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Abstract:  Groundwater  flow  and  transport models  are  essential  tools  for  assessing  and  quantifying  the 

migration  of  organic  contaminants  at  polluted  sites.  Uncertainties  in  the  hydrodynamic  and  transport 

parameters of the aquifer have a significant effect on model predictions. Uncertainties can be quantified with 

advanced sensitivity methods such as Sobol’s High Dimensional Model Reduction (HDMR) and Variogram 

Analysis of Response Surfaces  (VARS). Here we present  the application of VARS and HDMR  to assess  the 

global sensitivities of the outputs of a transient groundwater flow model of the Gállego alluvial aquifer which 

is located downstream the Sardas landfill in Huesca (Spain). The aquifer is subject to the tidal effects caused by 

the  daily  oscillations  of  the water  level  in  the  Sabiñánigo  reservoir. Global  sensitivities  are  analysed  for 

hydraulic heads, aquifer/reservoir fluxes, groundwater Darcy velocity and hydraulic head calibration metrics. 

Input parameters  include aquifer hydraulic  conductivities and  specific  storage, aquitard vertical hydraulic 

conductivities,  and  boundary  inflows  and  conductances.  VARS, HDMR  and  graphical methods  agree  to 

identify the most influential parameters which for most of the outputs are the hydraulic conductivities of the 

zones closest to the landfill, the vertical hydraulic conductivity of the most permeable zones of the aquitard, 

and the boundary inflow coming from the landfill. The sensitivity of heads and aquifer/reservoir fluxes with 

respect to specific storage change with time. The aquifer/reservoir flux when the reservoir level is high shows 

interactions between specific storage and aquitard conductivity. VARS and HDMR parameter rankings are 

similar for the most influential parameters. However, there are discrepancies for the less relevant parameters. 

The  efficiency  of VARS was  demonstrated  by  achieving  stable  results with  a  relatively  small  number  of 

simulations.   

Keywords: VARS; HDMR; global sensitivity analysis; groundwater flow model; tidal effect; Sardas 

 

1. Introduction 

Groundwater  flow  and  transport  numerical models  are  used  to  simulate  the migration  of 

persistent pollutants in contaminated sites. The relationship between input and output variables of 

these models over  the entire range of  input values  is non‐linear. Numerical models are subject  to 

numerous  uncertainties  which  hinder  the  groundwater  and  contaminant  transport  modeling. 

Quantifying the impact of these uncertainties is crucial to improve the accuracy of model predictions 

[1,2]. Uncertainty in groundwater models may arise from different sources, including: (1) The lack of 

hydrogeological and hydrodynamic data in the study area; (2) Experimental and data measurement 

errors;  (3)  Conceptual  or  mathematical  model  oversimplification;  (4)  Heterogeneity  of  the 

hydrodynamic parameters;  (5) Boundary  conditions;  (6)  Sparse  estimations  of  aquifer properties 

derived from tests; and (7) Scale effects [3–9]. 
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Sensitivity analysis provides a powerful  tool  to evaluate  the  impact of uncertainties  in  input 

parameters on model outputs and identify the most influential parameters. Measures of sensitivity 

can be local or global. Local sensitivity methods quantify the sensitivity of the model to one‐at‐a‐time 

changes  in parameters  around  a  reference  set  of parameters  [10–14]. On  the  other  hand, Global 

Sensitivity Analysis (GSA) evaluate the model sensitivity for wide ranges of parameter and quantify 

also the interactions among input parameters [15–17].     

Graphical methods are often used in the first steps of the sensitivity analysis. Scatterplots or tow‐

variable  plots  of  an  output  versus  an  input  parameter  can  be  useful  sometimes  for  identifying 

parameter interactions. Some graphical methods are based on the analysis of the cumulative sum of 

the normalized reordered model output (CUSUNORO) curve plots [18]. CUSUNORO curves provide 

a compact and fast way to rank the input parameters, identify the sign of the parameter sensitivity, 

assess  the monotonicity  of  the dependence  of  the  input parameter  and  the  output,  and  identify 

nonlinear relationships.   

The method of Morris  “elementary  effects”  is  a derivative‐based method which  consists on 

perturbing each parameter independently and averaging either the partial finite differences [19] or 

their absolute values [20]. The method of Morris and its variants are often used to identify and discard 

the  least  influential parameters. Morris method  is  less  reliable  in determining  the most  relevant 

parameters [21].   

Variance‐based methods such as  the Sobol method also known as High Dimensional Model 

Representation, HDMR,  are useful  to  rank  the  relevance of  input parameters  [22], quantify  their 

importance and  identify parameters having  linear additive effects or nonlinear  interactive effects 

[4,23]. The Sobol method has been found useful to study the uncertainties of groundwater flow and 

solute transport models [3,4]. However, several studies have highlighted some challenges related to 

variance‐based GSA  implementation  for complex numerical models  [4]. Morris and Campolongo 

methods  [19,20]  do  not  address  the  dependencies  between  various  sources  of  uncertainty  [4]. 

Furthermore, sampling size and extreme results can hinder the identification of uncertainty by using 

the  Sobol  indexes  [24].  Variance‐based  methods  require  many  model  simulations  with  high 

computational cost to evaluate the variance of the outputs [4,24]. This is especially challenging when 

considering  high‐dimensional  spatially‐distributed  inputs  such  as  hydraulic  conductivity,  areal 

recharge and boundary fluxes [4]. In addition, variance‐based methods assume that the uncertainty 

of  the model  outputs  is  fully  characterized  by  its  variance  [25].  The  ranking  of  the  influential 

parameters based only on Sobol indexes may exclude important information [26].   

Morris and HDMR methods require a sufficiently large number of model simulations to achieve 

reliable results. Running thousands of simulations of complex numerical models can be challenging. 

Alternative  solutions have been proposed  such  as  the Variogram Analysis of Response Surfaces 

(VARS). VARS  is a GSA method based on  the properties of variograms  [27,28].  It combines  local 

sensitivities  such  as  those  coming  from  derivative‐based  Morris  methods  and  variance‐based 

approaches such as HDMR [29]. Therefore, Morris and Sobol methods are particular cases of VARS. 

The spatial structure of model outputs and the sensitivity analysis across a wide range of scales are 

characterized from the directional variograms of the model outputs [27]. According to Razavi and 

Gupta (2016), VARS is between 1 and 2 orders of magnitude more efficient compared to the Sobol 

method, while  still  providing  consistent  results  [28].  This  efficiency  derives  from  reducing  the 

number of elementary effects used to compute the total‐order index in a given number of simulations 

[30]. The reduction to explore the input space is compensated when the model is dominated by main 

effects (as most physical models are) by using a star‐based sampling design [30]. In addition, VARS 

provides metrics  that accurately  estimate Sobol  total‐order  effects  [28] and,  for high‐dimensional 

complex models, VARS estimators achieve a high performance even for a low number of runs [30]. 

GSA  methods  have  been  used  to  quantify  the  output  uncertainties  caused  by  parameter 

uncertainties for hydrogeological models. Malaguerra et al. [31] applied the Morris method to rank 

the influence of parameters in a tracer test. Zou et al. [32] proposed a surrogate model to improve the 

computational efficiency of the analysis and to approximate the results of a numerical contaminant 

transport  model.  The  most  influential  parameters  identified  with  VARS  were  the  hydraulic 
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conductivity, the recharge and the porosity. The Sobol analysis of a synthetic heterogeneous phreatic 

aquifer  contaminated  by  chlorobenzene  [33]  concluded  that  the  contaminant  distribution  in  the 

aquifer depends mainly on: (1) Transverse coordinate of the contamination source; (2) Porosity; (3) 

Hydraulic conductivity; (4) Hydraulic gradient; and (5) Longitudinal and transverse dispersivities. 

Wang et al. [34] presented a GSA of a groundwater flow model of a colluvial landslide. The results 

highlighted the importance of selecting an appropriate range of input parameters [34]. 

Using more than a single GSA method is advisable to increase the confidence in the ranking of 

input  parameters  [21,35]. Mishra  et  al.  [35]  presented  the  application  of  two GSA methods  to  a 

synthetic groundwater flow model and a groundwater flow and transport model of a nuclear testing 

site. The  two GSA methods provided  consistent  results  and  supplemented one  another  for both 

models. VARS and HDMR methods were applied recently to a reactive transport model of a high‐

level radioactive waste repository in a granitic host rock [36]. The study concluded that parameter 

rankings of both methods are nearly identical for the 5 input parameters. 

