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Abstract: This article provides a proof that the Ramanujan’s Inequality given by, π(x)2 < ex
log x π

(
x
e

)
holds

unconditionally for every x ≥ exp(59). In case for an alternate proof of the result stated above, we shall

exploit certain estimates involving the Chebyshev Theta Function, ϑ(x) in order to derive appropriate bounds

for π(x), which’ll lead us to a much improved condition for the inequality proposed by Ramanujan to satisfy

unconditionally.
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1. Introduction

The notion of analyzing the proportion of prime numbers over the real line R first came into the
limelight thanks to the genius work of one of the greatest and most gifted mathematicians of all time
named Srinivasa Ramanujan, as evident from his letters ([12], pp. xxiii-xxx , 349-353) to another one
of the most prominent mathematicians of 20th century, G. H. Hardy during the months of Jan/Feb of
1913, which are testaments to several strong assertions about the Prime Counting Function, π(x) (cf.
Definition 2.1.1 [15]).

In the following years, Hardy himself analyzed some of those results ([13,14], pp. 234-238), and
even wholeheartedly acknowledged them in many of his publications, one such notable result is the
Prime Number Theorem (cf. Theorem 2.1.1 [15]).

Ramanujan provided several inequalities regarding the behavior and the asymptotic nature of
π(x). One of such relation can be found in the notebooks written by Ramanujan himself has the
following claim.

Theorem 1 ((Ramanujan’s Inequality [1])). For x sufficiently large, we shall have,

(π(x))2 <
ex

log x
π
( x

e

)
(1)

Worth mentioning that, Ramanujan indeed provided a simple, yet unique solution in support of
his claim. Furthermore, it has been well established that, the result is not true for every positive real x.
Thus, the most intriguing question that the statement of Theorem (1) poses is, is there any x0 such that,
Ramanujan’s Inequality will be unconditionally true for every x ≥ x0?

A brilliant effort put up by F. S. Wheeler, J. Keiper, and W. Galway in search for such x0 using tools
such as MATHEMATICA went in vain, although independently Galway successfully computed the largest
prime counterexample below 1011 at x = 38 358 837 677. However, Hassani ([3], Theorem 1.2) proposed
a more inspiring answer to the question in a way that, ∃ such x0 = 138 766 146 692 471 228 with (1)
being satisfied for every x ≥ x0, but one has to neccesarily assume the Riemann Hypothesis. In a recent
paper by A. W. Dudek and D. J. Platt ([2], Theorem 1.2), it has been established that, ramanujan’s
Inequality holds true unconditionally for every x ≥ exp(9658). Although this can be considered as
an exceptional achievement in this area, efforts of further improvements to this bound are already
underway. For instance, Mossinghoff and Trudgian [5] made significant progress in this endeavour,
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when they established a better estimate as, x ≥ exp(9394). Later on, Platt and Trudgian ([18], cf.
Th. 2) together established that, further improvement is indeed possible, and that x ≥ exp(3915).
Worth mentioning that, Cully-Hugill and Johnston ([19], cf. Cor. 1.6) literally took it to the next level
by obtaining an effective bound for (1) to hold unconditionally as, x ≥ exp(3604). Unsurprisingly,
Johnston and Yang ([20], cf. Th. 1.5) outperformed them in claiming the lower bound for such x
satisfying Ramanujan’s Inequality to be exp(3361).

One recent even better result by Axler [6] suggests that, the lower bound for x, namely exp(3361)
can in fact be further improved upto exp(3158.442) using similar techniques as described in [2],
although modifying the error term accordingly adhering to a sharper bound involving π(x) and Li(x)
derived by Fiori, Kadiri, and Swidinsky ([4], cf. Cor. 22).

