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Abstract: This research proposes a near-infrared hyperspectral imaging/two-branch convolutional neural
network (NIR-HSI/2B-CNN) algorithmic scheme to detect mango anthracnose of the species Colletotrichum
asianum at the early stages of disease development. In the algorithmic model development, root mean square
propagation was used as the solver to train the neural network, given 150 epochs. In addition, spectral raw
data was preprocessed to transform it into an understandable and efficient format. The optimal classification
model was the 2B-CNN model with 1s-derivative preprocessing, achieving an accuracy of 0.94 for the
calibration set and 0.71 for the prediction set. The proposed NIR-HSI/2B-CNN scheme could detect anthracnose
mangoes since the the first day of inoculation of the spore suspension (i.e., day 0) through to day 3, achieving
a moderate classification accuracy. Meanwhile, the accuracy of conventional convolutional neural networks
(CNN) were within a range of 0.66-0.67 for the calibration set and 0.55-0.57 for the prediction set. The results
indicated that incorporating spatial features in the 2B-CNN modeling enhanced the prediction performance of
the algorithm. The proposed NIR-HSI/2B-CNN algorithmic scheme needs refinements to be able to reliably
sort mango fruits into those suitable for premium fresh consumption and export without anthracnose and those
for domestic consumption or processing. The novelty of this research lies in the use of NIR-HSI and 2B-CNN
algorithm to detect plant pathogens at the early stages of disease development. In addition, the new method of
natural simulation to deposit the fungal spores onto the mango surface by spraying spore suspension onto
the mango surface where the conidia penetrated unaided into the underneath of the mango peel is
proposed.

Keywords: mango; anthracnose; Colletotrichum asianum; near infrared; hyperspectral image;
Convolutional Neural Network; CNN; Two Branch Convolutional Neural Network; 2B-CNN

1. Introduction
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Mango (Mangifera indica L.), hailed as the king of fruits [1-3], belongs to the Anacardiaceae
family [4-6]. Originating in the Indian subcontinent around 4000 years ago, mango is regarded
as an ancient tropical fruit, with hundreds of cultivars [7,8]. The fruit is cultivated in more than
90 countries in tropical and subtropical regions [9-11]. Mangoes rank fifth in global fruit
production [11], with the annual global production of 57 million tons in 2021 [12]. Mango fruit
is rich in nutrients, such as polyphenols, vitamins, and phytochemicals [13,14]. The health
benefits of mango include antioxidants, anti-inflammatory properties, and anti-cancer potential.

Thailand is one of the world’s leading producers and exporters of mangoes, particularly Nam
Dokmai mangoes which are renowned for their sweetness, fragrant taste and smooth texture. The
major overseas markets of Thai mango exports include China, Japan, European countries, the Middle
East, and the United States. However, fresh mango exportation faces several challenges, including
anthracnose which is a fungal disease affecting mangoes worldwide [15-17]. Ripe mangoes,
including cv Nam Dokmai, are particularly vulnerable to infestation, affecting their quality and
marketability.

Colletotrichum is a genus of plant pathogens that cause anthracnose diseases affecting mangoes
and many other crops [16-20]. Colletotrichum asianum is one of the species of this genus known to
cause anthracnose in mangoes [15-17,19,21]. Mango fruits are susceptible to infection at any point
during their development. Infections on young fruits often result in mummification, while mature
unripe fruits may show no visible symptoms [17,18,22]. Upon ripening, infected fruits typically
exhibit small, water-soaked lesions on the surface, often turning brown or black, and become sunken
as the disease advances [17,18,20]. After harvest and during transport of unripe mangoes, the
anthracnose symptoms are usually not visible on the mango skin, but when the mangoes ripen, black
spots or flecks will appear [23], which is undesirable to customers. As a result, early detection of
anthracnose in mango fruit before symptoms appear is an effective method for controlling mango
quality.

Mango anthracnose is caused by several species of fungus in the genus Colletotrichum [24]. In
Thailand, Colletotrichum gloeosporioides and Colletotrichum asianum are the two most common species
found in diseased mangos, particularly in the cultivar Nam Dokmai [17]. Both fungal species are
nearly identical in terms of morphological characteristics such as colony color, development rate, and
the size and form of appressoria and conidia. The aggressiveness exhibited by C. asianum and C.
gloeosporioides on mango fruits was also similar, with a slight difference in color lesions where C.
asianum produced dark brown spots and C. gloeosporioides produced lighter brown spots [25]. The
disease of anthracnose in mango is caused by a series of sequential processes, including conidial
germination, melanized appressoria formation, penetration of mango epidermis, and colonization of
mango tissue when the spots start to appear. Specifically, conidia deposited on the surface of ripe
mangos germinated after 12 hours, appressoria developed during 14-96 hours, and anthracnose
symptoms started appearing at 5 days [25,26].

