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Abstract: Groundwater flow and transport models are essential tools for assessing and quantifying the
migration of organic contaminants at polluted sites. Uncertainties in the hydrodynamic and transport
parameters of the aquifer have a significant effect on model predictions. Uncertainties can be quantified with
advanced sensitivity methods such as Sobol’s High Dimensional Model Reduction (HDMR) and Variogram
Analysis of Response Surfaces (VARS). Here we present the application of VARS and HDMR to assess the
global sensitivities of the outputs of a transient groundwater flow model of the Gallego alluvial aquifer which
is located downstream the Sardas landfill in Huesca (Spain). The aquifer is subject to the tidal effects caused by
the daily oscillations of the water level in the Sabifidnigo reservoir. Global sensitivities are analysed for
hydraulic heads, aquifer/reservoir fluxes, groundwater Darcy velocity and hydraulic head calibration metrics.
Input parameters include aquifer hydraulic conductivities and specific storage, aquitard vertical hydraulic
conductivities, and boundary inflows and conductances. VARS, HDMR and graphical methods agree to
identify the most influential parameters which for most of the outputs are the hydraulic conductivities of the
zones closest to the landfill, the vertical hydraulic conductivity of the most permeable zones of the aquitard,
and the boundary inflow coming from the landfill. The sensitivity of heads and aquifer/reservoir fluxes with
respect to specific storage change with time. The aquifer/reservoir flux when the reservoir level is high shows
interactions between specific storage and aquitard conductivity. VARS and HDMR parameter rankings are
similar for the most influential parameters. However, there are discrepancies for the less relevant parameters.
The efficiency of VARS was demonstrated by achieving stable results with a relatively small number of
simulations.

Keywords: VARS; HDMR; global sensitivity analysis; groundwater flow model; tidal effect; Sardas

1. Introduction

Groundwater flow and transport numerical models are used to simulate the migration of
persistent pollutants in contaminated sites. The relationship between input and output variables of
these models over the entire range of input values is non-linear. Numerical models are subject to
numerous uncertainties which hinder the groundwater and contaminant transport modeling.
Quantifying the impact of these uncertainties is crucial to improve the accuracy of model predictions
[1,2]. Uncertainty in groundwater models may arise from different sources, including: (1) The lack of
hydrogeological and hydrodynamic data in the study area; (2) Experimental and data measurement
errors; (3) Conceptual or mathematical model oversimplification; (4) Heterogeneity of the
hydrodynamic parameters; (5) Boundary conditions; (6) Sparse estimations of aquifer properties
derived from tests; and (7) Scale effects [3-9].

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.
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Sensitivity analysis provides a powerful tool to evaluate the impact of uncertainties in input
parameters on model outputs and identify the most influential parameters. Measures of sensitivity
can be local or global. Local sensitivity methods quantify the sensitivity of the model to one-at-a-time
changes in parameters around a reference set of parameters [10-14]. On the other hand, Global
Sensitivity Analysis (GSA) evaluate the model sensitivity for wide ranges of parameter and quantify
also the interactions among input parameters [15-17].

Graphical methods are often used in the first steps of the sensitivity analysis. Scatterplots or tow-
variable plots of an output versus an input parameter can be useful sometimes for identifying
parameter interactions. Some graphical methods are based on the analysis of the cumulative sum of
the normalized reordered model output (CUSUNORO) curve plots [18]. CUSUNORO curves provide
a compact and fast way to rank the input parameters, identify the sign of the parameter sensitivity,
assess the monotonicity of the dependence of the input parameter and the output, and identify
nonlinear relationships.

The method of Morris “elementary effects” is a derivative-based method which consists on
perturbing each parameter independently and averaging either the partial finite differences [19] or
their absolute values [20]. The method of Morris and its variants are often used to identify and discard
the least influential parameters. Morris method is less reliable in determining the most relevant
parameters [21].

Variance-based methods such as the Sobol method also known as High Dimensional Model
Representation, HDMR, are useful to rank the relevance of input parameters [22], quantify their
importance and identify parameters having linear additive effects or nonlinear interactive effects
[4,23]. The Sobol method has been found useful to study the uncertainties of groundwater flow and
solute transport models [3,4]. However, several studies have highlighted some challenges related to
variance-based GSA implementation for complex numerical models [4]. Morris and Campolongo
methods [19,20] do not address the dependencies between various sources of uncertainty [4].
Furthermore, sampling size and extreme results can hinder the identification of uncertainty by using
the Sobol indexes [24]. Variance-based methods require many model simulations with high
computational cost to evaluate the variance of the outputs [4,24]. This is especially challenging when
considering high-dimensional spatially-distributed inputs such as hydraulic conductivity, areal
recharge and boundary fluxes [4]. In addition, variance-based methods assume that the uncertainty
of the model outputs is fully characterized by its variance [25]. The ranking of the influential
parameters based only on Sobol indexes may exclude important information [26].

Morris and HDMR methods require a sufficiently large number of model simulations to achieve
reliable results. Running thousands of simulations of complex numerical models can be challenging.
Alternative solutions have been proposed such as the Variogram Analysis of Response Surfaces
(VARS). VARS is a GSA method based on the properties of variograms [27,28]. It combines local
sensitivities such as those coming from derivative-based Morris methods and variance-based
approaches such as HDMR [29]. Therefore, Morris and Sobol methods are particular cases of VARS.
The spatial structure of model outputs and the sensitivity analysis across a wide range of scales are
characterized from the directional variograms of the model outputs [27]. According to Razavi and
Gupta (2016), VARS is between 1 and 2 orders of magnitude more efficient compared to the Sobol
method, while still providing consistent results [28]. This efficiency derives from reducing the
number of elementary effects used to compute the total-order index in a given number of simulations
[30]. The reduction to explore the input space is compensated when the model is dominated by main
effects (as most physical models are) by using a star-based sampling design [30]. In addition, VARS
provides metrics that accurately estimate Sobol total-order effects [28] and, for high-dimensional
complex models, VARS estimators achieve a high performance even for a low number of runs [30].

GSA methods have been used to quantify the output uncertainties caused by parameter
uncertainties for hydrogeological models. Malaguerra et al. [31] applied the Morris method to rank
the influence of parameters in a tracer test. Zou et al. [32] proposed a surrogate model to improve the
computational efficiency of the analysis and to approximate the results of a numerical contaminant
transport model. The most influential parameters identified with VARS were the hydraulic
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conductivity, the recharge and the porosity. The Sobol analysis of a synthetic heterogeneous phreatic
aquifer contaminated by chlorobenzene [33] concluded that the contaminant distribution in the
aquifer depends mainly on: (1) Transverse coordinate of the contamination source; (2) Porosity; (3)
Hydraulic conductivity; (4) Hydraulic gradient; and (5) Longitudinal and transverse dispersivities.
Wang et al. [34] presented a GSA of a groundwater flow model of a colluvial landslide. The results
highlighted the importance of selecting an appropriate range of input parameters [34].

Using more than a single GSA method is advisable to increase the confidence in the ranking of
input parameters [21,35]. Mishra et al. [35] presented the application of two GSA methods to a
synthetic groundwater flow model and a groundwater flow and transport model of a nuclear testing
site. The two GSA methods provided consistent results and supplemented one another for both
models. VARS and HDMR methods were applied recently to a reactive transport model of a high-
level radioactive waste repository in a granitic host rock [36]. The study concluded that parameter
rankings of both methods are nearly identical for the 5 input parameters.