The  Sardas  site  is  near  the  Sabiñánigo  (Huesca,  Spain)  reservoir  and  is  heavily  affected  by 

lindane and its degradation products released from the Sardas landfill which contains solid lindane 

production wastes and chlorinated organic contaminants forming a dense non‐aqueous phase liquid 

(DNAPL) [37]. The Sabiñánigo reservoir fluctuations produce a tidal effect on the piezometric heads 

of the alluvial aquifer [38]. Understanding the dynamics of the tidal effect and the aquifer/reservoir 

interactions  is  crucial  for  quantifying  groundwater  and  contaminant  fluxes  and  proposing 

remediation techniques. Sobral et al. [38] presented a two‐dimensional horizontal groundwater flow 

model through the Gállego alluvial aquifer. The model reproduced the oscillations of the piezometric 

head in the aquifer caused by the Sabiñánigo reservoir. The groundwater flow model of the Gállego 

alluvial is subject to uncertainties in aquifer and aquitard parameters, boundary fluxes and recharge 

rates. The  local sensitivity analysis presented by Sobral  et al.  [38] was useful  to  identify  the most 

influential parameters  for hydraulic heads  in  the aquifer. However,  their sensitivity analysis was 

limited to the combination of parameter values corresponding to the calibrated conditions and did 

not account for the interactions among parameters. The limitations of the local sensitivity analysis 

are overcome here by performing global sensitivity analyses by using VARS and HDMR methods. 

Input uncertain parameters include (1) Aquifer parameters; (2) Aquitard vertical conductivities; (3) 

Boundary  inflows;  4)  Conductances  or  leakage  coefficients  for  aquifer/river  and  aquifer/dam 

interactions  and  5)  Areal  recharge.  The  outputs  include  the  computed  piezometric  heads  in  3 

monitoring wells, calibration metrics, aquifer/reservoir fluxes, and the average groundwater Darcy 

velocity modulus. HDMR and VARS methods are used  to:  (1)  Identify  the most  influential  input 

parameters  on  the model  outputs;  and  (2) Quantify  parameter  interactions. The  paper  starts  by 

describing  the study area and  the groundwater  flow model. Then,  the global sensitivity methods 

(VARS and HDMR) are presented, and the input and output variables are listed. GSA results and 

discussion are presented afterwards. The paper ends with the main conclusions.         

2. Materials and Methods 

2.1. Methodological Framework 

The methodology used in this study is outlined in Figure 1. A conceptual model was developed 

based on the analysis of the study area, available hydrogeological and hydrodynamic data, the initial 

and boundary conditions, and material zones as defined in Sobral et al. [38]. A finite element mesh of 

triangular elements was used  to solve  the partial differential equations of groundwater  flow  [38]. 

Uncertainties  in model  input  aquifer  and  boundary  parameters  lead  to  uncertainties  in model 

outputs. Thus, global sensitivity analysis methods (VARS and HDMR) are employed here to rank the 

most important input parameters, quantify the contribution of each parameter to the variance of the 

results,  and  quantify  uncertainties  in model  outputs.  The  input  parameters were  selected  first 

together with their ranges and probability distribution functions. Ns simulations of groundwater flow 

were performed with CORE2D for the selected combinations of input parameters. The outputs of the 

flow model were postprocessed to generate  the  tables containing  the Ni  input parameters and No 

outputs. A Halton sequence was selected to generate the input parameters for the VARS analysis and 
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a Sobol sequence was adopted for the HDMR analysis. VARS and HDMR results were compared in 

terms of parameter rankings (Table 1).   

 

Figure 1. Flowchart of the methodology used in this study. 

Table 1. Ranges and statistical distributions of the input parameters. 

Parameter  Minimum  Maximum  Unit  Distribution 

Aquifer conductivity K1  10  103  m/d  Log‐uniform 

Aquifer conductivity K2  10  103  m/d  Log‐uniform 

Aquifer conductivity K3  10  103  m/d  Log‐uniform 

Aquifer conductivity K4  10  103  m/d  Log‐uniform 

Storage coefficient Ss  10‐5  10‐3  1/m  Log‐uniform 

Aquitard conductivity KVs1  10‐3  1  m/d  Log‐uniform 

Aquitard conductivity KVs2  10‐3  1  m/d  Log‐uniform 

Aquitard conductivity KVs3  10‐4  10‐1  m/d  Log‐uniform 

Leakage coefficient αr  10  103  m2/d  Log‐uniform 

Conductance αd  1  100  m2/d  Log‐uniform 

Boundary inflow Q6  3∙10‐3  0.05  m3/d/m  Uniform 

Boundary inflow Q7  2∙10‐3  0.20  m3/d/m  Uniform 

Boundary inflow Q9  0.25  1.00  m3/d/m  Uniform 

Boundary inflow Q2  1.70∙10‐2  1.70  m3/d/m  Uniform 

Boundary inflow Q1  2∙10‐3  10‐1  m3/d/m  Uniform 

Recharge rc  5  200  mm/year  Uniform 

Recharge ru  20  401.5  mm/year  Uniform 

2.2. Site Description 

The  study  area  is  located  in  Sabiñánigo  (Huesca, Spain) where  a  lindane‐producing  factory 

(INQUINOSA) operated from 1975 to 1992 on the right bank of the Sabiñánigo reservoir [39] (Figure 

2). The Sabiñánigo dam was built in the Gállego River course in 1963 to provide enough hydroelectric 

power  to chemical  factories  [38].  INQUINOSA deposited solid and  liquid hexachlorocyclohexane 

(HCH) wastes in an uncontrolled manner in the Sardas landfill until approximately 1984 [39]. The 

landfill is located in the left bank of the Gállego river at 500 m from the Sabiñánigo reservoir. 
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(a)  (b) 

Figure 2. (a) Location of the study area; (b) enlargement showing the model domain, the Sabiñánigo 

reservoir, the Sardas landfill, the Gállego river course and the INQUINOSA former production site. 

The floodplain of the Gállego River downstream the Sardas landfill is heavily affected by HCH 

wastes.  By  the  1980s,  the  Sardas  landfill  was  completely  filled  with  urban,  construction,  and 

industrial solid wastes  including  lindane production wastes (between 3∙104 and 8∙104 tons of solid 

HCH wastes) [39]. Since the landfill lacks a bottom liner system [39], DNAPL and leachates flowed 

freely  from  the  landfill  into  the  alluvial  of  the Gállego  river  until  1995.  In  addition, during  the 

construction of the road N‐330 in the early 1990s, 50 000 m3 of landfill wastes were deposited on the 

ground surface of the alluvial plain [40]. In 1995, the landfill was sealed superficially with a PEAD 

sheet and laterally with a front slurry wall. However, the slurry wall does not prevent leachates from 

flowing into the alluvial aquifer [38,41].   

The  alluvial of  the Gállego  river  consists of quaternary  silts overlying  a  layer of  sands  and 

gravels. The Larrés marls underlie  the quaternary  sediments of  the Gállego  river alluvial  [40]. A 

geological profile across the Sabiñánigo reservoir and the Gállego river floodplain is presented by 

Sobral et al. [38]. The sands and gravels are much more permeable than the silts and the marls [42]. 

Liquid HCH wastes were detected downstream  the  Sardas  landfill  in  2009  [37],  prompting 

hydrogeological and chemical studies aimed at identifying groundwater contaminant sources and 

proposing treatment options [39]. DNAPL has migrated by gravity through the alluvial due to  its 

high density [43], and is mainly located on top of the marl layer [42] and inside its fractures [44]. This 

poses a significant risk since the aquifer and the reservoir are partially connected [38]. 

The  layer  of  alluvial  sands  and  gravels  is  confined  by  quaternary  alluvial  silts.  Since  its 

construction, the reservoir has undergone a siltation process [45] which deposited silting sediments 

and  reducing greatly  the  reservoir capacity  [38]. The alluvial silts and silting sediments act as an 

aquitard  and  play  the  role  of  a  barrier  for  pollutants  by  retaining  and  slowing  the  arrival  of 

contaminants to the reservoir [38]. However, the presence of DNAPL and HCH sorbed in the soil [42] 

constitutes a persistent source of organic pollutants. 

2.3. Conceptual Model 

The groundwater  flow model presented here  focuses on  the alluvial aquifer downstream the 

Sardas  landfill with a  large presence of  solid and  liquid HCH wastes. According  to  the monthly 

chemical  analyses by  the Ebro River Authority,  the Sabiñánigo  reservoir  is  the main  receptor of 

chlorinated organic contaminants in the Sardas site.   

The model assumes that the aquifer recharges through rainfall infiltration, from the surrounding 

fluvioglacial  terraces on  the  right bank and  from  the Larrés marls on  the  left bank  (Figure 3). The 

hydraulic conductivity of the sands and gravels layer is extremely large compared to that of the silts, 

silting sediments and marl formations. Therefore, groundwater flow takes place mostly through the 
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sands and gravels of the alluvial and discharges into the Gállego river, the Sabiñánigo reservoir and 

underneath the Sabiñánigo dam in the downstream part of the study area. The tidal effect caused by 

the  reservoir water  level  fluctuations has a significant effect on water  transfer between  the alluvial 

aquifer and  the reservoir  [38,46]. Aquifer groundwater  flows  from  the aquifer  into  the reservoir  for 

normal and low reservoir water levels. However, the flow reverses when the reservoir level rises above 

the piezometric head  in  the aquifer  [38]. The sands and gravels  located underneath  the Sabiñánigo 

reservoir are assumed to be confined by the reservoir silting sediments and the alluvial silts. 

