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Abstract: Road conditions, often degraded by insufficient maintenance or adverse weather, significantly contribute

to accidents, exacerbated by the limited human reaction time to sudden hazards like potholes. Early detection of

distant potholes is crucial for timely corrective actions, such as reducing speed or avoiding obstacles, to mitigate

vehicle damage and accidents. This paper introduces a novel approach that utilizes perspective transformation to

enhance pothole detection at different distances, focusing particularly on distant potholes. Perspective transforma-

tion improves the visibility and clarity of potholes by virtually bringing them closer and enlarging their features,

which is particularly beneficial given the fixed-size input requirement of object detection networks, typically

smaller than the raw image resolutions captured by cameras. Our method automatically identifies the region of

interest (ROI)—the road area—and calculates the corner points to generate a perspective transformation matrix.

This matrix is applied to all images and corresponding bounding box labels, enhancing the representation of

potholes in the dataset. This approach significantly boosts detection performance when used with YOLOv5-small,

achieving a 45.7% improvement in average precision (AP) at IoU thresholds of 0.5 to 0.95 for a single class, and

notable improvements of 30.3%, 78.6%, and 278% for near, medium, and far pothole classes, respectively, after

categorizing them based on their distance. This work is the first to employ perspective transformation specifically

for enhancing the detection of distant potholes.

Keywords: autonomous vehicles; perspective transformation; deeplearning; pothole detection; computer vision;

mobile robotics

1. Introduction

1.1. Pothole Detection Importance for Autonomous Vehicles

Potholes, commonly found in asphalt pavements, are caused by water weakening the underlying
soil and repeated traffic wear, leading to depressions or holes in the road surface [1]. These can vary in
severity and pose significant hazards, such as suspension damage, tire punctures, and even accidents,
by causing loss of control or immobilization of vehicles. The dangers of potholes extend to both
vehicles and pedestrians, highlighting the critical need for efficient detection systems.

In 2011, poor road conditions caused around 2,200 deaths in India, while in the U.S., one-third
of the 38,824 traffic deaths in 2020 were linked to substandard roads. Michigan, with some of the
worst potholes, spent millions annually on repairs, highlighting the widespread impact of this issue.
Effective pothole detection is crucial, particularly for autonomous vehicles, which rely on accurate
hazard detection to ensure safe operation. This need is underscored by the potential damage and
safety risks associated with potholes, emphasizing the importance of accurate and timely detection
systems to mitigate these dangers.

1.2. Human Response to Potholes

When a driver encounters a pothole, the human reaction time to apply the brakes can vary. For
simple tasks, the average human reaction time is often quoted as 0.2 seconds [2]. However, for more
complex tasks, such as emergency braking when a pothole is detected, the reaction time is typically
longer. These times can be greatly affected by the driver’s alertness and the expectation of the need to
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brake [3]. Hence, detecting potholes from a greater distance is crucial, as it provides the driver more
time to react and navigate safely around the hazard. In addition, far pothole detection allows drivers
to prepare and adjust their driving accordingly, reducing the likelihood of sudden maneuvers that can
lead to accidents.

In contrast to human drivers, an AV equipped with pothole detection systems can identify and
respond to potholes in real time. These systems can modulate vehicle speed and position upon detect-
ing a potential pothole and sometimes ensure the vehicle remains within its lane while minimizing
impact. This rapid and precise response can significantly improve road safety by allowing the vehicle
to take immediate action to avoid the pothole or minimize impact, thus reducing potential damage
and improving overall vehicle control.

1.3. Pothole Detection Methods

The implementation of pothole detection systems in AV offers several advantages. Not only does
it improve road safety by reducing the risk of accidents caused by potholes, but it can also contribute
to more efficient road maintenance by providing accurate and timely data on the locations and severity
of potholes. Moreover, detecting and avoiding potholes can reduce the fuel consumption, wear and
tear, and maintenance costs of a vehicle [4]. In addition, it can indirectly decrease the total travel time
in some cases [4].

Potholes are detected and observed in different ways, including manual human detection,
vibration-based detection, sensor-based detection, and vision-based detection. Human observation is
the traditional method for detecting potholes. [5]. Drivers must look out for potholes while driving and
react quickly to avoid them, which can lead to dangerous situations. This approach is inconsistent due
to human error and is inefficient for detecting multiple objects. In addition, vibration-based detection
methods use accelerometers to detect potholes based on the vibration information of the acceleration
sensors attached to the vehicle [6]. This method is cost-effective and suitable for real-time processing.
However, it has limitations in providing the exact shape of potholes and could provide incorrect results,
as road joints can be misidentified as potholes [7]. Moreover, this method is not suitable for detecting
potholes in order to avoid or act towards reducing their effect on the vehicle. Sensor-based detection
methods, such as light detection and ranging (LiDAR) and radio detection and ranging (RADAR), use
electromagnetic waves to detect potholes. LiDAR uses light waves [8], providing high-resolution data
and precision [9]. However, it can be expensive, making it less feasible for widespread use in AVs.
RADAR, on the other hand, uses radio waves and is superior in terms of cost and ability to monitor
large areas [9]. Nevertheless, its lower resolution compared to LiDAR makes it difficult to track and
distinguish objects in crowded environments, a common scenario for AVs [10]. Besides, computer
vision techniques for pothole detection have gained popularity due to the accessibility and feasibility
of cameras, especially for AVs. These techniques use images or videos as input data and apply deep
learning and image processing techniques to detect potholes. Although each method has its strengths
and weaknesses, computer vision techniques offer significant advantages in terms of cost effectiveness,
precision, and the ability to integrate with other data sources for pothole detection. Hence, our work is
purely focused on vision-based detection techniques.

1.4. Challenges in Potholes Detection

Deep learning and vision-based approaches for pothole detection face significant challenges, par-
ticularly related to the handling of object detection tasks involving small and distant objects. A critical
limitation stems from the requirement to resize images to a fixed, smaller size to ensure reasonable
processing times. This resizing is necessary because models trained on high-resolution images demand
substantial computational resources, leading to impracticalities in real-time applications. As a result,
small objects, such as potholes, especially those far away, often become indistinguishable when images
are downscaled. The reduction in size leads to a loss of crucial details, making it challenging for the
model to accurately detect and classify these objects. This issue is exacerbated by the fact that more
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complex models, while potentially offering increased accuracy, do not necessarily resolve the problem
of lost detail due to image downscaling.