The Sardas site is near the Sabifanigo (Huesca, Spain) reservoir and is heavily affected by
lindane and its degradation products released from the Sardas landfill which contains solid lindane
production wastes and chlorinated organic contaminants forming a dense non-aqueous phase liquid
(DNAPL) [37]. The Sabifianigo reservoir fluctuations produce a tidal effect on the piezometric heads
of the alluvial aquifer [38]. Understanding the dynamics of the tidal effect and the aquifer/reservoir
interactions is crucial for quantifying groundwater and contaminant fluxes and proposing
remediation techniques. Sobral et al. [38] presented a two-dimensional horizontal groundwater flow
model through the Gallego alluvial aquifer. The model reproduced the oscillations of the piezometric
head in the aquifer caused by the Sabinanigo reservoir. The groundwater flow model of the Gallego
alluvial is subject to uncertainties in aquifer and aquitard parameters, boundary fluxes and recharge
rates. The local sensitivity analysis presented by Sobral et al. [38] was useful to identify the most
influential parameters for hydraulic heads in the aquifer. However, their sensitivity analysis was
limited to the combination of parameter values corresponding to the calibrated conditions and did
not account for the interactions among parameters. The limitations of the local sensitivity analysis
are overcome here by performing global sensitivity analyses by using VARS and HDMR methods.
Input uncertain parameters include (1) Aquifer parameters; (2) Aquitard vertical conductivities; (3)
Boundary inflows; 4) Conductances or leakage coefficients for aquifer/river and aquifer/dam
interactions and 5) Areal recharge. The outputs include the computed piezometric heads in 3
monitoring wells, calibration metrics, aquifer/reservoir fluxes, and the average groundwater Darcy
velocity modulus. HDMR and VARS methods are used to: (1) Identify the most influential input
parameters on the model outputs; and (2) Quantify parameter interactions. The paper starts by
describing the study area and the groundwater flow model. Then, the global sensitivity methods
(VARS and HDMR) are presented, and the input and output variables are listed. GSA results and
discussion are presented afterwards. The paper ends with the main conclusions.

2. Materials and Methods
2.1. Methodological Framework

The methodology used in this study is outlined in Figure 1. A conceptual model was developed
based on the analysis of the study area, available hydrogeological and hydrodynamic data, the initial
and boundary conditions, and material zones as defined in Sobral et al. [38]. A finite element mesh of
triangular elements was used to solve the partial differential equations of groundwater flow [38].
Uncertainties in model input aquifer and boundary parameters lead to uncertainties in model
outputs. Thus, global sensitivity analysis methods (VARS and HDMR) are employed here to rank the
most important input parameters, quantify the contribution of each parameter to the variance of the
results, and quantify uncertainties in model outputs. The input parameters were selected first
together with their ranges and probability distribution functions. Ns simulations of groundwater flow
were performed with CORE?P for the selected combinations of input parameters. The outputs of the
flow model were postprocessed to generate the tables containing the Ni input parameters and No
outputs. A Halton sequence was selected to generate the input parameters for the VARS analysis and
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a Sobol sequence was adopted for the HDMR analysis. VARS and HDMR results were compared in
terms of parameter rankings (Table 1).

Input parameters Numerical model LT Postprocessin,
preprocessing Input files Computed heads B 5
. Code: CORE?P Calibration metrics
pdf standardized Computed flows

VARS results
Variograms

Halton sequence
simulations

VARS analysis

Table with N, rows and N;
+ N, columns

Sensitivity indices

Ranking

Parameter ranking
N, = Number of simulations
Tables for each method N, = input parameters

Analysis of interactions N, = model outputs

HDMR results
1st order effects

Sobol sequence

HDMR analysis ) 1
simulations

SALib
GUI-HDMR

nd
214 order effects Table with N, rows and N,

+ N, columns

Total effects

Figure 1. Flowchart of the methodology used in this study.

Table 1. Ranges and statistical distributions of the input parameters.

Parameter Minimum Maximum Unit Distribution
Aquifer conductivity K1 10 10° m/d Log-uniform
Aquifer conductivity K2 10 108 m/d Log-uniform
Aquifer conductivity K3 10 103 m/d Log-uniform
Aquifer conductivity K4 10 10° m/d Log-uniform

Storage coefficient Ss 105 108 1/m Log-uniform
Aquitard conductivity Kvsi 108 1 m/d Log-uniform
Aquitard conductivity Kvs 103 1 m/d Log-uniform
Aquitard conductivity Kvss 10+ 101 m/d Log-uniform

Leakage coefficient ar 10 103 m?/d Log-uniform

Conductance au 1 100 m?/d Log-uniform

Boundary inflow Qs 3:103 0.05 m3/d/m Uniform

Boundary inflow Q 2:103 0.20 m3/d/m Uniform

Boundary inflow Qy 0.25 1.00 m3/d/m Uniform

Boundary inflow Q: 1.70-10 1.70 m3/d/m Uniform

Boundary inflow Qi 2:103 101 m3/d/m Uniform

Recharge 1. 5 200 mm/year Uniform
Recharge ru 20 401.5 mm/year Uniform

2.2. Site Description

The study area is located in Sabifidnigo (Huesca, Spain) where a lindane-producing factory
(INQUINOSA) operated from 1975 to 1992 on the right bank of the Sabinanigo reservoir [39] (Figure
2). The Sabinanigo dam was built in the Gallego River course in 1963 to provide enough hydroelectric
power to chemical factories [38]. INQUINOSA deposited solid and liquid hexachlorocyclohexane
(HCH) wastes in an uncontrolled manner in the Sardas landfill until approximately 1984 [39]. The
landfill is located in the left bank of the Gallego river at 500 m from the Sabifianigo reservoir.


https://doi.org/10.20944/preprints202408.0551.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 8 August 2024 d0i:10.20944/preprints202408.0551.v1

Sabifanigo

40°N SPAIN

PORTUGAL

MOROCO ALGERIA

(a) (b)

Figure 2. (a) Location of the study area; (b) enlargement showing the model domain, the Sabifidnigo
reservoir, the Sardas landfill, the Gallego river course and the INQUINOSA former production site.

The floodplain of the Gallego River downstream the Sardas landfill is heavily affected by HCH
wastes. By the 1980s, the Sardas landfill was completely filled with urban, construction, and
industrial solid wastes including lindane production wastes (between 3-10* and 8-10* tons of solid
HCH wastes) [39]. Since the landfill lacks a bottom liner system [39], DNAPL and leachates flowed
freely from the landfill into the alluvial of the Gallego river until 1995. In addition, during the
construction of the road N-330 in the early 1990s, 50 000 m? of landfill wastes were deposited on the
ground surface of the alluvial plain [40]. In 1995, the landfill was sealed superficially with a PEAD
sheet and laterally with a front slurry wall. However, the slurry wall does not prevent leachates from
flowing into the alluvial aquifer [38,41].

The alluvial of the Gallego river consists of quaternary silts overlying a layer of sands and
gravels. The Larrés marls underlie the quaternary sediments of the Gallego river alluvial [40]. A
geological profile across the Sabinanigo reservoir and the Gallego river floodplain is presented by
Sobral et al. [38]. The sands and gravels are much more permeable than the silts and the marls [42].

Liquid HCH wastes were detected downstream the Sardas landfill in 2009 [37], prompting
hydrogeological and chemical studies aimed at identifying groundwater contaminant sources and
proposing treatment options [39]. DNAPL has migrated by gravity through the alluvial due to its
high density [43], and is mainly located on top of the marl layer [42] and inside its fractures [44]. This
poses a significant risk since the aquifer and the reservoir are partially connected [38].

The layer of alluvial sands and gravels is confined by quaternary alluvial silts. Since its
construction, the reservoir has undergone a siltation process [45] which deposited silting sediments
and reducing greatly the reservoir capacity [38]. The alluvial silts and silting sediments act as an
aquitard and play the role of a barrier for pollutants by retaining and slowing the arrival of
contaminants to the reservoir [38]. However, the presence of DNAPL and HCH sorbed in the soil [42]
constitutes a persistent source of organic pollutants.

2.3. Conceptual Model

The groundwater flow model presented here focuses on the alluvial aquifer downstream the
Sardas landfill with a large presence of solid and liquid HCH wastes. According to the monthly
chemical analyses by the Ebro River Authority, the Sabifianigo reservoir is the main receptor of
chlorinated organic contaminants in the Sardas site.

The model assumes that the aquifer recharges through rainfall infiltration, from the surrounding
fluvioglacial terraces on the right bank and from the Larrés marls on the left bank (Figure 3). The
hydraulic conductivity of the sands and gravels layer is extremely large compared to that of the silts,
silting sediments and marl formations. Therefore, groundwater flow takes place mostly through the
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sands and gravels of the alluvial and discharges into the Gallego river, the Sabifidnigo reservoir and
underneath the Sabifidnigo dam in the downstream part of the study area. The tidal effect caused by
the reservoir water level fluctuations has a significant effect on water transfer between the alluvial
aquifer and the reservoir [38,46]. Aquifer groundwater flows from the aquifer into the reservoir for
normal and low reservoir water levels. However, the flow reverses when the reservoir level rises above
the piezometric head in the aquifer [38]. The sands and gravels located underneath the Sabifidnigo
reservoir are assumed to be confined by the reservoir silting sediments and the alluvial silts.

