanced Thematic
Mapper Plus (ETM+) images covering the entirety of LW were used in this study
(https://www.usgs.gov/landsat-missions/landsat-collection-2). Both sensors (TM and ETM+) have a
spatial resolution of 30 m. We used four visible bands: blue (B, 450-520 nm), green (G, 520-600 nm),
red (R, 630-690 nm), and near-infrared (NIR, 770-900 nm). Matchups between Chl-a sample times
and Landsat image acquisition times were extracted from 9 TM and 20 ETM+ images (6 TM and 6
ETM+ path/rows). Images with more than 90% cloud or cloud shadow cover were excluded.

2.3.3. Pre-Processing Landsat Level 1 Data

Partial atmospheric correction was applied to Landsat Level 1 data (Figure 2) because Level 2
products may introduce higher uncertainty in aerosol calculations over inland waters, leading to
erroneous results [25,26]. All pre-processing steps for transforming Landsat data to partially
corrected satellite top-of-atmosphere (TOA) reflectance were performed in GEE (Figure 2,
Supplementary Material). Land pixels and those covered by cloud or cloud shadow during satellite
image acquisition were masked out using a standard LW boundary shapefile and Pixel Quality
Assessment bands provided with Landsat Level 2 products. The individual pixels were then pre-
processed in three steps.

d0i:10.20944/preprints202408.0962.v1
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Figure 2. Flowchart of methods used in the study.

Step 1. Radiometric correction
Landsat Level-1 data are stored as digital numbers (DNs). During the radiometric correction, we
recalibrated the DN to the satellite TOA radiance (LA) using the standard equation [27] (1):

L)\ = (DN)\ X G)\) + B?\ (1)

Where:

L;is TOA radiance for band 4,

DN, is DN for band A,

G.is the multiplicative rescaling factor for band 4, and

B.is the additive rescaling factor for band 4.

Step 2. Partial atmospheric correction:

Livalues were corrected for Rayleigh scattering using a partial atmospheric correction algorithm
[28]. We used an inverse algorithm based on a simplified radiative transfer model to calculate
Rayleigh scattering radiance (or Rayleigh path radiance) for each band (L.p) [28] (2):

ESUN; X cosfg X P, 1
Lru):( 4 g r)x 1—exp —TT(A)X<( )+(

41 X (cosO + cos 0) cosbg cos 0

)) Xt 1D Xty LD (2)

Where:
ESUN is the mean solar exo-atmospheric irradiance,
P: is the Rayleigh scattering phase function,
0s is the solar zenith angle (degrees),
0 is the satellite viewing angle (degrees) (set to 0°),
Tr is the Rayleigh optical thickness, and
t1 and t.z| are upward and downward ozone transmittance, respectively.
The phase function Pr was calculated using (3):
3 1-y

3y
P.=—-X x (1 20
P =X Ty (A HcostO) + o ®)

Where:

O (the view zenith angle) is the scattering angle (180° — 0s),

y =06/(2- 0) [29], and

0 is the depolarization factor [30], which denotes the polarization of anisotropic particles at right
angles and is dependent on the wavelength, atmospheric pressure, and air mass (with the last two
variables being constant values) [31].
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The Rayleigh optical thickness, 7, was calculated using [32,33] (4):
7, = 0.00856947* x (1 + 0.0113172 4 0.0001317%) (4)

Where:
A is the band specific mid-wavelength value (nm).
tez? and toz| were calculated using [34] (5,6):

toz T=exp(—7o,) ®)
—1,,

foz 1= exp (cosl; ) ©)
N

Where:

toz is the constant ozone optical thickness [35].

Finally, the Rayleigh-corrected radiance; L;was obtained by subtracting the Rayleigh scattering
radiance (Lr) from the TOA radiance (L) (7):

Ly-Ly — L, )

Step 3. Converting radiance to reflectance:
TOA reflectance for each band (p4), was calculated using (8):

7 X L x d?

S 8)
ESUN, X cosf,

pA

Where:
pA is TOA reflectance for wavelength range or band A, and
d is the Earth-to-sun distance in astronomical units [27].