Moreover, the utilization of high-resolution images in training object detection models is hindered
by the immense complexity of the search space. High-dimensional data requires more extensive
computational resources and can significantly slow down the training and inference processes. This
trade-off between image resolution and processing efficiency is particularly problematic in real-time
applications such as autonomous driving, where rapid detection and response are crucial for safety.
The need to rescale high-definition images to lower resolutions introduces a bottleneck in object
detection systems. The act of rescaling can lead to a substantial loss of fine-grained features that
are essential for accurately identifying potholes, thereby compromising the model’s performance.
One proposed solution to mitigate these challenges is the use of perspective transformation. Unlike
conventional resizing, perspective transformation selectively focuses on a region of interest (ROI)
within an image, such as the area containing a pothole. This approach preserves critical features by
altering the viewing angle, effectively enlarging the ROI and reducing the prominence of irrelevant
areas. While this method does not introduce new features, it helps retain more of the significant details
associated with the potholes, thereby improving detection accuracy. Although theoretically, training
a model on full-resolution images would be ideal, it is practically unfeasible due to computational
constraints. Hence, perspective transformation offers a practical compromise, allowing the retention of
essential features while maintaining manageable processing times, thus enhancing the robustness and
effectiveness of pothole detection in autonomous vehicle systems.

1.5. Proposed Method: Distant Pothole Detection with Vision and Perspective Transformation

To address these challenges, we present a novel approach that leverages perspective transforma-
tion to enhance pothole features. Perspective transformation is an image processing technique that
alters the viewing angle of potholes from the perspective of the vehicle or driver to a bird’s-eye view
[11]. This transformation is based on four source points extracted from the values of the bounding box
and the location of the pothole pixels. These points represent the ROI to be transformed. Our method
proposes an automated selection of these four points by considering all bounding box values in the
dataset, thereby reducing human intervention and creating an ROI that is optimal for all images and
their bounding boxes.

The perspective transformation modifies the image, enlarging the ROI and minimizing the scale
of irrelevant portions. This technique effectively simulates bringing the potholes closer, thereby
improving feature extraction. By applying perspective transformation, we generate a magnified and
standardized view of the pothole region within the image. This enhanced view enables the computer
vision algorithm to more effectively extract crucial features such as cracks, edges, and depth variations,
significantly improving the accuracy of pothole detection, particularly for those located at a distance.
Figure 1 shows the framework overview of our approach compared to the naive approach. To the
best of our knowledge, no previous study has explored the use of perspective transformation in this
manner for such an application.
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Figure 1. Comparison between the naive approach and our proposed approach. The naive approach
involves loading the raw input image, and then simply downscaling it to the required input resolution
for the object detection network losing significant image features and resulting in undetected potholes.
Meanwhile, our approach demonstrates successful and robust pothole detection by transforming the
input image to primarily retain the region of interest and minimize irrelevant segments of the image.
Ground truth pothole labels and predicted potholes are represented by green and red bounding boxes,
respectively. Street and rescaling icons created by Trevor Dsouza and Doodle Icons via TheNounPro-
ject.com.

2. Related Work

Numerous studies have investigated various computer vision and image processing techniques for
automated pothole detection using visual road imagery. Additionally, other research has highlighted
the significance of utilizing perspective transformation in object detection applications. The following
sections review some of the aforementioned approaches.

2.1. Vision Approaches

Basic vision approaches in pothole detection have leveraged simple image-processing techniques
to identify road defects. For example, Nienaber et al. [12] utilized road color modeling combined with
edge detection, while Pereira et al. [13] employed a basic 4-layer CNN. These methods provide cost-
effective solutions without the need for complex sensors or deep learning architectures. However, they
suffer from limitations in generalizability across diverse road conditions. Furthermore, the precision
needed for real-time application is lacking, and the absence of comprehensive visual analyses and
separate test sets undermines the reliability of their results, which might be affected by the lack of a
pothole dataset from a vehicle perspective.

Deep learning approaches have shown potential for more robust pothole detection. Studies such
as Chen et al. [14], Kumar [15], and Dhiman et al. [16] have employed various deep neural networks,
including location-aware CNNs, Faster R-CNN, Mask R-CNN, and YOLOv2. Although these models
demonstrate high classification accuracy, they are computationally expensive and struggle with precise
localization. Additionally, the two-stage nature of some pipelines, like those in Chen et al., can
introduce further computational overhead. The performance of these models is also heavily dependent
on high-quality input data, and challenges in real-time application due to processing latency remain a
significant drawback.

Stereo vision approaches, explored by Dhiman et al. [16], [17], utilize depth information to
identify road defects by analyzing road elevation and depth variations. Although these methods
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theoretically provide detailed spatial information, they are highly dependent on the quality of stereo
images and the precise camera calibration. Issues such as noise, distortion, and the need for well-
aligned image pairs can significantly affect the accuracy of depth estimation and pothole detection.
The computational intensity further hinders the practical deployment of these techniques in real-time
applications, particularly in the context of autonomous vehicles.

Data augmentation and enhancement techniques have also been explored to improve pothole
detection performance. Maeda et al. [18] employed Generative Adversarial Networks (GANs) to
synthesize additional training data, combined with a Single Shot multibox Detection (SSD) model.
While synthetic data contributed to modest improvements in detection performance, the approach faces
challenges such as increased computational complexity, instability in training GANs, and concerns
about the generalizability of the models to real-world scenarios. Similarly, Salaudeen et al. [19] used
enhanced super-resolution GANs to enhance image quality, feeding the enhanced images into YOLOv5
and EfficientDet [20] models. Despite improved detection metrics, this approach introduces significant
computational overhead and risks of overfitting, particularly since the results depend mainly on the
quality of the data.

Specific YOLO variants have also been investigated. Al-Shaghouri et al. [21] explored real-time
pothole detection using YOLOv3 and YOLOv4, achieving promising precision, but facing limitations
related to low IoU thresholds and performance variability across different distances. Buko et al. [22]
examined the effectiveness of YOLOv3 and Sparse R-CNN under various challenging conditions,
revealing a substantial performance degradation under low light and adverse weather conditions,
indicating limited applicability in various real-world scenarios. Nevertheless, this project used the
same dataset for training and testing, which affects the generalizability of this approach. Rastogi et al.
[23] modified YOLOv2 to address issues such as vanishing gradients and irrelevant feature learning.
However, the reliance on close-range smartphone images limits the model’s applicability to broader
contexts, such as autonomous vehicles where variable distances and angles are encountered.

