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Abstract: This paper shows the development of a numerical analysis model which enables the calculation of 

the life of a reduced-diameter wheel used for freight wagons as a function of its operating factors. Reduced-

diameter wheels are being increasingly used for combined transport applications and they can be arranged in 

a wide range of bogies and operated very differently. Due to the uniqueness of this type of wheels, their life 

has hardly been analyzed so far. To properly construct the numerical analysis model, it has been necessary to 

study the rolling phenomenon in-depth, tackle the main problems arising in the vehicle – track interaction and 

set the relations amongst them. Once the rail-wheel interaction model was built, it was used to calculate the 

life of an ordinary-diameter wheel, a medium-diameter wheel and a reduced-diameter wheels under the same 

conditions and compare them. In this way, it is possible to know how long the life of a reduced-diameter wheel 

is compared to that of an ordinary-diameter one and also the evolution of the life depending on the diameter. 

The root causes responsible for this evolution can be explained thanks to the comprehension of the rolling 

phenomenon provided by the full analytical work. 

Keywords: mathematical modeling; vehicle-track interaction; freight transport; sustainable 

transport; rail motorway 

 

1. Introduction 

The objective of this work is to tackle the wear problem for reduced-diameter wheels, which 

presumably do not undergo the same degradation as the ordinary-diameter wheels due to its greater 

angular contact (number of revolutions) with the rail for the same linear distance traveled (mileage). 

For that, a calculation model able to determine the life of a wheel as a function of the most significative 

operating factors, such as the nominal wheel diameter, is developed. 

Nowadays, the needs in the field of logistics are changing and new transportation models are 

arising. One of the models that is becoming more popular in the last years is the rail motorway model, 

which consists in transporting whole freight articulated vehicles on railway wagons. This model cuts 

down CO2 emissions, saves fuel, reduces road congestion and may be more profitable than road 

transportation for some routes. It can also be used to skip certain obstacles, harsh routes or remote-

access zones (Fomento, 2018). The concept of loading the whole heavy-duty vehicle avoids breakbulk 

shipping whereas it brings the loading and unloading time down to 1 minute, since the vehicles can 

run on / off board the wagons quickly and then their wheels are secured quickly as well (Jaro & 

Folgueira, 2012). Figure 1 shows a schematic diagram of this concept: 

 

Figure 1. Concept described above. Source: Own elaboration. . 
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Notwithstanding, the adoption of this model often encounters the problem of loading gauge. 

Due to the height of the articulated vehicles used for road transportation, around 4 m (European 

Council, 1996), placing them on wagons leads to a further height increase over the rails that may 

conflict with the height limitations found in some tunnels or under some overpasses. Figure 2 

illustrates this conflict: the European and Spanish loading gauges and their possible interferences 

with a rail motorway service: 

 

Figure 2. Illustration of the described conflict. Source: Modification of a diagram from (Fomento, 

2015). 

In order to avoid interferences between the load (the heavy-duty vehicles) and the civil 

structures (tunnels and overpasses found in the railway route) and keep transporting those road 

vehicles, there is one economically-feasible alternative, as it does not require any civil works on the 

route: lowering the loading plane height. As it can be seen in Figure 2, this height depends on the 

wheel diameter among other factors, so it can be lowered by using reduced-diameter wheels (Jaro & 

Folgueira, 2012). 

An ordinary wheel has about 920-mm diameter, while a reduced-diameter wheel has a diameter 

value between half and third of the ordinary one. This newly poses a problem: If a wheel whose 

diameter has been halved must roll the same distance as an ordinary-diameter wheel, then the former 

will have to revolve twice around its rotation axis. Also, its contact angle with the rail will be higher 

due to its smaller size and it will have less material to support and withstand the same load. Taking 

this into account, it can be foreseen that the reduced-diameter wheel is likely to experience a more 

intense wear and rolling contact fatigue (RCF) than the ordinary-diameter wheel. However, this is 

only a prediction and must be proved and validated mathematically. 

For that, the calculation model sought must take into account many railway factors involved in 

vehicle – track interaction. These parameters can be grouped into four groups: 

 Wheel factors: Geometry (diameter, conicity, tread width, contact angle), machining 

(roughness), material (properties), load and previous wear. 

 Wagon factors: Configuration (bogies or axles distribution and type of bogies), type of 

suspension, braking system, running speed and load distribution (axle load). 

 Railway superstructure factors: Track gauge, line layout (curve radii, windiness, sagitta, 

gradient, etc.), layout quality (excess or deficiency in cant, transition curves, etc.), type of rail 

(welded or with joints), track materials (properties) and track previous degradation (previous 

rail wear, specially). 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 13 August 2024                   doi:10.20944/preprints202408.0896.v1

https://doi.org/10.20944/preprints202408.0896.v1


 3 

 

 External factors: Temperature, humidity, wind, rain, snow and weather in general. The presence 

of moisture, leaves and pollutants (saltpeter, oil, etc.) is in here too. 

The process consists of defining a mathematical model under the behavioral equations extracted 

from the models that can explain wheel degradation, each of which includes a set of hypotheses. The 

analytical model should have to include as many influence factors as possible; however, the model 

size must be restricted for it to be computationally – efficient. That implies that additional hypotheses 

will be formulated in order to take out those factors with a lesser influence on wheel degradation. 

Regarding the vehicle, the infrastructure and their interaction, the work aims to focus on the 

Spanish conventional railway network. This is because rail motorways are currently being fostered 

in Spain and this country presents some obstacles to their implementation: the conventional railway 

network presents an unfavorable loading gauge (Fomento, 2018), which prompts the adoption of 

reduced-diameter wheels, and, additionally, the tight curves and the steep gradients inflict severe 

damage to wheels. These wheels are arranged in wheelsets, with a wheelset being the rigid union of 

an axle with a pair of wheels. Wheelsets are usually arranged in two-axle (two-wheelset) bogies and, 

according to the same Ref., two bogies are enough for a flat-bed wagon used on a rail motorway, so 

this is the type of railway vehicle that is to be considered for wheel degradation. 

With that being said, the analysis will be limited to freight transport and to the Spanish national 

railway network, whose track gauge is specific: 1,668 mm. The analysis will exclude the 

aforementioned external factors, as this are fairly volatile and difficult to forecast. 

This research paper can be compared to other cutting-edge work on wheel wear calculation, but 

differs in some significant respects. These differences are commented upon next: To start with, Refs. 

(Cai et al., 2019), (Chunyan et al., 2024), (Ma et al., 2021) and (Tao et al., 2020) focus on polygonal 

wheel wear, which is a relevant problem in high-speed railway lines, but they do not include RCF 

and abrasive-adhesive wear, which so much trouble cause in rail freight transportation. Ref. (Salas & 

Pascual, 2019) correlates RCF and abrasive-adhesive wear through analytical models and backs up 

the results experimentally, although it does not give insight into wheel life, not even for ordinary-

diameter wheels. Ref. (Sang et al., 2024) is very specific as it focuses on the wheel wear caused under 

different braking modes, without covering the wear appearing when the vehicle is not braking. Refs. 

(Lyu et al., 2020) and (Sui et al., 2021) are very specific as they focus on the effect of wheel diameter 

difference, that is, when the wheels in a wheelset do not have the same diameter, and wheel life is 

not studied (only numerical simulations and experiments for 200,000 km). Refs. (Pires et al., 2021) 

and (Zeng et al., 2022) focus on the optimization of the reprofiling cycles for wheels, although their 

diameter is not varied and the strategy is drawn up only for ordinary-diameter ones. Ref. 

(Montenegro & Calçada, 2023) develops a wheel – rail contact model which considers many structural 

elements of the vehicle and the infrastructure; however, it does not consider reduced-diameter 

wheels either. To end with, Ref. (Bosso et al., 2022) reviews as many numerical models for rail – wheel 

contact as possible, while Ref. (de Paula Pacheco et al., 2023) compares different wear indicators for 

quantifying wheel wear in rail freight operations; even so the former does not discuss about 

numerical models for reduced-diameter wheels and the latter does not apply the wear indicators to 

them. 

The main contribution of this work consists in tackling the physical problem of wear for reduced-

diameter wheels, which has been hardly treated due to the uniqueness of this type of wheels. Wheel, 

wheelset and bogie kinematics and dynamics have been studied in-depth, which makes the work 

insightful as it provides comprehension as to why wheel life is not the same regardless of its diameter 

and why a dependency exists. 

Differently to the previous research, several realistic scenarios basing on rail motorways have 

been proposed and the wheel diameter has been varied in the procedure of analysis developed, 

keeping the rest of the procedure the same or with equivalent parameters, which makes comparisons 

at the same level possible. 

Once the analysis procedure has been validated, the methodology is open to changes, so that 

other factors can be altered, more factors can be added or some of the behavioral laws can be modified 

or swapped in future research works. 
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To conclude with the introduction, it is worth remarking that in order to carry out this research 

work it has been necessary to review many analytical models which enable the calculation of wheel 

wear. Some of these models are based on the kinematics of the rolling phenomenon, while others are 

based on its dynamics. The most recurring Refs. are (Fissette, 2016), (Larrodé, 2007), (Moody, 2014), 

(Pellicer & Larrodé, 2021), (Oldknow, 2015), (Ortega, 2012), (RENFE, 2020), (Rovira, 2012) and 

(Sichani, 2016). It is worth mentioning that (Pellicer & Larrodé, 2021) serves as a guide as it reviews 

the models and bridges the gaps between them by creating mutual interconnections and doing 

numerical checks when necessary. Additionally, those standards expedited by the Spanish 

normalization agency (AENOR) and the Spanish railway infrastructure manager (ADIF) which are 

applied to the field of rail – wheel interaction have also been taken into account so as to collect real 

data and know the restrictions imposed by these regulations. 

2. Materials and Methods 

This work follows a deductive method, as explained next: 

First, the rail – wheel contact problem has been studied basing on the contact friction mechanics 

theory and the works and studies conducted since the second half of the 18th century. 

Second, the contact models have been assessed regarding two criteria: accuracy and 

computational effort. Those with a higher accuracy and a lower computational cost have been chosen: 

Hertz’s solution, Polach’s method, center of friction, energy transfer and fatigue index. 

