Pre prints.org

Article Not peer-reviewed version

Assumption based on Perelman-
Einstein integration in Gravity Problem

Guman Garayev i
Posted Date: 13 August 2024
doi: 10.20944/preprints202408.0906.v1

Keywords: gravity; dark matter; numerical methods

Preprints.org is a free multidiscipline platform providing preprint service that
is dedicated to making early versions of research outputs permanently
available and citable. Preprints posted at Preprints.org appear in Web of
Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons
Attribution License which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.



https://sciprofiles.com/profile/3524017

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 August 2024 d0i:10.20944/preprints202408.0906.v1

Disclaimer/Publisher’'s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and

contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Article
Assumption based on Perelman-Einstein integration in
Gravity Problem

Guman Garayev %3
1 Pasha Holding IT Excellence Centre, Azerbaijan; guman.garayev@gmail.com
Institute of Molecular Biology and Biotechnologies MSERA, Azerbaijan
ADA University, Azerbaijan

3
Abstract: This study introduces a new approach to modeling galaxy rotation curves by integrating concepts
from Perelman’s functional with modifications to General Relativity. While initial numerical simulations indicate
that our P-E Integration model may offer a closer fit to observed data than existing theories, we recognize the
preliminary nature of these findings [14]. The results, though promising, should be interpreted cautiously. Further
validation across different galactic systems and refinement of the model are necessary to confirm its broader
applicability [15]. This work aims to contribute to the understanding of galactic dynamics, with the hope of

opening new avenues for future research.
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1. Theoretical Framework

Einstein’s theory of General Relativity (GR) revolutionized our understanding of gravity by
describing it as the curvature of spacetime due to mass and energy [1], mathematically represented by
the Einstein Field Equations (EFE):

Ryv - %g‘uvR =+ Ag;w = SZ[TGT]M//

where Ry, is the Ricci curvature tensor, R is the Ricci scalar, gy, is the metric tensor, A is the cos-
mological constant, and Ty, is the stress-energy tensor [11]. While GR successfully explains many
gravitational phenomena, it struggles to account for the observed behavior of galaxies and large-scale
structures, leading to the hypothesis of dark matter—a form of matter that does not emit, absorb,
or reflect light but exerts gravitational effects. Despite various modifications to the Einstein-Hilbert
action, such as adding scalar fields, higher-order curvature terms, or introducing new particles, these
approaches fail to fully explain the scale-dependent nature of dark matter’s influence on spacetime
geometry. The Einstein-Hilbert action from which these equations are derived is:

Spy = 21? /d‘*x\/fg(R —2A) + S,

where ¥ = S?TG, g is the determinant of the metric tensor gy, and Sy, is the matter action . Varying the
action Sgy with respect to the metric gy, yields the Einstein Field Equations.

However, while GR accurately describes gravitational phenomena on small and medium scales,
it cannot fully explain the observed effects attributed to dark matter, such as the rotation curves of
galaxies and the cosmic microwave background anisotropies . From the other hand, Dark matter (DM)
is introduced to explain these discrepancies, as it does not interact with light but exerts gravitational
effects. Despite the introduction of DM, the standard GR framework does not naturally incorporate its
scale-dependent behavior [4,5]. This leads to modifications of GR, where additional terms or fields are
included to account for DM effects.

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.
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To address the limitations of GR in explaining dark matter, we consider a modified Einstein-
Hilbert action. One approach involves incorporating additional terms in the action that directly couple
DM with the curvature of spacetime. A common extension is to add a scalar field ¢ representing DM:

Smod = /d4x\/ ( R+ L(,b) + Smatter,

where Ly is the Lagrangian for the DM field ¢. This scalar field might contribute a term like
18M9,99,¢ — V(¢) to the action, where V(¢) is the potential energy associated with ¢ . However,
even with this modification, the theory does not fully capture the complex behavior of DM, particularly
its influence across different scales.