PS26
STiB

= STICE RS 6

Oy

@® Monitoring wells

[ sardas landfill

[ Maximum water level flood area (Kyey, Kyes)
Former course of the Gallego river (Kys1)
Gallego river course (a;)

Recharge in unconfined aquifer (r,)
Material zones

Il K1

I K2

K3

I K4

Figure 3. 2D finite element mesh, monitoring wells, material zones, boundary conditions, and GSA
input parameters (top plot) and enlargement showing the area downstream the Sardas landfill
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(bottom plot). The confined storage coefficient (Ss) is the same in the four material zones. The sands
and gravels are assumed to be confined in the alluvial (rc), except in the wooded areas (ru). Unconfined
areas are shown with a back hashed polygon.

2.4. Numerical Groundwater Flow Model

The numerical model presented here is an updated version of the groundwater flow model
through the Gallego alluvial aquifer reported in Sobral et al. [38]. Contour maps of thickness of the
geological formations were slightly improved by incorporating information from recently drilled
wells. Leakage coefficients for the aquifer/reservoir interactions were also updated.

The limits of the model domain include the right bank of the Gallego river along the west, the
left bank of the river where the Sardas landfill is located, and the Sabifidnigo dam. The northern limit
is located about 500 m north of the tail of the Sabifianigo reservoir (Figure 3). The model was
performed with a non-uniform finite element mesh of triangular elements made of 4399 nodes and
8655 elements (Figure 3). Groundwater flow simulation spans 109 days, starting July 15, 2020 and
ending on October 31, 2020. Time increments are all equal to 30 minutes. This time increment is equal
to the frequency of the automatic reservoir level measurements.

Aquifer inflows include recharge from rainfall infiltration which was estimated with a
hydrological water balance model [47], and inflows along the boundaries in both left and right banks,
These inflows were simulated with a Neuman condition [38]. River/aquifer, reservoir/aquifer and
aquifer/dam interactions were simulated with Cauchy conditions as described by Sobral et al. [38].

2.5. Global Sensitivity Methods
2.5.1. Graphical Methods

Graphical methods provide a simple, compact and informative tool to study global sensitivities.
They are especially adequate for communicating results. They provide a good compromise between
the complexity of other methods and compactness [48]. Two-variable interaction plots are helpful to
identify visually parameter interactions.

The method of cumulative sum of the normalized reordered model output (CUSUNORO) curve
plots condenses in a compact form the sensitivity of an output, y, to a set of input parameters [18].
The CUSUNORO curve function, z(i), is the scaled cumulative sum of the ordered residuals of the
output, y, [18] and is given by:

i
1
o0 = e ]Z e =) M
where ¥ and S, are the sample mean and standard deviation of the outputs, respectively, n is
sample size or the number of simulations, and (J(;; — ¥) is the j-th ordered residual. The function
z(i) can be interpreted based on the following terms: (1) A divisor term or scaling factor,/n, which
guarantees that the cumulative sum is scaled relative to the sample size n; (2) A divisor term S,,,
(standard deviation) which ensures that z(i) is dimensionless and standardized; and (3) A summation
term representing the cumulative sum of the deviations of the ordered output values from the mean

y.

2.5.2. Sobol Method

The High Dimensional Model Representation (HDMR) method evaluates the input-output
relationships of complex models with many input parameters [22]. The Sobol method for global
sensitivity analysis requires to compute complex quadratures in a high dimensional space. Random
and quasi-random rules are usually applied, which involve a set of sample points where model
outputs are analyzed. The input parameters are normalized to range from 0 to 1.

The variance of the output is split as the sum of non-negative variance terms, each associated
with combinations of input parameters [22]. Sobol indexes quantify the combined contributions of
the input parameters to the variance of the output. The first-order sensitivity index or "main effect”


https://doi.org/10.20944/preprints202408.0551.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 8 August 2024 d0i:10.20944/preprints202408.0551.v1

index, Si, measures the relative individual contribution of the i-th input variable on the variance of
the output. The second order sensitivity indexes, Sj, measure the interactions between the i-th and
the j-th inputs on the output variable [22]. Both terms, Si and Sy, are usually provided by HDMR
software packages. The total sensitivity index, or total-effect index or total-order index, Sm, is a
measure of the total contribution of the i-th input to the output variance [51-53], including all the
interactions with the rest of the inputs of order k ranging from 2 to n. Its expression is given by:

Sri =8; + ZSU + Zsijk + Z Sij..n (2)
7 .k ot

2.5.3. Variogram Analysis of Response Surfaces

The variogram analysis of response surfaces (VARS) is a method of characterizing the structure
and variability of model outputs within the input parameter space [27]. VARS computes several
global sensitivity metrics, including Morris and total sensitivity Sobol indexes by using a tailored
sampling strategy [27]. VARS star-based sampling strategy requires all input parameters to be
normalized to range between 0 and 1. Then, the star centers are selected by using a random sampling
strategy. A cross section of equally spaced points with a selected resolution Ah is performed for each
star center and for each input variable. Each set of points constitutes a “star”. There are different
methods to sample the star centers [49]. The Halton sequence was selected for this study [50]. The
output variables are calculated at all points for all stars. Directional variograms and covariograms
are calculated along the lines of the input parameters.

Like other GSA methods, VARS requires performing a sufficiently large number of model
simulations to obtain estimates of the directional variograms for each input variable. The variograms
along the directions of the parameters provide the sensitivity indexes of the GSA. The limit of the
directional variogram divided by h? as h approaches 0, corresponds to Campolongo's version of the
Morris effects [28]. On the other hand, the limit of the variogram for large h corresponds to the total
variance linked to the Sobol total effect or total sensitivity index [30].

Morris and Sobol methods are limiting cases of VARS. The directional variograms of VARS
provide metrics that accurately estimate Sobol and Morris indexes [27]. In addition, VARS calculates
the Integrated Variogram Across a Range of Scales index (IVARSs). IVARSso provides a sensitivity
index corresponding to intermediate scales and is calculated from the directional variograms
according to:

05
IVARSs, = f y(h) dh ©)]
0
where y(h) is the directional variogram and h is the normalized input parameter. It should be
recalled that the VARS method requires that all the input parameters are normalized to range from 0
tol.

2.6. Inputs and Outputs

The input parameters considered in the GSA include (Figure 3): (1) The hydraulic conductivities
of the aquifer in four material zones which were defined to account for the spatial heterogeneity of
the alluvial aquifer (K1, K2, K2 and K4); (2) The aquifer specific storage (Ss); (3) The vertical hydraulic
conductivities of the aquitard interposed between the aquifer and the reservoir which includes the
silting sediments settled along the former course of the Gallego river (Kvs1), the silting sediments in
the rest of the reservoir (Kvs2) and the alluvial silts (Kvss); (4) The leakage coefficients of the
aquifer/river interactions (ar) and the conductance for the flow underneath the dam (aa); (5) Aquifer
recharge rates from precipitation in confined (rc) and unconfined (rv) parts of the aquifer; and (6)
Boundary inflows (Qs, Q7, Qo, Q2 and Q1) (Figure 3). The ranges and statistical distributions of the
input parameters are listed in Table 1. Log-uniform probability density functions were used for the
hydrodynamic parameters and leakage coefficients, and uniform distributions were adopted for
recharge rates and boundary inflows (Table 1).
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The output variables considered in the analysis include the global mean absolute error in
hydraulic heads (MAEg), the global root mean square error in hydraulic heads normalized by the
standard deviation of the measured head data (NRMSEg) and the global Nash-Sutcliffe index [54]
(NSEg) of the head residuals (measured minus computed heads) at 8 monitoring wells (Figure 4).
Other output variables include the computed piezometric heads in wells ST1C, PS19 and SPN1 at 3
selected times, t1, t2 and t3, which correspond to an event of sudden rise of the reservoir water level
which took place from September 18, 2020 at 20:30 to September 19, 2020, at 04:30 (Figure 5). The
heads in these 3 wells at the 3 selected times are denoted as ST1Cu, ST1Cr, ST1Cis, PS19Bu, PS19Be,
PS19Bis, SPN1u, SPN1e and SPN1s. Other output variables include the aquifer/reservoir fluxes at
times t1, t2 and t3, which are denoted as Qu, Qe and Qs, and the average modulus of the Darcy
velocity n'ezvar‘wel’l PS16C where a tracer test was performei (qav)-