2.3.4. Extracting Matchups

We extracted remote sensing reflectance (Rss) for each band (B, G, R, and NIR; Section 2.3.3) and
paired it with the corresponding sampling points (Section 2.3.1) in GEE (See Supplementary
Material). To increase the chance of matching satellite observations with sampled Chl-a, we
considered Landsat images within +3 days of the sampling dates. Larger temporal windows were not
used due to the highly dynamic nature of blooms in LW [36]. Satellite data were extracted from
corresponding pixels to sampling point locations (single pixels; spatial windows of 1 x 1). To mitigate
potential errors in digitization [37], we also extracted Rrs using the median of pixels corresponding to
sampling locations and their eight (spatial window of 3 x 3) and 24 neighboring pixels (spatial
window of 5 x 5). Based on these criteria, a total of 42 samples (18 in the NB and 24 in the SB) from
28 stations (13 in the NB and 15 in the SB) were identified (Figure 1, Table 1). We found 9 Landsat
images for the NB, 11 for the SB, and 20 for the entire LW matching the time and location of the
sampling points, providing 23 matchup points in the NB, 30 in the SB, and 57 for the entire LW (Table
1). We created 36 sets of matchups with different temporal windows (0 to +3 days), different spatial
windows (1 x 1,3 x 3, and 5 x 5), and in each LW basin (NB-specific and SB-specific) as well as for the
entire lake (LW-specific).

Table 1. Matchups for sensitivity tests for the lake (NB-specific, SB-specific, and LW-specific) and
temporal windows (0 to +3 days). The values are the same for different spatial windows (1x1, 3x3, and

5x5).
Temporal
# of Insitu Chl-a  # of # of #of  Landsat
Basin window Landsat scenes (path/row) Year Month
matchups (ugL?) stations samples images sensors
(days)
0 2 10.1-147 2 2 1 5 3322 2011 9

NB
+1 10 1.91-147 6 8 6 57 3223, 3322/23 2010,2011 7,8,9,10
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6
+2 17 1.91-147 11 13 8 57 3223, 3322/23 2010,2011 7,8,9,10
+3 23 1.91 - 147 13 18 9 57 3223, 3322/23 2010,2011 7,8,9,10
0 3 3.05-4.01 2 2 2 57 3124/25 2010 7,8
+1 7 3.05-6.68 5 5 5 57 3025, 3124/25 2010, 2011 7,8

- +2 20 2.67 -9.55 12 15 8 57 3025, 3124/25 2010,2011  7,8,10
+3 30 2.67 - 147 15 24 11 57 3025, 3124/25 2010,2011 7,8,9,10
0 5 3.05-147 4 4 3 57 3322, 3124/25 2010,2011  7,8,9
+1 17 1.91 - 147 11 13 11 57 3223, 3025, 3124/25, 3322/23  2010,2011 7,8,9,10

W +2 27 1.91 - 147 23 28 16 57 3223, 3025, 3124/25, 3322/23  2010,2011 7,8,9,10
+3 57 1.91 - 147 28 42 20 57 3223, 3025, 3124/25, 3322/23  2010,2011 7,8,9,10

2.3.5. Model Calibration

For each set of matchups (Section 2.3.4), we tested the performance of 44 models, including all
possible bands and band ratios, as well as various commonly used multiband combinations
(Supplementary Material, Table S1) to predict Chl-a in LW using regression analyses. Each model
was fitted using the matchup natural log-transformed in situ Chl-a values against the partially
corrected Rrs (with and without natural log-transformation) using simple linear regression equations
(Table S1). We then identified the Best Performing Model (BPM) for each set of matchups as the model
that exhibited the highest coefficient of determination (R?) and was statistically significant (p <0.05).
Model calibration on the BPMs was performed using 5-fold cross-validation, chosen to balance bias
and variance given the number of matchups available [38,39]. During model calibration, for each fold
of the 5-fold cross-validation, the models were fitted to the training dataset (natural log-transformed
in situ Chl-a values against partially corrected Ris) using simple linear regression equations. We then
estimated the average predictive performance of each model during the calibration stage using the
average R? of the five cross-validation folds.