 

Figure 3. 2D finite element mesh, monitoring wells, material zones, boundary conditions, and GSA 

input  parameters  (top  plot)  and  enlargement  showing  the  area  downstream  the  Sardas  landfill 
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(bottom plot). The confined storage coefficient (SS) is the same in the four material zones. The sands 

and gravels are assumed to be confined in the alluvial (rc), except in the wooded areas (ru). Unconfined 

areas are shown with a back hashed polygon. 

2.4. Numerical Groundwater Flow Model   

The numerical model presented here  is an updated version of  the groundwater  flow model 

through the Gállego alluvial aquifer reported in Sobral et al. [38]. Contour maps of thickness of the 

geological  formations were  slightly  improved by  incorporating  information  from  recently drilled 

wells. Leakage coefficients for the aquifer/reservoir interactions were also updated.     

The limits of the model domain include the right bank of the Gállego river along the west, the 

left bank of the river where the Sardas landfill is located, and the Sabiñánigo dam. The northern limit 

is  located  about  500 m  north  of  the  tail  of  the  Sabiñánigo  reservoir  (Figure  3).  The model was 

performed with a non‐uniform finite element mesh of triangular elements made of 4399 nodes and 

8655 elements (Figure 3). Groundwater flow simulation spans 109 days, starting July 15, 2020 and 

ending on October 31, 2020. Time increments are all equal to 30 minutes. This time increment is equal 

to the frequency of the automatic reservoir level measurements. 

Aquifer  inflows  include  recharge  from  rainfall  infiltration  which  was  estimated  with  a 

hydrological water balance model [47], and inflows along the boundaries in both left and right banks, 

These  inflows were simulated with a Neuman condition  [38]. River/aquifer, reservoir/aquifer and 

aquifer/dam interactions were simulated with Cauchy conditions as described by Sobral et al. [38]. 

2.5. Global Sensitivity Methods 

2.5.1. Graphical Methods 

Graphical methods provide a simple, compact and informative tool to study global sensitivities. 

They are especially adequate for communicating results. They provide a good compromise between 

the complexity of other methods and compactness [48]. Two‐variable interaction plots are helpful to 

identify visually parameter interactions.   

The method of cumulative sum of the normalized reordered model output (CUSUNORO) curve 

plots condenses in a compact form the sensitivity of an output, y, to a set of input parameters [18]. 

The CUSUNORO curve function, z(i), is the scaled cumulative sum of the ordered residuals of the 

output, y, [18] and is given by: 

𝑧ሺ𝑖ሻ ൌ
1

ඥ𝑛 ൉ 𝑆௬௬
൉෍  ሺ𝑦෤గሺ௝ሻ െ 𝑦തሻ

௜

௝ୀଵ

  (1)

where  𝑦ത  and  𝑆௬௬   are  the  sample mean and  standard deviation of  the outputs,  respectively,  𝑛  is 
sample size or the number of simulations, and ሺ𝑦෤గሺ௝ሻ െ 𝑦തሻ  is the j‐th ordered residual. The function 
z(i) can be interpreted based on the following terms: (1) A divisor term or scaling factor,√𝑛, which 

guarantees that  the cumulative sum  is scaled relative  to the sample size n;  (2) A divisor  term  𝑆௬௬ 
(standard deviation) which ensures that z(i) is dimensionless and standardized; and (3) A summation 

term representing the cumulative sum of the deviations of the ordered output values from the mean 

𝑦ത. 

2.5.2. Sobol Method   

The High  Dimensional Model  Representation  (HDMR) method  evaluates  the  input‐output 

relationships of  complex models with many  input parameters  [22]. The Sobol method  for global 

sensitivity analysis requires to compute complex quadratures in a high dimensional space. Random 

and quasi‐random  rules  are usually  applied, which  involve  a  set of  sample points where model 

outputs are analyzed. The input parameters are normalized to range from 0 to 1.   

The variance of the output is split as the sum of non‐negative variance terms, each associated 

with combinations of input parameters [22]. Sobol indexes quantify the combined contributions of 

the input parameters to the variance of the output. The first‐order sensitivity index or ʺmain effect” 
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index, Si, measures the relative individual contribution of the i‐th input variable on the variance of 

the output. The second order sensitivity indexes, Sij, measure the interactions between the i‐th and 

the  j‐th  inputs on  the output variable  [22]. Both  terms, Si and Sij, are usually provided by HDMR 

software packages. The  total  sensitivity  index,  or  total‐effect  index  or  total‐order  index,  STi,  is  a 

measure of the total contribution of the i‐th input to the output variance [51–53], including all the 

interactions with the rest of the inputs of order k ranging from 2 to n. Its expression is given by: 

𝑆்௜ ൌ 𝑆௜ ൅෍𝑆௜௝
௝

൅෍𝑆௜௝௞ ൅ ⋯  ෍ 𝑆௜௝…..௡

௝,…,௡௝,௞

   (2)

2.5.3. Variogram Analysis of Response Surfaces 

The variogram analysis of response surfaces (VARS) is a method of characterizing the structure 

and variability of model outputs within  the  input parameter  space  [27]. VARS  computes  several 

global sensitivity metrics,  including Morris and  total sensitivity Sobol  indexes by using a tailored 

sampling  strategy  [27].  VARS  star‐based  sampling  strategy  requires  all  input  parameters  to  be 

normalized to range between 0 and 1. Then, the star centers are selected by using a random sampling 

strategy. A cross section of equally spaced points with a selected resolution Δh is performed for each 

star center and  for each  input variable. Each set of points constitutes a “star”. There are different 

methods to sample the star centers [49]. The Halton sequence was selected for this study [50]. The 

output variables are calculated at all points for all stars. Directional variograms and covariograms 

are calculated along the lines of the input parameters. 

Like  other GSA methods, VARS  requires  performing  a  sufficiently  large  number  of model 

simulations to obtain estimates of the directional variograms for each input variable. The variograms 

along the directions of the parameters provide the sensitivity indexes of the GSA. The limit of the 

directional variogram divided by h2 as h approaches 0, corresponds to Campolongoʹs version of the 

Morris effects [28]. On the other hand, the limit of the variogram for large h corresponds to the total 

variance linked to the Sobol total effect or total sensitivity index [30].     

Morris and Sobol methods are  limiting  cases of VARS. The directional variograms of VARS 

provide metrics that accurately estimate Sobol and Morris indexes [27]. In addition, VARS calculates 

the Integrated Variogram Across a Range of Scales index (IVARS50). IVARS50 provides a sensitivity 

index  corresponding  to  intermediate  scales  and  is  calculated  from  the  directional  variograms 

according to: 

𝐼𝑉𝐴𝑅𝑆ହ଴ ൌ න 𝛾ሺℎሻ 𝑑ℎ
଴.ହ

଴
  (3)

where  𝛾ሺℎሻ  is  the directional variogram  and  ℎ  is  the normalized  input parameter.  It  should  be 

recalled that the VARS method requires that all the input parameters are normalized to range from 0 

to 1. 

2.6. Inputs and Outputs   

The input parameters considered in the GSA include (Figure 3): (1) The hydraulic conductivities 

of the aquifer in four material zones which were defined to account for the spatial heterogeneity of 

the alluvial aquifer (K1, K2, K2 and K4); (2) The aquifer specific storage (SS); (3) The vertical hydraulic 

conductivities of the aquitard interposed between the aquifer and the reservoir which includes the 

silting sediments settled along the former course of the Gállego river (KVs1), the silting sediments in 

the  rest  of  the  reservoir  (KVs2)  and  the  alluvial  silts  (KVs3);  (4)  The  leakage  coefficients  of  the 

aquifer/river interactions (αr) and the conductance for the flow underneath the dam (αd); (5) Aquifer 

recharge rates  from precipitation  in confined  (rc) and unconfined  (ru) parts of  the aquifer; and  (6) 

Boundary inflows (Q6, Q7, Q9, Q2 and Q1) (Figure 3). The ranges and statistical distributions of the 

input parameters are listed in Table 1. Log‐uniform probability density functions were used for the 

hydrodynamic  parameters  and  leakage  coefficients,  and uniform distributions were  adopted  for 

recharge rates and boundary inflows (Table 1). 
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The  output  variables  considered  in  the  analysis  include  the  global mean  absolute  error  in 

hydraulic heads (MAEg), the global root mean square error in hydraulic heads normalized by the 

standard deviation of the measured head data (NRMSEg) and the global Nash–Sutcliffe index [54] 

(NSEg) of the head residuals (measured minus computed heads) at 8 monitoring wells (Figure 4). 

Other output variables include the computed piezometric heads in wells ST1C, PS19 and SPN1 at 3 

selected times, t1, t2 and t3, which correspond to an event of sudden rise of the reservoir water level 

which took place from September 18, 2020 at 20:30 to September 19, 2020, at 04:30 (Figure 5). The 

heads in these 3 wells at the 3 selected times are denoted as ST1Ct1, ST1Ct2, ST1Ct3, PS19Bt1, PS19Bt2, 

PS19Bt3, SPN1t1, SPN1t2 and SPN1t3. Other output variables  include  the aquifer/reservoir  fluxes at 

times  t1,  t2 and  t3, which are denoted as Qt1, Qt2 and Qt3, and  the average modulus of  the Darcy 

velocity near well PS16C where a tracer test was performed (qav).   