This paper does indeed adopts a new approach in modifying the esisting estimates for x0 in order
for the Ramanujan’s Inequality (cf. Theorem (1)) to hold without imposing any further assumptions
on it for every x ≥ x0. By utilizing some effective bounds on the Chebyshev’s ϑ-function, the primary
intention is to obtain a suitable bound for π(x), and hence eventually come up with a much better
estimate for x0 by tinkering with the constants while respecting all the stipulated conditions available
to us.

2. An Improved Criterion for Ramanujan’s Inequality

Suppose, we define,

G(x) := (π(x))2 − ex
log x

π
( x

e

)
(2)

A priori using the Prime Number Theorem ([15], cf. Th. 2.1.1), we can in fact assert that [2],

π(x) = x
4

∑
k=0

k!

logk+1 x
+ O

(
x

log6 x

)
(3)

as x → ∞. On the other hand, for the Chebyshev’s ϑ-function having the following definition,

ϑ(x) := ∑
p≤x

log p , (4)

we can indeed summarize certain inequalities (cf. [7] and [8]) as follows:

Proposition 1. The following holds true for ϑ(x):

1. ϑ(x) < x, for x < 108,
2. |ϑ(x)− x| < 2.05282

√
x, for x < 108,

3. |ϑ(x)− x| < 0.0239922 x
log x , for x ≥ 758711,

4. |ϑ(x)− x| < 0.0077629 x
log x , for x ≥ exp(22),

5. |ϑ(x)− x| < 8.072 x
log2 x

, for x > 1.

Applying these inequalities, we can compute a suitable bound for ϑ(x) as follows:

Lemma 1 (cf. [9]). We shall have the following estimate for ϑ(x):

x
(

1 − 2
3(log x)1.5

)
< ϑ(x) < x

(
1 +

1
3(log x)1.5

)
, for x ≥ 6400. (5)

Lemma (1) does in fact enables us deduce a more effective bound for π(x), which’ll prove to be
immensely beneficial for us later on.
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Theorem 2. We shall have the following estimate for π(x) as follows:

x
log x − 1 + 1√

log x

< π(x) <
x

log x − 1 − 1√
log x

, for x ≥ 59. (6)

We briefly discuss the proof of the Theorem above following the steps as described in [9] for the
convenience of our readers.

Proof. Applying a well-known inequlity involving ϑ(x) and π(x),

π(x) =
ϑ(x)
log x

+

x∫
2

ϑ(t)
t log2 t

dt (7)

and, with the help of (5) in Lemma (1), we get,

π(x) <
x

log x
+

x
3(log x)2.5 +

x∫
2

dt
log2 t

+
1
3

x∫
2

dt
(log x)3.5

=
x

log x

(
1 +

1
3(log x)1.5 +

1
log x

)
− 2

log2 2
+ 2

x∫
2

dt
log3 t

+
1
3

x∫
2

dt
(log t)3.5

<
x

log x

(
1 +

1
3(log x)1.5 +

1
log x

)
+

7
3

x∫
2

dt
log3 t

(8)

Moreover, defining the function,

h1(x) :=
2
3

.
x

(log x)2.5 − 7
3

dt
log3 t

, for x ≥ exp(18.25) (9)

We can observe that, h′1(x) > 0, implying that, h1 is increasing. Now, for every convex function
u : [a, b] → R, where, a < b , a, b ∈ R>0, we have,

b∫
a

u(x)dx ≤ b − a
n

(
u(a) + u(b) +

n−1

∑
k=1

u
(

a + k
b − a

n

))
. (10)

Thus, choosing u(x) := 1
log3 x

and n = 105 and using (10) on each of the intervals [2, e], [e, e2], ......,

[e17, e18] and [e18, e18.25] yields,

exp(18.25)∫
2

dt
log3 t

< 16870.