Visual inspection is commonly used to detect plant disease infections, including
anthracnose diseases. However, inconsistencies often arise due to factors such as varying work
conditions, subjective judgment, and worker fatigue [27]. Another approach involves identifying
morphological atypical diseases (MAD) by assessing morphological features such as mycelial
growth, conidia size, colony color, and texture. However, these features often fail to distinguish
between different Colletotrichum species [28]. Meanwhile, image analysis techniques for
identifying anthracnose on mangoes are only effective when lesions are visible [29]. As a result,
a gap exists for a fast, non-destructive, and chemical-free method for early fungal infection
detection, especially during the quiescent stage of development. Early detection enables the
separation of infected mango, ensuring that mango export is of premium quality.

In [29], near-infrared hyperspectral imaging (NIR-HSI) in the spectral range of VIS-NIR
(400-1000 nm) and machine learning (ML) algorithms were used to capture distinct spectral
fingerprints of metabolites produced by C. gloeosporioides in mango fruits and tissue decomposition.
The ML algorithms (i.e., principal component analysis and support vector machine) could detect
anthracnose at early stages and accurately classify the extent of infection [29]. In [30], experiments
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were carried out using five ML algorithms and NIR-HSI in the spectral range of VIS-NIR (480-950
nm) for early detection of mango anthracnose, and results were compared. The five ML algorithms
included random forest (RF), quadratic discriminant analysis (QDA), XGBoost (XGB), simple
perceptron (SLP), and multi-layer perceptron (MLP). The results showed that the MLP algorithm
with full spectra achieved very high accuracy (0.961), along with other robust performance metrics
including recall, specificity, F1 score, and Matthews correlation coefficient (MCC) [30]. In [31],
further experiments were conducted using VIS-NIR-HSI (480-950 nm) and discriminant
analysis ML algorithms for a comprehensive detection of anthracnose in mango fruits. The
results showed that the QDA-powered classification model achieved the highest accuracy
of 0.909 (i.e., QDA-full spectrum model with 54 variables), followed by the QDA-Correlation
model with 27 variables (0.876) and the QDA-Tukey model with 20 variables (0.798) [31].

In theory, HSI preserves spatial information and can identify NIR absorptions at all locations in
an image. Previous studies relied primarily on an average of spectra from all pixels in the image to
create a prediction model, giving rise to noise and the loss of NIR absorption [20,30,31]. Unlike the
conventional convolutional neural network (CNN), two branch convolutional neural network (2B-
CNN) is a CNN model that utilizes both spectral data (averaged over all pixels) and spatial data
(spectra in each pixel). Besides, anthracnose fungi naturally reside on certain locations of the mango
peel, rather than covering the entire mango fruit. This fact renders 2B-CNN operationally ideal for
classification of infected mango fruits. In addition, since 2B-CNN incorporates spatial data in the
modeling process, the algorithm can be deployed to detect anthracnose on mango peel at the early
stages of disease development.

Specifically, this research proposes a near-infrared hyperspectral imaging/two-branch
convolutional neural network (NIR-HSI/2B-CNN) scheme to detect mango anthracnose of the species
C. asianum at the early stages of disease development (i.e., before visible to the naked eye). In the
experiment, disinfected mango fruits were sprayed with either C. asianum fungal spore suspension
(i.e., to simulate fungal infections) or with sterile distilled water (control) prior to acquisition of NIR-
HSI images. Furthermore, the classification performance of the proposed 2B-CNN model was
compared with the CNN model.

2. Materials and Methods

2.1. Experimental Mango Fruits

The experimental mangoes were cv. Nam Dokmai sub cv. Sithong. An initial sample of 210
mango fruits were collected from six mango plantations in Thailand’s eastern region (consisting of
three orchards) and Central Plains (another three orchards), where Nam Dokmai mangoes are widely
cultivated for export. In the sample collection, 30 mangoes were obtained from each orchard, with 1-
5 mango fruits per mango tree and 10 mango trees per plantation. (Note: The sample collection was
carried out twice for one orchard.) Essentially, there were seven batches of mango samples and each
batch consisted of 30 mango fruits. All six plantations conform to the Thai Agricultural Standard for
Mango (TAS 5-2015) [32]. The mangoes were collected 90 days after flower blooming, which is the
commercial harvest period for mango fruits.