 

Figure 4. Map showing the reservoir tail area (hashed blue polygon) where aquifer/reservoir fluxes 

were calculated at  times  t1,  t2 and  t3,  the monitoring wells whose piezometric data were used  to 

calculate the calibration metrics, monitoring wells ST1C, PS19B, SPN1 and PS16C (where the average 

Darcy velocity is computed). 
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Figure 5. Measured reservoir hydrograph and piezometric heads in well ST1C from September 18, 

2020, to September 20, 2020. The computed piezometric heads in monitoring wells ST1C, PS19B and 

SPN1 and the aquifer/reservoir fluxes are analyzed at the following times: 1) t1, September 18, 2020, 

20:00 (low reservoir water level), 2) t2, September 18, 2020, 22:30 (peak reservoir water level) and 3) 

t3, September 19, 2020, 04:30 (descending reservoir water level). 

The model head residuals were calculated as the differences between measured and computed 

heads using recorded piezometric head data from ST1B, ST1C, ST2, SPN1, PS16C, PS19B, PS25B, and 

PS26 wells. The mean absolute error (MAE), the root mean squared error normalized by the standard 

deviation of the measured data (NRMSE), and the Nash–Sutcliffe index (NSE) were computed for 

each well (j). The metrics were globalized to evaluate goodness of fit in the eight wells equipped with 

divers: 

𝑀𝐴𝐸௚ ൌ
∑ 𝑀𝐴𝐸௝௝

𝑁௪
   (4)

𝑁𝑅𝑀𝑆𝐸௚ ൌ
ට 1
𝑁்

∑ 𝑁௝  𝑅𝑀𝑆𝐸௝
ଶ

௝  

𝜎்
  

(5)

𝑁𝑆𝐸௚ ൌ 1 ൅
∑ 𝑁௝𝜎௝

ଶ
௝ ൫𝑁𝑆𝐸௝ െ 1൯

𝑁் ൉ 𝜎்
ଶ   (6)

where: 

 𝑁௪  is the number of monitoring wells   

 𝑁௝  is the number of measured piezometric heads in the j‐th well   

 𝑁்  is the total number of measured piezometric heads in all the wells   

 𝜎௝  is the standard deviation of the measured piezometric heads in the j‐th well   

 𝑀𝐴𝐸௝ ,  𝑅𝑀𝑆𝐸௝   and  𝑁𝑆𝐸௝   are  the mean  absolute  error,  the  root mean  squared  error  and  the 

Nash–Sutcliffe index for the j‐the well,   

 𝜎்  is the standard deviation of the measured piezometric heads in all wells   

2.7. Global Sensitivity Simulation Runs 

Global sensitivity simulation runs were generated by using two different sequences. A first set 

of 30 800 runs were prepared for VARS by using the Halton sequence to generate the sequence of star 

centers [50]. The second sequence of 16 384 runs was obtained by using the Sobol method [55]. The 

runs were performed at the Galician Supercomputing Center (CESGA).   
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2.8. Software 

Model  simulations  were  performed  with  CORE2D  V5,  a  finite  element  code  for  transient 

saturated and unsaturated water flow and heat transport in heterogeneous and anisotropic porous 

and  fractured media  [56].  The  code  solves  for  groundwater  flow  and  solute  transport  by  using 

Galerkin  triangular  finite  elements  and  an  Euler  time  discretization  scheme.  CORE2D  V5  has 

undergone  extensive  verification  against  analytical  solutions  and has been  benchmarked  against 

other  reactive  transport  codes  [57,58].  CORE2DV5  has  been  used  extensively  for  modeling 

groundwater flow and solute transport in aquifers and lab and in situ experiments [59,60]. 

The single processor code CORE2D V5 was compiled at the CESGA by using the FinisTerrae‐III 

supercomputer [61,62]. This advanced computing infrastructure supports the concurrent execution 

of hundreds of simultaneous and parallel model runs. The simulation of the VARS‐Halton and Sobol 

sequences runs took 6 days of computing wall time. The same task would have taken more than three 

years running on a personal computer. 

VARS version 2.1 was run under MATLAB® version 2022a in an UBUNTU 20.04.6 LTS system. 

HDMR computations were carried out by using both SALib [63] and GUI‐HDMR V1.1 [64]. 

3. Results and Discussion 

3.1. Groundwater Flow Model Results 

The computed hydraulic gradient at the Sardas site downstream the landfill is very small due to 

the large hydraulic conductivity of the layer of sands and gravels, and the small groundwater inflows 

[38]. The daily fluctuations of the reservoir water level induce a tidal effect on the piezometric heads 

of the aquifer. The fluctuations in the aquifer are damped and delayed because the aquitard acts as a 

dumping barrier between the reservoir and the aquifer [38]. The amplitude of the oscillations of the 

piezometric heads, Ah and the time lag, tR, are very sensitive to the specific storage coefficient of the 

layer of sands and gravels (SS), and the vertical hydraulic conductivities of the aquitard (KVs1, KVs2 

and KVs3) [38].   

The  reservoir water  level  oscillates  between  764.31 m  and  765.43 m  daily  in  the modelling 

period. The average water level in the reservoir (764.80 m) is slightly smaller than the piezometric 

head in the aquifer (764.90 m). Groundwater generally flows from the aquifer to the silting sediments 

and  the  alluvial  silts  of  the  reservoir. However, when  the  reservoir water  level  rises  above  the 

piezometric head in the aquifer, the Sabiñánigo reservoir recharges the aquifer, resulting in a rise in 

piezometric heads. The modulus of the Darcy velocity in the aquifer decreases during these high‐

reservoir water level events. If the duration of the high water level is long enough, the direction of 

groundwater flow may reverse near the reservoir [38,41]. 

3.2. GSA Results for the Groundwater Flow Model of the Gállego Alluvial Aquifer 

3.2.1. Graphical Methods   

Two‐variable  scatterplots  are  useful  to  identify  and  illustrate  the  interactions  of  two  input 

parameters. Figure 6 shows two‐variable scatterplots of the computed heads in 3 monitoring wells s 

(outputs ST1Ct2, PS19Bt2 and SPN1t2) and the aquifer/reservoir flow (Qt2) at time t2 corresponding the 

peak reservoir water level. The outputs are plotted versus the vertical conductivity of the aquitard 

(KVs1). These plots correspond to the 16 384 runs of the Sobol sequence. The clouds of plots are shown 

for the following three ranges of percentiles, p, of the specific storage coefficient (SS): 1) p < 30%; 2) 

30% < p < 70% and 3) p > 70%.   

The scatterplots show that the computed heads and the aquifer/reservoir flow at time t2 depend 

on SS. Generally, the computed piezometric heads in wells ST1C and SPN1 at t2 are low for large SS 

(p > 70%). However, simulations corresponding to extreme values of other input parameters result 

in high piezometric heads even for high values of SS. On the other hand, the computed heads are 

higher when SS is in the lower percentile (p < 30%). It should be noticed that the well PS19B is located 
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further away  from  the  reservoir, and  thus,  its piezometric head  is  less affected by  the  interaction 

between KVs1 and SS.     

 

Figure 6. Scatterplots of the computed piezometric heads in wells ST1Ct2 (upper left plot), PS19Bt2 

(upper right plot), SPN1t2 (lower left plot), and Qt2 (lower right plot) versus the vertical hydraulic 

conductivity of the silting sediments in the former river course (Kvs1). The sample of 16384 points 

was generated with a Sobol sequence. The clouds of plots are shown for the following three ranges of 

percentiles, p, of the specific storage coefficient (SS): 1) p < 30%; 2) 30% < p < 70% and 3) p > 70%. 

The  scatterplot of Qt2  shows  three branches. The most negative  flows, which  correspond  to 

aquifer discharge into the reservoir, at time t2 are associated with low values of SS (p < 30%) while 

the largest positive water flows (flow from the reservoir into the aquifer) occur for high SS values (p 

> 70%). The water flow oscillates from positive (aquifer recharge) to negative (aquifer discharge) for 

intermediate values of SS (30% < p < 70%). The amplitude of the oscillations of the piezometric heads 

in the aquifer, Ah, is inversely proportional to the value of the specific storage of the aquifer. When 

SS is low, Ah is large and the piezometric heads in the alluvial increase quickly and may rise above 

the reservoir water level, thus leading to groundwater discharge to the reservoir. On the other hand, 

when SS is large, Ah is small and the piezometric heads increase slowly. Here, piezometric heads can 

hardly rise above the reservoir water level during the events of rise of the reservoir water level, Then, 

the reservoir recharges the aquifer. 
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Figures 7 and 8 show CUSUNORO curves for computed heads in wells ST1C, PS19B and SPN1 

at times t1, t2 and t3 and MAEg, NRMSEg, NSEg, Qt1, Qt2, Qt3 and qav. 