Furthermore, one can also verify using MATHEMATICA that,

h1(exp(18.25)) >
1
3
(118507 − 118090) > 0.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 8 August 2024                   doi:10.20944/preprints202408.0451.v1

https://doi.org/10.20944/preprints202408.0451.v1


4 of 9

Therefore, for every x ≥ exp(18.25), we must have from (8),

π(x) <
x

log x

(
1 +

1
3(log x)1.5 +

1
log x

)
<

x
log x − 1 − 1√

log x

(11)

Again, for x ≤ exp(18.25) < 108, we apply (1) in Proposition (1) to derive,

π(x) =
ϑ(x)
log x

+

x∫
2

ϑ(x)
t log2 t

dt <
x

log x
+

x∫
2

dt
log2 t

=
x

log x

(
1 +

1
log x

)
− 2

log2 2
+ 2

x∫
2

dt
log3 t

.

Furthermore, for 4000 ≤ x < 108, taking the function,

h2(x) :=
x

(log x)2.5 − 2
x∫

2

dt
log3 t

+
2

log2 2
. (12)

We can indeed verify that, h′2(x) > 0, implying h2 is an increasing function. Similarly, with the help of
MATHEMATICA, we can compute the sign of h2 as follows,

h2(exp(11)) > 149 − 2

exp(11)∫
2

dt
log3 t

> 149 − 140 > 0.

In summary, thus for exp(11) ≤ x < 108,

π(x) <
x

log x

(
1 +

1
log x

+
1

(log x)1.5

)
<

x
log x − 1 − 1√

log x

. (13)

In addition to the above, it is important to note that, for x ≥ 6, the denominator, log x − 1 − 1√
log x

> 0.

Which means that, for 6 ≤ x ≤ exp(11), we need to establish,

H(x) :=
x

π(x)
+ 1 + (log x)−0.5 − log x > 0. (14)

Assuming pn to be the nth prime, it can be observed that, H is in fact increasing in [pn, pn+1), thus it
only needs to be proven that, H(pn) > 0.

For pn < exp(11), we have the inequality 1√
log pn

> 0.3, which reduces our computation to

verifying,

pn

n
− log pn > −1.3

for every 7 ≤ pn ≤ exp(11), which can be achieved using MATHEMATICA.
In order to establish the lower bound of π(x) as claimed in (6), we shall be needing (1) in

Proposition (1) and (5) in Lemma (1) under the condition that, x ≥ 6400. Hence,

π(x)− π(6400) =
ϑ(x)
log x

− ϑ(6400)
log(6400)

+

x∫
6400

ϑ(t)
t log2 t

dt. (15)

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 8 August 2024                   doi:10.20944/preprints202408.0451.v1

https://doi.org/10.20944/preprints202408.0451.v1


5 of 9

Rigorous computations does yield, π(6400) = 834, and, ϑ(6400)
log(6400) <

6400
log(6400) < 731. Thus, (15) further

reduces to,

π(x) > 103 +
ϑ(x)

x
+

x∫
6400

ϑ(t)
t log2 t

dt.

Using the lower bound of ϑ(x) as in (5) of Lemma (1) gives,

π(x) > 103 +
x

log x
− 2x

3 log2.5 x
+

x
log2 x

− 6400
log2 6400

+ 2
x∫

6400

dt
log3 t

− 2
3

x∫
6400

dt
log3.5 t

>
x

log x

(
1 +

1
log x

− 2

3 log1.5 x

)
>

x
log x − 1 + 1√

log x

Setting v = (log x)−0.5, we can assert that, the above inequality holds true for, 2v3 − 5v2 + 3v − 1 < 0,
implying, v(1 − v)(3 − 2v) ≤ (3−v)

4 < 1. Hence, it can be confirmed that, the statement (6) holds true
for x ≥ 6400.

Furthermore, for x < 6400, we intend on showing that,

β(x) := − x
π(x)

+ log x − 1 +
1√

log x
> 0. (16)

Assuming similarly that, pn denotes the nth prime, one can observe that, the function β(x) is indeed
decreasing on [pn, pn+1). Hence, it only suffices to check for the values at pn − 1. Now, pn ≤ 6400
implies, (log(pn − 1))−0.5 > 0.337, and thus, it only is needed to be checked that,

log(pn − 1)
pn − 1

− pn − 1
n − 1

> 0.663 (17)

Utilizing proper coding in MATHEMATICA gives us, n ≥ 36 in order for (17) to satisfy. Therefore, we can
further verify that, (6) holds for x ≥ 59, and the proof is complete.