The mango fruits were disinfected by soaking in a bath at 55 °C for 5 min and in sterile cold
water for another 5 min before drying in the laminar flow. In this study, slightly over half of the
experimental mango fruits were excluded from the initial samples (210 mangoes) at the end of 11
days (or day 10) for the following reasons: (i) the mangoes developed stem rot; (ii) other plant
diseases, rather than anthracnose, emerged; and (iii) anthracnose failed to develop following the
deposition of fungal spore suspension. As a result, there were 99 mango fruits remaining for the
algorithmic modeling.

2.2. Fungal Spore Suspension

Colletotrichum asianum extracted from anthracnose-infected mangoes was obtained from the
Culture Collection Center of the Department of Microbiology, Faculty of Science, Chulalongkorn
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University, Thailand. Spore suspension (1x105 conidia/mL) was prepared from C. asianum cultured
on potato dextrose agar (PDA) plates at 25 °C for two weeks.

2.3. Fungal Deposition on Mango Fruits

To simulate the deposition of fungal spores onto healthy mango fruits, a sterile airbrush was
used to spray the spore suspension on the mango fruits. Mango fruits in each of the seven batches of
mango samples were first divided into five groupings (Groupings I - V) of six each. (Note: Each batch
consisted of 30 mango fruits.) In each grouping, four mango fruits were sprayed with fungal spore
suspension, while the other two mango fruits were sprayed with sterile distilled water using a sterile
airbrush and served as control. Specifically, the mango fruits in Grouping I were sprayed once with
fungal spore suspension or sterile water, twice for Grouping II, three, four, and five times for
Groupings III, IV, and V, respectively.

The mango fruits were then individually placed in a transparent plastic container with lid to
maintain high humidity and retained at room temperature for 11 days (i.e., days 0 — 10). The storage
condition facilitated the natural ripening process and enabled the observation of disease
development. In this study, the acquisition of NIR hyperspectral images of the mangoes was carried
out from day 0 to day 10 (a total of 11 days) at the Department of Agricultural Engineering, Faculty
of Engineering Kampangsang, Kasetsart University, Kampangsan campus. However, in this study,
the NIR-HSI images of mango fruits taken at day 0 to day 3 (i.e., the first four days) of the final
sampling of mango fruits (i.e.,, 99 mangoes) were used in the algorithmic modeling. The reason was
that after day 3 the anthracnose symptoms were visible to the naked eye, thereby rendering the
algorithmic model no longer necessary.

To quantify the fungal spores in Groupings I - V, the fungal spore suspension was sprayed onto
PDA plates one, two, three, four, and five times, respectively, with three replications for each
grouping. The PDA plates were then incubated at room temperature for 3 days before counting
fungal colonies.

2.4. NIR Hyperspectral Image Acquisition

Figure 1 illustrates the schematic of the pushbroom near-infrared hyperspectral imaging (NIR-
HSI) system with linear array of 320 CCD detectors (Xeva 992, Xenics Infrared Solutions, Belgium)
and an imaging spectrograph (Imspector N17E Specim, Spectral Imaging Ltd., Oulu, Finland). The
pushbroom system was used to acquire NIR-HSI images of the mangoes. The NIR-HSI system
consisted of two 500-Watt tungsten-halogen light sources (Lowel Light Inc., New York, United States
of America) positioned at an angle of 45° for uniform lighting in the field of view. The system was
controlled by a desktop computer installed with Specim LUMO Software Suite (Spectral Imaging
Ltd., Ouly, Finland).

In the NIR-HSI image acquisition, a transparent plastic container containing a mango sample
(with the lid removed) was placed on the translation stage and scanned at a stage speed of 10 ms.
The white and dark references for background compensation were concurrently acquired with NIR-
HSI images for radiometric correction. A Spectralon® reflectance material with a relative reflectance
of 99% was used to capture the white reference, and the dark reference was automatically acquired
by the NIR-HSI system by closing the camera shutter. Each NIR-HSI image in reflectance mode
consisted of 256 spectral bands (12-bit color depth) between 900 and 1600 nm with a spectral
resolution of 3.2 nm. The image of each band was 320 pixels in the x-direction (width) and n pixels
(depending upon the length of the box) in the y-direction (length) [33]. The distance between the
camera lens and the top surface of mango was approximately 30 cm, with a spatial resolution of
30 um per pixel and the optimized integration time of 9 ms. After image acquisition, the raw
hypercube was normalized using Eq. (1) to eliminate the instant noise due to the scanning
background and the electronic drift of the detector.