| e

A

® Monitoring wells
[ Model domain
[ Reservoir flood area

Figure 4. Map showing the reservoir tail area (hashed blue polygon) where aquifer/reservoir fluxes
were calculated at times t1, t2 and t3, the monitoring wells whose piezometric data were used to
calculate the calibration metrics, monitoring wells ST1C, PS19B, SPN1 and PS16C (where the average
Darcy velocity is computed).
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Figure 5. Measured reservoir hydrograph and piezometric heads in well ST1C from September 18,
2020, to September 20, 2020. The computed piezometric heads in monitoring wells ST1C, PS19B and
SPN1 and the aquifer/reservoir fluxes are analyzed at the following times: 1) t1, September 18, 2020,
20:00 (low reservoir water level), 2) t2, September 18, 2020, 22:30 (peak reservoir water level) and 3)
t3, September 19, 2020, 04:30 (descending reservoir water level).

The model head residuals were calculated as the differences between measured and computed
heads using recorded piezometric head data from ST1B, ST1C, ST2, SPN1, PS16C, PS19B, PS25B, and
PS26 wells. The mean absolute error (MAE), the root mean squared error normalized by the standard
deviation of the measured data (NRMSE), and the Nash-Sutcliffe index (NSE) were computed for
each well (j). The metrics were globalized to evaluate goodness of fit in the eight wells equipped with
divers:

5, MAE,
NW

1 2
|- 2 RMSE; -
NRMSE, =

ar

MAE, = (4)

%, Nyof (NSE; — 1)

NSE, =1+
9 NT‘O-%

(6)

where:

e N, is the number of monitoring wells

e N is the number of measured piezometric heads in the j-th well

e Ny is the total number of measured piezometric heads in all the wells

e  0; is the standard deviation of the measured piezometric heads in the j-th well

e  MAE;, RMSE; and NSE; are the mean absolute error, the root mean squared error and the
Nash-Sutcliffe index for the j-the well,

e oy is the standard deviation of the measured piezometric heads in all wells

2.7. Global Sensitivity Simulation Runs

Global sensitivity simulation runs were generated by using two different sequences. A first set
of 30 800 runs were prepared for VARS by using the Halton sequence to generate the sequence of star
centers [50]. The second sequence of 16 384 runs was obtained by using the Sobol method [55]. The
runs were performed at the Galician Supercomputing Center (CESGA).
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2.8. Software

Model simulations were performed with CORE?*® V5, a finite element code for transient
saturated and unsaturated water flow and heat transport in heterogeneous and anisotropic porous
and fractured media [56]. The code solves for groundwater flow and solute transport by using
Galerkin triangular finite elements and an Euler time discretization scheme. CORE?® V5 has
undergone extensive verification against analytical solutions and has been benchmarked against
other reactive transport codes [57,58]. CORE?PV5 has been used extensively for modeling
groundwater flow and solute transport in aquifers and lab and in situ experiments [59,60].

The single processor code CORE? V5 was compiled at the CESGA by using the FinisTerrae-III
supercomputer [61,62]. This advanced computing infrastructure supports the concurrent execution
of hundreds of simultaneous and parallel model runs. The simulation of the VARS-Halton and Sobol
sequences runs took 6 days of computing wall time. The same task would have taken more than three
years running on a personal computer.

VARS version 2.1 was run under MATLAB® version 2022a in an UBUNTU 20.04.6 LTS system.
HDMR computations were carried out by using both SALib [63] and GUI-HDMR V1.1 [64].

3. Results and Discussion
3.1. Groundwater Flow Model Results

The computed hydraulic gradient at the Sardas site downstream the landfill is very small due to
the large hydraulic conductivity of the layer of sands and gravels, and the small groundwater inflows
[38]. The daily fluctuations of the reservoir water level induce a tidal effect on the piezometric heads
of the aquifer. The fluctuations in the aquifer are damped and delayed because the aquitard acts as a
dumping barrier between the reservoir and the aquifer [38]. The amplitude of the oscillations of the
piezometric heads, An and the time lag, tr, are very sensitive to the specific storage coefficient of the
layer of sands and gravels (Ss), and the vertical hydraulic conductivities of the aquitard (Kvsi, Kvs2
and Kvss) [38].

The reservoir water level oscillates between 764.31 m and 765.43 m daily in the modelling
period. The average water level in the reservoir (764.80 m) is slightly smaller than the piezometric
head in the aquifer (764.90 m). Groundwater generally flows from the aquifer to the silting sediments
and the alluvial silts of the reservoir. However, when the reservoir water level rises above the
piezometric head in the aquifer, the Sabifianigo reservoir recharges the aquifer, resulting in a rise in
piezometric heads. The modulus of the Darcy velocity in the aquifer decreases during these high-
reservoir water level events. If the duration of the high water level is long enough, the direction of
groundwater flow may reverse near the reservoir [38,41].

3.2. GSA Results for the Groundwater Flow Model of the Gdllego Alluvial Aquifer
3.2.1. Graphical Methods

Two-variable scatterplots are useful to identify and illustrate the interactions of two input
parameters. Figure 6 shows two-variable scatterplots of the computed heads in 3 monitoring wells s
(outputs ST1Cx, PS19Br and SPN1e) and the aquifer/reservoir flow (Qe) at time t2 corresponding the
peak reservoir water level. The outputs are plotted versus the vertical conductivity of the aquitard
(Kvs1). These plots correspond to the 16 384 runs of the Sobol sequence. The clouds of plots are shown
for the following three ranges of percentiles, p, of the specific storage coefficient (Ss): 1) p <30%; 2)
30% < p <70% and 3) p >70%.

The scatterplots show that the computed heads and the aquifer/reservoir flow at time t2 depend
on Ss. Generally, the computed piezometric heads in wells ST1C and SPN1 at t2 are low for large Ss
(p > 70%). However, simulations corresponding to extreme values of other input parameters result
in high piezometric heads even for high values of Ss. On the other hand, the computed heads are
higher when Ss is in the lower percentile (p <30%). It should be noticed that the well PS19B is located
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further away from the reservoir, and thus, its piezometric head is less affected by the interaction

between Kvs1 and Ss.
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Figure 6. Scatterplots of the computed piezometric heads in wells ST1Ct2 (upper left plot), PS19Bt2
(upper right plot), SPN1t2 (lower left plot), and Qt2 (lower right plot) versus the vertical hydraulic
conductivity of the silting sediments in the former river course (Kvs1). The sample of 16384 points
was generated with a Sobol sequence. The clouds of plots are shown for the following three ranges of
percentiles, p, of the specific storage coefficient (Ss): 1) p < 30%; 2) 30% < p <70% and 3) p > 70%.

The scatterplot of Qe shows three branches. The most negative flows, which correspond to
aquifer discharge into the reservoir, at time t2 are associated with low values of Ss (p < 30%) while
the largest positive water flows (flow from the reservoir into the aquifer) occur for high Ss values (p
>70%). The water flow oscillates from positive (aquifer recharge) to negative (aquifer discharge) for
intermediate values of Ss (30% < p < 70%). The amplitude of the oscillations of the piezometric heads
in the aquifer, An, is inversely proportional to the value of the specific storage of the aquifer. When
Ss is low, An is large and the piezometric heads in the alluvial increase quickly and may rise above
the reservoir water level, thus leading to groundwater discharge to the reservoir. On the other hand,
when Ss is large, An is small and the piezometric heads increase slowly. Here, piezometric heads can
hardly rise above the reservoir water level during the events of rise of the reservoir water level, Then,

the reservoir recharges the aquifer.
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Figures 7 and 8 show CUSUNORO curves for computed heads in wells ST1C, PS19B and SPN1
at times t1, t2 and t3 and MAEg, NRMSEg, NSEg, Qu, Qu, Qs and qav.