Afterwards, the chosen models have been applied to tackle the main problems arising in the 

vehicle – track interaction. For this application, the vehicle – track interface has been parametrized, 

which means that the factors involved in the said interaction have been assigned parameters. 

These models include their own application hypothesis, but additional hypotheses are required 

in order to delimit the problem, so a series of hypotheses have been proposed. These hypotheses are 

fundamental to include important aspects or discard aspects that will not have a significant impact 

on the problem solution. 

Each of this models consists of a set of equations, which can be used to interrelate the models, 

so it is possible to construct a numerical analysis model in the form of an algorithm thanks to the 

existing links and adding new links (geometrical and other mathematical relations, for instance). This 

algorithm is programmed on mathematical equation solving software, which allows solving all of the 

equations after inputting the data required. 

Then the results are obtained: they come in the form of wear depth of each wheel on a proposed 

bogie, but the appearing of RCF can be predicted as well. When the wear depth reaches a fixed limit 

on a wheel, then all of the bogie wheels are reprofiled with a lathe and the wear cycle starts over (the 

algorithm is run again). It is noteworthy that the parameters of interest, such as the nominal wheel 

diameter, can be varied at will. 

Finally, the results for wheels of different diameter wheels are compared and conclusions upon 

their behavior and the diameter influence are drawn. 

2.1. List of Abbreviations 

The abbreviations used in the article can be consulted in Table A1 for those with Latin symbols 

(Appendix A) and Table A2 for those with Greek symbols (Appendix A). 

2.2. Hypthoteses 

The following hypotheses have been regarded besides the application hypotheses of Hertz’s 

solution, Polach’s method and wear calculation: 

(a) The procedure is based on global calculations for the contact patch, without discretizing it into 

finite elements. 

(b) It is stationary, that is, it does not consider the variation of variables over the time. At transition 

curves, where these variations are greater, mean values are computed. 
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(c) It disregards any rail wear and it does not consider the previous wheel wear either (it does not 

update the contact parameters as the profile wears out, but this profile is assiduously renovated). 

(d) It is applied on all of the bogie wheels. For each wheel, the parameters and wear calculations are 

separately saved. This is because the wear is not the same for all of the wheels mounted on the 

same bogie (Rovira, 2012). 

(e) It is applied on one bogie belonging to a wagon. A wagon normally consists of two bogies, but 

they can mostly rotate independently with respect to the other. 

(f) It disregards the tractive and compressive forces that some wagons transmit to the next ones 

through couplings when curving, which is due to the existing coupling slacks (Moody, 2014). 

(g) It can consider up to 2 contact patches at the same wheel: one of them on the tread and the other 

on the flange. The load percentage of each patch will be controlled by means of a parameter 

(Pellicer & Larrodé, 2021). 

(h) In Kalker’s and Polach’s equations, the spin is assumed to be positive when it is clockwise, as it 

must comply with the sign convention applied for creepage. This spin is later passed on to the 

energy transfer model employed. 

(i) Creepage is obtained from a kinematic analysis of the wheelsets rather than from the non-

dimensional slips (these include partial derivatives which are usually not applied to global 

calculations). 

(j) In the whole study, the radial deformation �� is disregarded with respect to the wheel radius 

�� (this is a usual hypothesis in these studies because �� ≪ ��). 

(k) As Φ ≪ �� (in fact, Φ ≪ � ≪ ��, judging by the values obtained in (Pellicer & Larrodé, 2021)), 

the effect of Φ on �� can be disregarded as well. 

(l) In contrast, the effect of Φ̇ on the wear happening at transition curves is not considered, given 

that it increases the wear slightly. 

(m) In this kinematic analysis, the displacements from bogie suspensions and anti-yaw are not 

included. 

(n) The variation of the wheel and rail curvatures at transition curves is discarded, given that, 

although the location of the rail-wheel contact varies along the wheel and rail widths (and their 

curvatures as a consequence), these variations are usually very small. When these variations are 

great, the most unfavorable values are directly taken (for instance, the curvatures of flange-rail 

contact when this contact is predicted to appear at a certain transition curve). 

(o) Only abrasive and adhesive wear are considered, without considering defects such as cracks, 

spalling, squats, flats, etc. (Ortega, 2012), (RENFE, 2020). 

(p) RCF is only predicted, without computing the extent of the damage produced, often sub-surface 

cracks (Ortega, 2012). 

(q) The bogie wheels are considered to be non-powered, so �� = 0 at the wheel-rail interfaces. 

(r) The bogie wheels are considered to be equipped with disk brakes, which do not wear the wheels 

out (Pellicer & Larrodé, 2021). 

(s) The railway vehicle is presumed to negotiate curves (circular or transition ones) at a constant 

speed, so it brakes (if necessary) before negotiating them, so �� = 0 at a curve. There is an 

exception when the vehicle is running downhill, as explained in the next hypothesis. 

(t) The railway vehicle is assumed to brake slightly when running downhill and reducing or cutting 

off traction is not enough to keep a constant speed at curves: when the slope is less than 10 ‰, 

the vehicle brakes will be off, when the slope is between 10 and 15 ‰, the brakes will brake 5 % 

of the accelerating force at each wheelset, and when the slope is greater than 15 ‰, the brakes 

will brake 10 % of the accelerating force. 

(u) The infrastructure parameters that modify the wear conditions, such as warp, rail deflection, 

joints, impacts against switch frogs and track devices and track irregularities are not considered 

(Larrodé, 2007). 

(v) The influence of manufacturing or assembly tolerances of any element is not considered. 
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(w) By not considering rail deflection or manufacturing and assembly tolerances, it is possible to 

assume that the longitudinal rail curve radius (��,�) tends to infinity, so that the associated 

curvature (1/��,�) tends to zero and can be taken as such. 

(x) The bogie wheels are assumed not to derail or block (this was numerically verified in (Pellicer & 

Larrodé, 2021)). Also, and they are assumed not to displace laterally under cant deficiency or 

excess and low static friction conditions (Pellicer & Larrodé, 2021). 

(y) There is not any hunting oscillation at the speed ranges considered (this was numerically proven 

in (Pellicer & Larrodé, 2021)). 

2.3. Calculation Process 

An algorithm consisting of input data blocks, calculation blocks and two output blocks has been 

constructed and is shown in Figure 3. Each of the equation blocks textually described is linked with 

its corresponding document title, under which it is described in detail: 

 At the top of the algorithm, the input data is entered to the calculation blocks. The data is 

arranged in blocks that are added before going down to the main branches. These blocks gather 

information on the wheelset and bogie geometry, vehicle speed, railway line geometry, wheel 

geometry, load characteristics, rail geometry and contact materials properties. 

 On the left, in the 3 central blocks, the kinematic parameters for the wheelsets are obtained 

through relations dependent on the line geometry after inputting information on the wheelset 

and bogie geometry, vehicle speed, railway line geometry and wheel geometry. After that, the 

uncentering of each wheelset is saturated through equations dependent on the line geometry 

and, finally, creepages are obtained through kinematics equations. 

 On the right, in the 6 central blocks, the normal force on each wheel is computed by means of 

dynamics equations after entering data on the vehicle speed, line geometry, load characteristics 

and some results coming from the left main branch after the saturation of uncentering. 

Afterwards, the geometric and normal contact problems are solved by means of Hertz’s solution, 

for which data on the wheel and rail geometries and the contact materials properties is needed. 

The results of Hertz’s solution and the creepages computed in the left main branch allow 

applying Polach’s method. This solution can be applied either with constant or variable friction. 

At the end of this branch, the flange – rail contact is characterized by means of equilibrium 

equations. 

 At the bottom of the algorithm, the wheel wear is computed through the energy transfer model 

and the appearing of RCF is predicted with the fatigue index model. 

In Figure 3, input data blocks are represented in green, intermediate equation blocks are shown 

in blue (light for kinematics and dark for dynamics) and the output blocks are in purple. As to the 

symbols, the orange one with a diagonal cross inside represents the addition of values, the orange 

one with a Greek cross inside indicates a disjunctive, the gray one indicates that only one flow is 

inputted and, finally, the yellow one a bifurcation: 
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Figure 3. Flow diagram of the calculation process (algorithm). Source: Own elaboration. 

In this way, it is ensured that the equations that allow calculating wheel wear and predicting 

RCF are fulfilled under all the requirements and considering all the starting hypotheses, with which 

the physical phenomenon is characterized. Once the problem has been formulated, and the equations 

and the input data have been introduced into the software, the parameters of interest, such as the 

wheel diameter in this case, are varied according to the simulation procedures and the wear is 

computed. 

2.4. Calculation Model 

The calculation model is defined in this subsection, starting with the reference frames definition 

and following with the mathematical description of each of the equation blocks shown in Figure 3 

(Section 2.3) The blocks belonging to the left main branch (those related with kinematics) are 

presented first, while the blocks of the right main branch (related with dynamics) are presented then. 

2.4.1. Reference Frames Definition 

Four reference frames have been defined for the kinematics and dynamics analyses described in 

the next pages. These frames are described below and shown in Figure 4 for a wheelset (for the whole 

bogie does not need a specific reference frame): 

 Absolute reference frame ��� , clockwise, fixed and whose origin set on the rolling plane, 

anchored to the track beginning and centered between the rails. 
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 Track reference frame �����̃, clockwise, mobile at the vehicle speed and whose origin is set on the 

rolling plane and along the track middle line, holding the �� axis always tangent to that line. 

 Axle reference frame �̿���̿, clockwise, mobile at the axle speed and whose origin is set at the 

gravity center of the wheelset. 

 Contact area reference frame ������ , clockwise, mobile at the contact area speed and whose 

origin is set on the center of the area. 

 

Figure 4. Reference frames definition. Source: Own elaboration. 

2.4.2. Obtention of the Kinematic Parameters 

Refs. (Fissette, 2016), (Moody, 2014), (Oldknow, 2015), (Ortega, 2012), (Rovira, 2012) and 

(Sichani, 2016) explain how to obtain the kinematic parameters for the wheelsets through relations 

dependent on the railway line geometry. Not only does Ref. (Pellicer & Larrodé, 2021) collect these 

relations, but it also extends them to all of the possible geometries that can be found in a railway line: 

1. Straight section. 

2. Circular curve. 

3. Transition curve: Clothoid, quadratic parabola or cubic parabola. 

As to the curves, a circular curve is simple that whose radius holds constant, while the transition 

curves are those whose radii are variable: the radius of a clothoid, also called Euler or Cornu spiral, 

is inversely proportional to the distance run, while the radii of quadratic and cubic parabolas depend 

on the distance by those mathematical functions. 