Another approach involves introducing higher-order curvature terms, such as those from Gauss-
Bonnet (GB) gravity. The Gauss-Bonnet term is given by:

Lgp = R? — 4Ry R™ + Ryype RMVFY,

where Ry, is the Ricci tensor, and Ry, is the Riemann tensor. The Gauss-Bonnet term does not
contribute to the equations of motion in four dimensions but becomes relevant in higher dimensions
or when coupled with a scalar field [3].

Adding the Gauss-Bonnet term to the action:

/d4x\ﬁ< (R + aLcp) + L4,>

where & is a coupling constant .

Building on the modified Einstein-Hilbert action and the incorporation of higher-order curvature
corrections, we now introduce Perelman’s functional to capture the scale-dependent behavior of dark
matter (DM) [7,12]. Perelman’s work on the Ricci flow provides a functional that governs the evolution
of geometric structures under curvature-driven flows[6,7]. The functional is expressed as:

Fig.f) = [ (R+IVR)eav,

where f is a scalar field related to the geometry of spacetime, and R is the Ricci scalar .

To embed this functional within our gravitational theory, we introduce a scale-dependent coupling
constant A that links Perelman’s functional to the DM scalar field ¢pys, allowing the geometry to
evolve with the influence of dark matter:

Sperelman = /d4x\/jg(R + A‘PDMF(glf))

Here, ¢pp serves as a scalar field representing dark matter, dynamically coupling with the geometry
via Perelman’s functional, thus modifying spacetime structure based on scale .

By integrating the various contributions, the final action that governs the behavior of spacetime
and dark matter is expressed as:

/d4x\ﬁ< < uv (& f)— ;gva(ng)> +“i§yf +/\4’DM51;(§;V]C) +751;(;;'Vf)>-

Here we used modified Ricci tensor which is R, (g, f) in the context of the second integral includes
the influence of the scalar field f on the geometry. Its explicit form can be expressed as:

1
R}lv(g/f) = R;ﬂ/ - vyvvf + Eg;WVprf.
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Here, RIW is the standard Ricci tensor, V}, denotes the covariant derivative, and the additional terms
incorporate the effects of the scalar field f on the curvature. The term V,V, f represents the second
covariant derivative of the scalar field, and V,V,f is the d’Alembertian (or Laplacian) applied to the
scalar field .

This modification arises in theories where the scalar field interacts with the geometry, modifying
the curvature in a way that reflects the influence of the scalar field on the underlying spacetime
structure.

The action above integrates the standard general relativistic curvature, higher-order curvature
corrections (via the Gauss-Bonnet term L), and the scale-dependent behavior of dark matter through
Perelman’s functional [2,7,9]. This action integrates the standard general relativistic curvature, higher-
order curvature corrections, and the scale-dependent behavior of dark matter through Perelman’s
functional . In constructing this theoretical framework, we make the following assumptions: dark
matter can be represented as a scalar field interacting with spacetime geometry; its scale-dependent
effects are captured by Perelman’s functional, providing a dynamic description of spacetime evolution.
The inclusion of the Gauss-Bonnet term allows for a richer description of gravitational phenomena,
particularly in higher-dimensional or non-trivial topological scenarios [13].

Varying the final action S, with respect to the metric tensor gy, yields the modified Einstein
equations that now include contributions from the dark matter scalar field, Gauss-Bonnet term, and
Perelman’s functional[7,10]:

Ry = 58w R + Agu +a (Rw - zguvLGB> i A( S ) = A T

These equations collectively describe how spacetime is influenced by dark matter in a scale-dependent
manner, incorporating the geometric insights from Perelman’s work on Ricci flows [7,8].

2. Calculation

To obtain the equations of motion for a test particle, we typically use the geodesic equation
derived from the field equations. The modifications in the field equations introduce additional terms
in the geodesic equation that affect the motion of particles.