While previous research in pothole detection has largely concentrated on improving algorith-
mic architectures or combining multiple techniques to enhance detection accuracy, our contribution
addresses a fundamental gap by focusing on the quality and effectiveness of the input dataset. By
leveraging perspective transformation, our approach optimizes the dataset, maintains the desired
objects’ features and enhances them. This method effectively tackles the common issue of limited data
without incurring additional computational costs during training. In fact, it often reduces training time
compared to using regular or cropped images, making it a practical and efficient solution. Unlike other
approaches that are computationally intensive and dependent on high-quality data, our contribution
ensures better utilization of the current dataset, enhancing the robustness and real-world applicability
of pothole detection systems without the trade-offs associated with complex algorithmic fusions.

2.2. Perspective Transformation Technique

In this section, we provide a brief overview of how perspective transformation, a widely used
image processing tool, has been used in object detection for various purposes, including enhancing
detection accuracy, data augmentation, and others.

In [24], the authors present a method to construct perspective transformations for detecting
3D bounding boxes of vehicles in traffic surveillance, enhancing the accuracy of object detection by
extending traditional 2D detectors. Lee et al. [25] introduce a multi-view approach that leverages
perspective transformation for pedestrian detection, projecting features onto a ground plane to im-
prove localization accuracy. Additionally, Wang et al. [26] utilize perspective transformation in data
augmentation, enhancing object detection by simulating variations in object size and viewpoint. In
another study, Hou et al. [27] propose a feature transformation method for multiview aggregation in
3D object detection, focusing on head-foot pair detection. These studies highlight the significance of
perspective transformations in addressing challenges related to varying viewpoints in object detection.
However, our work goes a step further by directly enhancing object detection quality through an
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automated application of perspective transformation, improving object feature representation for
superior model training and performance.

3. Methodology

Potholes significantly impact vehicles and road users, increasing the likelihood of hazardous
situations. Therefore, implementing an effective early detection system for potholes is crucial to
mitigate potential risks and prevent undesirable or harmful incidents. In this section, we present a
detailed breakdown of our proposed approach detailing the techniques employed in this work.

3.1. Framework Overview

When utilizing object detection models, the typical approach is to feed the captured raw images
directly once they are rescaled to the desired size. This usually causes a significant loss of image features
that are critical for enabling robust pothole detection, especially when using high-resolution input
images. Using this naive approach, detecting far potholes, for instance, would be a very challenging
task. Instead, our approach, demonstrated in Figure 2, enhances pothole detection from a vehicle’s
perspective by making potholes appear closer, larger, and with amplified features. Initially, we apply a
perspective transformation technique to convert input images from the vehicle’s view to a view closer
to a bird’s-eye view, making them virtually closer and larger. Then, these transformed images are then
fed to YOLOv5 [28], a well-known object detector, which uses those images to train and improve the
model’s ability to detect potholes, especially those at a distance, compared to using regular images.

Figure 2. Overview of the proposed framework. Raw input images are initially transformed using the
transformation matrix generated by our proposed automated algorithm. Then, the resulting images
are rescaled to the required input resolution and fed to the object detection network (e.g., YOLOv5).
Ground truth pothole labels and predicted potholes are represented by the green and red bounding
boxes, respectively. Neural network icon by Lucas Rathgeb via TheNounProject.com.

3.1.1. Perspective Transformation Motivation

Raw images captured by cameras are typically of a high resolution, providing a great level
of detail. However, due to design limitations and the need for real-time processing, most object
detection networks are trained on fixed, low-resolution images [28–30]. For example, optimized
real-time variants of SSD [29] and YOLOv3 [30] are designed for 300×300 and 320×320 resolutions,
respectively. Meanwhile, the more recent YOLOv5 [28] has been tailored for an input spatial resolution
of 640×640. Although the trend demonstrates an increase in the models’ input resolutions, they are still
quite small relative to raw camera output resolutions. Further, training these models on larger input
resolution negatively impacts inference times [28,29], which is not ideal for real-time applications.
This necessitates resizing the images to a predetermined, smaller size for effective training and
generalization. However, when these images are resized, the features of small objects, such as potholes,
can become significantly less discernible. Potholes may appear very small relative to the overall image
size, resulting in insufficient features for the model to detect and differentiate them effectively, as
shown in Figure 3. Furthermore, portions of the image that do not contain regions of interest, such as
sidewalks or the sky, are often retained, limiting the focus on the relevant areas necessary for pothole
detection. To improve detection accuracy, it is beneficial to adjust the image perspective to emphasize
the road—the primary ROI—while minimizing the inclusion of non-essential parts of the image. This
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approach ensures that more useful features are preserved after rescaling, enhancing the model’s ability
to detect potholes without significantly increasing computational overhead [31,32].

(a) Naive Approach

(b) Automated Perspective Transformation Approach

Figure 3. Comparison of the resulting preprocessed input images between (a) the naive approach
and (b) the automated perspective transformation approach. The naive approach involves reading
the image as-is and then downscaling to a fixed input resolution (800×800 in this example). A 50×50
image crop demonstrates very low resolution for the potholes in the scene. Instead, our proposed
approach transforms the image to mainly focus on the ROI (i.e., the street) where, after rescaling to the
same input resolution, the resulting spatial resolutions of the potholes are much larger with clearer
image features as depicted by the 50×50 image crops.

3.1.2. YOLOv5: Key Features and Functionality

In the field of computer vision, deep learning has become the preferred approach for object
detection, particularly for complex and variable tasks like pothole detection. Traditional handcrafted
image processing methods often struggle with the variability in pothole shapes and sizes, and the
diverse lighting conditions found in real-world environments. Deep learning-based detectors, such
as the YOLO (You Only Look Once) series, provide a more robust and dynamic solution that can
generalize well across different scenarios. Among these, YOLOv5 stands out for its balance of speed
and accuracy, making it ideal for applications requiring real-time performance. This study employs
YOLOv5, implemented in PyTorch [33], for its efficiency, speed, and relatively low computational
demands, with versions available in n, s, m, l, and x configurations [28].

