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Abstract: This article provides a proof that the Ramanujan’s Inequality given by, 77(x)* < kfg T (%) holds
unconditionally for every x > exp(59). In case for an alternate proof of the result stated above, we shall
exploit certain estimates involving the Chebyshev Theta Function, #(x) in order to derive appropriate bounds
for 7t(x), which’ll lead us to a much improved condition for the inequality proposed by Ramanujan to satisfy

unconditionally.
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1. Introduction

The notion of analyzing the proportion of prime numbers over the real line R first came into the
limelight thanks to the genius work of one of the greatest and most gifted mathematicians of all time
named Srinivasa Ramanujan, as evident from his letters ([12], pp. xxiii-xxx , 349-353) to another one
of the most prominent mathematicians of 20" century, G. H. Hardy during the months of Jan/Feb of
1913, which are testaments to several strong assertions about the Prime Counting Function, 7t(x) (cf.
Definition 2.1.1 [15]).

In the following years, Hardy himself analyzed some of those results ([13,14], pp. 234-238), and
even wholeheartedly acknowledged them in many of his publications, one such notable result is the
Prime Number Theorem (cf. Theorem 2.1.1 [15]).

Ramanujan provided several inequalities regarding the behavior and the asymptotic nature of
7t(x). One of such relation can be found in the notebooks written by Ramanujan himself has the
following claim.

Theorem 1 ((Ramanujan’s Inequality [1])). For x sufficiently large, we shall have,

> ex x
(m(x))? < 1ngn(;) (1)

Worth mentioning that, Ramanujan indeed provided a simple, yet unique solution in support of
his claim. Furthermore, it has been well established that, the result is not true for every positive real x.
Thus, the most intriguing question that the statement of Theorem (1) poses is, is there any xq such that,
Ramanujan’s Inequality will be unconditionally true for every x > x(?

A brilliant effort put up by F. S. Wheeler, ]. Keiper, and W. Galway in search for such xy using tools
such as MATHEMATICA went in vain, although independently Galway successfully computed the largest
prime counterexample below 101 at x = 38 358 837 677. However, Hassani ([3], Theorem 1.2) proposed
a more inspiring answer to the question in a way that, 3 such xy = 138 766 146 692 471 228 with (1)
being satisfied for every x > xq, but one has to neccesarily assume the Riemann Hypothesis. In a recent
paper by A. W. Dudek and D. J. Platt ([2], Theorem 1.2), it has been established that, ramanujan’s
Inequality holds true unconditionally for every x > exp(9658). Although this can be considered as
an exceptional achievement in this area, efforts of further improvements to this bound are already
underway. For instance, Mossinghoff and Trudgian [5] made significant progress in this endeavour,
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when they established a better estimate as, x > exp(9394). Later on, Platt and Trudgian ([18], cf.
Th. 2) together established that, further improvement is indeed possible, and that x > exp(3915).
Worth mentioning that, Cully-Hugill and Johnston ([19], cf. Cor. 1.6) literally took it to the next level
by obtaining an effective bound for (1) to hold unconditionally as, x > exp(3604). Unsurprisingly,
Johnston and Yang ([20], cf. Th. 1.5) outperformed them in claiming the lower bound for such x
satisfying Ramanujan’s Inequality to be exp(3361).

One recent even better result by Axler [6] suggests that, the lower bound for x, namely exp(3361)
can in fact be further improved upto exp(3158.442) using similar techniques as described in [2],
although modifying the error term accordingly adhering to a sharper bound involving 77(x) and Li(x)
derived by Fiori, Kadiri, and Swidinsky ([4], cf. Cor. 22).

This paper does indeed adopts a new approach in modifying the esisting estimates for x in order
for the Ramanujan’s Inequality (cf. Theorem (1)) to hold without imposing any further assumptions
on it for every x > x¢. By utilizing some effective bounds on the Chebyshev’s 9-function, the primary
intention is to obtain a suitable bound for 77(x), and hence eventually come up with a much better
estimate for x( by tinkering with the constants while respecting all the stipulated conditions available
to us.