— Rs- Ry
" Ry-Rg 1)
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where R is the relative reflectance image, Rs is the raw reflectance image, Ra is the dark reference
image, and Rw is the white reference image.

SPECIM

Spectrograph
Computer Light source

-

Camera

Spectralon

i —

=

Translation stage

Figure 1. The experimental setup of the pushbroom near-infrared hyperspectral imaging (NIR-HSI)
system.

2.5. Extraction of the Region of Interest

Hyperspectral imaging collects NIR absorption information from a sample in the form of images.
As a result, preprocessing of NIR spectral data is required to remove physical phenomena in the
spectra and to improve the performance of an algorithmic model. Specifically, a subset of an image
must be selected to identify the region of interest (Rol) and exclude confounding regions. Figure 2(a)
illustrates an NIR-HSI image prior to Rol extraction, consisting of a mango fruit, background,
transparent plastic container, shadows, and moist cotton ball. This study followed the method in [34]
with minor modifications to isolate the area of interest (i.e., mango fruit) from other regions
(background, plastic container, shadows, and cotton ball). The mango fruits were identified by RGB
color and wavelengths at 970 nm (related to H2O [35]) and 1440 nm (related to sucrose [35]). Figure
2(b) shows the Rol-extracted image of mango fruit.

(@) (b)

Figure 2. (a) NIR-HSI image and (b) Rol-extracted image of mango fruit.
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2.6. 2B-CNN Classification Modeling

A two-branch convolutional neural network (2B-CNN) is an extension of the convolutional
neural network (CNN). Unlike CNN which utilizes either spectral or spatial information, 2B-CNN
incorporates both spectral and spatial information in the classification modeling. In this research, the
spectral branch of 2B-CNN was obtained by averaging the spectra of all pixels. In addition, to
transform raw data into an understandable and efficient format, spectral preprocessing was carried
out using different pretreatment techniques. The spectral preprocessing techniques being studied
included baseline correction, mean centering, mean normalization, max-min normalization,
Savitzky-Golay smoothing, standard normal variate (SNV), multiplicative scatter correction (MSC),
first derivative (1D), and second derivative (2D). Meanwhile, the spatial branch was reduced to 25%
of the original size, and the number of wavelengths was reduced from 256 wavelengths (900 —
1600 nm) to 10 principal components (PC) using principal component analysis (PCA). The reduction
was necessary due to the large volume of data, thereby facilitating the model development.

In the algorithmic model development, the convolutional layers for 2B-CNN modeling followed
Liu, et al. [36], with root mean square propagation (RMSProp) as the solver to train the neural
network, given an epoch number of 150 and an initial learning rate of 0.001. Figure 3 shows the
schematic diagram of the experimental design of this research. In the 2B-CNN modeling, the dataset
(i.e., spectral and spatial data) were divided into the calibration (or training) dataset and prediction
(or testing) dataset at a ratio of 80% to 20% using the Kennard-Stone method. There were a total of
396 datasets (i.e., 99 mango fruits x 4 days (day 0 — day 3)), consisting of 316 and 80 datasets for the
calibration and prediction models, respectively. The training (calibration) dataset was used to
develop the 2B-CNN classification model, and the testing (prediction) dataset was used to validate
the classification model. Table 1 tabulates the convolutional layers of the 2B-CNN modeling.

Sample Mango from orchard
¥ v
Control-mango Anthracnose-mango
| |
Data acquisition l l

NIR hyperspectralimage acquisition
(900-160011m)
|

.

Removebackground by RGB
'

Remove plastic box and shadow by wavelength at 970 nm

ROI

Remove cottonby wavelength at 1440 nm

Fill image regions and holes

Spectral-Spatial data
v ¥
Spectral: average spectral from Spatial: reduce size to

all pixel and pretreat spectra 25% and use 10-PCA
| \

Modeling l i
Spectral-Spatial data Class mango
v v
Training set (80%) Test set (20%)
2B-CNN
|
Performance i
Accuracy

F1-score
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Figure 3. The experimental design diagram.

Table 1. The convolutional layers of 2B-CNN modeling [36].