2.3.6. Model Validation

To assess the predictive capacity of the BPMs identified during the initial calibration phase for
each set of matchups (Section 2.3.5), we validated each model by applying the slope and intercept
from each calibration to its associated test matchup set in the cross-validation fold (k = 5). The
predictive performance of the BPMs was measured the predictive performance of the BPMs using
Root Mean Square Error (RMSE; ugL-1) for each cross-validation fold as follows (9):

RMSE = Zn: M )

_ n
i=1
Where:
Y, represents the observed Chl-a values, and
¥p represents the predicted Chl-a values.
We normalized the RMSE (NRMSE) for each cross-validation fold as follows (10):

o ((02=%))

i=1 n (10)

NRMSE =

Where:
Yo is average observed Chl-a.
We calculated the Root Mean Squared Logarithmic Error (RMSLE; pgL-) as follows (11):
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RMSLE = % Z(log[l +y,] — log[1 + yp])2 (11)

=1

We also calculated the Mean Absolute Error (MAE; ugL') and Mean Absolute Percentage Error
(MAPE; %) for the five cross-validation folds to measure the predictive performance of the models as

follows (12,13):

MAE = 2tz =% (12)

n
MAPE = 100 X median of[bloy;}]p'] forl=1,..,n (13)

P
Bias was measured as follows (14):

Bias = 22200~ %) 14

n

Finally, we compared the performances of the models based on the average errors for all the
cross-validation folds [40].

2.4. Application of the BPMs to Landsat OLI

The Landsat TM and ETM+ were launched in 1984 and 1999 (respectively), and the Landsat
Operational Land Imager (OLI) was launched in 2013. In our study, all matchups since 2013 were
discarded because the in situ Chl-a data in those years were taken from depths below 0.1 m, which
did not meet our matchup selection criteria (Section 2.3.1). To test the applicability of our BPMs for
predicting Chl-a using OLI, we applied the models to concurrent OLI and ETM+ samples (with 1 to
8 days of difference between the two sensors overpassing times) from 19 stations distributed
throughout LW between 2013 to 2017 (Figure 1).

For each OLI matchup, Level 1 Collection 2 OLI data (https://www.usgs.gov/landsat-
missions/landsat-collection-2) for the bands used in the BPMs (i.e., B (450-515 nm), G (595-600 nm),
and Red (630-680 nm)) were pre-processed in GEE using the same approach as for Landsat TM and
ETM+ (Section 2.3.3). After applying the BPMs to ETM+ and their concurrent OLI data, we compared
the modeled Chl-a derived from each sensor (a total of 26 matching points) using a simple linear
regression model.

2.5. Comparing Chl-a Predictions Using Basin-Scale vs. Lake-Scale BPMs

To compare Chl-a predictions using basin-specific versus lake-specific BPMs, we applied the
BPMs from each approach to all Landsat images during the peak Chl-a period (July—October) from
1984 to 2023 in GEE. We then compared the ability of the predictions from the two approaches to
capture spatial and temporal changes in peak Chl-a in LW. All Landsat images were pre-processed
to partially corrected Ris in GEE (section 2.3.3) prior to model application.

To study spatial changes in peak Chl-a in LW, we calculated the median of peak Chl-a for each
pixel within each basin for all years from 1984 to 2023. To study temporal changes in peak Chl-a in
LW, we calculated the median peak Chl-a for all pixels within each basin for each year from 1984 to
2003.

3. Results
3.1. Spatial Heterogeneity in LW Turbidity

Our results revealed significant differences in turbidity levels among different regions of LW
during the growing season (May-October). Specifically, turbidity in the NB was consistently lower
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than in the SB and the Narrows (p < 0.05), whereas no significant difference was observed between
the SB and the Narrows (p = 0.05; Table 2).

Table 2. Comparing turbidity (Nephelometric Turbidity Units; NTU) in the two basins and the
narrows (median values); number of sampling data are added in the parenthesis next to the median
values. The letters a and b on the values within each month show if the basins/narrows were
significantly different from each other based on the Dunn’s multiple comparison test results (p < 0.05).