The parameters obtained at these geometries are listed next according to the order in which the 

relations were collected and generalized in Ref. (Pellicer & Larrodé, 2021): 

 Uncentering and uncentering speed. 

 Average uncentering and uncentering speed. 

 Yaw angle and yaw angle variation speed / rate. 

 Average sinus of yaw angle and of yaw angle variation. 

 Average yaw angle. 

 Combination of the uncentering and yaw angle effects. 

 Angle of longitudinal displacement of the contact area. 

 Tilt and tilt speed / rate. 

An example of the parameters obtention is given next: uncentering. This parameter (�) can be 

defined as the distance between the wheelset center of gravity and the track center. Uncentering 

happens because of wheel conicity: wheels are slightly tapered to make wheel negotiation possible 

for wheelsets, which lack a differential. In this way, the wheel whose position is inner in relation to 

the curve can roll with a lower rolling radius than the nominal radius, while the opposite is true for 

the wheel whose position is outer in relation to the curve, so in the end, the outer wheel rolls a longer 

distance than the inner one and the wheelset can negotiate the curve with a lower slip. 
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The uncentering parameter is associated with some track and wheelset parameters, which are 

shown in Figure 5, except for (equivalent) conicity (�), which is an intrinsic parameter of each wheel. 

These parameters can be interrelated by computing the linear velocities of each wheel and equating 

them or by applying the Thales’s Theorem to the triangles drawn in Figure 5. The formula for 

uncentering is called after F. J. Redtenbacher, who developed it in the 19th century: 

 

Figure 5. Equilibrium position at a curve whose instant center of rotation (ICR) and instant axis of 

rotation (IAR) are at its right. Source: Own elaboration. 

2.4.3. Saturation of Uncentering 

As explained in Refs. (Oldknow, 2015), (Ortega, 2012), (Rovira, 2012) and (Sichani, 2016), the 

total uncentering of a wheelset (�*) can be computed by adding the original uncentering and the 

uncentering coming from wheelset rotation (this rotation is in reality that of the bogie pivot with 

respect to the tangent line to the track centerline). This is shown in Figure 6(a) and the formulae are 

presented after it. 

The reason why uncentering must be saturated is because there exists a geometrical constraint: 

total uncentering cannot be greater than the addition of half the track play / slack (the so – called 

“flangeway clearance) and the existing gauge widening (equal or different to 0). When total 

uncentering reaches that value, then the flange belonging to the outer wheel touches the outer rail. 

Ref. (Pellicer & Larrodé, 2021) explains this in detail and defines all of the track and wheelset / bogie 

parameters involved. These parameters are listed below (SC – Parameters are found at straight 

sections and curves, while C – Parameters are only found at curves under the current hypotheses), 

most of which are shown in Figure 6(b), and the formulae are presented after it: 

 SC – Rolling radius (��). 

 SC – Track gauge (� → 1,668 for Iberian gauge). 

 SC – Rail inclination (1: �� → 1: 20 for Iberian gauge). 

 SC – Track play / slack (�). 

 C – Curve radius (�). 

 C – Gauge widening (�). 

 C – Curve sagitta (�). 

 C – Total uncentering (�∗) and uncentering limit (����
∗  or ����). 

 C – Outer | inner wheel rolling radius (�� | ��). 

 C – Yaw (�) and tilt angles (Φ). 

 C – Angle of longitudinal displacement of the contact area (�). 

� =
����

��
  (1)
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Figure 6. (a) Computation of total uncentering by considering the uncentering due to bogie rotation; 

(b) Wheelset positioning on a narrow curve. 

2.4.4. Obtention of the Creepages 

As explained in Ref. (Sichani, 2016), creepages are the rigid slip velocities divided by the vehicle 

speed in order to turn them into non-dimensional (although the spin creepage is dimensional as the 

resulting units are “rad/m”): 

�� = Δ�� �⁄    (6)

�� = Δ�� �⁄   (7)

� = Φ �⁄   (8)

Refs. (Fissette, 2016), (Ortega, 2012) and (Sichani, 2016) explain how to compute creepage from 

kinematics parameters, whereas Ref. (Pellicer & Larrodé, 2021) collects this information and proves 

the formulae. The whole process is briefly explained next, starting with longitudinal creepage, 

continuing with lateral creepage and ending with spin creepage. 

Longitudinal creepage has three main contributions, which are represented in Figure 7 and 

added thereafter: 

1. Difference between the nominal wheel radius and the real rolling one (generating��
�). 

2. Application of tractive or braking torques to the wheel (generating ��
��). 

3. Variation of yaw angle (generating ��
���). 

�∗ (1�� �ℎ������) = � + �
� |�|

���
  (2)

�∗ (2�� �ℎ������) = � − �
� |�|

���
  (3)

����
∗ =

�

�
+ �  (4)

�∗ = ����
∗  (if the former was greater before)   (5)

(a) (b) 
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Figure 7. (a) First contribution (��
�); (b) Second contribution (��

��); (c) Third contribution (��
���). Source: 

Own elaboration. 

Δ�� = ��
� + ��

��� + ��
���  (9)

Δ�� = −Δ� � − ���� ± ���̇  (10)

�� =
���

��
+

�����±���̇ 

�
  (11)

As to lateral creepage, this is composed of three contributions, which are represented in Figure 

8 and added thereafter: 

1. Not null yaw angle (generating Δ��
�). 

2. Adoption of a new equilibrium position by the wheelset (generating Δ��
��). 

3. Not null tilt angle (generating Δ��
���). 

 

(b) 

(a) 

(c) 

(c) 

(b) (a) 
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Figure 8. (a) First contribution (��
�); (b) Second contribution (��

��); (c) Third contribution (��
���). Source: 

Own elaboration. 

Δ�� = ��
� + ��

��� + ��
���  

(12)

Δ�� = −����� ����� + �̇ cos �� − ��Φ̇ cos ��  (13)

�� = �−���� +
�̇����̇

�
� cos��  (14)

Finally, spin creepage is made up of two contributions, which are shown in Figure 9 and added 

afterwards: 

1. Conicity (generating ΔΦ�, alternatively known as the camber effect (Ortega, 2012)). 

2. Variation of yaw angle (generating ΔΦ��). 

 

Figure 9. (a) First contribution (ΔΦ�); (b) Second contribution (ΔΦ��). Source: Own elaboration. 

ΔΦ = ΔΦ� + ΔΦ��  (15)

ΔΦ = ±� ����� + �̇ cos ��  (16)

� = ±
��� ��

��
+

�̇ �����

�
  (17)

2.4.5. Obtention of the Normal Force on Each Wheel 

The normal force is exerted by the rail on the wheel as a response to the opposite force (due to 

gravity or components of accelerations such as the centrifugal one) that the latter exerts on the former. 

Refs. (ADIF, 1983 – 2021), (ADIF, 2023), (Andrews, 1986), (Fissette, 2016), (Jiménez, 2016), (Ministerio 

de Fomento, 2018), (Moody, 2014), (Rincón, 2018), (Rovira, 2012), (Santamaría et al., 2009), (Tipler & 

Mosca, 2014) provide some information on how to compute the normal force on each wheel. 

However, the most important Ref. is (Pellicer & Larrodé, 2021), as it is the one which fills the 

gaps and obtains the normal force on each wheel as a function of these factors: 

 Axle load (����), which obtained from the payload, tare and number of axles. 

 Center of gravity of the axle load (����), considering the contribution of each load. 

 Gradient angle (���), which is directly inferred from the inclination (�). 

 Cant angle (��), which depends on the cant and the distance between contact areas. 

 Lateral acceleration (����), which considers the effect of cant excess or deficiency. 

 Wheel contact angle (��) and longitudinal displacement angle of the contact patch (�). 

In that Ref., the normal force on the outer and inner wheel in relation to a curve (�� and ��, 

respectively) have been obtained and later decomposed in their perpendicular and parallel 

(a) (b) 
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components (�� and �∥). It should be noted that a straight section, �� and �� would be identical 

(�). The process is summarized in Figure 10 and the resulting formulae are shown underneath it: 

 

Figure 10. (a) Force diagram when the gradient is positive (left) or negative (right); (b) Normal force 

components at the contact area; (c) Force diagram of a wheelset negotiating a canted curve. Source: 

Own elaboration. 

���� =
��������

�����
  (18)

���� =

�

�����
(���������������) 

�

�����
(��������)

  (19)

��� = ������ �
�

����
�  (20)

�� = ������ �
��

���
�  (21)

���� =
��

���
−

��
�

���
 � �����  (22)

�� =
����

�
�1 +

�

��
� � ����� ������ +

����

���
��������  (23)

�� =
����

�
�1 −

�

��
� � ����� ������ −

����

���
��������   (24)

�� =  ��|� cos(�) cos(��)  (25)

�∥ = ��|� cos(�) sin(��)  (26)

2.4.6. Solution of the Geometric and Normal Contact Problems 

(b) 

(c) 

(a) 
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An isolated wheel transmits its own weight and its load to the rail, with which is shares an 

interface: the contact area. The contact area must be greater than zero in order to avoid an infinite 

normal stress. Both the contact area and the normal stress must be determined so as to compute the 

wear and know where it acts. The first unknown is the geometric problem, whereas the second one 

is the normal contact problem. 

As explained in Ref. (Sichani, 2016), whenever two bodies make contact, that contact can be non-

conformal or conformal. In the first type of contact, the contact area is relatively small in comparison 

with the characteristic size of the bodies; while in the second type of contact, the geometry of a body 

adapts to the geometry of the other body, resulting in a relatively big contact area (this could happen 

when the wheel and rail are so worn-out that their geometries coincide). 

Ref. (Sichani, 2016) also explains that if the materials in contact are quasi-identical, then the 

problem becomes much simpler. Quasi-identity implies that a relation between the shear modulus 

and the Poisson’s ratio must be satisfied and in the case of wheel – rail contact, this condition is 

fulfilled because the materials in contact are the same (steel). 