2B-CNN (Full Spectra + Spatial)

Convl (ReLU) 16x5
Avg-poolingl 3
Spectral Branch Conv2 (ReLU) 16x5
(1D) Avg-pooling?2 3
Conv3 (ReLU) 16x5
Avg-pooling3 3
Conv4 (ReLU) 16x3x3
Avg-pooling4 3x3
Spatial Branch Conv5 (ReLLU) 16x3x3
(2D) Avg-pooling5 3x3
Convé6 (ReLU) 16x3x3
Avg-pooling6 3x3
. Dropout 0.7
Fusion SoftMax -

2.7. Model Performance Metrics

In this study, the spectral raw data was preprocessed to transform it into an understandable and
efficient format using various spectral pretreatment techniques, e.g., baseline correction, mean
centering, and mean normalization. As a result, the performance of the 2B-CNN models with the
various pretreatment techniques were compared, and the model with the best classification ability in
terms of accuracy and F1 score was selected as the optimal classification model.

Accuracy is the proportion of correctly classified cases out of the total number of cases. The F1
score is the harmonic mean of precision and recall, where precision is the proportion of true positive
predictions out of all positive predictions, and recall or sensitivity is the proportion of true positive
predictions out of all actual positive cases. Figure 4 shows the confusion matrix and the performance
metrics to evaluate the performance of the algorithmic models [37].

Actual val
cualvaiae Performance Formula
Positives Negative
TP+TN
g Accuracy TP+IN+FP+EN
.Z | True Positives | False Positives
y B (TP) (FP) N TP
b= R Precision
> TP+FP
o
[
3 TP
?,_1 o Recall
- g TP+FN
‘£ | False Negative | True Negative
& (EN) (TN)
Z Precision X Recall
F1 score X ——————
Precision + Recall
Figure 4. The confusion matrix and the performance metrics [37].
3. Results

The results indicated that the optimal classification model of mango fruits sprayed with
anthracnose fungal suspension (i.e., infected mango) and with sterile water (non-infected mango or
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control) was the NIR-HSI/2B-CNN algorithmic scheme with 1¢t derivative preprocessing, given 150
epochs. The classification accuracy of the optimal algorithmic scheme were 0.94 and 0.71 for the
calibration and prediction models, respectively. Figure 5 shows the confusion matrix of the optimal
2B-CNN model with 1st derivative pretreatment.

Table 2 tabulates the classification performance of CNN and 2B-CNN algorithmic models with
various spectral preprocessing techniques. The classification accuracy of the optimal 2B-CNN model
with 1s-derivative pretreatment were 0.94 and 0.71 for the calibration and prediction models,
respectively. The lower accuracy of the prediction set implied that more samples were required to
improve the accuracy of the prediction set. In this current research, there were a total of 396 datasets,
consisting of 316 and 80 datasets for the calibration and prediction models.

AN 21% AN 7
gor 10.9% gor 16 16
] 3]
: — :
£ [=
34% 28.1% 30.4%
AN cT AN cT
Predicted Class Predicted Class
(a) (b)

Figure 5. The confusion matrix of the optimal NIR-HSI/2B-CNN algorithmic scheme for classifying
anthracnose-infected (AN) and non-infected (CT) mangoes: (a) calibration, (b) prediction.

In the calibration model, the precision, recall, and F1 score were 0.93, 0.98 and 0.95, respectively,
for infected mangoes and 0.97, 0.89, and 0.93 for non-infected mangoes. Specifically, the precision
indicated the extent to which the model can correctly classify true positive (TP) samples from the
samples which were correctly (i.e,, TP) and incorrectly classified (false positive or FP) as positive
samples (i.e., TP+FP). The recall indicated the extent to which the model can correctly classify TP
samples from all possible TP samples (i.e., TP+FN).

The results also showed that in the calibration set the ability of the 2B-CNN model to correctly
classify samples as non-infected mangoes (not infected mangoes; precision = 0.93) was lower than its
ability to correctly classify samples as infected mangoes (not non-infected mangoes; precision = 0.97).

The recall value indicated that the model could recognize non-infected mangoes (recall = 0.89)
less than infected mangoes (recall = 0.98). The F1 score is the harmonic average of precision and recall,
and it indicated the extent to which the model can correctly classify the TP samples. The F1 score
ranges from 0 to 1, with higher values indicating better performance. In the calibration set, the F1
score of the model to correctly identify infected and non-infected mangoes were 0.95 and 0.93,
respectively, suggesting that the calibration model was more capable of identifying infected mangoes
than non-infected mangoes.

Meanwhile, in the prediction set, despite lower classification performance, the pattens were
closely similar to the calibration model in that infected mangoes were identified more accurately than
non-infected mangoes. In the prediction set, the recall for infected and non-infected mangoes were
0.85 and 0.50, respectively, and the corresponding F1 scores were 0.78 and 0.58. The precision values
were almost the same (0.72 and 0.70 for infected and non-infected mangoes, respectively).