All months May June July Aug Sep Oct All months
NB 5.52(723) - 5.392 (205) 5.532 (176) 3.812 (95) 5.554 (207) 9.442 (41)

SB 15.00° (396) 10.602 (20)  8.06" (107) 19,000 (58) 14.90° (73) 19.75b (58) 20.502b (80)
Narrows 16.1° (243) 5.500 (2) 9.106(78)  21.80°(62)  17.45(70)  17.90b (23) 14.700 (8)

Source: Raw in situ data from Manitoba Agriculture and Resource Development; Kruskal-Wallis and
Dunn'’s test (p < 0.05). Data were not normally distributed (Shapiro Wilcoxon test; p > 0.05).

3.2. Best Performng Models

The performance of basin-specific models in predicting Chl-a was superior to that of lake-
specific models (Figure 3 and Table S1). The NB-specific and SB-specific BPMs achieved R? values of
0.85 (n=10) and 0.76 (n = 7), respectively (p < 0.05; Figure 3 and Tables S2, S3). In contrast, the lake-
specific BPM showed a lower R2 of 0.38 (p < 0.05; n = 17; Figure 3 and Table S4).
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Figure 3. Correlation coefficients (R?) of the best performing model among 44 tested algorithms for 36
sets of matchups with different temporal windows (0 to +3 days) and different spatial windows (1 x
1, 3 x 3, and 5 x 5) in each Lake Winnipeg basin (i.e., NB- and SB-specific) and in the entire lake (i.e.,
LW-specific). No values on the plot refers to correlation coefficients with no significant relationship
between in situ and satellite Chl-a (p > 0.05) or to the number of matchups below 10.

The NB-specific BPM (R? = 0.85) used matchups from *1 day with a 1 x 1 spatial window (Figure
3 and Table S2). Increasing the spatial window to 3 x 3 and 5 x 5 decreased the R? to 0.70 and 0.60,
respectively, while increasing the temporal window to +2 and +3 days decreased the R? to 0.75 and
0.57, respectively. Despite these changes, increasing the temporal window to +2 days still provided a
high R? of 0.75 with reduced errors (NRMSE decreased from 1.98 to 0.73; bias reduced from 9.39 to
2.04).

The SB-specific BPM (R? = 0.76) used matchups from +1 day with a 1 x 1 spatial window (Figure
3 and Table S3). Increasing the spatial window to 3 x 3 and 5 x 5 decreased the R? to 0.74 and 0.63,
respectively, while increasing the temporal window to +2 and +3 days decreased the R? to 0.61 and
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0.32, respectively. The temporal window of +2 days provided 17 matchups with an R? of 0.61 and
reduced bias (bias decreased from 0.25 to 0.23).

Like the basin-specific models, the LW-specific model (R?=0.38, based on matchups from +1 day
with a 1 x 1 spatial window) exhibited decreasing R2 values with larger spatial and temporal
windows (Figure 3 and Table 54).

3.3. Best Chl-a Prediction Models

From the BPMs in section 3.2, the basin-specific models (NB and SB) using a 1 x 1 spatial window
and a temporal window of +2 days were selected for their balanced performance (high R? and low
errors) and increased confidence due to a larger number of matchups used.

In the NB, a 2-band model based on the R of the band ratio of G to B showed the highest
performance (R2 = 0.74) (Table 3 and Figure 4a) (15):

InChl — a = 8.153 x [G/B] — 5.622 (15)

In the SB, a 2-band model based on the Rrs of the band ratio of R to G performed best (R>=0.62)
(Table 3 and Figure 4b) (16):

InChl — a = 4.313 x [R/G] — 2.603 (16)

In the entire LW, a 2-band model based on the Ris of the band ratio of G to B achieved the highest
performance (R2=0.38) (Table 3 and Figure 4c) (17):

InChl — a = 5.836 x [G/B] — 4.005 (17)

Table 3. Calibration and validation results for the NB- and SB-specific BPMs (spatial window of 1x 1
and temporal window of +2 days) and the LW-specific BPM (spatial window of 1x 1 and temporal
window of +1 days). All the calibrations R? are significant at p < 0.05.