Both the geometric and the normal contact problem are solved together, and in Refs. (Ortega, 

2012), (Rovira, 2012) and (Sichani, 2016), these theories for solving them are commented upon: 

 Hertzian contact theory: This theory was the first satisfactory analysis for the stresses appearing 

at the contact zone between 2 elastic solid bodies and solves the geometric problem at the same 

time if a series of hypotheses are fulfilled. According to this theory, the contact area is the 

intersection of two perfect paraboloids: a perfect ellipse. 

 Kik – Piotrowski theory: This is a quasi-Hertzian theory and is also based on the virtual 

interpenetration between surfaces. It assumes the same pressure distribution in the longitudinal 

direction as Hertz, but not in the lateral direction as the curvature is not always constant in that 

direction. It is interesting to point out that this theory disregards the real shape of the bodies and 

replaces them by elastic half-spaces, which allows employing Boussinesq’s influence functions. 

 Ayasse – Chollet: This is also a quasi-Hertzian theory, a variant of the previous one. 

 Stiff approach: This theory is based on a stiff contact in which there is a theoretical contact point 

for which a series of constraints are imposed. 

As stated in Ref. (Pellicer & Larrodé, 2021), which collects the theories, the Herztian contact 

theory is the most common due to its high accuracy, low computing effort and because the 

hypotheses it brings are fulfilled for most of the cases. Here is the list: 

1. The bodies in contact are homogeneous, isotropic and linear elastic. 

2. Displacements are supposed to be infinitesimal (much smaller than the bodies’ characteristic 

dimensions). 

3. The bodies are smooth at the contact zone, that is, without any roughness. 

4. Each body can be modeled as an elastic half-space, which requires a non-conformal contact. 

5. The bodies’ surfaces can be approximated by quadratic functions in the vicinity of the maximum 

interpenetration point. This implies that the curvatures (the second derivates of the functions) 

are constant. 

6. The distance between the undeformed profiles of both bodies at the maximum interpenetration 

point can be approximated by a paraboloid. 

7. The contact between the bodies is made without friction, so only normal pressure can be 

transmitted. 

In Figure 11, the most representative images of this model are presented. After that, the main 

formulae are shown, which come from the aforementioned Refs. and also from (Cooper, 1968), 

(Greenwood, 2018) and (Hertz, 1882): 
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Figure 11. (a) Interpenetration between 2 bodies in contact; (b) Graphical representation of the radii 

involved; (c) Cross-section of the wheel, where ���
 can be computed; (d) Contact patch with its axes 

placed. Source: Own elaboration. 
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2.4.7. Solution of the Tangential Contact Problem 

The Hertzian model ignores the forces and torques due to friction: as a consequence of the 

relative motion between the wheel and the rail in the longitudinal and lateral directions and around 

 

(b) 

(c) 

(a) 

(d) 

2b 

2a 

�� 

�� 
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the vertical axis (�� ), opposing forces and torques appear. These are associated with tangential 

stresses and deformations at the contact area, specifically at the slip region of the ellipse (split into 

one stick and one slip region). There are two ways to compute these variables: 

 Analytical: The values are globally computed for the whole contact patch. A set of analytical 

equations are used, and the tangential problem can be decoupled from the geometric and normal 

ones because non-conformity and quasi-identity are satisfied. 

 Finite-element: The values of the variables are locally computed and are added thereafter so as 

to obtain the global values. For that, the contact patch is meshed. 

In the current work, the analytical way is chosen, inasmuch as that it allows tackling the problem 

with an algorithm which comes to the results at a good accuracy – computational effort ratio. 

For the computation of these tangential forces and also the spin torque, a series of models have 

been proposed throughout the last hundred years. In Refs. (Rovira, 2012), (Sichani, 2016) and (Ortega, 

2012), these models are commented upon: 

 Carter’s theory: This was the first theory ever. Carter coined the term “creepage” as “the ratio of 

the distance gained by a surface with respect to the other divided by the distance run“. He stated 

that the longitudinal dimension of Hertz’s ellipse in the unworn profiles was, in general, greater 

than the lateral one, but, as a consequence of wear, profiles flattened, giving rise to a uniform-

width strip. He assumed that the wheel and rail profiles could be approximated by two parallel-

axis cylinders, so the problem was reduced to a plane stress problem, that is, bi-dimensional. 

 Johnson’s theory: Johnson published the first contact theory for circular contacts. In this theory, 

the stick region is circle-shaped and it touches the leading edge at a single point, although he 

later showed that this hypothesis leads to a contradiction: tangential stress does not oppose slip 

at the slip region adjacent to the leading edge. He also derived relations between creepages that 

were decreasingly small and tangential forces. Finally, he showed that the spin effect also 

contributes to lateral force. 

 Johnson – Vermeulen’s theory: Johnson worked later with Vermeulen and both extended the 

theory of circular contacts under pure creepage (no spin) conditions to cases of elliptical contact. 

They used the solution for slipping contacts with microslip derived by Deresiewick for elliptical 

contact, with the only difference being that the stick region touches the leading edge at a single 

point with the purpose of reducing the erroneous area for a rolling contact case. However, in 

this theory there was still a region where the friction law was not fulfilled. 

 Kalker’s theory: At first, Kalker established a linear relation between the tangential forces and 

decreasingly – small creepages. At such a restrictive situation, it is possible to assume that the 

whole contact area is in adhesion (there is no slip region). This first linear theory was also known 

as “non-slip theory” in which the friction law and the friction coefficient were discarded. Due to 

the lack of saturation of this theory (Coulomb – Amonton’s law would be the only saturation), 

this theory was improved with linear and cubic saturation approaches (CONTACT and SHE 

methods, respectively). 

 Polach’s theory: Even with the improvements, Kalker’s theory was not enough for computing 

the lateral tangential force accurately when the spin grows beyond a certain threshold. Polach 

proposed a method to tackle this problem: (1) Tangential forces computation considering null 

spin. (2) Tangential forces computation considering pure spin. (3) Addition of the forces 

computed in steps (1) and (2) and saturation according to the traction limit. For this method, 

Polach assumed that the ellipse semi-axis in the rolling direction (�) tends to zero, so the position 

of the spin center tends to the ellipse center. He extended this assumption to higher semi-axes 

ratios (�/�). 

Ref. (Pellicer & Larrodé, 2021) collects all of these theories and concludes that Polach’s method 

is the most appropriate for considering the spin effect on the variables, inasmuch that it brings 

accurate results with a low computational effort. Refs. (Polach, 2000) and (Polach, 2005) provide more 

details on the method. 

In Figure 12, the evolution of the stick and slip regions at the contact patch for a case of pure 

longitudinal creepage is shown, as well as the four contact patches appearing at a four-wheeled bogie 

without flange – rail contact. At these contact patches, all of the possible creepages, forces and torques 
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are illustrated. Underneath the figure, the most representative formulae of Polach’s method are 

shown. It must be noted that, for calculations with a variable friction coefficient, the coefficient �� is 

introduced in order to correct the slope of the traction curve: 

 

Figure 12. (a) Evolution of slip and stick regions as the creepage, purely longitudinal here, grows; (b) 

Traction curve for the case of pure longitudinal creepage; (c) Tangential forces and torques for a four-

wheeled bogie. Source: Own elaboration. 
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2.4.8. Characterization of Flange – Rail Contact 

Flange – rail contact is an aggressive contact appearing at tight / narrow curves where gauge 

widening is not enough for a smooth curve negotiation. In this type of contact, the wheel flange 

presses laterally against the rail and the rail exerts a reaction force on the wheel, which increases the 

pressure on a region with small radii: the flange. When flange – rail contact exists, the usual tread – 

rail contact does not cease to exist (at least under the hypotheses here considered), so it is important 

to know how much loaded is each contact. 

For finding the reaction that the rail exerts on the flange, Ref. (Andrews, 1986) proposes the 

center of friction model. This model states that every bogie, when curving, has a point at which, if a 

wheel were mounted there, this wheel would spin ideally, that is, with no slip. This point is called 

the center of friction and determining it allows computing the forces exerted by the rail on the flange 

– rail contact through force and torque balances. 

According to this model, there can be one flange – rail contact (free motion) or two flange – rail 

contacts (restricted motion). The latter occurs at the tightest curves when the two wheels of a diagonal 

touch the rails. 

As for the load distribution on each contact, Ref. (Piotrowski & Chollet, 2005) explains the 

Sauvage model. This model considers that the total indentation (��) can be expressed as the sum of 

the indentation at the tread – rail contact (���) and that at the flange – rail contact (���). As these 

depend on the normal force, it is possible to clear out the normal force on the tread contact (���) and 

the flange contact (��). However, this method is heuristic if a powerful finite-element method is not 

used in order to determine the magnitudes of ��� and ���. 

Ref. (Pellicer & Larrodé, 2021) collects both models and simplifies the Sauvage model by 

introducing the load distribution coefficient (���), which ranges from 0.5 (same normal load for both 

contacts) and 1 (the tread contact would become discharged). The usual values for this coefficient are 

taken from the results of the Sauvage model: 0.7 – 0.8. 

Figure 13 illustrates the parts of the center of friction model. It can be noted that the motion is 

restricted when both the wheels ��  and ��  touch the rail, receiving the reactions ��.�  and ��.� 

from the rails, respectively. Otherwise, when the motion is free, only the wheel �� touches the rail 

and ��.� is null. Below the figure, the main equations of this model and the normal force distribution 

by means of ��� are presented: 

 

Figure 13. (a) Curve negotiation by a bogie; (b) Velocity vectors; (c) Reference frame ������ ; (d) Forces 

involved when curving. Source: Own elaboration. 
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2.4.9. Calculation of Wear 

Wear is the damage to the wheels which reduces their useful life drastically. This wear is due to 

abrasive and adhesive wear and there exist models based on a wear rate which enable obtaining the 

wear depth and, hence, characterizing the damage (Sichani, 2016). Abrasive wear is due to the relative 

movement between the wheel and rail surfaces and their roughness, which cause friction and this, in 

turn, the loss of wheel and rail material. In contrast, adhesive wear is due to plastic deformation and 

to the cohesive forces appearing between both surfaces (Van der Waals, electrostatic or chemical), 

which ends up producing a material transfer from one surface to the other (González – Cachón, 2017). 