From the CUSUNORO curves above, parameters K3 (green), (2 (red), and K2 (orange)
consistently exhibit the highest maximum absolute values across all hydraulic head plots, except for
the hydraulic head at well SPN1, where parameters a: (yellow), Kvsi (brown) and Ss (purple) are more
influential. Qs (blue) and K1 (blue) typically show the lowest maximum absolute values (not shown
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Figure 7. CUSUNORO curves of computed head in wells ST1C and PS19B at times t1, t2 and t3; and
well SPN1 at times t1 and t2.

The most influential parameters across all performance metrics (MAEg, NRMSEg and NSEg) are
K3, Qz, K2 and a:. Qs and Ss exhibit lower values. Parameters o, Kvst and Q2 have the largest influence
on the aquifer/reservoir fluxes except at time t2, Qu. At time t2, Ss is the most influential parameter.
Again, Q6 and K1 consistently show the smallest influences.

(%, K3 and K2 have the highest influence on the average groundwater Darcy velocity modulus
near well PS16C, while Qs and Ss are the least influential parameters for this output.
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Most of the CUSUNOTO curves do no shot crossings of the x-axis. This attests the means the
monotonicity of the outputs versus the input parameters. Some crossings of the x-axis are found in
the curves of the least influential parameters, especially for Qs and K1 (not shown here).
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Figure 8. CUSUNORO curves of the computed head in well SPN1 at time t3, MAEg, NRMSEg, NSEg,
Qu, Qu, Qi and qav.

3.2.2. VARS Results

Figures 9 and 10 show the IVARSs indexes for the global mean absolute error (MAEg), and the
average groundwater Darcy velocity modulus (qav) as a function of the number of star centers. They
also show the ranking of the input parameters and the robustness of ranking. It should be noticed
that IVARSso achieves stable values after just 50 star centers, which amounts to 7700 runs. The largest
sensitivity indexes for MAEg correspond to the aquifer hydraulic conductivity in material zone 3
(K3), the boundary inflow Q: which corresponds to groundwater flow coming from the Sardas
landfill, the vertical conductivity of the silts (Kvs1) and the aquifer/river conductance (o). IVARSso of
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the Darcy velocity, qav, is largest for Qz, K3 and K2. The rest of the parameters have much smaller

indexes.
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Figure 9. IVARSs indexes of input parameters as a function of the number of star centers for MAEg

(upper plot), and robustness of ranking as a function of the number of star centers (bottom plot).
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The robustness of ranking of input parameters K2, K3, Ss, rv, and Q7 for both outputs is greater
than 90% after 50 stars. However, for the rest of the input parameters, the robustness is smaller than
80 %, and, sometimes, not stable even after 200 stars. input parameters ar and Kvs1 are very influential
for MAEg, but they show a robustness measure that ranges from 50 to 70 % after 100 star centers.
Robustness does not directly increase with the number of star centers for some variables. This could
be caused by interactions among Ss, aquitard vertical conductivity Kvs: and aquifer/river conductance
ar at some water level rise events. Another reason for the lack of stability of the robustness of rankings
is that the least relevant variables interfere with the calculation of sensitivity indexes of the most
relevant parameters. However, the rankings of the most and the least significant input parameters
are stable with just 50 star centers (7700 runs). Input parameters with intermediate influence are also
well identified, despite not being ranked reliably.

Sample variograms along the directions of the 17 input parameters were computed for the
piezometric heads in wells ST1C, PS19B and SPN1 at times t1, t2 and t3, the calibration metrics, the
aquifer/reservoir fluxes at times t1, t2 and t3 and the average groundwater Darcy velocity modulus
near well PS16C. Only a limited number of parameters are relevant for each output variance. Figures
11 and 12 show the sample variograms along the directions of the 5 most influential parameters.
VARS-TO, IVARSso and VARS-ABE metrics are computed from the variograms. Figures 13 and 14
show the VARS-ABE, IVARSs0 and VARS-TO indexes for each output considering all the input
parameters.
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plots.
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Figure 13. VARS-TO, IVARSs0 and VARS-ABE indexes for the computed heads in wells ST1C and
PS19B at times t1, t2 and t3 and well SPN1 at times t1 and t2.
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Figure 14. VARS-TO, IVARSso and VARS-ABE indexes for the computed head in well SPN1 at time
t3, MAEg, NRMSEg, NSEg, Qu, Qe, Qs and qav.

The most influential parameters for the computed head in well ST1C at times t1, t2 and t3 are K3
and Q;, followed by Kvsi, ar and K2. The ranking in well PS19B is similar to the ranking in well ST1C.
However, the sensitivity indexes of K3, K2 and Q: in well ST1C are much larger than those of well
PS19B. K3 is much more relevant than K2 in well ST1C while K2 and K3 have almost similar
sensitivity indexes in well PS19B. The sensitivity indexes of the hydraulic conductivities depend on
the location of the wells. Material zone 3 is the largest zone of the Sardas site. Material zone 2 is
located between material zones 1 and 3. Material zone 1 is much smaller than the other two and is
located just downstream the Sardas landfill. Kvs1 is more influential for the head in well ST1C than
for the well PS19B. ST1C is located right next to the reservoir maximum flood area and PS19B is
located 135 m to the east of the reservoir. Tidal effects on the aquifer depend on the duration of the
high reservoir level, its amplitude, and the distance to the reservoir. Likewise, the head in well PS19B
is most sensitive to Q2 because this well is near the boundary just downstream the Sardas landfill.

The sensitivity indexes for the computed heads in well SPN1 differ from those of other
monitoring wells because well SPN1 is near the Gallego riverbed. a: is the most influential parameter
in well SPN1 followed by Kvsi.

Despite not being an influential input, the relevance of Ss for the computed heads in the
monitoring wells increases from time tl1 (low level) to time t2 (peak reservoir water level). The
sensitivity indexes of Ss decrease when the reservoir water level descends at time t3. The time change
of the sensitivity of Ss in well SPN1 is more significant than in wells ST1C and PS19B.
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The most influential parameters for the calibration metrics (MAEg, NRMSEg and NSEg) are K3,
K2 and Q;, followed by Kvs: and ar. Most of the monitoring wells are located in material zones 2 and
3 and near the boundary zone corresponding to Q2. Aquifer/reservoir and aquifer/river interactions
affect the computed head gradient, tr and An. Ss only affects the temporal variability of computed
heads and not their average values. Since calibration metrics evaluate the average fit of the computed
heads in the monitoring wells, the relevance of Ss for the calibration metrics is very low compared to
its relevance on the computed heads at specific times. Ss is especially relevant during events of
sudden rise of the reservoir water level.

To facilitate the interpretation of the sensitivities of reservoir/aquifer fluxes (Qu, Qe, Qu), one
should recall that the silting sediments (Kvs: and Kvs2) are more permeable than alluvial silts (Kvss).
Groundwater discharges mainly through the former course of the Gallego river, where only silting
sediments confine the aquifer (Kvs1). If the aquifer is less connected to the Gallego river (lower values
of ar), groundwater discharges to the reservoir. On the other hand, if the aquifer and the river are
more connected (higher values of ar), groundwater discharges to the reservoir and the river. As
expected, the greater the inflow of water from the landfill (QQ2), the more groundwater discharge to
the reservoir.

The aquifer/reservoir groundwater flow changes with time due to the reservoir tidal effect. The
most influential parameters for the aquifer/reservoir groundwater flow are also time dependent. Kvsi
is the parameter with the largest sensitivity index at time t1 when the reservoir water level is low.
The second influential parameter is the aquifer/river leakage coefficient, ar. The boundary inflow Q2
is the third most relevant parameter. However, when the reservoir water level rises suddenly rises at
time t2, the parameter sensitivities change. The most influential parameter becomes Ss followed by
Kvsi. We recall that in the model reference run [38], there is flow from the reservoir into the aquifer
when the reservoir water level rises above the piezometric head in the aquifer. If the specific storage
of the aquifer is high, a larger part of the flow coming from the reservoir is stored in the aquifer,
which results in a smaller rise of the piezometric head in the aquifer.