For a spherically symmetric spacetime (a common assumption in galaxy models), the metric can
be written as: For a spherically symmetric spacetime (a common assumption in galaxy models), the
metric can be written as: For a spherically symmetric spacetime (a common assumption in galaxy
models), the metric can be written as:

ds? = =X dr? + A dr? 1 12 (d6% + sin’ 0 dp?)

The radial equation of motion for a star in such a spacetime (with these additional terms) can then be

derived as:

d*r GM 5

P +ar+Arc+ v
Where the additional terms (with coefficients «, A, ) arise from the modifications in the field equations.
These terms represent ar, which is a term that may arise due to modified gravity contributions at
intermediate scales; Ar2, a term that could be associated with large-scale modifications, possibly tied to
cosmological effects; and 7, a constant term representing uniform corrections, which might originate
from integrating over certain spacetime curvatures or from dark energy contributions. In the context

of galaxy rotation curves, the rotation velocity V(r) can be derived from the radial acceleration by the

following relation:
V(r) = /rdCIID//dr
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Here, ®(r) is the gravitational potential, which can be linked to the acceleration terms derived from
the modified equations of motion.

Conditions for the Numerical Simulation: The initial conditions involve using typical values for
the mass M of the galaxy and the initial position and velocity for stars. The parameter range covers a
simulation over a range of radial distances, such as from 1 kpc to 4 kpc. Boundary conditions require
matching the simulated rotation curve with observed data points.

The numerical solution involves solving the above equation iteratively, adjusting «, A, and -y to
fit the observational data. To assess the efficacy of the proposed P-E Integration model in explaining
galactic rotation curves, we performed numerical simulations based on the derived equations of motion.
The modified field equations were solved for a spherically symmetric, static spacetime, leading to a
radial equation of motion with additional terms compared to General Relativity (GR).

The radial acceleration for a test particle in the galaxy is given by:

d’r  GM )
ﬁ—*jﬁ’ﬂ(fﬁ“)\?’ +r

These additional terms («, A, v) account for corrections arising from higher-order contributions
and potential cosmological effects as inspired by Perelman’s mathematical insights.

We conducted simulations across a range of radial distances, utilizing observational data from
well-studied galactic systems. The parameters «, A, and y were optimized to minimize the mean
squared error between the observed rotation velocities and those predicted by the P-E Integration
model.

The results were compared against predictions from both standard General Relativity and a
modified GR framework, demonstrating that the P-E Integration model provides a more accurate fit to
the data in specific regions ,

Table 1. Observed velocity of galaxies at different radii

Galaxy Radius (kpc) Observed Velocity (km/s)
Galaxyl 1.0 150.0
Galaxy2 2.0 140.0
Galaxy3 3.0 130.0
Galaxy4 4.0 120.0

particularly at intermediate distances where both GR and modified GR fail to capture the observed
behavior. But with optimized values

x=-279%x107°, A=-10.00, 7 =160.00

Perelman-Einstein integrated method gives accurate results.

3. Conclusions

In this study, we have proposed and tested a new theoretical framework for explaining galactic
rotation curves by incorporating modifications inspired by Perelman’s functional alongside contribu-
tions from General Relativity (GR) and Gauss-Bonnet gravity. The numerical simulations carried out
demonstrate that our P-E Integration model, with carefully optimized parameters, provides a better fit
to the observed data compared to both traditional GR and its modified versions.

However, it is important to approach these results with caution. While the P-E Integration model
shows promise, particularly in regions where GR and modified GR struggle to account for observed
behaviors, this work represents an initial exploration rather than a definitive solution. The assumptions
and approximations made in the model, as well as the limited scope of the observational data used,
necessitate further investigation. We encourage additional research to validate these findings across a
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broader set of galactic systems and to explore the theoretical underpinnings of the model in greater
depth.

Our intention is to contribute to the ongoing dialogue in the astrophysical community by pre-
senting a novel approach that may offer new insights into the complex phenomena governing galactic
dynamics. Nonetheless, we remain mindful of the model’s current limitations and the need for
continued refinement and testing.
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