The architecture of YOLOv5 follows a similar structure to previous YOLO versions, with a back-
bone network and detection heads. The backbone, based on the efficient CSPDarknet53 architecture,
extracts features from the input image using 53 convolutional layers. The detection heads then predict
bounding boxes and class probabilities. YOLOv5 employs a modified YOLO head, consisting of
convolutional layers that vary depending on the model configuration (e.g., YOLOv5s, YOLOv5m,
YOLOv5l, YOLOv5x). Unlike earlier methods, YOLOv5 performs object detection in a single forward
pass, ensuring high speed and efficiency that are crucial for real-time applications like surveillance
and autonomous driving. With different variants representing varying model scales and complexities,
YOLOv5 offers options like YOLOv5s, which has 7.2M parameters and 16.5 GFLOPs, and YOLOv5l,
with 46.5M parameters and 109.1 GFLOPs. Notably, YOLOv5s performs better when applied to our
approach compared to larger models with a naive approach, highlighting that a more complicated
model is not always necessary for good results. We focus on using YOLOv5s for its balanced real-time
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performance and accuracy, while also evaluating other YOLOv5 variants to assess the impact of our
methods on their performance

YOLOv5 offers several key advantages, including enhanced speed and accuracy due to its
lightweight architecture and efficient training through focus modules and data augmentation. Its
flexibility and usability are boosted by its user-friendly and customizable PyTorch framework, along
with a modular design that allows easy customization for various hardware platforms. Additional
benefits include improved anchor box prediction for more accurate bounding box localization and
strong community support for collaboration, quick bug fixes, and feature development. Although
newer versions such as YOLOv7 [34] and YOLOv8 [35] offer advancements, the speed, efficiency, and
strong community support of YOLOv5 make it the preferred choice for this study. While this work is
applicable to other detection networks, we chose YOLOv5 for these reasons.

3.2. Automated Perspective Transformation Algorithm

The perspective transformation is a fundamental tool in computer vision that allows for the
alteration of an image’s viewpoint, simulating a change in the observer’s position. This is done using a
3x3 transformation matrix that maps points from the original image plane to a new plane The matrix
is calculated by identifying four points in the original image and their corresponding locations in
the transformed image. By solving a set of linear equations, the matrix adjusts the coordinates of
these points, allowing the image to appear as though it is viewed from a different angle. This method
preserves the straightness of lines and their intersections, making it useful for applications like image
rectification [36], object tracking [37], and traffic surveillance [38].

For pothole detection, this technique concentrates on the region of interest (ROI), specifically the
street, while reducing the prominence of irrelevant areas such as the roadside and sky. By employing
perspective transformation, objects that are distant are virtually brought closer, thereby making
potholes appear significantly larger in the processed image. This enhancement is accomplished by
detecting and matching features, estimating homography, and warping the image using a 3 × 3
homography matrix M. This process emphasizes relevant features, thereby enhancing detection
accuracy, as follows:

t′ = M · t , (1)

where t′ and t are the coordinates of the ROI in the transformed and source images, respectively.
The homography matrix M is calculated using the corresponding points as explained earlier, aiding
in feature extraction and pothole bounding-box regression by mimicking a bird’s eye view for more
robust pothole detection in AVs.

Applying perspective transformation to a set of images requires manually selecting the boundary
points of the ROI. In our application, this ROI would primarily be the road as viewed from the
perspective of the vehicle itself. However, the boundaries of the road change significantly from one
scene to another depending on many factors, such as the type of road, curvature, number of lanes,
etc. Therefore, an ideal application of this technique would be to select the corners of the road for
each given image. However, this approach is not feasible for object detection applications due to its
time-consuming and error-prone nature, especially when dealing with different scenes that include
not only straight streets but street curvatures, u-turns, etc. Manually specifying four points for each
image based on the shape of the road is labor-intensive and introduces significant variability and
inaccuracies, making it unsuitable for large-scale datasets. Furthermore, due to its unfeasibility, a
new transformation matrix is required to be generated for each image, which would add run-time
overhead. Therefore, automating this process is essential to ensure a usable workflow and to generalize
the technique to most, if not all, datasets with similar structures. To address this challenge, we propose
an algorithm that automatically finds a set of ROI corner points that enables the generation of the
perspective transformation matrix M. Using this matrix, a set of images from the same source can be
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similarly transformed to better represent the ROI. Consequently, this approach ensures consistency
and precise ROI selection in any given dataset of the same source.

To achieve an optimal transformation, it is crucial to accurately identify the best ROI that encom-
passes all bounding boxes of potholes within an image, ensuring that no potholes are excluded. The
automatic transformation process involves determining the ROI by calculating the coordinates of all
bounding boxes to establish four defining points. Specifically, the boundary coordinates of the ROI are
determined as follows: the top-left point is defined by the minimum x and y coordinates among all
bounding boxes, the top-right point by the maximum x and minimum y coordinates, the bottom-left
point by the minimum x and maximum y coordinates, and the bottom-right point by the maximum x
and y coordinates. An offset value (α) is added to each of these points to ensure that the ROI extends
slightly beyond the boundaries of the bounding boxes. This offset allows for full coverage of the image
or ROI boundaries, depending on how much extension the user desires. This approach guarantees that
the ROI fully covers the outermost boundaries of the bounding boxes, thereby ensuring comprehensive
inclusion of all potholes.

To implement automatic perspective transformation, it is expected that we have a labeled object
detection dataset. The algorithm could then be applied to the selected images and their corresponding
labels, following the subsequent steps outlined in the algorithm structure below Algorithm 1. The
transformed images and label files were then saved to their designated output directories.

Algorithm 1 Automatic Perspective Transformation for Images and Bounding Boxes

Input: Images, Ground Truth Labels, ROI Offset α
Output: Transformed images and bounding boxes, Perspective transformation matrix M
Initialize lists

1: Initialize lists: all_x_min, all_y_min, all_x_max, all_y_max, all_w, all_h
▷ x_min, y_min: top-left corner coordinates
▷ w, h: width and height of bounding boxes
▷ x_max, y_max: bottom-right corner coordinates

Read bounding boxes
2: for each image and labels do
3: Read labeled bounding boxes (x_min, y_min, w, h)
4: (x_max, y_max)← (x_min + w, y_min + h)
5: Append to respective lists
6: end for

Calculate ROI offsets
7: (xo f f set, yo f f set)← (α×max(all_w), α×max(all_h))

Determine ROI corners
8: top_le f t← (min(all_x_min)− xo f f set, min(all_y_min)− yo f f set)
9: top_right← (max(all_x_max) + xo f f set, min(all_y_min)− yo f f set)