From  the  CUSUNORO  curves  above,  parameters  K3  (green),  Q2  (red),  and  K2  (orange) 

consistently exhibit the highest maximum absolute values across all hydraulic head plots, except for 

the hydraulic head at well SPN1, where parameters αr (yellow), KVs1 (brown) and Ss (purple) are more 

influential. Q6 (blue) and K1 (blue) typically show the lowest maximum absolute values (not shown 

here).   

 

Figure 7. CUSUNORO curves of computed head in wells ST1C and PS19B at times t1, t2 and t3; and 

well SPN1 at times t1 and t2. 

The most influential parameters across all performance metrics (MAEg, NRMSEg and NSEg) are 

K3, Q2, K2 and αr. Q6 and Ss exhibit lower values. Parameters αr, KVs1 and Q2 have the largest influence 

on the aquifer/reservoir fluxes except at time t2, Qt2. At time t2, Ss is the most influential parameter. 

Again, Q6 and K1 consistently show the smallest influences.       

Q2, K3 and K2 have the highest influence on the average groundwater Darcy velocity modulus 

near well PS16C, while Q6 and Ss are the least influential parameters for this output.     
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Most of the CUSUNOTO curves do no shot crossings of the x‐axis. This attests the means the 

monotonicity of the outputs versus the input parameters. Some crossings of the x‐axis are found in 

the curves of the least influential parameters, especially for Q6 and K1 (not shown here). 

 

Figure 8. CUSUNORO curves of the computed head in well SPN1 at time t3, MAEg, NRMSEg, NSEg, 

Qt1, Qt2, Qt3 and qav. 

3.2.2. VARS Results   

Figures 9 and 10 show the IVARS50 indexes for the global mean absolute error (MAEg), and the 

average groundwater Darcy velocity modulus (qav) as a function of the number of star centers. They 

also show the ranking of the input parameters and the robustness of ranking. It should be noticed 

that IVARS50 achieves stable values after just 50 star centers, which amounts to 7700 runs. The largest 

sensitivity  indexes  for MAEg correspond  to  the aquifer hydraulic conductivity  in material zone 3 

(K3),  the  boundary  inflow Q2 which  corresponds  to  groundwater  flow  coming  from  the  Sardas 

landfill, the vertical conductivity of the silts (KVs1) and the aquifer/river conductance (αr). IVARS50 of 
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the Darcy velocity, qav, is largest for Q2, K3 and K2. The rest of the parameters have much smaller 

indexes. 

 

Figure 9. IVARS50 indexes of input parameters as a function of the number of star centers for MAEg 

(upper plot), and robustness of ranking as a function of the number of star centers (bottom plot). 
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Figure 10. IVARS50  indexes of  input parameters as a function of the number of star centers for the 

average Darcy velocity (qav) (upper plot), and robustness of ranking as a function of the number of 

star centers (bottom plot). 

The robustness of ranking of input parameters K2, K3, SS, ru, and Q7 for both outputs is greater 

than 90% after 50 stars. However, for the rest of the input parameters, the robustness is smaller than 

80 %, and, sometimes, not stable even after 200 stars. input parameters αr and KVs1 are very influential 

for MAEg, but they show a robustness measure that ranges from 50 to 70 % after 100 star centers. 

Robustness does not directly increase with the number of star centers for some variables. This could 

be caused by interactions among SS, aquitard vertical conductivity KVs1 and aquifer/river conductance 

αr at some water level rise events. Another reason for the lack of stability of the robustness of rankings 

is  that  the  least relevant variables  interfere with  the calculation of sensitivity  indexes of  the most 

relevant parameters. However, the rankings of the most and the least significant input parameters 

are stable with just 50 star centers (7700 runs). Input parameters with intermediate influence are also 

well identified, despite not being ranked reliably. 

Sample  variograms  along  the directions  of  the  17  input parameters were  computed  for  the 

piezometric heads in wells ST1C, PS19B and SPN1 at times t1, t2 and t3, the calibration metrics, the 

aquifer/reservoir fluxes at times t1, t2 and t3 and the average groundwater Darcy velocity modulus 

near well PS16C. Only a limited number of parameters are relevant for each output variance. Figures 

11 and 12 show  the sample variograms along  the directions of  the 5 most  influential parameters. 

VARS‐TO, IVARS50 and VARS‐ABE metrics are computed from the variograms. Figures 13 and 14 

show  the VARS‐ABE,  IVARS50  and VARS‐TO  indexes  for  each  output  considering  all  the  input 

parameters. 
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Figure 11. Sample variograms of the computed heads in monitoring wells ST1C and PS19B at times 

t1,  t2 and  t3 and monitoring well SPN1 at  times  t1 and  t2. Only  the variograms of  the  five most 

influential parameters are shown in the plots. 
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Figure 12. Sample variograms of the computed head in well SPN1 at time t3, MAEg, NRMSEg, NSEg, 

Qt1, Qt2, Qt3 and qav. Only the variograms of  the  five most  influential parameters are shown  in  the 

plots. 
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Figure 13. VARS‐TO, IVARS50 and VARS‐ABE  indexes for the computed heads  in wells ST1C and 

PS19B at times t1, t2 and t3 and well SPN1 at times t1 and t2. 
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Figure 14. VARS‐TO, IVARS50 and VARS‐ABE indexes for the computed head in well SPN1 at time 

t3, MAEg, NRMSEg, NSEg, Qt1, Qt2, Qt3 and qav. 

The most influential parameters for the computed head in well ST1C at times t1, t2 and t3 are K3 

and Q2, followed by KVs1, αr and K2. The ranking in well PS19B is similar to the ranking in well ST1C. 

However, the sensitivity indexes of K3, K2 and Q2 in well ST1C are much larger than those of well 

PS19B. K3  is much more  relevant  than K2  in well  ST1C while K2  and K3  have  almost  similar 

sensitivity indexes in well PS19B. The sensitivity indexes of the hydraulic conductivities depend on 

the  location of  the wells. Material zone 3  is  the  largest zone of  the Sardas site. Material zone 2  is 

located between material zones 1 and 3. Material zone 1 is much smaller than the other two and is 

located just downstream the Sardas landfill. KVs1 is more influential for the head in well ST1C than 

for  the well PS19B. ST1C  is  located right next  to  the reservoir maximum  flood area and PS19B  is 

located 135 m to the east of the reservoir. Tidal effects on the aquifer depend on the duration of the 

high reservoir level, its amplitude, and the distance to the reservoir. Likewise, the head in well PS19B 

is most sensitive to Q2 because this well is near the boundary just downstream the Sardas landfill.   

The  sensitivity  indexes  for  the  computed  heads  in  well  SPN1  differ  from  those  of  other 

monitoring wells because well SPN1 is near the Gállego riverbed. αr is the most influential parameter 

in well SPN1 followed by KVs1.   

Despite  not  being  an  influential  input,  the  relevance  of  SS  for  the  computed  heads  in  the 

monitoring wells  increases  from  time  t1  (low  level)  to  time  t2  (peak  reservoir water  level). The 

sensitivity indexes of SS decrease when the reservoir water level descends at time t3. The time change 

of the sensitivity of SS in well SPN1 is more significant than in wells ST1C and PS19B. 
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The most influential parameters for the calibration metrics (MAEg, NRMSEg and NSEg) are K3, 

K2 and Q2, followed by KVs1 and αr. Most of the monitoring wells are located in material zones 2 and 

3 and near the boundary zone corresponding to Q2. Aquifer/reservoir and aquifer/river interactions 

affect the computed head gradient, tR and Ah. SS only affects the temporal variability of computed 

heads and not their average values. Since calibration metrics evaluate the average fit of the computed 

heads in the monitoring wells, the relevance of SS for the calibration metrics is very low compared to 

its  relevance on  the  computed heads  at  specific  times.  SS  is  especially  relevant during  events  of 

sudden rise of the reservoir water level.   

To facilitate the interpretation of the sensitivities of reservoir/aquifer fluxes (Qt1, Qt2, Qt3), one 

should recall that the silting sediments (KVs1 and KVs2) are more permeable than alluvial silts (KVs3). 

Groundwater discharges mainly through the former course of the Gállego river, where only silting 

sediments confine the aquifer (KVs1). If the aquifer is less connected to the Gállego river (lower values 

of αr), groundwater discharges to the reservoir. On the other hand, if the aquifer and the river are 

more  connected  (higher values of  αr), groundwater discharges  to  the  reservoir and  the  river. As 

expected, the greater the inflow of water from the landfill (Q2), the more groundwater discharge to 

the reservoir.   

The aquifer/reservoir groundwater flow changes with time due to the reservoir tidal effect. The 

most influential parameters for the aquifer/reservoir groundwater flow are also time dependent. KVs1 

is the parameter with the largest sensitivity index at time t1 when the reservoir water level is low. 

The second influential parameter is the aquifer/river leakage coefficient, αr. The boundary inflow Q2 

is the third most relevant parameter. However, when the reservoir water level rises suddenly rises at 

time t2, the parameter sensitivities change. The most influential parameter becomes SS followed by 

KVs1. We recall that in the model reference run [38], there is flow from the reservoir into the aquifer 

when the reservoir water level rises above the piezometric head in the aquifer. If the specific storage 

of the aquifer  is high, a  larger part of the flow coming  from the reservoir  is stored  in the aquifer, 

which results in a smaller rise of the piezometric head in the aquifer.   