Furthermore, in the calibration model, the precision, recall, and F1 score for infected mangoes
(0.93, 0.98, and 0.95, respectively) were slightly higher than those for non-infected mangoes (0.97,
0.89, and 0.93), indicating that the quantities of infected and non-infected mangoes in the calibration
set were similar. However, in the prediction model, the recall and F1 score for infected mangoes (0.85
and 0.78) were higher than those for non-infected mangoes (0.50 and 0.58) because the quantity of
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non-infected mangoes in the prediction set was much lower than infected mangoes, especially when
compared to the calibration set. This led to overfitting which resulted in comparatively lower recall
and F1 score.

The precision of the prediction model for infected mangoes (0.72) and non-infected mangoes
(0.70) were slightly different, while the corresponding precision values of the calibration model were
0.93 and 0.97. However, in the prediction set, the recall and F1 score for infected mangoes (0.85 and
0.78) were considerably different from those for non-infected mangoes (0.50 and 0.58). This could be
attributed to the fact that the precision was based on both TP and FP samples, which belonged to
different groups, while the recall was based on only TP samples. The F1 score was based on both
precision and recall, which were affected by both TP and FP samples but the effect of recall was more
pronounced than the precision due to the TP effect. Since only TP samples were used in the
calculation and given the substantially smaller quantity of non-infected mangoes, the TP effect on the
recall and F1 score for non-infected mangoes of the prediction set was more evident than for infected
mangoes.

Amirruddin, et al. [40] and Jensen [41] classified accuracy threshold into three categories: poor
(less than 40.00%), moderate (40.00%-80.00%), and robust (more than 80.00%). Given the accuracy of
0.71, the proposed NIR-HSI/2B-CNN algorithmic scheme achieved moderate classification accuracy,
and it can detect mango anthracnose at the early stages of disease development (i.e., day 0 — day 3)
when the disease symptoms are not visible to the naked eye.

To improve the accuracy and F1 score, the dataset size should be increased for both the training
(calibration) and testing (prediction) datasets. The current dataset size of 396 datasets was too small
to effectively train and validate the algorithmic model. In addition, to reduce the model bias, the
quantities of mango fruits infected by spraying with fungal spore suspension and with sterile water
(non-infected) should be similar. The model bias was evident in a large disparity between the F1 score
for infected (0.78) and non-infected mangoes (0.58). Furthermore, refinements should be made to the
algorithms to improve the classification performance.

Meanwhile, given 150 epochs, the accuracy of the CNN model remained unchanged,
independent of the spectral pretreatment methods. Given 1000 epochs, the CNN model with baseline
correction (BL) spectral pretreatment achieved the highest classification accuracy of 0.66 and 0.75 for
the calibration and prediction models, respectively. Given 10000 epochs, the CNN model with BL
pretreatment achieved the highest accuracy of 0.67 and 0.78 for the calibration and prediction models.
The results indicated that a substantial increase in epochs (i.e., from 1000 to 10000 epochs) had a
negligible effect on the classification accuracy. However, a very large number of epochs could lead
to data overfitting in prediction.

In comparison, the accuracy of the CNN model with BL pretreatment (0.66 and 0.75 for the
calibration and prediction models) were lower than the proposed 2B-CNN model with 1st derivative
preprocessing (0.94 and 0.71). The spectral pretreatment (i.e., 1st derivative for 2B-CNN and baseline
correction for CNN) was carried out to reduce the baseline shift. Specifically, the spectra of NIR-HSI
images of mango fruits suffered predominantly from baseline shift rather than radiation scattering
in the mango fruit.

Table 2. Comparison between performance of 2B-CNN and CNN for classification of mango fruits
sprayed with anthracnose (infected) and with water (non-infected).

model epoc  Pretrea Calibration Prediction
h t AC Infected Non-infected AC Infected Non-infected
ment PC RC F1 PC RC F1 PC RC F1 PC RC F1
2B- 150 raw 09 08 09 09 09 08 08 06 07 07 07 05 05 05
CNN 0 9 4 2 1 4 7 8 3 3 3 9 9 9
BL 08 08 09 09 09 08 08 06 07 07 07 05 05 05

9 8 5 1 1 0 5 6 1 3 2 8 6 7
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MC 09 09 09 09 09 09 09 06 07 07 07 05 05 05