10: bottom_le f t← (min(all_x_min)− xo f f set, max(all_y_max) + yo f f set)
11: bottom_right← (max(all_x_max) + xo f f set, max(all_y_max) + yo f f set)
12: Source points src_pts← [top_le f t, top_right, bottom_le f t, bottom_right]
Clip ROI corners to be within image boundaries
13: for each point in src_points do
14: if pointx < 0 then
15: pointx ← 0
16: else if pointx > imagew then
17: pointx ← imagew
18: end if
19: if pointy < 0 then
20: pointy ← 0
21: else if pointy > imageh then
22: pointy ← imageh
23: end if
24: end for
Define target points based on image dimensions
25: Target points trg_pts← [(0, 0), (imagew, 0), (0, imageh), (imagew, imageh)]
Calculate perspective transformation matrix
26: M = getPerspectiveTransform(src_pts, trg_pts)
Transform images and bounding boxes
27: for each image and labels do
28: Transform image using M
29: Transform labels’ bounding box coordinates using M
30: Save the transformed images and bounding boxes
31: end for
32: return M
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Algorithm 1 automates the process of determining the ROI and generating the perspective
transformation matrix M. The main steps of the algorithm are as follows:

1. Initialize lists: Store coordinates and dimensions of bounding boxes for all images, including
minimum and maximum x and y coordinates, width, and height for each bounding box.

2. Read bounding boxes: Extract bounding box data from each image’s corresponding label file,
calculate all ROI boundary points, and update the respective lists.

3. Calculate offsets: Determine the ROI offsets using a specific α value and the max width and
height of all bounding boxes to define a slightly larger ROI.

4. Determine ROI corners: Use the minimum and maximum coordinates from the lists, along with
the calculated offsets, to determine the corners of the ROI. These corners are the source points
(src_pts) for the perspective transformation.

5. Clip ROI corners: Ensure ROI corners stay within image boundaries.
6. Define target points: Set target points (trg_pts) based on the image dimensions, representing the

transformed image corners.
7. Calculate transformation matrix: Compute the perspective transformation matrix M using the

source and target points. This matrix is used to transform the coordinates of the ROI to the new
perspective.

8. Transform images and bounding boxes: Apply the transformation matrix M to each image
and its bounding boxes. This involves transforming the image and adjusting the bounding box
coordinates accordingly. The transformed images and bounding boxes are then saved.

The algorithm detailed in Algorithm 1 was initially applied to the training dataset to compute
the perspective transformation matrix M. Subsequently, this matrix was utilized to transform the
images and bounding boxes in the testing dataset. The proposed algorithm automates the perspective
transformation process, ensuring consistent and precise selection of the region of interest (ROI) across
extensive datasets. This automation minimizes manual intervention and the associated variability in
selecting ROI corners for each image, making it an effective and scalable solution for applications like
pothole detection in autonomous vehicles.

4. Experiment Design

4.1. Evaluation Dataset

To evaluate our proposed method, we utilized the dataset introduced by Nienaber et al. in
[12,39]. This dataset, one of the few publicly available labeled pothole datasets, comprises 4405 images
extracted from video footage captured with a GoPro camera mounted on a vehicle’s windshield. Unlike
most of the other pothole datasets collected using mobile phones or drones, this dataset provides
a realistic representation of South African road conditions from a driver’s perspective, making it
particularly relevant for applications involving AVs and ground mobile robots. The dataset is split into
two positive and negative directories. Positive samples are samples that include at least one instance of
potholes and include a total of 1119 images, while negative samples are samples without any potholes
and include a total of 2658 images. Each image is provided with a label file with a bounding box’s
format (class label, bounding box coordinates, width, and height). Moreover, the dataset is divided into
training and testing subsets, with 628 images designated for testing. All images are provided in JPEG
format with a resolution of 3680×2760 pixels. Figure 4 showcases six representative samples from
the dataset, illustrating the challenges posed by varying illumination levels and pothole appearances,
which are critical for developing robust and accurate pothole detection systems.

The dataset presents several significant challenges, particularly given the nature of the objects it
aims to detect—potholes. Potholes vary widely in size, shape, and appearance, making them inherently
difficult to detect. These variations are further exacerbated by the fact that potholes at greater distances
appear smaller, complicating the task of accurately identifying them. Moreover, the color of potholes
can differ depending on the surrounding environment, such as sandy areas, pavement, or other types
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of ground surfaces. This variation in appearance makes it challenging for a model to generalize across
different scenarios, as the model must learn to recognize potholes in various contexts and lighting
conditions. The difficulty of this task is amplified by the relatively small size of the dataset. Detecting
small objects like potholes typically requires a large dataset to effectively learn the complex features
necessary for accurate detection. To overcome this challenge, we use various augmentation techniques
to enlarge the size of the training samples, and enhance the robustness and accuracy of the pothole
detection model. Furthermore, we used several augmentation techniques including affine scaling,
rotation, and shearing to adjust the image size, orientation, and viewpoint to help the model recognize
potholes of different sizes and angles. Whereas, horizontal flipping provides different perspectives,
while Gaussian blur mimics motion blur to handle imperfect image captures. Adjustments to gamma
contrast, brightness, and contrast normalization manage varying lighting conditions, ensuring that the
model performs well under different environments. Additionally, additive Gaussian noise is added
to make the model resilient to grainy images, and crop and pad transformations simulate occlusions
and varying distances from the camera. As a result, the number of training images increased from
1119 images to 2658 images. These augmentations simulate real-world conditions, helping the model
generalize better and improve pothole detection performance under diverse scenarios encountered by
autonomous vehicles. By creating a diverse and representative training dataset, the model becomes
more robust and capable of accurately detecting potholes in various challenging conditions.

Figure 4. Demonstration of different samples of the dataset used in this work. These samples are some
examples of the variance in lighting intensity and road conditions observed in this dataset.

Given the critical role of data quality and quantity in model performance, we explored several
preprocessing methods to maximize the utility of the dataset in comparison to our proposed approach,
Automatic Transformation. The methods evaluated include "Image As Is," "Dashboard Cropping," and
"Dashboard and Sky Cropping." The "Image As Is" method involves using the images without any
alterations, while "Dashboard Cropping" entails cropping the bottom portion of the images to exclude
the dashboard, and "Dashboard and Sky Cropping" involves cropping both the top and bottom parts
of the images to remove the sky and dashboard. These preprocessing techniques were employed to
eliminate extraneous elements, such as the dashboard and sky, which can lead to misclassifications and
increased computational load. This step was crucial in optimizing the model’s efficiency and ensuring
the dataset provided the best possible training conditions for pothole detection.
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To determine optimal cropping locations and minimize the loss of bounding boxes, we analyzed their
distribution and found that 99% fell within the range of 1200–1800 pixels of their y-coordinates. Values
above this range typically corresponded to the dashboard, while values below included sky regions.