Basin Model Calibration R2 RMSE (ugL) RMSLE (ugL1) NRMSE MAE (ugL) MAPE (%)
NB G/B 0.74 20.53 0.65 0.88 14.51 55.43
SB R/G 0.62 1.14 0.20 0.24 1 22.81
LW G/B 0.38 21.57 0.87 1.29 13.57 64.27

° In(Chl-a) = 8.1527 x [G/B] - 5.6221 g In(Chl-a) = 4.3126 x [R/G] - 2.6028 ° In(Chl-a) = 5.836 x [G/B] - 4.005
= (R*=0.74,p < 0.05) ) 5 (R*=0.62, p <0.05) 5 (R?=0.38,p<005) ¢ o
g’ 4 _3" 4 L; 4
£ L) ° E 2
23 o _o® zs 33
% 2 L] ®eq  § % 2 [ 5 2 o % e
5 2 8 :..’? z 2 -
2 ol 2 , g °*" o o
g1 o o 5! 2 1 oy

0 o 0

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5
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Figure 4. Regression of observed In Chl-a (y axis; ugL-') to modeled In Chl-a (x axis; pgL"') using the
(a) NB-, (b) SB-, and (c) LW-specific best performing models.

Validation tests using 5-fold cross-validation further supported the superiority of basin-specific
models over the LW-specific model (Table 3).

3.4. Application of the Models to Landsat OLI

Cross-comparison between ETM+ and OLI sensors indicated a strong linear relationship
between Chl-a predictions using OLI (dependent variable) and those using ETM+ (independent
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variable) (R2=0.87, p < 0.05) (Figure 5). Notably, the correlation was stronger in the NB (R2=0.83, p
< 0.05) compared to the SB (R2=0.75, p < 0.05) (Figure 5).

5
oNB y=09144x +0.7228
®SB R?=0.83in NB
L 5
o
()]
3
= y = 1.0569x + 0.0537
© R?=0.87 in LW
=
(@)
el
22
o)
°
=
= y = 0.9838x + 0.0901
e R=075inSB
® o
0

0 1 2 3 4 5
ETM-derived Chl-a [In(ugL")]

Figure 5. Chl-a predictions using OLI (y axis; ugL) and ETM+ (x axis; ugL) for NB (blue dots and
line; R? = 0.83), SB (orange dots and line; R?=0.75) and the entire Lake Winnipeg (LW) (black line; R?
= 0.87). The red line shows the intercept (p < 0.05).

3.5. Comparing Chl-a Predictions Using the Basin-Scale vs Lake-Scale BPMs

Figure 6 illustrates the median (1984-2023) of natural log-transformed peak Chl-a (ugL") in the
NB and SB using basin-specific (Figure 6a) and lake-specific BPMs (Figure 6b). Basin-specific models
predicted higher Chl-a concentrations in the NB compared to the SB (Figure 6a), while lake-specific
models showed the opposite pattern (Figure 6b)
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Figure 6. Chl-a predictions using OLI (y axis; ugL") and ETM+ (x axis; ugL') for NB (blue dots and
line; R? = 0.83), SB (orange dots and line; R? = 0.75) and the entire Lake Winnipeg (LW) (black line; R?
=0.87). The red line shows the intercept (p < 0.05).
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Figure 7 illustrates the annual time series of peak Chl-a in the NB and SB derived from basin-
specific and lake-specific BPMs. In the NB, lake-specific models consistently predicted lower Chl-a
concentrations compared to basin-specific models (Figure 7). Conversely, in the SB, lake-specific
models predicted higher Chl-az concentrations compared to basin-specific models (Figure 7).
Temporal variations in peak Chl-a from 2002 to 2019 also exhibited distinct patterns between basin-
specific and lake-specific models, reflecting different spatial dynamics within LW (Figure 7).

160
— NB (NB-specific model) n
140 |=—=SB (SB-specific model)
=== NB (LW-specific model)
120 === SB (LW-specific model)

100

80

60 |

40

Modeled annual max Chl-a (ugL™")

20 [©°

0
1984 1987 1990 1993 1996 1999 2002 2005 2008 2011 2014 2017 2020 2023

Figure 7. Annual time series (1984 to 2023) of peak Chl-a (ugL-') in the NB (black lines) and SB (red
lines) using basin-specific (solid lines) and lake-specific (dashed lines) models.