The reservoir flood area depends on its water level, so when the water level rises at time t2, the
area where the alluvial silts confine the aquifer underneath the reservoir increases. The areas of the
reservoir away from the former course of the Géllego river are assumed to be confined by both silting
sediments (Kvs2) and alluvial silts (Kvs3). The relevance of Kvss increases slightly when the reservoir
floods more parts of the alluvial, but its relevance is still much smaller than those of Kvsiand Ss. When
the water level of the reservoir descends at time t3, the parameter sensitivities tend to be similar to
those of Qu at time t1. For Qs the sensitivity of Kvsi is much larger than those of a: and Q2. The
sensitivity of Ss remains, but it is much less relevant than for Qe,

The most influential parameters for the average modulus of the Darcy velocity (qav) near well
PS16C are (2, K3 and K2. K1 is slightly relevant, and the contribution of the rest of the parameters is
negligible. Darcy velocity in the aquifer mainly depends on the boundary inflow Q2 because this well
is located I material zone 3 and near the boundary downstream the Sardas landfill.

The sensitivity indexes of Ssare time dependent for the computed heads in the wells, and the
aquifer/reservoir fluxes (Figure 15). When the reservoir water level rises above the piezometric head
in the aquifer at time t2, the reservoir starts recharging the aquifer, and the piezometric head in the
alluvial starts rising. If the specific storage is small, the amplitude of the oscillation of the piezometric
head increases. This affects especially the aquifer/reservoir fluxes (Qu, Qw and Qs). The sensitivities
of the computed head in well SPN1, located near the Gallego river, are largest for ar and Kvsi and Ss
at time t2.

On the other hand, well ST1C is closest to the reservoir and further away from the Gallego river.
In this well the sensitivity index of Ss is smaller than in well SPN1. Finally, the sensitivity of the head
in well PS19B to Ss is irrelevant because the well is far away from the Gallego river and the reservoir
flood area.
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Figure 15. IVARSs sensitivity indexes for computed heads in wells ST1C (top left plot), PS19B (top
right plot), and SPN1 (bottom left plot) and aquifer/reservoir flow (bottom right plot) at times t1, t,2
and t3.

The IVARSso sensitivity indexes for calibration metrics, MAEg, NRMSEg and NSEg are very
similar (Figure 16). The most influential parameters are the same for all the metrics. The rankings
show some slight differences. Input ranking for the MAEg is K3, Q2, o, K2 and Kvsi, while ar and K2
switch places for NRMSEg and NSEg. NRMSEg and NSEg are more prone to the presence of outliers
because their formulas include squared residuals.
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Figure 16. IVARSso sensitivity indexes for calibration metrics MAEg, NRMSEg and NSEg.
Sensitivity indexes are large for K3, Qz, o, K2 and Kvsi. Some input variables have very small
sensitivity indexes.

3.2.3. HDMR Results and Analysis of Interactions for the Sobol Sequence

Tables S1 to S23 in the SM show the values of the first order (main effects), Si, and 2nd order
effects, Sy, calculated with SALib [63] and GUI-HDMR [64] and the parameter ranking for: (1) The
computed piezometric heads in wells PS19B, SPN1 and ST1C at times t1, t2 and t3; (2) The global
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mean absolute error (MAEg); (3) The global Nash-Sutcliffe index (NSEg); (4) The global normalized
root mean squared error (NRMSEg); (5) The average groundwater Darcy velocity modulus near well
PS16C (qav); and (6) The computed aquifer/reservoir fluxes at times t1, t2 and t3 (Qu, Qe and Qs) by
using 16 384 runs.

HDMR lower bound estimates for the total effects, (Si + Sij), are compared to the VARS intervals
of the total effects for each parameter. SALib and GUI-HDMR indexes generally agree, although they
show some small differences. The analysis of the interactions among parameters is an important part
of the global sensitivity analysis. Interactions represent the joint influence of parameters on the model
outputs. Usually, interactions are revealed when the sum of the Sobol’s 1st order indexes are
significantly smaller than 1.

In the next paragraphs the Sobol based lower bound estimates for the total effects will be denoted
simply as “total effects” to shorten the presentation of the HDMR results. The largest main effect S
for the piezometric head in well ST1C at time t1 is equal to 0.242 and corresponds to K3 (see Table S1
in SM). The sum of the Sobol’s 15t order indexes is equal to 0.644. The total effects of the piezometric
head in well ST1C at time t1 are slightly larger than 1 (see Table S1 in SM). Second order effects for
this output are important especially due to the interaction between K3 and K2. Interactions of smaller
relevance occur between Q2and K3, between Kvs1 and o, and between Q2 and K2. Sobol total effects
Sti are typically larger and fall outside the ranges of the VARS total effects.

The largest main effect Si of the piezometric head in well ST1C at time t2 is equal to 0.194 and
corresponds to K3 (see Table S2 in SM). The sum of the Sobol’s 1¢t order indexes is equal to 0.628. The
total effects of the piezometric head in well ST1C at time t2 are slightly larger than 1 (see Table S2 in
SM). Second order effects here are relevant especially due to the interaction between Q2and K3. There
are also interactions of smaller relevance between K3 and K2, between Kvs1 and o, and between Q2
and K2. Sobol total effects Sri and those of VARS generally agree, although they show some
discrepancies especially for the K1 and ru.

The largest main effects Si for the piezometric head in well ST1C at time t3 correspond to K3 and
Q2 (see Table S3 in SM). The sum of the Sobol’s 1t order indexes is equal to 0.644. The total effects of
the piezometric head in well ST1C at time t3 are equal to 1.223 (see Table S3 in SM). Second order
effects for this output are relevant due to interactions of K3 with K2 and 2, and Kvs1 with ar. The
Sobol total effects Sti generally fall within the intervals of VARS total effects.

The largest main effects Si for the piezometric head in well PS19B at time t1 correspond to Q2, K3
and K2 (see Table 54 in SM). The sum of the Sobol’s 1¢t order indexes is equal to 0.71. The total effects
Sri for the piezometric head in well PS19B at time t1 are slightly greater than 1 (see Table 54 in SM).
Second order effects here are relevant especially due to the interactions among Qz, K3 and K2. The
total effects Sri fall within the intervals of VARS total effects.

The largest main effects Si for the piezometric head in well PS19B at time t2 correspond to Qz,
K2, and K3 (see Table S5 in SM). The sum of the Sobol’s 15t order indexes is equal to 0.699. The total
effects Sri for the piezometric head in well PS19B at time t2 are slightly greater than 1 (see Table S5 in
SM). Second order effects for this output are important especially due to the interaction between Q2
and K2. There are also interactions of smaller relevance between Q2 and K3, between K3 and K2, and
between ar and Kvsi. The Sobol total effects Sti are typically larger and fall outside the ranges of the
VARS total effects.

The largest main effect Si for the piezometric head in well PS19B at time t3 corresponds to Q2. K2
and K3 are in second and third position (see Table S6 in SM). The sum of the Sobol’s 15t order indexes
is equal to 0.703. Second order effects for this output are important especially due to the interaction
between Q2 and K2. There are also interactions of smaller relevance between Q2 and K3, between K3
and K2, and between ar and Kvsi. The Sobol total effects Sti are generally larger and out of the intervals
of the VARS estimates.

ar shows the largest main effect Si for the piezometric head in well SPN1 at time t1 which is equal
to 0.394. The second largest effect corresponds to Kvsi (see Table S7 in SM). The sum of the Sobol’s 1st
order indexes is equal to 0.69. The total effects of the piezometric head in well SPN1 at time t1 are
close to 1 (see Table S7 in SM). Second order effects for this output are relevant especially due to the
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interaction between Q: and K3. The Sobol total effects Sti are overall higher and beyond the limits of
the VARS estimates.

The largest main effects Si for the piezometric head in well SPN1 at time t2 correspond to arand
Ss (see Table S8 in SM). The sum of the Sobol’s 1t order indexes is equal to 0.655. The total effects of
the piezometric head in well SPN1 at time t2 are slightly larger than 1 (see Table S8 in SM). Second
order effects for this output are relevant especially due to the interaction between ar and Kvsi. There
are also smaller interactions of Q2 with K3 and with ar. The Sobol total effects are generally larger
and out of the intervals of the VARS estimates.

The largest main effects Si for the piezometric head in well SPN1 at time t3 correspond to arand
K3 (see Table S9 in SM). The sum of the Sobol 1+t order indexes is equal to 0.679. The total effects of
the piezometric head in well SPN1 t3 are close to 1 (see Table S9 in SM). Second order effects are
relevant mainly due to the interaction between ar and Kvsi, and to a lower extent to the interactions
of Q2with K3 and ar. The Sobol total effects are generally larger and out of the intervals of the VARS
estimates.