The reservoir flood area depends on its water level, so when the water level rises at time t2, the 

area where the alluvial silts confine the aquifer underneath the reservoir increases. The areas of the 

reservoir away from the former course of the Gállego river are assumed to be confined by both silting 

sediments (KVs2) and alluvial silts (KVs3). The relevance of KVs3 increases slightly when the reservoir 

floods more parts of the alluvial, but its relevance is still much smaller than those of KVs1 and SS. When 

the water level of the reservoir descends at time t3, the parameter sensitivities tend to be similar to 

those of Qt1 at  time  t1. For Qt3, the sensitivity of KVs1  is much  larger  than  those of αr and Q2. The 

sensitivity of SS remains, but it is much less relevant than for Qt2, 

The most influential parameters for the average modulus of the Darcy velocity (qav) near well 

PS16C are Q2, K3 and K2. K1 is slightly relevant, and the contribution of the rest of the parameters is 

negligible. Darcy velocity in the aquifer mainly depends on the boundary inflow Q2 because this well 

is located I material zone 3 and near the boundary downstream the Sardas landfill.   

The sensitivity indexes of SS are time dependent for the computed heads in the wells, and the 

aquifer/reservoir fluxes (Figure 15). When the reservoir water level rises above the piezometric head 

in the aquifer at time t2, the reservoir starts recharging the aquifer, and the piezometric head in the 

alluvial starts rising. If the specific storage is small, the amplitude of the oscillation of the piezometric 

head increases. This affects especially the aquifer/reservoir fluxes (Qt1, Qt2 and Qt3). The sensitivities 

of the computed head in well SPN1, located near the Gállego river, are largest for αr and KVs1 and SS 

at time t2. 

On the other hand, well ST1C is closest to the reservoir and further away from the Gállego river. 

In this well the sensitivity index of SS is smaller than in well SPN1. Finally, the sensitivity of the head 

in well PS19B to SS is irrelevant because the well is far away from the Gállego river and the reservoir 

flood area. 
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Figure 15. IVARS50 sensitivity indexes for computed heads in wells ST1C (top left plot), PS19B (top 

right plot), and SPN1 (bottom left plot) and aquifer/reservoir flow (bottom right plot) at times t1, t,2 

and t3. 

The  IVARS50 sensitivity  indexes  for calibration metrics, MAEg, NRMSEg and NSEg are very 

similar (Figure 16). The most influential parameters are the same for all the metrics. The rankings 

show some slight differences. Input ranking for the MAEg is K3, Q2, αr, K2 and KVs1, while αr and K2 

switch places for NRMSEg and NSEg. NRMSEg and NSEg are more prone to the presence of outliers 

because their formulas include squared residuals. 

 

Figure 16. IVARS50 sensitivity indexes for calibration metrics MAEg, NRMSEg and NSEg. 

Sensitivity indexes are large for K3, Q2, αr, K2 and KVs1. Some input variables have very small 

sensitivity indexes.   

3.2.3. HDMR Results and Analysis of Interactions for the Sobol Sequence 

Tables S1  to S23  in  the SM show the values of  the  first order  (main effects), Si, and 2nd order 

effects, Sij, calculated with SALib [63] and GUI‐HDMR [64] and the parameter ranking for: (1) The 

computed piezometric heads  in wells PS19B, SPN1 and ST1C at times t1, t2 and t3; (2) The global 
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mean absolute error (MAEg); (3) The global Nash–Sutcliffe index (NSEg); (4) The global normalized 

root mean squared error (NRMSEg); (5) The average groundwater Darcy velocity modulus near well 

PS16C (qav); and (6) The computed aquifer/reservoir fluxes at times t1, t2 and t3 (Qt1, Q t2 and Qt3) by 

using 16 384 runs.   

HDMR lower bound estimates for the total effects, (Si + Sij), are compared to the VARS intervals 

of the total effects for each parameter. SALib and GUI‐HDMR indexes generally agree, although they 

show some small differences. The analysis of the interactions among parameters is an important part 

of the global sensitivity analysis. Interactions represent the joint influence of parameters on the model 

outputs.  Usually,  interactions  are  revealed  when  the  sum  of  the  Sobol’s  1st  order  indexes  are 

significantly smaller than 1.     

In the next paragraphs the Sobol based lower bound estimates for the total effects will be denoted 

simply as “total effects” to shorten the presentation of the HDMR results. The largest main effect Si 

for the piezometric head in well ST1C at time t1 is equal to 0.242 and corresponds to K3 (see Table S1 

in SM). The sum of the Sobol’s 1st order indexes is equal to 0.644. The total effects of the piezometric 

head in well ST1C at time t1 are slightly larger than 1 (see Table S1 in SM). Second order effects for 

this output are important especially due to the interaction between K3 and K2. Interactions of smaller 

relevance occur between Q2 and K3, between KVs1 and αr, and between Q2 and K2. Sobol total effects 

STi are typically larger and fall outside the ranges of the VARS total effects.   

The largest main effect Si of the piezometric head in well ST1C at time t2 is equal to 0.194 and 

corresponds to K3 (see Table S2 in SM). The sum of the Sobol’s 1st order indexes is equal to 0.628. The 

total effects of the piezometric head in well ST1C at time t2 are slightly larger than 1 (see Table S2 in 

SM). Second order effects here are relevant especially due to the interaction between Q2 and K3. There 

are also interactions of smaller relevance between K3 and K2, between KVs1 and αr, and between Q2 

and  K2.  Sobol  total  effects  STi  and  those  of  VARS  generally  agree,  although  they  show  some 

discrepancies especially for the K1 and ru. 

The largest main effects Si for the piezometric head in well ST1C at time t3 correspond to K3 and 

Q2 (see Table S3 in SM). The sum of the Sobol’s 1st order indexes is equal to 0.644. The total effects of 

the piezometric head in well ST1C at time t3 are equal to 1.223 (see Table S3 in SM). Second order 

effects for this output are relevant due to interactions of K3 with K2 and Q2, and KVs1 with αr. The 

Sobol total effects STi generally fall within the intervals of VARS total effects.   

The largest main effects Si for the piezometric head in well PS19B at time t1 correspond to Q2, K3 

and K2 (see Table S4 in SM). The sum of the Sobol’s 1st order indexes is equal to 0.71. The total effects 

STi for the piezometric head in well PS19B at time t1 are slightly greater than 1 (see Table S4 in SM). 

Second order effects here are relevant especially due to the interactions among Q2, K3 and K2. The 

total effects STi fall within the intervals of VARS total effects.     

The largest main effects Si for the piezometric head in well PS19B at time t2 correspond to Q2, 

K2, and K3 (see Table S5 in SM). The sum of the Sobol’s 1st order indexes is equal to 0.699. The total 

effects STi for the piezometric head in well PS19B at time t2 are slightly greater than 1 (see Table S5 in 

SM). Second order effects for this output are important especially due to the interaction between Q2 

and K2. There are also interactions of smaller relevance between Q2 and K3, between K3 and K2, and 

between αr and KVs1. The Sobol total effects STi are typically larger and fall outside the ranges of the 

VARS total effects. 

The largest main effect Si for the piezometric head in well PS19B at time t3 corresponds to Q2. K2 

and K3 are in second and third position (see Table S6 in SM). The sum of the Sobol’s 1st order indexes 

is equal to 0.703. Second order effects for this output are important especially due to the interaction 

between Q2 and K2. There are also interactions of smaller relevance between Q2 and K3, between K3 

and K2, and between αr and KVs1. The Sobol total effects STi are generally larger and out of the intervals 

of the VARS estimates. 

αr shows the largest main effect Si for the piezometric head in well SPN1 at time t1 which is equal 

to 0.394. The second largest effect corresponds to KVs1 (see Table S7 in SM). The sum of the Sobol’s 1st 

order indexes is equal to 0.69. The total effects of the piezometric head in well SPN1 at time t1 are 

close to 1 (see Table S7 in SM). Second order effects for this output are relevant especially due to the 
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interaction between Q2 and K3. The Sobol total effects STi are overall higher and beyond the limits of 

the VARS estimates.   

The largest main effects Si for the piezometric head in well SPN1 at time t2 correspond to αr and 

SS (see Table S8 in SM). The sum of the Sobol’s 1st order indexes is equal to 0.655. The total effects of 

the piezometric head in well SPN1 at time t2 are slightly larger than 1 (see Table S8 in SM). Second 

order effects for this output are relevant especially due to the interaction between αr and KVs1. There 

are also smaller interactions of Q2 with K3 and with αr. The Sobol total effects are generally larger 

and out of the intervals of the VARS estimates. 