2. An Improved Criterion for Ramanujan’s Inequality

Suppose, we define,

G(x) == (n(x)? - o (2) @

~logx’ \e

A priori using the Prime Number Theorem ([15], cf. Th. 2.1.1), we can in fact assert that [2],

=xy R o2 ®
m(x) = x +
k=0 logk+1 X log6 X
as x — co. On the other hand, for the Chebyshev’s 9-function having the following definition,
B(x):= ) logp, (4)
p<x

we can indeed summarize certain inequalities (cf. [7] and [8]) as follows:

Proposition 1. The following holds true for 9(x):

1. 9(x) < x, for x < 108,
2. 19(x) — x| < 2.05282+/%, for x < 108,

3. [8(x) — x| < 00239922 X, for x > 758711,
4. |9(x) — x| < 0.0077629@, for x > exp(22),
5 19(x) — x| < 8.0721%%36, forx > 1.

Applying these inequalities, we can compute a suitable bound for #(x) as follows:

Lemma 1 (cf. [9]). We shall have the following estimate for 9(x):

2 1
x(l—W) < 8(x) <x(1+W), for x > 6400, )

Lemma (1) does in fact enables us deduce a more effective bound for 77(x), which’ll prove to be
immensely beneficial for us later on.
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Theorem 2. We shall have the following estimate for 7t(x) as follows:
] 1x <m(x) < ] 1x , for x > 59. (6)

ogx — 1+ 1/10gx 08X =1~ q/logx

We briefly discuss the proof of the Theorem above following the steps as described in [9] for the
convenience of our readers.

Proof. Applying a well-known inequlity involving ¢(x) and 7(x),

ni(x) = 8(x) +/ 8(t) dt (7)

logx ) tlog?t

and, with the help of (5) in Lemma (1), we get,

X

(x) < +/ at 1/
logx logx )25 log? t T3 logx

~ logx 3(logx)15 * logx log?2 5 log® t 32 (logt)3>

X 1 7
< 1 - 8
logx< * 3(log x)15 logx) ®
Moreover, defining the function,
2 x 7 dt
h(x):=<= for x > exp(18.25) )

3 (logx)%> B glog3t !

We can observe that, 1 (x) > 0, implying that, & is increasing. Now, for every convex function
u : [a,b] - R, where,a <b,a,b e Ry wehave,

b .
/u(x)dx < ? (u(a) +u(b) + iu( b;ﬂ)) (10)
; k=1

and using (10) on each of the intervals [2,¢], [e, €],

Thus, choosing u(x) := 10g13x

[e!7,e'8] and [e18, e8] yields,

exp(18.25)

+— < 16870.
log” t

Furthermore, one can also verify using MATHEMATICA that,

1
i (exp(18.25)) > £ (118507 — 118090) > .
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Therefore, for every x > exp(18.25), we must have from (8),
X 1 1 X
m(x) < (1 + + ) < (11)
log x 3(logx)15 * logx logx —1— \/11)?
Again, for x < exp(18.25) < 108, we apply (1) in Proposition (1) to derive,
X X
n(x) = 8(x) +/ ﬁ(xz) it < — dtz
log x J tlog™t log x J log™t
X
:x(l+l)_ 22_'_2/011;‘
log x log x log”2 ) log” t
Furthermore, for 4000 < x < 108, taking the function,
rodt 2
X
I x::7—2/7+7. 12
) (log x)>> log®t  log?2 (12)

2

We can indeed verify that, i) (x) > 0, implying h; is an increasing function. Similarly, with the help of
MATHEMATICA, we can compute the sign of h; as follows,

exp(11) p
ha(exp(11)) > 149 — 2 / tg > 149 — 140 > 0.
log” t
In summary, thus for exp(11) < x < 108,
X 1 1 X
1 . 13
(%) < logx( +longL(logx)1~5> < logx—l—\/l})? (13)
In addition to the above, it is important to note that, for x > 6, the denominator, logx — 1 — \/12? >0
Which means that, for 6 < x < exp(11), we need to establish,
H(x) := 41+ (logx) ™% —logx >0 (14)
©om(x) ’

Assuming pj, to be the n'" prime, it can be observed that, H is in fact increasing in [p,, p,11), thus it
only needs to be proven that, H(p,) > 0.