The largest main effects Si for the global mean absolute error correspond to K3, Qz and a: (see
Tables 510 and S11 in SM). The sums of Sobol’s 1st order indexes calculated with SALib and GUI-
HDMR are equal to 0.682 and 0.734, respectively. The total effect of the global mean absolute error
computed with SALib is equal to that of GUI-HDMR (see Tables S10 and S11 in SM). Second order
effects for this output are important especially due to the interactions between Q2 and K3 and between
K3 and K2. There are also interactions of smaller relevance between arand Kvsi, and between Q2 and
K2. The SALIib total effects St fall within the intervals of VARS estimates or are slightly larger than
VARS total effects.

K3 shows the largest main effect Si for the global normalized root mean squared error which is
equal to 0.245 (SALib). The second largest effect corresponds to Q2 (see Tables S12 and S13 in SM).
The sums of the Sobol’s 1+t order indexes calculated with SALib and GUI-HDMR are equal to 0.675
and 0.731, respectively. The total effects of the global normalized root mean squared error are close
to 1 (see Tables S12 and S13 in SM). Second order effects for this output are relevant especially due
to the interaction between K3 and K2, and between Q2 and K3. The total effects Sti from SALib are
either within the ranges of VARS estimates or slightly exceed the VARS total effects.

The largest main effect Si for the global Nash-Sutcliffe index corresponds to K3. Q2and K2 are
in second and third position (see Tables 514 and 515 in SM). The sums of the Sobol’s 1+t order indexes
calculated with SALib and GUI-HDMR are equal to 0.411 and 0.477, respectively. The total effect of
the global Nash-Sutcliffe index computed with SALib is smaller than that of GUI-HDMR (see Tables
514 and 515 in SM). Second order effects for this output are important especially due to the interaction
between Q2 and K3. There are also interactions of smaller relevance between K3 and K2, between Q:
and K2, and between arand Kvsi. The SALib total effects Sri fall within the intervals of VARS estimates
or are slightly larger than VARS total effects.

The largest main effects Si for the computed aquifer/reservoir flux at time t1 correspond to Kvsi
and ar (see Tables S16 and S17 in SM). The sums of the Sobol’s 1st order indexes calculated with SALib
and GUI-HDMR are equal to 0.716 and 0.746, respectively. The total effects of the computed
aquifer/reservoir flux at time t1 are close to 1 (see Tables S16 and S17 in SM). The second order effects
for this output are significant, particularly because of the interactions of Kvs1 with ax, Ss, Q2 and K3.
Additionally, there are less significant interactions between ar and K3, and between ad and K4. The
Sobol total effects Sti calculated by SALib are overall higher than the VARS estimates.

The largest main effect Si for the computed aquifer/reservoir flux at time t2 is equal to 0.362
(SALib) and corresponds to Ss (see Table S18 in SM). The sums of the Sobol’s 1st order indexes
calculated with SALib and GUI-HDMR are equal to 0.514 and 0.469, respectively. The total effects of
the computed aquifer/reservoir flux at time t2 are greater than 1 (see Tables S18 and S19 in SM). For
this output, the second order effects are notable, mainly due to the interaction between Ss and Kvs1.
Sobol total effects Sri and those of VARS estimates show clear discrepancies, especially for K1, K2 and

Q.
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The largest main effect Si of the computed aquifer/reservoir flux at time t3 is equal to 0.626
(SALib) and corresponds to Kvsi (see Table S20 in SM). The sums of the Sobol’s 1st order indexes
calculated with SALib and GUI-HDMR are 0.812 and 0.819, respectively. The total effects of the
computed aquifer/reservoir flux at time t3 are close to 1 (see Tables S20 and 521 in SM). Second order
effects for this output are relevant to the interactions of Kvsi with ar, Ss, Qz, Kvss, K4 and K3. The Sobol
total effects Sti are generally larger and out of the intervals of the VARS estimates.

The largest main effects Si for the average modulus of the Darcy velocity near well PS16C
correspond to Q2 and K3 (see Tables 522 and S23 in SM). The sums of the Sobol’s 1st order indexes
calculated with SALib and GUI-HDMR are equal to 0.855 and 0.861, respectively. The total effects of
the average modulus of Darcy velocity are slightly larger than 1 (see Tables S22 and 523 in SM).
Second order effects for this output are relevant to the interaction between Q2 and K3. There are also
smaller interactions between Q2 and K2, and between K3 and K2. The Sobol total effects St are
generally slightly larger and out of the intervals of the VARS total effects.

The 15t and 274 order interactions among input parameters can also be presented visually through
heatmaps. Figure S1 in SM shows the heatmaps of the 1+t and 2°¢ order HDMR Sobol effects for all
the outputs. The analysis of the heatmaps confirms that: (1) The largest components correspond to
the main effects (which have been conveniently located along the diagonal of each of the maps); and
(2) Off-diagonal terms corresponding to the 2nd order effects are important for all variables, especially
the global Nash—-Sutcliffe index and groundwater flow between aquifer and reservoir at time t2 due
to the interactions between Q2 and K3 and between Ss and Kvsi.

3.2.4. HDMR Results for the VARS Runs by Using the Halton Sequence

HDMR analyses can be performed reusing the simulations performed with the VARS-Halton
sequence. However, preliminary analysis of the main effects, Si and 2 order effects, Sy, calculated
with SALib show that most outputs have Sobol total effects Sti that are consistently greater than 2,
with some of them even reaching values of 3. Since the parameters are normalized, the sum of main
and interaction effects of any order should equal the total variance, which should theoretically be
equal to 1. It should be noticed that the VARS procedure to locate the star centers is either the Halton
or the Sobol sequences, both of which generate low-discrepancy sequences [65]. They are intended to
optimize quasi-Monte Carlo approaches by maximizing the efficiency to fill the parameter hypercube
with sparsely located points. As the number of parameters increases, the capacity of the Halton
sequence [50] to distribute points uniformly rapidly decreases [65], while Sobol sequence is more
stable. This results in higher maximum errors of integration for high dimensional data related to the
Halton sequence. The Halton sequence gives good quality, near uniform distributions when the
number of parameters is lower than 10 [65], as it was demonstrated recently in a reactive transport
model for a high-level radioactive repository in granitic rock [36].

3.3. Input Parameter Rankings

Table 2 shows the rankings of the parameters for the computed piezometric heads in ‘well ST1C
at time t1 (ST1Cu), global mean absolute error (MAEg), aquifer/reservoir flux at time t1 (Qu), and
average groundwater Darcy velocity modulus (qav) across the following methods: IVARSs), VARS-
TO (equivalent to Sobol), VARS-ABE (equivalent to Morris), HDMR (SALib), GUI-HDMR and
CUSUNORO plots.

Table 2. Ranking comparison of sensitivity results across various methods for the computed
piezometric head in well ST1C at time t1 (ST1Cu), the global mean absolute error (MAEg), the
aquifer/reservoir flux at time t1 (Qu), and the average groundwater Darcy velocity modulus (qav).