The largest main effects Si for the piezometric head in well SPN1 at time t3 correspond to αr and 

K3 (see Table S9 in SM). The sum of the Sobol 1st order indexes is equal to 0.679. The total effects of 

the piezometric head  in well SPN1  t3 are close to 1 (see Table S9  in SM). Second order effects are 

relevant mainly due to the interaction between αr and KVs1, and to a lower extent to the interactions 

of Q2 with K3 and αr. The Sobol total effects are generally larger and out of the intervals of the VARS 

estimates. 

The largest main effects Si for the global mean absolute error correspond to K3, Q2 and αr (see 

Tables S10 and S11 in SM). The sums of Sobol’s 1st order indexes calculated with SALib and GUI‐

HDMR are equal to 0.682 and 0.734, respectively. The total effect of the global mean absolute error 

computed with SALib is equal to that of GUI‐HDMR (see Tables S10 and S11 in SM). Second order 

effects for this output are important especially due to the interactions between Q2 and K3 and between 

K3 and K2. There are also interactions of smaller relevance between αr and KVs1, and between Q2 and 

K2. The SALib total effects STi fall within the intervals of VARS estimates or are slightly larger than 

VARS total effects.       

K3 shows the largest main effect Si for the global normalized root mean squared error which is 

equal to 0.245 (SALib). The second largest effect corresponds to Q2 (see Tables S12 and S13 in SM). 

The sums of the Sobol’s 1st order indexes calculated with SALib and GUI‐HDMR are equal to 0.675 

and 0.731, respectively. The total effects of the global normalized root mean squared error are close 

to 1 (see Tables S12 and S13 in SM). Second order effects for this output are relevant especially due 

to the interaction between K3 and K2, and between Q2 and K3. The total effects STi from SALib are 

either within the ranges of VARS estimates or slightly exceed the VARS total effects. 

The largest main effect Si for the global Nash–Sutcliffe index corresponds to K3. Q2 and K2 are 

in second and third position (see Tables S14 and S15 in SM). The sums of the Sobol’s 1st order indexes 

calculated with SALib and GUI‐HDMR are equal to 0.411 and 0.477, respectively. The total effect of 

the global Nash–Sutcliffe index computed with SALib is smaller than that of GUI‐HDMR (see Tables 

S14 and S15 in SM). Second order effects for this output are important especially due to the interaction 

between Q2 and K3. There are also interactions of smaller relevance between K3 and K2, between Q2 

and K2, and between αr and KVs1. The SALib total effects STi fall within the intervals of VARS estimates 

or are slightly larger than VARS total effects.   

The largest main effects Si for the computed aquifer/reservoir flux at time t1 correspond to KVs1 

and αr (see Tables S16 and S17 in SM). The sums of the Sobol’s 1st order indexes calculated with SALib 

and  GUI‐HDMR  are  equal  to  0.716  and  0.746,  respectively.  The  total  effects  of  the  computed 

aquifer/reservoir flux at time t1 are close to 1 (see Tables S16 and S17 in SM). The second order effects 

for this output are significant, particularly because of the interactions of KVs1 with αr, Ss, Q2 and K3. 

Additionally, there are less significant interactions between αr and K3, and between αd and K4. The 

Sobol total effects STi calculated by SALib are overall higher than the VARS estimates.     

The  largest main effect Si  for  the computed aquifer/reservoir  flux at  time  t2  is equal  to 0.362 

(SALib) and  corresponds  to SS  (see Table S18  in SM). The  sums of  the Sobol’s 1st order  indexes 

calculated with SALib and GUI‐HDMR are equal to 0.514 and 0.469, respectively. The total effects of 

the computed aquifer/reservoir flux at time t2 are greater than 1 (see Tables S18 and S19 in SM). For 

this output, the second order effects are notable, mainly due to the interaction between SS and KVs1. 

Sobol total effects STi and those of VARS estimates show clear discrepancies, especially for K1, K2 and 

Q7. 
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The  largest main  effect Si of  the  computed aquifer/reservoir  flux  at  time  t3  is  equal  to 0.626 

(SALib) and corresponds  to KVs1  (see Table S20  in SM). The sums of  the Sobol’s 1st order  indexes 

calculated with SALib  and GUI‐HDMR  are  0.812  and  0.819,  respectively. The  total  effects of  the 

computed aquifer/reservoir flux at time t3 are close to 1 (see Tables S20 and S21 in SM). Second order 

effects for this output are relevant to the interactions of KVs1 with αr, Ss, Q2, KVs3, K4 and K3. The Sobol 

total effects STi are generally larger and out of the intervals of the VARS estimates. 

The  largest main  effects  Si  for  the  average modulus  of  the Darcy  velocity  near well PS16C 

correspond to Q2 and K3 (see Tables S22 and S23 in SM). The sums of the Sobol’s 1st order indexes 

calculated with SALib and GUI‐HDMR are equal to 0.855 and 0.861, respectively. The total effects of 

the average modulus of Darcy velocity are slightly  larger  than 1  (see Tables S22 and S23  in SM). 

Second order effects for this output are relevant to the interaction between Q2 and K3. There are also 

smaller  interactions between Q2  and K2,  and between K3  and K2. The Sobol  total  effects  STi  are 

generally slightly larger and out of the intervals of the VARS total effects. 

The 1st and 2nd order interactions among input parameters can also be presented visually through 

heatmaps. Figure S1 in SM shows the heatmaps of the 1st and 2nd order HDMR Sobol effects for all 

the outputs. The analysis of the heatmaps confirms that: (1) The largest components correspond to 

the main effects (which have been conveniently located along the diagonal of each of the maps); and 

(2) Off‐diagonal terms corresponding to the 2nd order effects are important for all variables, especially 

the global Nash–Sutcliffe index and groundwater flow between aquifer and reservoir at time t2 due 

to the interactions between Q2 and K3 and between Ss and KVs1. 

3.2.4. HDMR Results for the VARS Runs by Using the Halton Sequence 

HDMR analyses can be performed reusing the simulations performed with the VARS‐Halton 

sequence. However, preliminary analysis of the main effects, Si and 2nd order effects, Sij, calculated 

with SALib show that most outputs have Sobol total effects STi that are consistently greater than 2, 

with some of them even reaching values of 3. Since the parameters are normalized, the sum of main 

and  interaction effects of any order should equal the total variance, which should theoretically be 

equal to 1. It should be noticed that the VARS procedure to locate the star centers is either the Halton 

or the Sobol sequences, both of which generate low‐discrepancy sequences [65]. They are intended to 

optimize quasi‐Monte Carlo approaches by maximizing the efficiency to fill the parameter hypercube 

with  sparsely  located points. As  the number of parameters  increases,  the  capacity of  the Halton 

sequence  [50]  to distribute points uniformly rapidly decreases  [65], while Sobol sequence  is more 

stable. This results in higher maximum errors of integration for high dimensional data related to the 

Halton  sequence. The Halton  sequence gives good quality, near uniform distributions when  the 

number of parameters is lower than 10 [65], as it was demonstrated recently in a reactive transport 

model for a high‐level radioactive repository in granitic rock [36]. 

3.3. Input Parameter Rankings 

Table 2 shows the rankings of the parameters for the computed piezometric heads in `well ST1C 

at  time t1 (ST1Ct1), global mean absolute error (MAEg), aquifer/reservoir  flux at time t1 (Qt1), and 

average groundwater Darcy velocity modulus (qav) across the following methods: IVARS50, VARS‐

TO  (equivalent  to  Sobol),  VARS‐ABE  (equivalent  to Morris), HDMR  (SALib),  GUI‐HDMR  and 

CUSUNORO plots. 

Table  2.  Ranking  comparison  of  sensitivity  results  across  various  methods  for  the  computed 

piezometric  head  in well  ST1C  at  time  t1  (ST1Ct1),  the  global mean  absolute  error  (MAEg),  the 

aquifer/reservoir flux at time t1 (Qt1), and the average groundwater Darcy velocity modulus (qav). 