MN 08 08 09 09 09 07 08 07 07 07 07 06 05 06

MMN 09 09 09 09 09 09 09 06 07 06 06 05 05 05

SMT 05 09 03 04 04 09 06 04 06 02 03 04 07 05

SNV 09 09 09 09 09 09 09 06 07 06 06 05 05 05

MsSC 09 09 09 09 09 09 09 05 06 06 06 04 05 04

1D 09 09 09 09 09 08 09 07 07 08 07 07 05 05

2D 05 09 01 03 04 09 06 04 08 01 03 04 09 05

CNN 150 raw 05 05 10 07 - 00 - 06 06 10 07 - 00 -
9 9 0 5 0 0 0 0 5 0

BL 05 05 10 07 - 00 - 06 06 10 07 - 00 -
9 9 0 5 0 0 0 0 5 0

MC 05 05 10 07 - 00 - 06 06 10 07 - 00 -
9 9 0 5 0 0 0 0 5 0

MN 05 05 10 07 - 00 - 06 06 10 07 - 00 -
9 9 0 5 0 0 0 0 5 0

MMN 05 05 10 07 - 00 - 06 06 10 07 - 00 -
9 9 0 5 0 0 0 0 5 0

SMT 05 05 10 07 - 00 - 06 06 10 07 - 00 -
9 9 0 5 0 0 0 0 5 0

SNV 05 05 10 07 - 00 - 06 06 10 07 - 00 -
9 9 0 5 0 0 0 0 5 0

MST 05 05 10 07 - 00 - 06 06 10 07 - 00 -
9 9 0 5 0 0 0 0 5 0

1D 05 05 10 07 - 00 - 06 06 10 07 - 00 -
9 9 0 5 0 0 0 0 5 0

2D 05 05 10 07 - 00 - 06 06 10 07 - 00 -
9 9 0 5 0 0 0 0 5 0

1000 raw 06 06 07 06 05 04 05 07 07 08 08 07 06 07

BL 06 07 07 07 05 05 05 07 07 09 08 07 05 06

MC 05 05 10 07 - 00 - 06 06 10 07 - 00 -
9 9 0 5 0 0 0 0 5 0
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MN 05 05 10 07 - 00 - 06 06 10 07 - 00 -
9 9 0 5 0 0 0 0 5 0
MMN 05 05 10 07 - 00 - 06 06 10 07 - 00 -
9 9 0 5 0 0 0 0 5 0

SMT 06 06 07 06 05 04 04 07 07 09 08 07 05 06
0 5 2 8 1 4 7 6 5 0 2 8 6 5

SNV 05 05 10 07 - 00 - 06 06 10 07 - 00 -
9 9 0 5 0 0 0 0 5 0
MSC 05 05 10 07 - 00 - 06 06 10 07 - 00 -
9 9 0 5 0 0 0 0 5 0
1D 05 05 10 07 - 00 - 06 06 10 07 - 00 -
9 9 0 5 0 0 0 0 5 0
2D 05 05 10 07 - 00 - 06 06 10 07 - 00 -
9 9 0 5 0 0 0 0 5 0
10000 raw 06 07 08 07 06 05 05 06 06 08 07 05 04 04

9 1 0 5 4 3 8 5 7 1 4 9 1 8
BL 06 07 07 07 06 05 05 07 07 09 08 08 05 0.6
7 0 9 4 2 0 5 8 6 2 3 2 6 7

MC 05 05 10 07 - 00 - 06 06 10 07 - 00 -
9 9 0 5 0 0 0 0 5 0

MN 05 05 10 07 - 00 - 06 06 10 07 - 00 -
9 9 0 5 0 0 0 0 5 0

MMN 05 05 10 07 - 00 - 06 06 10 07 - 00 -
9 9 0 5 0 0 0 0 5 0

SMT 06 06 08 07 06 04 05 06 07 07 07 06 05 05
8 9 3 5 4 5 3 9 3 7 5 2 6 9

SNV 05 05 10 07 - 00 - 06 06 10 07 - 00 -
9 9 0 5 0 0 0 0 5 0

MSC 05 05 10 07 - 00 - 06 06 10 07 - 00 -
9 9 0 5 0 0 0 0 5 0

1D 05 05 10 07 - 00 - 06 06 10 07 - 00 -
9 9 0 5 0 0 0 0 5 0

2D 05 05 10 07 - 00 - 06 06 10 07 - 00 -
9 9 0 5 0 0 0 0 5 0

AC = accuracy, PC = precision, RC = recall, F1 = Flscore, BL = baseline correction, MC = mean centering, MN = mean
normalization, MMN = max-min normalization, SMT = Savitzky-Golay smoothing, SNV = standard normal variate, MSC =

multiplicative scatter correction, 1D = first derivative, and 2D = second derivative.