For wheel wear characterization, Ref. (Rovira, 2012) listed the following hypotheses: 

1. The equations are parametrized for abrasive wear and not for adhesive wear because: (1) Plastic 

deformation appears, but it is difficult to model without finite-element methods, which come 

with a high computing cost. (2) It is reasonable to assume that the major contribution is abrasive 

wear. (3) When the mathematical tools are calibrated with experimental data, both phenomena 

are already included in the resulting wear law. 

2. The different mathematical tools study the wear on the wheel profile, where the wear estimated 

at every instant is cumulative. 

3. Wear is assumed to be regular: the variation of the transversal profile is studied, not pattern 

formation along the longitudinal (circumferential) direction. Thus, the wear at a certain position 

and instant is extrapolated to the whole circumference. 

4. At the contact interface there are not any pollutants. The effect of pollutants is considering by 

modifying the friction coefficient or introducing new wear laws. 

Considering these hypotheses, the models commented upon in Refs. (Rovira, 2012) and (Sichani, 

2016) can be applied to wheel wear characterization: 

 Energy transfer models: These models compute the energy dissipated at the wheel – rail interface 

and associate it with the wear rate, which can be ultimately associated with the wear depth. 

There are various models, each with its own wear law: Zoroby’s model, which is based on the 

energy flow; the model developed by the British Railway Research (BRR), which is based on a 

non-continuous wear law depending on the wear regime (mild, transition, severe); and the 

model developed by the University of Sheffield (USFD), which is based on a continuous wear 

law divided into several regimes (mild, severe, catastrophic). 

 Reye – Archand – Khruschchov (RAK) model: This is the simplest model and characterizes the 

abrasive wear appearing at the slip zone of the contact area. In this model, the volume of material 

lost is expressed as function of the slip speed, normal force, hardness of the wheel material (steel) 

and a coefficient coming from a wear chart divided in wear zones depending on the normal 

pressure and the slip speed. 

In Ref. (Pellicer & Larrodé, 2021), energy transfer models and the RAK model are collected and 

assessed. The RAK model is hard to implement because it requires a high computational accuracy: if 

pressure or slip speed is miscalculated, then the RAK coefficient may be wrong and be in another 

order of magnitude. As to the energy transfer models, the one with an easiest implementation and 

lowest computational effort is the USFD model since its wear law is continuous, so small errors do 

not lead to great errors in the end. 
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Figure 14 shows the wear calculation according to the USFD, which can be eliminated by 

reprofiling when its depth reaches a certain threshold (Alba, 2015), (Peng et al., 2019), (RENFE, 2020). 

The main equations of the USFD model are presented thereafter; the wear rate (��,����) for the mild, 

severe and catastrophic regimes as a function of the wear index (�� ��⁄ , with �� expressed in [mm2]) 

and the wear depth (�����, expressed in [µm]): 

 

Figure 14. (a) Obtention of the wear depth per revolution (ℎ����); (b) Wheel reprofiling process. 

Source: Own elaboration. 
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2.4.10. Prediction of RCF 

Under high axle loads, the stress distribution around the contact patch may cause fatigue cracks 

on the wheel surface or inside it. For only predicting if RCF is to appear or not, the fatigue index 

model developed by (Dirks, Ekberg & Berg, 2015) and presented in (Sichani, 2016) is useful. The 

fatigue index (�����) is simply the utilized friction term (��) minus the shakedown limit (����) and 

by comparing its value with zero, 3 situations can be observed: 

 If ����� < 0, RCF is not enough for initiating cracks since the tangential force is moderated 

(utilized friction). 

 If ����� = 0, this is the limit situation. Cracks are not initiated as the shear stress at yield (����) 

has not been reached yet. 

 If ����� > 0, RCF initiates cracks on the surface since the tangential force is elevated (utilized 

friction). 

The formation of RCF prediction is presented next. The maximum force above which RCF 

appears (����,���) results from equating �����  to zero (that is, in the limit situation): 

������ = �� − ����   (54)
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2.5. Software Choice 

Once the algorithm architecture and details have been defined, it must be implemented in an 

equation solving program. Due to the large number of input data, equations, relations, functions, 

procedures and subroutines which had to be implemented, only software capable of processing the 

entire volume of data in an agile way has been considered. After considering several options 

(Mathematica, Matlab and Engineering Equation Solver), Engineering Equation Solver (Klein, 1993) 

has been chosen as it allows building algorithms with any architecture, basing on functions, 

procedures and subroutines defined in F-Chart programming language, which is a variation of 

Pascal. The program rearranges internally the equations blocks defined by the user, takes the inputs 

needed for the new blocks and obtains the requested outputs by means of iterations. These results 

are obtained after an undetermined number of iterations, depending on adjustable stop criteria such 

as the relative residuals, which can be as low as 10−10, or the limit of iterations. The specific version 

with which the results were obtained is Engineering Equation Solver Professional V9.457-3D (EES). 

The chosen program, besides solving algorithms, can create parametric tables and graphs derived 

from those equations. 

2.6. Calculation Scenarios 

The objective is to calculate the wear as a function of operating factors such as the nominal 

diameter for various wheels and compare the results. Prior to getting these results, the calculation 

scenarios and the input data must be set. 

In Ref. (Pellicer & Larrodé, 2021), many types of bogies are reviewed and, as it can be seen, those 

bogies with reduced-diameter wheels need more wheels to take up the same load. This is because 

reduced-diameter wheels can withstand lower axle loads than ordinary-diameter wheels (obviously, 

smaller wheels have less material), so more wheels are needed for the same bogie load. Also, the 

minimum diameter after the reprofiling cycles is more restrictive in reduced-diameter wheels for 

operating safety reasons. 

For the comparison, these commercial bogies, used or proposed on rail motorways, have been 

chosen: 

 Y – 25: This bogie consists of four wheels (thus, it is composed of two wheelsets) and it can take 

up 45 t in total (22.5 t/axle) at a maximum speed of 120 km/h. The total wheelbase (�) is variable 

and the wheels are braked, in general, by brake shoes. The wheel nominal diameter (�) ranges 

from 920 mm (original, maximum) to 840 mm (operational minimum). 

 Saas-z 703: This bogie also consists of four wheels (so two wheelsets) and it can take up 32 t (16 

t/axle) at 100 km/h. The total wheelbase (�) is variable and the wheels are braked by brake disks. 

The wheel nominal diameter (�) ranges from 680 mm to 630 mm. 

 Graz Pauker 702: This bogie is composed of eight wheels (so four wheelsets) and it can withstand 

20 t (5 t/axle) at 100 km/h. The total wheelbase (�) is variable and the wheel nominal diameter 

(�) ranges from 355 to 335 mm. 

These bogies are different each other, but the comparisons should be performed under the same 

conditions, only excluding the parameter whose influence on wheel wear is to be assessed (the 

nominal diameter (�), in this case). However, comparing the scenarios under the same conditions is 

not always possible, as explained in Ref. (Pellicer & Larrodé, 2021): 

1. Axle load (����): If a constant axle load value were given for all of the cases, then the wheels 

would be overloaded in some scenarios, while underloaded in others. On the one hand, some 

values as high as 22.5 t/axle would be unrealistic and unfeasible for the 680 and 355-mm wheels. 

On the other hand, some values as low as 5 t/axle would be realistic and feasible, although the 

smallest wheel (355 mm) would be fully loaded, working at maximum normal pressure and 

tangential stresses at the tread – rail interface, while the biggest wheel (920 mm) would be barely 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 13 August 2024                   doi:10.20944/preprints202408.0896.v1

https://doi.org/10.20944/preprints202408.0896.v1


 22 

 

loaded, working at low values of those variables. In order to ensure (as much as possible) the 

same conditions, the axle load generating the same normal pressure is to be chosen. Specifically, 

the axle load generating a 1,235 MPa normal pressure, given that that is a common maximum 

value (maximum axle loads usually induce 1,100 – 1,300 MPa on the wheel and the mean value 

is 1,235 MPa), even if the axle load of the smallest wheel surpasses the manufacturer’s limit. 

2. Flange radius (��): It is the addition of the nominal rolling radius (��, which is a half of �) and 

a constant. So �� decreases in proportion with �. 

This implies that some of the data will depend on the scenario, that is, on the wheel tackled at 

each time. These scenario-dependent data are discussed in Ref. (Pellicer & Larrodé, 2021) and 

displayed in Table 1: 

Table 1. Specific input values for each of the three scenarios. 

Variable 
Value for 920-mm 

wheels scenario 

Value for 680-mm 

wheels scenario 

Value for 355-mm 

wheels scenario 

� (m) 0.920 0.680  0.355 

����� (∅) 4 4 8 

�� (m) 0.467 – 0.475 0.347 – 0.355 0.185 – 0.193 

����  (kg) 18,784 15,325 6,996 

The rest of conditions are the same (for instance, the wheelbase) and are discussed in Subsection 

2.7. Only realistic, feasible and plausible values are set and even variations in the geometry and 

friction are considered (the variation of dry friction with speed). 

Taking all of this into account, the three scenarios are established: 920-mm, 680-mm and 355-mm 

wheels. For each of the scenarios, the input data is entered at first, and then the program runs the 

algorithm for every stretch of the railway line, switching the direction when the end station is 

reached. When the wear depth reaches a certain threshold, then the wheel is reprofiled and the 

scenario execution starts over with a new wheel profile (with a lesser diameter now). After a certain 

number of reprofiling cycles is reached, the minimum allowed diameter is reached, and the scenario 

execution ends. All of this is registered in the wheel diameter – mileage curves, which are presented 

in Section 3. 

As for the wear depth threshold, this must be as low as possible for the wheel profiles are not 

updated as they wear out, so they must be renewed assiduously. A sensible value is 1 mm for the 

three scenarios (this is not an input value, but rather a stop criterion). The lathe will have to remove 

a bit more for a right reprofiling: 1.5 mm. Converting this radial data into diametral data, 2 and 3 mm 

are obtained. 