For p, < exp(11), we have the inequality ——

\/log pn

> 0.3, which reduces our computation to

verifying,

% —logp, > —13

for every 7 < p, < exp(11), which can be achieved using MATHEMATICA.
In order to establish the lower bound of 7(x) as claimed in (6), we shall be needing (1) in
Proposition (1) and (5) in Lemma (1) under the condition that, x > 6400. Hence,

9(x)  (6400)

x
n(x) _ 7-((6400) = log - log(6400) ~|-64/00

o(t) it

15
tlog? t (15
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Rigorous computations does yield, 77(6400) = 834, and, 13é?§283) < 10;&%%0) < 731. Thus, (15) further
reduces to,
O(t
(x) > 103+ X )+/ )
tlog”t
6400
Using the lower bound of ¢(x) as in (5) of Lemma (1) gives,
2 6400 oAt 2 7 dt
Mﬂ>w&H;xiw.; +1x2 ~ log? 6400 /13t7§/13%
J og X fog x 10§ 6i00 0B 6i00 08
X 1 2 X
>lox1+lox_1 1.5 >1 1 1
g g 3log ™ x ogx —1+ VT
Setting v = (log x) %%, we can assert that, the above inequality holds true for, 203 — 50% +3v — 1 < 0,

implying, v(1 —v)(3 — 2v) < @ < 1. Hence, it can be confirmed that, the statement (6) holds true

for x > 6400.
Furthermore, for x < 6400, we intend on showing that,

B(x) == —ﬁ +logx —1+

> 0. (16)

1
\/log x

Assuming similarly that, p, denotes the n'/" prime, one can observe that, the function f(x) is indeed
decreasing on [py, pn+1). Hence, it only suffices to check for the values at p, — 1. Now, p, < 6400
implies, (log(pn — 1))7%% > 0.337, and thus, it only is needed to be checked that,

log(pn —1)  pn—1
| S > 0.663 (17)

Utilizing proper coding in MATHEMATICA gives us, n > 36 in order for (17) to satisfy. Therefore, we can
further verify that, (6) holds for x > 59, and the proof is complete. [J

Significantly, Karanikolov [10] cited one of the applications of (6) which says that for & > e!/*

and, x > 364, we must have,

m(ax) < ar(x). (18)
Although, a more effective version of (18) states (cf. Theorem 2 [9]) the following.
Proposition 2. (18) holds true for every & > 1 and, x > exp(4(loga)~2),

Proof. We utilize (6) in theorem (2) for ax > 6. Thus,

ax ax
] 1 — < 7m(ax) < ] N T
ogax — 1+ \/log ax ogax — L= y/log ax
and,
ax oax
1 N — <amn(x) < 0 N T
ogx—1+ v/ log x ogr— L~ y/log x

d0i:10.20944/preprints202408.0451.v1


https://doi.org/10.20944/preprints202408.0451.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 8 August 2024

6 0f 9

for every x > 59. Now, assuming x > exp (4(log oc)’z), we can deduce that,
loga > (logax) % + (logx)~%°

which is all that we're required to show. This completes the proof. 0O

As for another application of (6), we must mention the work of Udrescu [11], where it was claimed
that,if 0 < € <1, then,

n(x+y) <m(x)+n(y), Vex <y<ux. (19)

Again, further progress have in fact been made in order to improve the result (19). One such notable
work in this regard has been done by Panaitopol [9].

Lemma 2. (19) is satisfied under additional condition, x > exp(9e~2), where, € € (0,1].

We shall be using all the above derivations in order to obtain a much improved bound for x( such
that, G(x) < 0 unconditionally for every x > x.
Choose some a > 1 such that,e —a > a > 1 as well. Hence,

(x) = n(e%) = n(a% + (e — a)%) (20)

Using (19) by taking, € = ;%= < 1 as per our construction yields,

(x) < 7'((11%) + n((e—a)%) (21)

_e

for every x > =

.exp (9. (%) 72) . Furthermore, by our selection of 4, we can in fact utilize Proposi-
tion (2) again in order to derive the following estimates,

n(a%) < a.n(%) ,V x> exp (4(loga)*2 + 1) (22)
and,
n((e — a).g) < (e— a).n(%) ,V x> exp (4(log(e —a)) 2+ 1) (23)

Therefore, combining (20), (21), (22) and (23), we obtain,

(x) < a.n(%) + (e— a).rt(f) = e.n(f) (24)

e e

for every such,

x> max{ . i - exp (9, (e i a) 2) ,exp <4(loga)—2 + 1),exp (4(log(e —a)) 2+ 1) } (25)

For our convenience, we consider, 2 = 1.3003232 > 1.
Thus, we can verify, e = 0.9170389 < 1. Subsequently, we conclude that, (24) is satisfied for every,

x > max{1.917038924 exp(10.7020504), exp(59), exp(33.799421) } (26)

In summary, we have,

m(x) < e.n(%) , Vx> exp(59). (27)

d0i:10.20944/preprints202408.0451.v1
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On the other hand, (3) gives us,
X
mt(x) > Togx (28)
for sufficiently large values of x. Finally, combining (27) and (28), we get from (2),
- 2 (X 2 - —
6() = (n(0) + (o2 )-(~en(%)) < (R4 (o). (~(x) =o. 29)

and this is valid unconditionally for every x > exp(59). Therefore, we have our xy = exp(59) as
desired in order for the Ramanujan’s Inequality to hold without any further assumptions.