Figure 5 visually compares the original image with two different cropping cases, in addition to
the proposed method, demonstrating the impact of image composition on computational efficiency
and model performance. This highlights the importance of preprocessing techniques in optimizing
the detection pipeline. In Image As is Figure 5a, the dashboard and sky occupy significant portions,
introducing irrelevant information and increasing computational load. This results in unnecessary
overhead and prolonged training times, negatively affecting model performance. To address this,
image Figure 5b representing the Dashboard Cropping method, was cropped from the bottom to
remove the dashboard, reducing false detections. However, this still left a substantial portion of the
sky, contributing minimal information. Consequently, the Dashboard and Sky Cropping in Figure 5c
was cropped to focus solely on the road surface, eliminating both the sky and the dashboard. Finally,
Figure 5d shows our approach focusing only on the street where potholes are present.

(a) Image as-is (b) Bottom cropped

(c) Double cropped

(d) Auto transformation

Figure 5. Visualization of the different comparison methods employed in our experiments: (a) Naive
approach (image as-is); (b) Fixed Cropping – Dashboard (bottom cropped); (c) Fixed Cropping –
Dashboard and Sky Cropping (double-cropped); (d) Automated perspective transformation approach.
The presented methods are demonstrated using the same input image.
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4.2. Evaluation Metrics

In object detection, key evaluation metrics include Intersection over Union (IoU), Precision,
Recall, Average Precision (AP), and Average Recall (AR). These metrics are crucial for assessing the
performance of detection models.

Intersection over Union (IoU) is a fundamental metric that measures the overlap between the
predicted bounding box and the ground truth bounding box. It is calculated as the ratio of the area of
intersection to the area of union of the two boxes, as shown in Equation 2. IoU is a threshold-based
measure, typically used to determine whether a detection is considered a true positive or a false
positive.

IoU =
Area of Intersection

Area of Union
(2)

Precision is the ratio of True Positives (TP) to the sum of True Positives and False Positives (FP),
indicating the accuracy of the positive predictions made by the model. It is defined as shown in
Equation 3.

Precision =
TP

TP + FP
(3)

Recall measures the proportion of actual positives correctly identified by the model, calculated as
the ratio of True Positives to the sum of True Positives and False Negatives (FN). This is expressed in
Equation 4.

Recall =
TP

TP + FN
(4)

Average Precision (AP), derived from the Precision-Recall (P-R) curve, is calculated by integrating
the area under this curve. AP at a specific IoU threshold (e.g., AP50 for IoU ≥ 0.5) represents the
precision averaged across different recall levels at that threshold. AP50:95 refers to the average precision
computed at multiple IoU thresholds ranging from 0.5 to 0.95 with a step size of 0.05. This metric
provides a comprehensive evaluation of model performance across various IoU thresholds. AP50 and
AP75 specifically denote AP at IoU thresholds of 0.5 and 0.75, respectively, offering insights into model
precision at different levels of overlap criteria.

Average Recall (AR) reflects the average recall over different numbers of detections per image,
providing an aggregate measure of the model’s ability to identify relevant instances among all actual
positives. ARmax=1 and ARmax=10 denote the average recall when considering a maximum of one
detection per image and ten detections per image, respectively, across IoU thresholds of 0.5 to 0.95.
These metrics help to evaluate the model’s recall capability, considering different levels of detection
strictness.

These metrics collectively offer a detailed assessment of the detection model’s performance,
highlighting its strengths and weaknesses across various detection thresholds and conditions.

4.3. Evaluation Strategy

To assess the effectiveness of our proposed method for detecting potholes at varying distances,
we employed two evaluation strategies. Initially, we evaluated the performance using a single class
(pothole). Subsequently, we expanded the analysis to include three classes (near, medium, and far) by
categorizing the bounding boxes based on the y-coordinates of their top-left corners, with each region
representing a different class. This classification aimed to measure the effectiveness of our approach
in enhancing the detection of potholes at different distances. We conducted a comparative analysis
against other dataset processing techniques, applying these evaluation strategies to each dataset using
predefined thresholds as follows:

For the Image As Is and Dashboard Cropping:

• Far: 1196 < y < 1350
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• Medium: 1351 < y < 1500
• Near: 1501 < y < 1963

For the Dashboard and Sky Cropping:

• Far: 4 < y < 235
• Medium: 236 < y < 370
• Near: 371 < y < 771

For the Automatic Transformation:

• Far: 0 < y < 285
• Medium: 286 < y < 430
• Near: 431 < y < 800

4.4. Implementation Settings

Throughout all of our experiments, we trained the object detection models using the following
hyperparameters: 100 epochs, a stochastic gradient descent (SGD) optimizer, a batch size of 16, and
a learning rate of 0.01. The learning rate determines the step size, which is the amount the model’s
parameters are adjusted with respect to the gradient during optimization. This rate was chosen to
balance the speed of convergence with stability, ensuring the step size is neither too large, causing
overshooting; nor too small, leading to slow convergence. The SGD optimizer was selected based
on its superior performance compared to the ADAM optimizer in our tests. Additionally, after data
augmentation, the dataset, consisting of 2658 images, was divided into 80% for training and 20% for
validation. For the experiments, we utilized the YOLOv5 small, medium, and large variants to assess
the model’s performance across different scales and complexities. The best-performing model on the
validation set, determined based on the results from each epoch, was selected as the final model.

The hardware setup for our experiments consisted of a GTX 1080 GPU with 11GB of memory and
64GB of RAM. All experiments utilized images that were downscaled to a resolution of 800×800 pixels
from the original 3680×2760 resolution captured by a high-resolution camera. We chose an input
resolution of 800×800, which is marginally larger than the default YOLOv5 base resolution of 640×640.
This choice was justified based on our empirical findings, where the larger input size allowed for
better feature representation, especially for detecting smaller and more distant potholes. The increased
resolution facilitated the model’s ability to capture finer details, thus enhancing detection accuracy
without significantly compromising computational efficiency or overwhelming the available hardware
resources.