Finally, Figure 15 illustrates the placement of the ������  reference frame for the bogies (this 

reference frame is necessary for the center of friction model), the wheels entering a curve first are 

shown (wheels �� and �� will be half of the times leading and the other half trailing) and the wheel 

and rail profiles are geometrically adjusted, paying also attention to the flange – rail contact: 
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Figure 15. (a) Placement of the ������  reference frame for all the bogies considered; (b) Position of 

the wheelsets according to the direction; (c) Relative positioning of the right wheel and rail at straights 

sections; (d) Relative positioning of the left wheel and rail at straight sections; (e) Adjustment between 

the left flange and rail for wear distribution. Source: Own elaboration. 

2.7. Input Data 

As it can be seen in Figure 3, the algorithm needs to be inputted information relative to the 

wheelset and bogie geometry, the wheel and rail geometries, the properties of the materials in contact, 

the load characteristics, the railway line geometry and the vehicle speed. The latter can be associated 

with the railway line definition if the vehicle runs at the maximum allowed speed associated with 

the infrastructure. 

For the three scenarios, the wheel profile portrays the geometry of the 1/40 standard profile and 

is made from ER8 steel grade, while the rail profile portrays the geometry of the 60E1 standard profile 

and is made from R260 steel grade (AENOR, 2011 – 2021). Most of the wheelset and bogie 

characteristics, which are taken from the bogie comparison carried out in Ref. (Pellicer & Larrodé, 

2021) are also common to the three scenarios. The same for the parameters used to modify the friction 

with speed according to Polach’s method (implemented with variable friction under dry conditions). 

These common input data are shown in Table A3 (Appendix B). 

As for the railway line parameters, the calculation is performed for the three scenarios with data 

from a non-existing railway line. The design parameters of a railway line are defined in Refs. (ADIF, 

(b) 

(a) 

(d) (e) 

(c) 

Graz Pauker 702 Y – 25  Saas-z 
703  
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1983 – 2021), (de San Dámaso, 2011), (Vera, 2016) and (Yassine, 2015), although not all of the 

parameters are used for wear calculation. 

In Ref. (Pellicer & Larrodé, 2021), a railway line is defined stretch by stretch, with these 

parameters: 

 Initial and final metric points (��� and ��, respectively). 

 Type of stretch: RECTA (straight), CIR (circular curve), CLO (clothoid), PARACUAD (quadratic 

parabola) or PARACUB (cubic parabola). 

 Direction of the curve: NING (the stretch is straight), IZDA (curve to the left) or DCHA (curve 

to the right). 

 Position of the bogie at the curve: NING (the stretch is straight), ENT (the bogie is entering the 

curve), SAL (the bogie is exiting the curve). 

 Curve radius (�), cant (ℎ�) and inclination (�). 

 Initial and final maximum speed allowed (��� and ���, respectively). 

Constant values as the track gauge (1.668 m) are the same for all of the stretches, and the gauge 

widening is a piecewise-defined function which can be directly imported from Ref. (ADIF, 1983 – 

2021), which specifies the gauge widening parameter (�) as a function of the curve radius (�). For 

example, � is null for curves with � greater than 300 m and � is equal to 20 mm for curves with � 

between 100 and 150 m. 

Other values as the transition curves parameters are pre-defined and others can be inferred from 

the values above. For instance, the distance traveled between two metric points is the difference 

between them. 

The 333 stretches defined in Ref. (Pellicer & Larrodé, 2021) can be found in the supplementary 

material. The curve radii range from a minimum of 265 m (the ratio � ����⁄  is less than 0.01 and 

according to this heuristic rule, any restricted movements will appear) to a maximum tending to 

infinity at straight sections (∞ is not accepted on EES, so it is assimilated to 5 · 10�), with 200 – 800-

m radii as the most frequent. It can also be noted that, for more realism, the station 1 is called 

Albarque, the station 2 is called Zacarín and there is even an intermediate station called Milbello (all 

of these are fictional names). 

Finally, it is noteworthy that the attached material also includes the introduction strategy of 

Hertz’s and Kalker’s coefficients into the analysis through polynomials and the 150 equations which 

have not been displayed in the present document due to lack of space (they are displayed making 

part of the algorithm already) (Pellicer & Larrodé, 2024). 

3. Results 

After executing the algorithm, the diameter – mileage curves are obtained. Here, the diameter is 

expressed in [mm], whereas the distance traveled is in [km]. The results are discussed in Section 4, 

but some numbers can be anticipated: 

1. 920-mm wheels can travel for 124,275 km until reaching an 840-mm diameter, losing 2 mm in 

diameter at every reprofiling cycle. At that point, the worn-out profile will be discarded for 

safety and operational reasons. 

2. 680-mm wheels are able to travel for 75,648 km until reaching their minimum allowed diameter: 

630 mm. This is the real life end for this wheel, yet the wear – reprofiling cycles have been 

extended, as if the final diameter could be 600 mm for the difference between 680 and 600 is the 

same as that of 920 and 840. In this fictional situation, the wheel would have traveled 118,683 

km (fictional life end). 

3. 355-mm wheels are capable of traveling 26,983 km until reaching their minimum allowed 

diameter: 335 mm. This is the real life end for this wheel, yet the wear – reprofiling cycles have 

been extended, as if the final diameter could be 275 mm for the difference between 355 and 275 

is the same as that of 920 and 840. In this fictional situation, the wheel would have traveled 

101,433 km (fictional life end). 

Besides, a worn-out wheel profile is represented by fitting the wear depths obtained to the zones 

of a real wheel profile suffering the wear. This wear has been obtained after a random distance 
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traveled and the coordinates used are the pair ��,� − ��,� (��,� is the vertical coordinate of the final 

profile, while ��,� is its horizontal counterpart). 

The worn-out profiles shows that the flange wear is far more noticeable and significant than the 

almost-negligible tread wear, as was expected knowing that flange – rail contact is such an aggressive 

type of contact and that tight curves are predominant in the railway line defined. In fact, the 

algorithm determines that in most flange – rail contacts, RCF appears due to the high normal 

pressures and tangential stresses involved. 

Figure 16 displays the three diameter – mileage curves and the worn-out wheel profile, the latter 

on the lower right corner. As it can be seen on the first plot, the wheel always starts with a 920-mm 

nominal diameter (at the tread). Right after reaching the wear depth limit (1 mm in radius or 2 mm 

in diameter, reached at the flange first), the wheel is sent to the workshop for lathing. This process 

starts with a diameter close to 920 mm at the tread (barely worn-out) and ends with a 917-mm 

diameter at the tread. Therefore, 3 mm material are removed (1.5 mm in radius, at each side if looked 

on a cross-section). The wheel exits the workshop with a 917-mm diameter and it wears out until 915 

mm, then it is reprofiled from 917 to 914 mm, and so on. Table A5 (Appendix C) should be checked 

too: 

 

Figure 16. (a) Diameter – mileage curve for the 920-mm scenario; (b) Diameter – mileage curve for the 

680-mm scenario; (c) Diameter – mileage curve for the 355-mm scenario; (d) Representation of a worn-

out wheel profile after a random distance traveled. 

4. Discussion 

An algorithm capable of calculating wheel wear has been designed in this work. As seen in 

Figure 16, it has been found that a 920-mm wheel installed on a Y – 25 bogie can travel for 124,275 

km, a 680-mm wheel mounted on a Saas-z 702 bogie can travel for 75,648 km, while a 355-mm wheel 

assembled on a Graz Pauker can travel for 26,985 km. Should the last two wheels undergo the same 

number of wear – reprofiling cycles as the first one, then their results would be greater than that of 

the 920-mm wheel: 118,683 and 101,433 km, respectively. 

For the understanding of these results, it is necessary to review certain aspects found when 

analyzing all of the work overall, delving also into the underlying equation blocks which eventually 

lead to the diameter – mileage curves: 

Real life end 

Fictional life 
end 

Fictional life 
end 

Real life end 

(a) (b) 

(c) (d) 
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 Comparing the real life ends (124,275; 75,648 and 26,985 km) in percentual terms with respect to 

the first value, it is obtained that 680-mm wheels’ life is 30.13 % shorter and the 355-mm wheels’ 

is 78.29 % shorter. 

 Due to the elevated life shortening of 355-mm wheels, operators prefer using bigger wheels. For 

example, in Ref. (Pellicer & Larrodé, 2021), 380-mm wheels, which are mounted on the 

Saadkms690 bogie, are presented, which can be reprofiled until reaching 335 mm and the 

difference between both values (45 mm) is 25 mm higher than for 355-mm wheels (20 mm). 

Escalating the life of 355-mm wheels heuristically with the ratio 45/20, the result is 43,176 km, 

only 65.26 % shorter than 920-mm wheels’ life. This is very advantageous despite the elevation 

in 25 mm of the loading plane height, so replacing 355-mm wheels by 380-mm wheels will 

ultimately depend on the application (semi-trailers’ heights and tunnels and bridges’ loading 

gauges). 

 The distance difference between reprofiling (the reprofiling span) is very variable when 

reprofiling a same wheel and, obviously, when moving across wheels, so adopting arithmetic 

mean values is required. The mean value is 4,603 km for 920-mm wheels, 4,396 km for 680-mm 

ones and 3,757 km for 355-mm ones. 

 Should the wagons perform � routes Albarque – Zacarín – Albarque (75.272 km) a week, then 

reprofiling periodicity should be ����������� ���� · (7 (75.272�⁄ )). Using the average value 

4,250 km, the approximate result obtained is 56 · (7 �⁄ ). 

 If all of the wheels were reprofiled the same number of cycles (always eliminating 80 mm in 

diameter), then the wheels’ life (fictional, as eliminating 80-mm would be against the 

manufacturers and operators’ regulations) would be: 118,683 km for 680-mm wheels and 101,433 

km for 355-mm wheels. The former value es 4.50 % lower than that of 920-mm wheels (124,275 

km), while the latter value is 18.38 % lower. 

 These trends are summarized in Figure 17, where it can be seen that neither the behavior of the 

real life end nor that of the fictional life end are linear: 

 

Figure 17. Trends summary. 