4. Discussion

The 2B-CNN algorithm is superior to several machine learning or deep learning algorithms
because 2B-CNN entails two branches, with one branch for spectral analysis and the other for spatial
analysis. Such characteristics enable effective feature extraction and enhanced performance in tasks
such as HSI classification [36]. In [36], a 2B-CNN algorithmic model was proposed to classify herbal
medicine (210 samples of Pinellia ternate and 203 samples of Arisaema consanguineum Schott),
strawberry (152 bruised and 156 unbruised samples) and green coffee beans (220 Robusta samples
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and 220 Arabica samples), achieving an average classification accuracy of 96.72%. In comparison, the
accuracy of support vector machine (SVM), 1D-CNN, and gray-level co-occurrence matrix algorithms
were 92.60, 92.58, and 93.83%, respectively.

The high prediction ability of 2B-CNN is useful for the early detection of plant diseases, allowing
for timely and effective corrective action. Of particular concern is anthracnose which is a fungal
disease that causes dark lesions on vegetables and fruits, such as such as olive [38], mango [17,29],
and strawberry [39]. The fungal disease affects produce production before and after harvest, resulting
in crop damage and economic losses.

In [38], 1D-CNN with ResNet101 architecture was used with VIS-NIR-HSI (450-1050 nm) to
detect anthracnose in olive fruits at the early stages of disease development, where the experimental
olives were inoculated either with the fungus or water (i.e., control). The result showed that the
algorithmic model was effective in detecting infected olives, achieving the sensitivity (or recall) of
85% on day 3 and 100% afterward [38].

In [30], experiments were carried out using five ML algorithms and NIR-HSI in the spectral
range of VIS-NIR (480-950 nm) for early detection of mango anthracnose and results compared. The
five ML algorithms included random forest (RF), quadratic discriminant analysis (QDA), XGBoost
(XGB), simple perceptron (SLP), and multi-layer perceptron (MLP). The results showed that the MLP
algorithm with full spectra achieved very high accuracy (0.961), along with other robust performance
metrics including recall, specificity, F1 score, and Matthews correlation coefficient (MCC) [30]. In
[31], further experiments were conducted using VIS-NIR-HSI (480-950 nm) and discriminant
analysis ML algorithms for a comprehensive detection of anthracnose in mango fruits. The
results showed that the QDA-powered classification model achieved the highest accuracy
of 0.909 (i.e., QDA-full spectrum model with 54 variables), followed by the QDA-Correlation
model with 27 variables (0.876) and the QDA-Tukey model with 20 variables (0.798) [31].
However, the aforementioned studies were conducted by experimentally puncturing the surface of
the fruits to inoculate fungus, which differed from conidial germination of anthracnose fungus in
nature.

Specifically, this research is the first to integrate 2B-CNN algorithm with NIR-HSI to detect
anthracnose disease symptoms on the surface of mangoes at the early stages of disease
development (i.e., before the symptoms are visible to the naked eye). In the experiment,
C. asianum spore suspension was sprayed onto the mango surface to simulate the deposition of
fungal spores in nature where the conidia penetrated unaided into the underneath of the mango
peel. The proposed 2B-CNN algorithmic model with 1¢t derivative spectral preprocessing was
able to detect the anthracnose fungus from the first day of the deposition of fungus (i.e., day 0)
through to day 3 of the experiment, achieving an average accuracy of 0.71 for the prediction
model.

5. Conclusions

This research proposed an NIR-HSI/2B-CNN algorithmic scheme to detect anthracnose in cv.
Nam Dokmai sub cv. Sithong mango fruits at the early stages of disease development. The proposed
algorithmic scheme could detect anthracnose mangoes from the first day of inoculation of the spore
suspension (i.e., day 0) through to day 3, achieving a moderate classification accuracy of 0.71 for the
prediction model. In comparison, the early detection of anthracnose on mango peel of the 2B-CNN
model is superior to the conventional CNN model. The superior detection performance of the 2B-
CNN model could be attributed to the incorporation of spatial features in the modeling. Nonetheless,
the proposed NIR-HSI/2B-CNN algorithmic scheme needs refinements to be able to reliably sort
mango fruits into those suitable for premium fresh consumption and export without anthracnose and
those for domestic consumption or processing. The anthracnose is categorized as a plant pathogen
rather than a human or animal pathogen. In subsequent research, the number of samples or datasets
should be increased synthetically or by collecting naturally for balanced sample sets, and refinements
should be made to the algorithmic model by adjusting convolutional layers, loss functions, and/or
regularization techniques to improve classification performance.
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