To start the training process, we fine-tuned the YOLOv5 model on our dataset, leveraging the pre-
trained weights and further training them specifically on our data. The default training augmentations
provided by the YOLOv5 framework were employed throughout the experiments, alongside the
default hyperparameters, which we kept unchanged for consistency and standardization purposes
except the ones we mentioned earlier. The training process exclusively utilized positive images,
applying the preprocessing augmentations as detailed in 4.1. This methodological choice, including the
exclusion of negative images, is further substantiated by an ablation study presented in the following
section, which validates the effectiveness of these decisions in optimizing the model’s performance.
Additionally, based on our experiments and achieving optimal transformation outcomes, we selected
an α value of 0.2 for the automatic transformation algorithm presented in Algorithm 1.

5. Results and Discussion

5.1. Experiment 1: Naive vs. Fixed Cropping vs. Automated Transformation Approach

In this experiment, we systematically trained one variant of YOLOv5 (small) on all possible dataset
configurations. These configurations were evaluated for both single-class (pothole) and multi-class
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(near, medium, and far distance) detection tasks. As detailed in Table 1. Each method was assessed for
overall pothole detection as one class, and for each distance-based class separately.

Table 1. Experiment 1 results. This experiment compares the different approaches presented in this
work by fine-tuning YOLOv5-small under each configuration and then evaluating their performance
on the test set using various object detection metrics. Our proposed approach demonstrates superior
performance across all metrics and pothole distance categories.

Approach Pothole Distance Metric (%)

AP50:95 AP50 AP75 ARmax=1 ARmax=10

Image as Is

All 17.3 41.8 10.5 15.4 22.6

Near 20.8 49.4 14.0 18.9 27.0
Medium 16.8 42.4 9.3 18.8 23.5

Far 4.5 11.9 1.5 5.8 6.6

Bottom Cropped

All 17.9 42.5 11.4 15.9 23.3

Near 21.4 49.0 14.1 19.4 27.3
Medium 18.7 46.2 11.5 20.6 25.9

Far 3.9 12.4 1.5 5.5 6.6

Double Cropped

All 16.7 43.7 9.0 15.0 22.0

Near 21.3 53.5 11.6 19.3 27.0
Medium 17.6 46.9 10.2 20.9 23.9

Far 8.8 25.4 4.3 10.4 13.4

Auto Transformation

All 25.2 54.2 19.3 20.0 32.0

Near 27.1 57.1 22.6 22.8 33.6
Medium 30.0 64.2 23.8 31.6 37.2

Far 17.0 39.2 10.5 19.0 25.0
The best result per metric and pothole distance is highlighted in bold.

As illustrated in Table 1, our novel approach demonstrates superior performance across all metrics,
surpassing all other methods. Notably, we observed a substantial increase in AP50:95, with a 45.7%
improvement in the single class using our proposed approach compared to the Image As Is method.
Furthermore, there were increases of 30%, 78.5%, and 278% for the near, medium, and far classes,
respectively, at the same IoU threshold. Besides, our approach resulted in an improvement in AP50 of
29.6%, and in AP75 of 83.8%. Improvements were also observed in AR, with ARmax=1 increasing by 30%
and ARmax=10 by 41.5% at the same (50:95%) IoU threshold. These results underscore the effectiveness
of our method in enhancing pothole detection accuracy compared to traditional approaches.

The significant improvements observed in our results are due to the effectiveness of the automatic
perspective transformation approach, which virtually brings potholes closer to the vehicle, amplifying
their features and making them more discernible to the detection model, as Figure 3 shows. This
perspective adjustment enhances the model’s ability to learn and recognize pothole patterns, resulting
in more accurate and reliable detections. The amplification of pothole features simplifies the learning
process for the YOLOv5 model, leading to significant improvements in average precision across various
classes and IoU thresholds.

The proposed approach not only improved the overall pothole detection performance, but also
excelled in detecting the more challenging cases, particularly medium- and far-distance potholes,
which are the most critical for safety. Our method significantly improved the detection accuracy
for far potholes, an area where other methods have notably underperformed. The consistent per-
formance gains across different IoU thresholds validate the robustness of our approach. Traditional
detection methods struggle with varying perspectives and angles, while our method standardizes
these perspectives, offering a more uniform dataset for the model to train on, which is crucial for
real-world applications. The success of our approach in enhancing pothole detection accuracy has
broader implications for other object detection tasks, potentially leading to advancements in multiple
areas of computer vision.
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5.2. Experiment 2: Effects of Network Complexity/Scale on Performance

As demonstrated in Table 2, we performed an extensive evaluation of our proposed approach
compared to the baseline method, where the image remains unchanged. The evaluation was performed
using three variants of YOLOv5 (small, medium, and large). Furthermore, we tested these models
on three distinct classes (near, medium, and far), as well as on the entire pothole dataset treated as a
single class (pothole).

Table 2. Experiment 2 results. This experiment compares the naive (i.e., Image As-Is) approach with our
proposed approach on three YOLOv5 variants. In each configuration, a YOLOv5 variant is fine-tuned
on the corresponding approach’s training set and then evaluated on the test set using various object
detection metrics. Results show that our proposed approach always surpasses the performance of
the naive approach regardless of the utilized variant. Additionally, combining YOLOv5-Small with
our proposed approach significantly outperforms the naive approach even when compared to the
YOLOv5-Large configuration, for which the model is over six times larger in terms of the number of
parameters, across all metrics and pothole distance categories.

Approach Object Detection Model Parameters
(M)

FLOPs
(G) Pothole Distance Metric (%)

AP50:95 AP50 AP75 ARmax=1 ARmax=10

Image As Is

YOLOv5-Small 7.2 16.5

All 17.3 41.8 10.5 15.4 22.6

Near 20.8 49.4 14.0 18.9 27.0
Medium 16.8 42.4 9.3 18.8 23.5

Far 4.5 11.9 1.5 5.8 6.6

YOLOv5-Medium 21.2 49.0

All 18.3 43.4 12.6 16.2 23.6

Near 21.5 49.0 16.1 19.3 27.0
Medium 18.9 45.6 12.0 20.6 26.1

Far 5.1 16.2 1.8 7.6 8.5

YOLOv5-Large 46.5 109.1

All 18.4 43.3 12.6 15.7 23.8

Near 22.4 50.3 16.5 19.5 28.3
Medium 17.7 45.2 10.6 20.1 25.0

Far 4.6 13.6 1.5 6.4 7.6

Auto Transformation

YOLOv5-Small 7.2 16.5

All 25.2 54.2 19.3 20.0 32.0

Near 27.1 57.1 22.6 22.8 33.6
Medium 30.0 64.2 23.8 31.6 37.2

Far 17.0 39.2 10.5 19.0 25.0

YOLOv5-Medium 21.2 49.0

All 23.2 51.2 17.2 19.2 29.4

Near 25.8 55.0 20.1 22.5 31.7
Medium 27.4 57.0 21.5 28.8 33.6

Far 15.9 39.8 10.7 16.7 22.4

YOLOv5-Large 46.5 109.1

All 24.8 54.6 18.1 20.0 31.4

Near 26.9 55.9 22.0 22.9 33.5
Medium 27.9 60.8 19.3 31.0 34.9

Far 18.8 45.2 11.9 18.7 25.2

The best result per metric and pothole distance is highlighted in bold.