 This non-linear behavior responds to the different kinematic response of reduced-diameter 

wheels when negotiating curves. As demonstrated by Redtenbacher’s formula, uncentering is 

proportional to wheel radius (to wheel diameter in turn, as radius is the half), so not only do 

reduced-diameter wheels uncenter less than ordinary-diameter ones, but also their flanges will 

push against the rails less intensely. Moreover, the bogies where reduced-diameter wheels are 

mounted are less loaded, which will further reduce the force exerted by the rail on the flange 

(coming from force and torque balances). Figure 18(a) illustrates partial uncentering (differential 

effect) for the three scenarios and shows how saturation (���� ) is reached at a lower radius 

threshold for reduced-diameter wheels, while Figure 18(b) shows total uncentering (adding 

bogie rotation) in the worst case (leading wheelset, outer wheel), but even in this case, flange – 

rail contact is less aggressive owing to dynamics: 

Real life end 

Fictional life 
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Figure 18. (a) Partial uncentering for different �� and � values; (b) Total uncentering for the same 

values. 

 The results for the three scenarios have been obtained for a 1,235-MPa normal pressure at the 

tread contact area with the rail when the wheels run on straight tracks, attaining such value by 

adjusting axle load for each scenario. Pressures existing at the flanges have not been equated 

due to the variability of the force exerted by the rail on the flange on the curve radius, which 

would make it very difficult to obtain unique axle load values. 

 It is necessary to limit axle load on reduced-diameter wheels, as their contact area with the rail 

is reduced as well and the normal pressure is proportional to the load – area ratio. This reduction 

in the contact area responds to the decrease in the longitudinal radius ���
, which is proportional 

to the wheel diameter. With a lower ���
 value a greater longitudinal relative curvature (�) is 

obtained, which dismishes the intersection between the theoretical paraboloids and, as a result, 

the contact patch size (as � diminishes, the longitudinal semi-axis (a) does as well). 

 Flange wear is between 10 and 1,000 times more intense than tread wear, so the former has been 

taken for elaborating the curves. This is due to the fact that lateral radii are very reduced for 

flange – rail contact (���
= 13 − 36 mm, ���

= 36 mm), opposing tread – rail contact radii 

(���
= 80 − 300 mm, ���

→ ∞), increasing in turn the relative lateral curvature (� ), which 

diminishes the intersection between the theoretical paraboloids and, as a result, the contact patch 

size (as � diminishes, the longitudinal semi-axis (b) does as well). This size is smaller than that 

of the tread contact patch. 

 Wheel diameter is more influential on tread wear than on flange wear. This owes to the fact that 

the radius ���
 (proportional to wheel diameter) is dominating, along with the radius ���

 

(which is in the same order of magnitude), at the tread (���
~��,� and ���

, ���
→ ∞). In contrast, 

at the flange, ���
 is not the dominating radius, being dominated by ���

 and ���
 values, 

which are in a lower order of magnitude (���
~��,� < ���

 and ���
→ ∞), and ���

 and ���
 hold 

constant independently of wheel diameter. 

 RCF is predicted for every flange – rail contact (except for isolated cases where the 355-mm 

wheel is negotiating a curve with a radius closely below 1,850 m, being this the threshold radius 

in this case) as a consequence of the high normal pressure (5 – 7 GPa) at the flange contact area 

with the rail. Although the contact patch size is smaller than that of the tread contact patch, such 

a high pressure is withstandable by the material since indentation is elevated (0.2 – 0.3 mm) and 

pressure can stack in many layers (isobaric surfaces), as in hydrostatics. 

 RCF effects can be mitigated by setting a reduced wear depth limit and in the current work it 

has been so due to the hypothesis established. In real operation, it is the economical factor the 

one prioritized, which forces to find the trade-off between crack growth and wear depth limit. 

 As a consequence of RCF and the fatigue induced during reprofiling (which leaves residual 

stresses) and also for operational safety reasons, operators’ internal regulations forbid 

eliminating more than 80 mm in diameter for a 920-mm wheel, more than 60 for a 680-mm one 

and more than 20 for a 355-mm one. 

 Last, Table A4 (Appendix C) gathers the RCF and wear results for the three different wheels 

when negotiating the tightest curve, the one with the 265-m radius. As it can be seen, even 

���   

  

� =
����

��
→ {… } → � =

868 ��

0,025 �
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though the forces and RCF are less aggressive for reduced-diameter wheels, the wear depth 

increases as the wheel diameter decreases, for reduced-diameter wheels must revolve more 

times around its diameter so as to cover the same linear distance. However, the increase in wear 

depth is not simply inversely proportional to diameter (Figure 17 shows the same non-linear 

trend). 

5. Conclusions 

Through mathematical modeling, a physical problem as the wear of reduced-diameter railway 

wheels has been tackled. The algorithm which has been constructed has allowed emphasizing the 

importance of diameter in the wear problem. 

The algorithm constructed interconnects some calculation models and methods by other 

authors, all of which exhibit good accuracy – computational effort ratios. Moreover, it allows taking 

into account the main factors impacting wheel wear, some of which are associated with the vehicle 

(wheel and wagon factors), while others are associated with the superstructure. By introducing 

boundary conditions and hypothesis complementing those of the calculation models used, the 

algorithm enables computing the wear with a parametric variation (diameter variation, among 

others). 

In the case presented, wheel wear computations have been utilized for the obtention of diameter 

– mileage curves for several scenarios: 920-mm diameter wheels used on the Y – 25 bogie, 680-mm 

diameter wheels used on the Saas-z 702 bogie and 355-mm diameter wheels used on the Graz Pauker 

702 bogie. According to the results, when analyzing the evolution of one particular wheel (920, 680 

or 355 mm), the wheel degradation worsens as the diameter diminishes, so the reprofiling span 

shortens as a consequence. This agrees with the initial assumption of the paper: “presumably, 

reduced-diameter wheels do not undergo the same degradation as the ordinary-diameter wheels due 

to its greater angular contact with the rail (number of revolutions)”. The results also prove that 

smaller wheels can travel for shorter mileages than bigger wheels as it was expected. 

Notwithstanding, the trend observed when extrapolating the results of 680-mm and 355-mm 

wheels as though they could be reprofiled as 980-mm exhibits a non-linear behavior. That is, halving 

the diameter does not imply that the lifespan will halve as well. The comprehension of wheel, 

wheelset and bogie kinematics and dynamics which this work has enabled, allows finding the root 

causes responsible for this behavior: 

1. Regarding kinematics, reduced-diameter wheels negotiate curves more smoothly than ordinary-

diameter wheels, as their uncentering is lower, so their flanges touch the rails less frequently 

(the threshold radius is lower as well). 

2. Regarding dynamics, flange – rail contact is softer. When reduced-diameter wheels’ flanges 

touch the rails, they do it less intensely (uncentering forces are not so intense). Also, the force 

exerted by the rails on the flange is lower because the bogies based on reduced-diameter wheels 

are less loaded, so the force and torque balances lead to lower rail – flange forces. 

Finally, as a continuation of this research work, a list with the following steps to be carried out 

is presented: 

 Variation of other parameters different from nominal wheel diameter so as to study their 

influence on wheel wear. 

 Reformulation of the algorithm in order to mesh the contact patch and execute calculations 

globally, including all of the elastic microslips. 

 Consideration of conformal contacts, also by means of finite elements as it is not possible to 

apply Hertz’s solution to this type of contacts. 

 Addition of rail wear, which would have an impact on wheel wear as the rail curvatures would 

change (favorably, in general) and the contact positions would differ. 

 Update of the contact parameters immediately after the wheel starts to wear out. Clearing out 

the “wear slope” at every instant would allow for the computation of the actual semi-conicity, 

contact angle and contact radii. 
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 Inclusion of the wheel and rail surface roughness, which would require a powerful software, 

able to characterize surfaces with a micrometric resolution. However, experiments could be 

performed on unworn profiles, whose roughness is higher. 

 Consideration of a different friction coefficient for the tread and the flange since it is not always 

the same. Flange lubrication could also be considered, trying to optimize the friction value 

minimizing flange wear at narrow curves. 

 Study of the effect of brake shoes on the tread. The shoes would tend to increase tread wheel, 

yet the overall effect is not very pronounced (the shoes wear out first) and the shoes are also 

helpful for wiping pollutants off of the wheels (for example, leaves). 

 Optimization of the maximum wear depth taking into account economic factors: often 

reprofiling would lower derailment and crack-failure risks; however, that would come at a high 

cost, so the trade-off point should be optimized. 

 Computation of the speed effects through finite elements, proving more accurate results by 

obtaining the elastic distortions for every different speed. 

 Computation of the exact load distribution between the tread and the flange in the event of 

simultaneous contacts. Finite elements would allow knowing the real deformations, strains, 

stresses and forces at both areas. 

 Inclusion of more superstructure factors modifying wheel (and rail) wear, such as warp, rail 

deflection, joints, irregularities and cant excess and deficiency under low static friction 

conditions. 

 Inclusion of impacts between the wheels and the superstructure, especially those of the wheels 

with the switch frogs and track devices. 

 Inclusion of other types of wheel damage shortening wheel life, such as cracks, flats and spalling. 

 Extension of the algorithm to cover any other bogies belonging to the wagon (wagons have at 

least one more bogie). 
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Appendix A 

Table A1. Latin-symbol abbreviations. 