4. Discussion

Remote sensing is a crucial tool for the rapid and consistent monitoring of spatial and temporal
changes in surface water Chl-a. Limnologists often use global satellite-derived level-2 or level-3 Chl-
a products designed for optically complex waters [36,41,42] without considering variations in water
optical properties among lakes [40]. Chl-a prediction using remote sensing reflectance can be
improved by developing models that account for potential within-lake variance in optical properties.
Such models can be delineated based on optical properties or, as in our study, by morphometric
characteristics that distinguish lake basins with unique optical properties. Our study demonstrates
that by considering within-basin differences in optical properties and dividing the lake into optically
distinct parts, Chl-a prediction can be improved.

4.1. Basin-Specific Chl-a Prediction Models

The physical and biogeochemical differences between LW’s NB and SB [19,36] create different
optical properties, favoring basin-specific models over lake-specific models in both basins. BPMs in
both basins used band ratios. Compared to single bands, band ratios enhance Chl-a estimations by
reducing the atmospheric, irradiance, and air-water surface effects on reflectance [43]. Band ratios
also minimize the impact of non-phytoplankton OACs found in inland waters, which can alter the
spectral profile observed by the sensor [44,45]. This is significant because the varying concentrations
of these constituents can explain the lack of correlation between observed Chl-a and single bands in
lakes [43], as observed in our study (Supplementary Material).

Many models based on band ratios have been proposed for estimating Chl-a in inland, coastal,
and open ocean waters [11,46]. These models leverage the reflection and absorption patterns of

d0i:10.20944/preprints202408.0962.v1
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sunlight by Chl-a. With increasing Chl-g, the relative energy between 520 and 600 nm (Landsat G
band) increases, while the energy between 450 and 520 nm (Landsat B band) decreases [47]. In our
study, while BPMs in both NB and SB included the G band, the second band in the ratio differed
between the two basins.

In the NB, where the water is deeper and clearer [19], Chl-a reaches higher concentrations during
bloom events [19,35]. In this basin, the B to G band ratio provided the highest correlation with
observed Chl-a (R?>0.80). The B to G band ratio is widely used in estimating Chl-a in lakes with low
concentrations of inorganic suspended matter or in eutrophic and hypertrophic waters where
phytoplankton are the predominant constituents and non-phytoplankton constituents have a smaller
effect on reflectance [48-50].

In the SB, where the water is shallow, well-mixed, and highly turbid [19,36], the R to G band
ratio provided the highest correlation with observed Chl-a (R? > 0.70). The SB creates optically
complex water conditions, where non-phytoplankton OACs interfere with spectral bands —
particularly the B band. The concentrations of these constituents do not always correlate with Chl-a
[51]. This interference complicates Chl-a estimation in optically complex turbid waters using the B
band [44,52,53]. To account for the overlaps of the absorption of non-phytoplankton particles, the R
to G band ratio is commonly used for estimating Chl-a in highly turbid waters [43,54-56]. Many Chl-
a prediction models developed for turbid, optically complex waters are also based on the red and
near-infrared regions of the electromagnetic spectrum [43,57]. Like the red region, the near-infrared
region (near 700 nm wavelength) shows less sensitivity to non-phytoplankton particles' interference
compared to the blue region [58]. However, near-infrared-based models are successful with satellites
having a band centered at the red- near-infrared edge, like MERIS [58,59]. Multispectral sensors like
Landsat have broad NIR bands (770-900 nm in TM and ETM+ and 845-885 nm in OLI), which have
been shown to be unsuitable for estimating Chl-a [43]. In our study, we could not improve the
relationship between observed and modeled Chl-a using NIR in either basin-specific or lake-specific
models.