The results demonstrate a significant improvement in detection accuracy when comparing the
two approaches across all YOLOv5 variants for all classes. Notably, the YOLOv5 small variant, when
applied to our approach, outperformed the YOLOv5 large variant applied to the baseline approach,
knowing that YOLOv5 large has almost 6x the number of parameters as in YOLOv5 small as explained
in subsection 3.1.2. This highlights the effectiveness of our method in detecting potholes across various
distances while requiring lower computational resources compared to the traditional approach.

The results in Table 2 reveal that our proposed approach significantly enhances detection accuracy
across all YOLOv5 variants for every class compared to the baseline method. The superior performance
of the YOLOv5 small variant is particularly noteworthy, which outperformed both the medium and
large variants when using our method. We hypothesize that this counterintuitive result stems from
the larger and medium YOLOv5 models being more susceptible to the poor quality of some labels,
potentially learning and incorporating these inaccuracies into their detection processes more than the
smaller variant. Consequently, the small version’s relatively simpler architecture may have enabled it
to generalize better and avoid overfitting to the noisy data, resulting in enhanced detection accuracy
[40]. This finding underscores the effectiveness of our automatic perspective transformation approach
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and suggests that smaller, less complex models can be more robust in scenarios where data quality is
variable, offering valuable insights for similar projects in object detection.

5.3. Experiment 3: Ablation Study

Given that our dataset contains negative images and the augmentation capabilities inherent
in the YOLOv5 framework, we conducted a comprehensive series of experiments to identify the
optimal configuration for training our model. The goal was to quantitatively validate the chosen
configuration throughout our experiments. We integrated the negative images with the positive
images and explored various augmentation strategies, testing the effectiveness of relying exclusively
on the YOLOv5 framework’s default augmentations versus supplementing them with additional
manual augmentations that were introduced in section 4.1. This methodological investigation aimed
to rigorously assess the impact of these different approaches on the model’s performance.

To identify the optimal configuration, we created and evaluated four distinct setups using our
automatic perspective transformation approach. The results of these experiments are detailed in Table
3. The chosen configuration was then utilized for subsequent experiments presented in Table 1 and
Table 2.

The four configurations tested were as follows:

1. YOLOv5’s Augmentations Only, No Negative Images: This setup utilized only YOLOv5’s
augmentation step without negative images, as illustrated in the first row of Table 3.

2. YOLOv5’s Augmentations with Negative Images: This setup included negative images along-
side YOLOv5’s augmentation step, shown in the second row of the table.

3. Manual Preprocessing and YOLOv5’s Augmentation, Positive Images Only: This configuration
combined manual preprocessing augmentations with YOLOv5’s augmentations, using only
positive images. It achieved the best results among all setups.

4. Manual Preprocessing and YOLOv5’s Augmentation with Negative Images: This setup used
both manual and YOLOv5’s augmentations, incorporating negative images into the positive
dataset. It resulted in the lowest performance metrics.

Table 3. Ablation study results comparing the different preprocessing configurations. These results
are based on the automated transformation approach on all test set potholes using YOLOV5 Small.
Including the preprocessing augmentations while excluding the negative samples (training images
without potholes) produced the best performance across all metrics.

Configuration Metric (%)

Preproc. Augs. Neg. Images AP50:95 AP50 AP75 ARmax=1 ARmax=10

24.5 53.6 17.9 18.9 31.2
✓ 23.7 52.3 17.1 19.1 30.3

✓ 25.2 54.2 19.3 20.0 32.0
✓ ✓ 23.4 51.5 17.3 19.0 29.7

The best result per metric is highlighted in bold.

As illustrated in Table 3, the configuration that utilizes manual pre-processing with only the
positive data set during training consistently achieved the best results in all metrics. This approach
was subsequently applied to all experiments conducted in this study, confirming its superiority as the
optimal method for improving the accuracy of pothole detection.

Moreover, the results show that our approach that combined manual preprocessing with only
the positive dataset consistently outperformed all other configurations to improve the accuracy of the
pothole detection. This setup, which excluded negative images and relied on extensive augmentations,
proved superior across all metrics. We hypothesize that the inclusion of negative images introduced
noise into the training process, as these images lack bounding boxes or pothole features, which are
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critical for improving the model’s robustness and pattern recognition capabilities. Additionally, the
extensive use of manual preprocessing augmentations exposed the model to a wider variety of pothole
shapes, colors, and orientations, enhancing its ability to generalize across different scenarios. In
contrast, relying solely on YOLOv5’s framework augmentation step limited the model’s exposure to
diverse cases, thereby restricting its generalization potential.

By meticulously analyzing these configurations, we established a robust methodology to leverage
augmentation techniques and dataset composition to maximize the effectiveness of our automatic
perspective transformation approach in pothole detection. This comprehensive evaluation underscores
the importance of carefully selecting training configurations to achieve superior performance in
computer vision tasks.

6. Conclusion

In this paper, we introduced a novel method for improving pothole detection by leveraging
perspective transformation to automatically extract ROI from images and their corresponding labels.
The transformed dataset was then fed into the YOLOv5 small object detection model. Our approach
resulted in a notable improvement in detection accuracy, achieving a 45.7% increase in average
precision (AP) for a single class at IoU thresholds of 0.5 to 0.95 (AP50:95), compared to the naive use of
changed images. In addition, the method significantly improved the detection of potholes at various
distances, near, medium, and far, addressing a crucial aspect of road safety. The findings underscore
the critical role of preprocessing techniques, such as perspective transformation, in enhancing the
performance of object detection tasks.

For future work, we propose developing a deep learning model capable of dynamically regressing
the four corner points of the street in each image to generate a perspective transformation matrix. This
approach would necessitate labeled data, potentially obtainable from semantic segmentation datasets,
to further automate and refine the preprocessing pipeline.
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