Abbrev

iation 
Definition 

Unit 

(SI) 

Abbrev

iation 
Definition 

Unit 

(SI) 

� 
Longitudinal semi-axis of 

Hertz’s ellipse 
m ���� 

Degree of the function 

deceleration - time 
∅ 

����  
Lateral acceleration 

experienced by the vehicle 
m · s�� ����� 

Number of axles on the 

vehicle 
∅ 

� 
Relative longitudinal 

curvature 
m�� �����

�  Number of axles on the bogie ∅ 

�� Hertz’s ellipse area m� �� Lateral Hertz’s coefficient ∅ 

�� 
Ratio between the 

minimum friction 
∅ � 

Reaction force of the rail on 

the wheel on the normal 
N 
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coefficient (infinite slip 

speed) and the maximum 

(null slip) 

contact direction (normal 

force)  

� 
Lateral semi-axis of Hertz’s 

ellipse 
m ���| �� 

Reaction force of the rail on 

the wheel in the normal 

direction to the contact area 

at the (tread flange) at a 

wheel experiencing flange – 

rail contact   

N 

��| �� 

Distance from track center 

to the rolling radius of the 

(inner| outer) wheel in 

relation to the curve 

m ��| �� 

Normal force acting on the 

(outer| inner) wheel in 

relation to the curve 

N 

�� 
Distance from track center 

to rolling radius 
m ��| �� 

Normal force component in 

the radial |tangential 

direction (the tangential one 

is perpendicular to the radial 

one) 

N 

� Relative lateral curvature m�� ��| �∥ 

Normal force component 

acting on the wheel 

(perpendicularly| 

tangentially) to contact area 

N 

��  
Exponential constant at 

friction law 
s · m�� � 

Existing offset between the 

track gauge minus the flange 

– rail play and the distance 

between the nominal radius 

center of the wheelset wheels 

m 

� 
Effective size of contact 

patch 
m �� 

Horizontal distance between 

the center of the flange 

contact area center and the 

center of the wheel 

m 

� Contact tangential stiffness N · m�� ���
 

Maximum contact normal 

pressure  
Pa 

�� 
Contact tangential stiffness 

for the pure spin case 
N · m�� ��| �� Initial | final metric point m 

���|���|�
Longitudinal| lateral| 

vertical Kalker’s coefficient 
∅ ��| ��  

Theorical rolling radius of the 

(outer| inner) wheel in 

relation to the curve 

m 

���
� | ���

�  

Kalker’s coefficient 

(longitudinal |lateral) 

corrected according to non-

dimensional slip 

components 

∅ ��
∗| ��

∗ 

Rolling radius of the (outer| 

inner) wheel in relation to the 

curve including the 

displacement due to the yaw 

angle 

m 

���| ��� 
Kalker’s coefficients on 

���� plane 
∅ �� Nominal rolling radius m 

� Nominal wheel diameter m �� 
Wheel radius measured until 

the flange contact patch 
m 

� 

Total bogie wheelbase 

(measured from its leading 

to trailing wheelset) 

m ���  Real rolling radius m 
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�� 

Partial bogie wheelbase 

(measured between 2 next 

wheelsets) 

m �� Vertical Hertz’s coefficient ∅ 

� 

Equivalent Young’s 

modulus of the materials in 

contact  

Pa � 
Curve radius (measured from 

its center to the track axis) 
m 

��| �� 
Young’s modulus of the 

rail | wheel 
Pa ���

 Rail lateral radius m 

�� 
Sagitta of the inner rail in 

relation to the curve 
m ���

 Wheel lateral radius m 

� 
Magnitude of tangential 

force vector 
N ���

 Rail longitudinal radius m 

�� Braking force N ���
 Longitudinal wheel radius  m 

�� Traction force N � 
Magnitude of non-

dimensional slip vector 
∅ 

��| �� 
Longitudinal |lateral 

tangential force 
N ��| ��  

Longitudinal| lateral non-

dimensional slip 
∅ 

��
�| ��

� 

Longitudinal |lateral 

tangential force translated 

to the reference frame 

������  

N ��  

Magnitude of non-

dimensional slip corrected 

with the spin contribution  

∅ 

��,�  

Lateral tangential force 

(lateral force) corrected 

with the spin contribution 

N ��,� 

Lateral non-dimensional slip 

corrected with the spin 

contribution 

∅ 

��,� 
Increase in lateral force due 

to spin 
N ��/�� Wear index for the USFD law 

N
· m�� 

��á�,��� 

Maximum tangential force 

before rolling contact 

fatigue appears 

N ��  

Coordinate in the �� axis of 

the wheel contact area, in the 

reference frame ������  

m 

������ Fatigue index ∅ ���  

Coordinate in the �� axis of 

the flange outer part, in the 

frame ������  

m 

� Gravity acceleration m · s�� �� 

Coordinate in the ��  axis of 

the wheel contact area, in the 

frame ������  

m 

� 
Equivalent shear modulus 

of the materials in contact 
Pa ���  

Coordinate in the ��  axis of 

the flange outer part, in the 

frame ������  

m 

��| �� 
Shear module of the rail | 

wheel  
Pa ��| �� 

Longitudinal| lateral 

creepage 
∅ 

ℎ� 
Real cant of the railway 

line 
m � Vehicle speed m · s�� 

����  

Center of gravity of ���� 

height over the rolling 

plane 

 ��| ��  Final |initial vehicle speed m · s�� 

����� 

Center of gravity of ����� 

height over the rolling 

plane 

m ��| ��  
Longitudinal| lateral slip 

speed 
m · s�� 

�� 

Center of gravity of �� 

height over the rolling 

plane 

m �� Wheel width m 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 13 August 2024                   doi:10.20944/preprints202408.0896.v1

https://doi.org/10.20944/preprints202408.0896.v1


 32 

 

����� 
Total wheel wear depth 

(USFD law) 
m ��,���� Wear rate (USFD law) 

kg
· m��

· m�� 

� 
Railway line gradient / 

slope 
m � Wheelset uncentering m 

� Track gauge ‰ �∗ Total wheelset uncentering m 

� 
Wheel semi-conicity or 

inclination  
m ��í�

∗  

Available play for the bogie 

leading wheelset when it 

uncenters towards the 

outside of a curve 

m 

��| �� 

Reduction coefficient for 

the initial slope of the 

traction curve at the stick | 

slip region 

∅ ��í�,����
∗  

Available play for the bogie 

trailing wheelset when it 

uncenters towards the inside 

of a curve 

m 

�� 
Auxiliary coefficient for the 

calculation of ��,� 
∅ �̇ Wheelset uncentering rate m · s�� 

��� 
Length really rolled by a 

wheel  
N �̇∗ 

Total wheelset uncentering 

rate 
m · s�� 

�� 
Longitudinal Hertz’s 

coefficient 
m �� 

Number of wheels on the 

bogie 
∅ 

�� Spin torque N · m    

Table A2. Greek-symbol abbreviations. 

Abbrev

iation 
Definition 

Unit 

(SI) 

Abbrev

iation 
Definition 

Unit 

(SI) 

��� 

Fraction of the force 

normal to the wheel falling 

on the flange contact patch 

∅ �� 
Initial friction coefficient or 

maximum (null slip speed) 
∅ 

��� Gradient angle rad � 
Equivalent Poisson’s ratio of 

the materials in contact 
∅ 

�� Wheel contact angle rad ��| �� 
Poisson’s ratio of the rail | 

wheel 
∅ 

�� 

Maximum indentation 

between the two bodies in 

contact 

m � 
Gauge widening (at tight 

curves) 
m 

�� 
Auxiliary coefficient for the 

obtention of coefficient �� 
∅ � Density of the wheel material 

kg
· m�� 

� 
Tangential stress gradient 

at the stick region 
∅ � 

Longitudinal displacement 

angle of the contact patch 
rad 

�� 

Tangential stress gradient 

at the stick region for the 

pure spin case 

∅ ��á� 
Maximum tangential stress 

transmitted  
Pa 

��| ��  
Load (horizontal| vertical) 

on the flange contact patch 
N ��í� 

Tangential yield stress of the 

wheel material 
Pa 

� 
Play between the flange 

and the rail  
m Φ Tilt angle rad 

� Hertz’s angle rad Φ̇ Variation angle of tilt angle  
rad
· s�� 

�� Real cant angle rad � Spin (rotational creepage) 
rad
· m�� 

����  Axle load kg � Yaw angle rad 

����� Vehicle tare kg �̇ Variation rate of yaw angle 
rad
· s�� 
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�� 
Payload transported by the 

vehicle 
kg �� 

Angular slip speed when 

braking per unit length 

rad
· s�� ·
· m�� 

� 

Dynamic friction 

coefficient (or adhesion 

coefficient) 

∅    

Appendix B 

Table A3. Input values common to the three scenarios (920, 680 and 355-mm wheels). 

Variable Value Variable Value Variable Value 

�� (∅) 0.400 
� (������) 

(∅) 
1.235 – 2.747 �� (�����) (◦) 1.432 

�� (s/m) 0.600 �� (∅) 1 �� (������) (◦) 1.432 

� (m) 1.800 �� (∅) 0.400 �� (������) (◦) 51 – 70  

�� (Pa) 2.100 × 10�� 
���

 (�����) 

(m)  
300 × 10�� � (m) 0.007 

�� (Pa) 2.100 × 10�� 
���

(������) 

(m)  
80 × 10�� ����� (kg) 20,000 

� (m·s-2) 9.810 
���

(������) 

(m) 
13 × 10�� � (∅) 0,400 

�� (Pa) 81.712 × 10� 
���

 (�����) 

(m)  
5 × 10� �� (∅) 0.550 

�� (Pa) 81.712 × 10� 
���

 (������) 

(m)  
5 × 10� �� (∅) 0.285 

����� (m) 0.512 
���

 (������) 

(m)  

(13 �� 20)
· 10�� 

�� (∅) 0.285 

����  (m) 1.573 ����  (∅) 0 � (kg·m-3) 7,850 

� (m) 1.668 � (m) 0.075 ��í� (Pa) 3.120 × 10�  

� (�����) (∅) 0.025 �� (m)  0.140   

� (������) (∅) 0.025 ��� (∅) 0.750   

Notes: (1) Tread’ is the tread of the wheel opposed to the wheel experiencing flange – rail contact. (2) Some 

values are expressed as ranges since flange – rail contact geometry is a little different at every contact. (3) 5 · 10� 

means that the value tends to infinity (∞ is not accepted on EES). 

Appendix C 

Table A4. Extent of RCF and wear on the three different wheels when flange – rail contact occurs. 

Variable 920-mm wheel 680-mm wheel 355-mm wheel 

� (m) 0.920 0.680 0.355 

� (m) 265 265 265 

����� (∅) 0.433 0.426 0.409 

���
 (��) 6.401×109 6.599×109 6.584×109 

�� (N) 468.088 367.463 367.887 

� (mm) 10.030 8.249 6.276 

� (mm) 0.636 0.611 0.881 

�� (mm�)   20.031 15.834 17.360 

��/�� (N/mm�)  23.368 23.207 21.192 

��,���� �
��

� · ���
� 55 55 55 

����� (��) 2.295 2.427 3.538 

�� (N) 1274 1034 1009 

�� (N) 41,159 32,931 34,760 
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�� (N·m) 197.200 112.100 55.280 

�� (∅) -3.013×10-3 -2.917×10-3 -2.581×10-3 

�� (∅) -5.760×10-3 -5.760×10-3 -5.760×10-3 

� �
���

�
� 1.152 -1.559 -2.986 

� (N) 85,465 69,622 76,224 

Note: Values for the flange. 
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