Output  Methods  K1  K2  K3  K4  Ss  KVs1  KVs2  KVs3  αr  αd  Q6  Q7  Q9  Q2  Q1  rc  ru 

ST1Ct1 
VARS‐TO  17  4  1  6  13  3  8  7  5  9  16  11  14  2  10  12  15 

IVARS50  16  4  1  6  12  3  8  7  5  9  17  11  14  2  10  13  15 
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Output  Methods  K1  K2  K3  K4  Ss  KVs1  KVs2  KVs3  αr  αd  Q6  Q7  Q9  Q2  Q1  rc  ru 

VARS‐ABE  17  5  1  6  9  4  11  10  3  8  16  12  14  2  7  13  15 

SALib  17  5  1  10  6  3  13  7  4  8  15  12  14  2  9  11  16 

GUI‐HDMR  ‐  ‐  ‐  ‐  ‐  ‐  ‐  ‐  ‐  ‐  ‐  ‐  ‐  ‐  ‐  ‐  ‐ 

CUSUNORO  17  5  1  6  13  3  11  9  4  7  16  10  14  2  8  12  15 

MAEg 

VARS‐TO  14  3  1  7  16  5  8  6  4  9  17  12  13  2  11  10  15 

IVARS50  14  4  1  7  16  5  8  6  3  9  17  12  13  2  11  10  15 

VARS‐ABE  14  4  1  6  16  5  11  8  3  10  17  12  13  2  9  7  15 

SALib  14  5  1  6  17  4  12  7  3  10  16  11  13  2  9  8  15 

GUI‐HDMR  14  4  1  7  17  5  11  6  3  8  15  12  13  2  10  9  16 

CUSUNORO  14  5  1  6  17  4  12  7  3  10  16  11  13  2  8  9  15 

Qt1 

VARS‐TO  17  9  4  6  5  1  14  12  2  8  16  7  10  3  11  13  15 

IVARS50  17  9  4  6  5  1  14  11  2  7  16  8  10  3  12  13  15 

VARS‐ABE  17  11  5  7  4  1  14  13  2  8  16  6  12  3  9  10  15 

SALib  17  9  13  10  6  1  15  12  2  5  16  4  11  3  7  8  14 

GUI‐HDMR  17  9  5  8  4  1  14  13  2  7  16  6  11  3  10  12  15 

CUSUNORO  17  8  13  10  6  1  15  12  2  5  16  4  11  3  7  9  14 

qav 

VARS‐TO  4  3  2  7  16  5  9  10  6  8  17  14  13  1  11  12  15 

IVARS50  4  3  2  8  16  6  9  10  5  7  17  14  13  1  11  12  15 

VARS‐ABE  4  3  2  7  16  6  12  11  5  9  17  14  13  1  8  10  15 

SALib  4  3  2  9  16  6  13  10  5  8  15  17  12  1  7  11  14 

GUI‐HDMR  4  3  2  7  14  6  12  10  5  8  15  17  13  1  9  11  16 

CUSUNORO  4  3  2  8  17  6  13  11  5  9  16  15  12  1  7  10  14 

All the methods agree in identifying the most influential parameters for ST1Ct1, although they 

show different positions for some input parameters. The most influential parameters for ST1Ct1 are 

K3 and Q2. Q2 is the most influential parameter, followed by K3. 

Output MAEg shows similar results with the following order of ranking: (1) K3; (2) Q2; (3) αr 

(except for VARS‐TO); (4) K2 (except for VARS‐TO and SALib); and (5) KVs1 (except for SALib). GSA 

methods also agree on  the  ranking of  the  least  relevant  input parameters but  switching  in  some 

positions. 

The three most influential parameters for Qt1 are KVs1, αr and Q2. There are discrepancies among 

the methods  on  the  ranking  of  the  4th  and  5th  positions  (K3  and  SS).  SALib  reveals  the  highest 

discrepancy for Qt1 compared to the other methods for the parameters ranging from inputs relevance 

from 4th to 10th rank. 

All methods provide a similar ranking of the most influential parameters for qav. Q2 is the most 

influential parameter followed by K3. The third most influential is K2 and K1 is the fourth. αr is 

at  the 5th position and KVs1  is  the 6th most  influential parameter, except  for  the VARS‐TO method 

which interchanges the positions of these two parameters. 

Table S24 to Table S29 present the rankings of the parameters for all the outputs. For the most 

part, all methods agree in identifying the most and the  least relevant inputs for all outputs. Some 

methods switch the order within the most and within the least influential inputs. On the other hand, 

the inputs located at intermediate positions (from 5th to 13th place) show less consistency across the 

different GSA methods. Their ranking does not usually change more  than  three places, but some 

outputs show important differences (K4 for Qt3 ranges from 7th to 15th position; KVs2 for SPN1t3 ranges 

from 7th to 13th position).     
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The rankings of the input parameters derived from CUSUNORO curves for computed heads in 

wells ST1C, PS19B and SPN1 at  times  t1,  t2 and  t3 agree with  the  rankings of VARS and HDMR 

methods.  Unlike  the  Morris  method,  CUSUNORO  plots  are  well  suited  to  identify  the  most 

influential input parameters.   

4. Conclusions 

VARS and HDMR GSA of the groundwater flow model of the Gállego alluvial aquifer has been 

presented. Computed piezometric heads  in monitoring wells and aquifer/reservoir  fluxes change 

with time due to the tidal effect caused by the daily oscillations of the water level in the Sabiñánigo 

reservoir. Therefore, the sensitivities of the heads and fluxes change wit time. The results of the GSA 

lead to following conclusions: 

 The  most  influential  parameters  for  the  selected  outputs  are  consistently  detected  by  all 

methods. They include: K2, K3, KVs1, SS, Q2 and αr.   

 While some parameter inputs such as K3 and Q2 are relevant for all the outputs, other parameter 

inputs such as K1 and SS are influential only for some outputs   

 The sensitivity indexes of the computed heads in monitoring wells and aquifer/reservoir fluxes 

with respect to SS change with time   

 Sensitivity  indexes of  the calibration metrics are similar. MAEg  is  less prone  to model result 

outliers.   

 The average groundwater Darcy velocity near well PS16C depends mainly on  the boundary 

inflow Q2. 

 VARS achieves stable values for the most important and the least influential input parameters 

after 50 star centers, which amounts to 7700 runs. For other inputs, the robustness of the ranking 

does not increase monotonically with the number of star centers.   

 VARS and HDMR methods provide similar results in terms of rankings and significance of the 

most influential parameters. However, they show slight differences in the ranking of parameters 

of intermediate and low influence. The ranking of the least relevant variables with the different 

methods is less consistent.   

 Graphical methods  and HDMR  results  highlight  that  the most  important  input  parameter 

interactions  occur  between  SS  and  KVs1  for  groundwater  flow  between  aquifer/reservoir 

groundwater flux when the water level of the reservoir is high at time t2. 

Future work should be devoted to extending GSA to other model outputs such as aquifer/river 

fluxes, discharges underneath the dam foundation or aquifer/reservoir fluxes in other parts of the 

reservoir. In addition, an extension to more time‐dependent outputs is needed to capture the tidal 

effect caused by the reservoir on computed heads and aquifer discharges. The influence of extreme 

results on some calibration metrics could be overcome by using calibration metrics immune to the 

outliers, such as the median absolute deviation. Furthermore, ranges in some inputs could be revised 

as more data becomes available, and extreme  results are disregarded. On  the other hand, only a 

limited number of parameters are relevant for each output variance, and some inputs’ contribution 

to the variance of the results is negligible. It might be advisable to reduce the number of parameters 

and analyze further the results of the HDMR analyses for the Halton sequence. 

Parameter  ranking  is useful  to  identify  the most  and  the  least  influential  input parameters. 

However, parameter ranking only provides  information on  the ordering, not on  the values of  the 

sensitivity  indexes. The results presented  in  the preceding sections suggest  that most outputs are 

mostly sensitive to 5 input parameters. The impact on model outputs of the uncertainty of the least 

relevant parameters is almost irrelevant.   

Sensitivity indexes of the heads and aquifer/reservoir fluxes are time dependent due to the tidal 

effect of the Sabiñánigo reservoir. It might be advisable to include more time‐dependent outputs to 

capture the effect of the oscillations of the water level of the reservoir. The influence of extreme results 

on NRMSEg and NSEg could be corrected by using a median absolute deviation which is immune to 

outliers. Furthermore, ranges in some input parameters could be revised and updated as more data 

become  available.  There  are  no  reliable  data  on  the  boundary  inflow, Q2,  from  Sardas  landfill. 

Leachate estimations based on groundwater  flow models  range  from 17  to 32 m3/d. This range  is 
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much smaller  than  the range used  in  the GSA presented here. Moreover, recent monitoring wells 

closer  to  the  Sabiñánigo  reservoir  reveal  that  the  hydraulic  conductivity  of  the  aquitard  (silting 

sediments and alluvial silts) is very heterogeneous.     

GSA methods presented here provide a quantitative tool to assess the impact of the uncertainty 

of parameters on the groundwater flow model outputs in alluvial aquifers. The findings of this study 

can guide future management and data acquisition in polluted sites to reduce uncertainties related 

to the most relevant parameters. Moreover, these methods can guide future uncertainty analysis of 

the  total  dissolved  hexachlorocyclohexane  transport model  through  the Gállego  alluvial  aquifer 

presented in Sobral et al. [38].   

Supplementary Materials: The  following  supporting  information  can be downloaded at  the website of  this 

paper posted on Preprints.org, Figure S1: Heatmaps of the HDMR Sobol 2nd order effects for: (1) Hydraulic heads 

in wells PS19B, SPN1 and ST1C at time intervals t1, t2 and t3; (2) MAEg; (3) NRMSEg; (4) NSEg; (5) qav; (6) Qt1; 

(7) Qt2 and  (8) Qt3. The map visualizes both main and second order effects; Tables S1  to S23: 1st order  (main 

effects), Si, and 2nd order effects, Sij, calculated with SALib and gui‐HDMR of each output for the Sobol sequence. 

The  largest 2nd order effects Sij, are  listed  in  the off‐diagonal boxes. Parameter rankings are  indicated within 

brackets. Total effects (Si + Sij) are compared to the VARS interval total effects for each parameter); Tables S24 to 

S29: Ranking of the influence of parameters for each output. 
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