3. Numerical Estimates for G(x)

We can indeed verify our claim using programming tools such as MATHEMATICA for example.
The numerical data' from the Table 1 and the plot Figure 1 representing log(—G(x)) against log x
for x € [exp(59),exp(3159)] clearly establishes that, G is indeed monotone decreasing in the said
interval, and also is strictly negative. It only suffices to check until exp(3159), as the result has been
unconditionally proven for x > exp(3158.442) by Axler [6].

Plot of Log (-G (x)) against Log x

Log(-G(x))

5000 |
I-...

1000 |

500 | L

100+ *

L L M| N N L 1 N N N P | LOQ x
100 500 1000

Figure 1

1 Codes are available at: https:/ /github.com/subhamdel/Paper-15.git
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Table 1. Values of G(x) at x = exp(59 + 100k) for 0 < k < 31

e —5.3863026 x 1040 1659 | 47172079 x 101421
€199 | —8.6366147 x 10124 el759 | _2.3980349 x 101508
e? | —3.2250049 x 10210 e1859 | _1.2430367 x 1019%
39 | —3.2357043 x 1029 e19%9 | _6.5566576 x 101081
e* | —5.3064365 x 10382 2059 | 35131458 x 101768
e | —1.1686993 x 10467 2159 1 _1.9093149 x 101855
99 | —-3.1339236 x 10°%° 2259 1 _1.0511565 x 101942
e’ | —9.6742945 x 10041 2359 | _5.8557034 x 102028
¢899 | —3.3194561 x 10728 2459 | _3.2975152 x 102115
e | —1.2367077 x 10815 2559 1 _1.8754944 x 102202
2659 1 _1.0765501 x 102289
2759 | _6.2322859 x 102375
2859 | _3.6365683 x 102462
2959 1 21376236 x 102549
3059 | _1.2651826 x 102636
3159 1 75364298 x 102722

21059 | 49214899 x 10°01
1159 | 20671392 x 10788
1?9 | —9.0822473 x 101074
e13%9 | 41454353 x 101161
499 1 —1.9549848 x 101248
e15% | 94847597 x 101334

QA A A QO O O 0O O /8 /® O N

4. Future Research Prospects

In summary, we’ve utilized specific order estimates for the Prime Counting Function rt(x) in
addition to several explicit bounds involving Chebyshev’s 9-function, 9(x), a priori with the help of the
Prime Number Theorem in order to conjure up an improved bound for the famous Ramanujan’s Inequality.
Although, it'll surely be interesting to observe whether it’s at all feasible to apply any other techniques
for this purpose.

On the other hand, one can surely work on some modifications of Ramanujan’s Inequality For
instance, Hassani studied (1) extensively for different cases [3], and eventually claimed that, the
inequality does in fact reverses if one can replace e by some « satifying, 0 < a < e, although it retains
the same sign for every a > e.

In addition to above, it is very much possible to come up with certain generalizations of Theorem
(1). In this context, we can study Hassani’s stellar effort in this area where, he apparently increased
the power of 77(x) from 2 upto 2" and provided us with this wonderful inequality stating that for
sufficiently large values of x [16],

. 271
(n(x))Z < ﬁ(l _elk_1>2"k (10;35) 71'(61”)
og x

k=1

Finally, and most importantly, we can choose to broaden our horizon, and proceed towards studying
the prime counting function in much more detail in order to establish other results analogous to Theorem
(1), or even study some specific polynomial functions in 77(x) and also their powers if possible. One
such example which can be found in [17] eventually proves that, for sufficiently large values of x,

o (7)) <)+ o (w(3) T e

Whereas, significantly the inequality reverses for the specific case when, n = 1 (Cubic Polynomial
Inequality) (cf. Theorem 3.1.1 [17]).

Hopefully, further research in this context might lead the future researchers to resolve some
of the unsolved mysteries involving prime numbers, or even solve some of the unsolved problems
surrounding the iconic field of Number Theory.
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