4.2. Application of the Models to Landsat OLI

Our matchup selection criteria excluded in situ matchups concurrent with the period of Landsat
OLI operation (2013 to present). OLI differs from TM/ETM+ in image quality and the number and
width of spectral bands. Despite these differences, the similar spatial and spectral resolutions allow
for intercalibration between these sensors [60]. Our cross-comparison analysis showed that the
models developed in this study are applicable for predicting Chl-2 using OLI. Other studies have also
successfully applied models developed based on TM or ETM+ to OLI images or vice versa [3,61].

The matchup selection criteria in our study left out in sifu matchups concurrent with the period
of Landsat OLI operation (2013 to present). OLI is different from TM/ETM+ for image quality and
number and width of spectral bands. Despite the differences between TM/ETM+ and OLI, the similar
spatial and spectral resolutions allow intercalibration between these sensors [60]. Our cross-
comparison analysis showed the models developed in this study are applicable to predict Chl-a using
OLL Similarly, other studies successfully applied models developed based on TM or ETM+ to OLI
images or vis versa [e.g., 3,61].

4.3. Future Applications

Overall, the high correlation between modeled and observed Chl-a obtained using the basin-
specific models suggests these models can reliably capture relative changes in Chl-a in LW. Therefore,
the models can be used for predicting Chl-a in LW with Landsat data to study spatial and temporal
variabilities of Chl-a [61,62]. However, the lack of in situ Chl-a data with concentrations above 10 ugL-
1in the SB due to our matchup selection criteria may affect the accuracy of absolute Chl-a predictions
in this basin [61]. More in situ Chl-a data can also enable Chl-a predictions using an optical water
types (OWTs) approach, which requires large in situ Chl-a data for training. Using this approach,
lakes are classified into OWTs before prediction [40,63,64], with unique Chl-a prediction models
developed for each water type. Our matchup selection criteria also excluded any samples from the
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Narrows. Like the SB, the Narrows is optically complex, where non-phytoplankton particles are
primary determinants of water transparency [19]. However, applying the SB-specific model to the
Narrows requires in situ Chl-a data to validate these models' performance in this part of the lake.

Applying models to Landsat imagery (available since 1984) in GEE (see Supplementary Material
for the code) can provide the longest available Chl-a time series for most water bodies. The length of
this time series (40 years) allows for the study of long-term climate trends or oscillations' impacts on
changes in Chl-a. At least 30-40 years of continuous and consistent data on water temperature (a
critical indicator of climate change) and Chl-a is required to separate climate change signals from
natural variability [64-67]. This information will also provide ecosystem managers and scientists with
a better understanding of the sensitivity of different regions of their study area to environmental
perturbations. This can lead to more accurate predictions of future lake ecosystem responses to
increasing anthropogenic pressures in the face of a changing climate. Ecosystem managers can use
this knowledge to design contextual and more efficient management strategies towards
eutrophication and phytoplankton blooms in lakes.

5. Conclusion

In this study, we predicted relative concentrations of Chl-a in a large lake using simple empirical
equations applied to Landsat data. Our results highlight the importance of considering optical
differences within lakes when developing Chl-a prediction models. By separating a lake into basins
with distinct water optical properties, we significantly improved the relationships between in situ
and modeled Chl-a. These models can be easily applied in cloud-based platforms like Google Earth
Engine (GEE) for computationally intensive modeling of Chl-a on broad spatial and temporal scales.
The user-friendly GEE code requiring minimal adjustments of the times and locations of in situ Chl-
a samples that was developed for this study is freely available, facilitating the development of models
for optically distinct lakes world-wide.

Supplementary Materials: The following supporting information can be downloaded at the website of this
paper posted on Preprints.org. Figure S1: Best performing models” R? using in situ matchups from different
depth, Table S1: Best calibration results for each tested model, Table S2: Calibration and validation results for
the NB-specific Best Performing Models (BPMs), Table S3: Calibration and validation results for the SB-specific
Best Performing Models (BPMs), Table S4: Calibration and validation results for the Lake-scale Best Performing
Models (BPMs). Google Earth Engine codes for atmospheric correction of Landsat Level 1 data, masking land
and low-quality pixels, extracting satellite matchups, applying Chl-a model to the Landsat time series, and
exporting the modeled Chl-a images.
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