Output Methods Kl K2 K3 K4 Ss Kva Kvee Kvs ar ad Q¢ Q7 Qo Q Q1 rc Tu

VARS-TO 17 4 1 6 13 3 8 7 5 9 16 11 14 2 10 12 15
ST1Cu

IVARSs0 6 4 1 6 12 3 8 7 5 9 17 11 14 2 10 13 15
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Output Methods Kl K2 K3 K4 Ss Kvsi Kve Kvss ar ad Qs Q7 Qo Q2 Q1 rc Tu

VARS-ABE 7 5 1 6 9 4 11 0 3 8 16 12 14 2 7 13 15

SALib 17 5 1 10 6 3 13 7 4 8 15 12 14 2 9 11 16

GUIHDMR | - - - = = - - ..o oo

CUSUNORO 17 5 1 6 13 3 11 9 4 7 16 10 14 2 8 12 15

VARS-TO |14 3 1 7 16 5 8 6 4 9 17 12 13 2 11 10 15
IVARSs0 14 4 1 7 16 5 8 6 3 9 17 12 13 2 11 10 15
VARS-ABE |14 4 1 6 16 5 11 8 3 10 17 12 13 2 9 7 15

MAEg
SALib 4 5 1 6 17 4 12 7 3 10 16 11 13 2 9 8 15
GUFHDMR |14 4 1 7 17 5 11 6 3 8 15 12 13 2 10 9 16
CUSUNORO |14 5 1 6 17 4 12 7 3 10 16 11 13 2 8 9 15
VARS-TO |17 9 4 6 5 1 14 12 2 8 16 7 10 3 11 13 15
IVARSs0 7 9 4 6 5 1 14 11 2 7 16 8 10 3 12 13 15
VARS-ABE |17 11 5 7 4 1 14 13 2 8 16 6 12 3 9 10 15
s SALib 7 9 13 10 6 1 15 12 2 5 16 4 11 3 7 8 14
GUFHDMR |17 9 5 8 4 1 14 13 2 7 16 6 11 3 10 12 15
CUSUNORO |17 8 13 10 6 1 15 12 2 5 16 4 11 3 7 9 14
VARS-TO 4 3 2 7 16 5 9 10 6 8 17 14 13 1 11 12 15
IVARSs0 4 3 2 8 16 6 9 10 5 7 17 14 13 1 11 12 15
VARS-ABE |4 3 2 7 16 6 12 11 5 9 17 14 13 1 8 10 15

qav

SALib 4 3 2 9 16 6 13 0 5 8 15 17 12 1 7 11 14

GUI-HDMR 4 3 2 7 14 6 12 0 5 8 15 17 13 1 9 11 16

CUSUNORO 4 3 2 8 17 6 13 11 5 9 16 15 12 1 7 10 14

All the methods agree in identifying the most influential parameters for ST1Cy, although they
show different positions for some input parameters. The most influential parameters for ST1Cu are
K3 and Q2. Q2 is the most influential parameter, followed by K3.

Output MAEg shows similar results with the following order of ranking: (1) K3; (2) Q2; (3) ar
(except for VARS-TO); (4) K2 (except for VARS-TO and SALib); and (5) Kvs1 (except for SALib). GSA
methods also agree on the ranking of the least relevant input parameters but switching in some
positions.

The three most influential parameters for Qu are Kvsi, ar and Qz. There are discrepancies among
the methods on the ranking of the 4" and 5% positions (K3 and Ss). SALib reveals the highest
discrepancy for Qu compared to the other methods for the parameters ranging from inputs relevance
from 4% to 10* rank.

All methods provide a similar ranking of the most influential parameters for gav. Q2 is the most
influential parameter followed by K3. The third most influential is K2 and K1 is the fourth. a: is
at the 5t position and Kvs is the 6" most influential parameter, except for the VARS-TO method
which interchanges the positions of these two parameters.

Table S24 to Table S29 present the rankings of the parameters for all the outputs. For the most
part, all methods agree in identifying the most and the least relevant inputs for all outputs. Some
methods switch the order within the most and within the least influential inputs. On the other hand,
the inputs located at intermediate positions (from 5t to 13t place) show less consistency across the
different GSA methods. Their ranking does not usually change more than three places, but some
outputs show important differences (K4 for Qs ranges from 7t to 15t position; Kvs2 for SPN1e ranges
from 7t to 13t position).
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The rankings of the input parameters derived from CUSUNORO curves for computed heads in
wells ST1C, PS19B and SPN1 at times t1, t2 and t3 agree with the rankings of VARS and HDMR
methods. Unlike the Morris method, CUSUNORO plots are well suited to identify the most
influential input parameters.

4. Conclusions

VARS and HDMR GSA of the groundwater flow model of the Gallego alluvial aquifer has been
presented. Computed piezometric heads in monitoring wells and aquifer/reservoir fluxes change
with time due to the tidal effect caused by the daily oscillations of the water level in the Sabifianigo
reservoir. Therefore, the sensitivities of the heads and fluxes change wit time. The results of the GSA
lead to following conclusions:

e  The most influential parameters for the selected outputs are consistently detected by all
methods. They include: K2, K3, Kvsi, Ss, Q2 and a.

e While some parameter inputs such as K3 and Q2 are relevant for all the outputs, other parameter
inputs such as K1 and Ss are influential only for some outputs

e The sensitivity indexes of the computed heads in monitoring wells and aquifer/reservoir fluxes
with respect to Ss change with time

e  Sensitivity indexes of the calibration metrics are similar. MAEg is less prone to model result
outliers.

e  The average groundwater Darcy velocity near well PS16C depends mainly on the boundary
inflow Qa.

e  VARS achieves stable values for the most important and the least influential input parameters
after 50 star centers, which amounts to 7700 runs. For other inputs, the robustness of the ranking
does not increase monotonically with the number of star centers.

e  VARS and HDMR methods provide similar results in terms of rankings and significance of the
most influential parameters. However, they show slight differences in the ranking of parameters
of intermediate and low influence. The ranking of the least relevant variables with the different
methods is less consistent.

e  Graphical methods and HDMR results highlight that the most important input parameter
interactions occur between Ss and Kvsi for groundwater flow between aquifer/reservoir
groundwater flux when the water level of the reservoir is high at time t2.

Future work should be devoted to extending GSA to other model outputs such as aquifer/river
fluxes, discharges underneath the dam foundation or aquifer/reservoir fluxes in other parts of the
reservoir. In addition, an extension to more time-dependent outputs is needed to capture the tidal
effect caused by the reservoir on computed heads and aquifer discharges. The influence of extreme
results on some calibration metrics could be overcome by using calibration metrics immune to the
outliers, such as the median absolute deviation. Furthermore, ranges in some inputs could be revised
as more data becomes available, and extreme results are disregarded. On the other hand, only a
limited number of parameters are relevant for each output variance, and some inputs’ contribution
to the variance of the results is negligible. It might be advisable to reduce the number of parameters
and analyze further the results of the HDMR analyses for the Halton sequence.

Parameter ranking is useful to identify the most and the least influential input parameters.
However, parameter ranking only provides information on the ordering, not on the values of the
sensitivity indexes. The results presented in the preceding sections suggest that most outputs are
mostly sensitive to 5 input parameters. The impact on model outputs of the uncertainty of the least
relevant parameters is almost irrelevant.

Sensitivity indexes of the heads and aquifer/reservoir fluxes are time dependent due to the tidal
effect of the Sabifianigo reservoir. It might be advisable to include more time-dependent outputs to
capture the effect of the oscillations of the water level of the reservoir. The influence of extreme results
on NRMSEg and NSEg could be corrected by using a median absolute deviation which is immune to
outliers. Furthermore, ranges in some input parameters could be revised and updated as more data
become available. There are no reliable data on the boundary inflow, Q, from Sardas landfill.
Leachate estimations based on groundwater flow models range from 17 to 32 m3/d. This range is
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much smaller than the range used in the GSA presented here. Moreover, recent monitoring wells
closer to the Sabifidnigo reservoir reveal that the hydraulic conductivity of the aquitard (silting
sediments and alluvial silts) is very heterogeneous.

GSA methods presented here provide a quantitative tool to assess the impact of the uncertainty
of parameters on the groundwater flow model outputs in alluvial aquifers. The findings of this study
can guide future management and data acquisition in polluted sites to reduce uncertainties related
to the most relevant parameters. Moreover, these methods can guide future uncertainty analysis of
the total dissolved hexachlorocyclohexane transport model through the Gallego alluvial aquifer
presented in Sobral et al. [38].

Supplementary Materials: The following supporting information can be downloaded at the website of this
paper posted on Preprints.org, Figure S1: Heatmaps of the HDMR Sobol 27 order effects for: (1) Hydraulic heads
in wells PS19B, SPN1 and ST1C at time intervals t1, t2 and t3; (2) MAEg; (3) NRMSEg; (4) NSEg; (5) qav; (6) Qu;
(7) Qu and (8) Q. The map visualizes both main and second order effects; Tables S1 to S23: 1% order (main
effects), Si, and 24 order effects, Sy, calculated with SALib and gui-HDMR of each output for the Sobol sequence.
The largest 2"d order effects S, are listed in the off-diagonal boxes. Parameter rankings are indicated within
brackets. Total effects (Si + Sij) are compared to the VARS interval total effects for each parameter); Tables S24 to
S29: Ranking of the influence of parameters for each output.
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