Significantly, Karanikolov [10] cited one of the applications of (6) which says that for α ≥ e1/4

and, x ≥ 364, we must have,

π(αx) < απ(x). (18)

Although, a more effective version of (18) states (cf. Theorem 2 [9]) the following.

Proposition 2. (18) holds true for every α > 1 and, x > exp
(
4(log α)−2),

Proof. We utilize (6) in theorem (2) for αx ≥ 6. Thus,

αx
log αx − 1 + 1√

log αx

< π(αx) <
αx

log αx − 1 − 1√
log αx

and,

αx
log x − 1 + 1√

log x

< απ(x) <
αx

log x − 1 − 1√
log x
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for every x ≥ 59. Now, assuming x ≥ exp
(
4(log α)−2), we can deduce that,

log α > (log αx)−0.5 + (log x)−0.5

which is all that we’re required to show. This completes the proof.

As for another application of (6), we must mention the work of Udrescu [11], where it was claimed
that, if 0 < ϵ ≤ 1, then,

π(x + y) < π(x) + π(y) , ∀ ϵx ≤ y ≤ x. (19)

Again, further progress have in fact been made in order to improve the result (19). One such notable
work in this regard has been done by Panaitopol [9].

Lemma 2. (19) is satisfied under additional condition, x ≥ exp(9ϵ−2), where, ϵ ∈ (0, 1].

We shall be using all the above derivations in order to obtain a much improved bound for x0 such
that, G(x) < 0 unconditionally for every x ≥ x0.

Choose some a > 1 such that, e − a > a > 1 as well. Hence,

π(x) = π
(

e.
x
e

)
= π

(
a.

x
e
+ (e − a).

x
e

)
(20)

Using (19) by taking, ϵ = a
e−a < 1 as per our construction yields,

π(x) < π
(

a.
x
e

)
+ π

(
(e − a).

x
e

)
(21)

for every x ≥ e
e−a . exp

(
9.
( a

e−a
)−2
)

. Furthermore, by our selection of a, we can in fact utilize Proposi-
tion (2) again in order to derive the following estimates,

π
(

a.
x
e

)
< a.π

( x
e

)
, ∀ x > exp

(
4(log a)−2 + 1

)
(22)

and,

π
(
(e − a).

x
e

)
< (e − a).π

( x
e

)
, ∀ x > exp

(
4(log(e − a))−2 + 1

)
(23)

Therefore, combining (20), (21), (22) and (23), we obtain,

π(x) < a.π
( x

e

)
+ (e − a).π

( x
e

)
= e.π

( x
e

)
(24)

for every such,

x ≥ max

{
e

e − a
. exp

(
9.
(

a
e − a

)−2
)

, exp
(

4(log a)−2 + 1
)

, exp
(

4(log(e − a))−2 + 1
)}

(25)

For our convenience, we consider, a = 1.3003232 > 1.
Thus, we can verify, ϵ = 0.9170389 < 1. Subsequently, we conclude that, (24) is satisfied for every,

x ≥ max{1.917038924 exp(10.7020504), exp(59), exp(33.799421)} (26)

In summary, we have,

π(x) < e.π
( x

e

)
, ∀ x ≥ exp(59). (27)
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On the other hand, (3) gives us,

π(x) >
x

log x
(28)

for sufficiently large values of x. Finally, combining (27) and (28), we get from (2),

G(x) = (π(x))2 +

(
x

log x

)
.
(
−e.π

( x
e

))
< (π(x))2 + π(x).(−π(x)) = 0. (29)

and this is valid unconditionally for every x ≥ exp(59). Therefore, we have our x0 = exp(59) as
desired in order for the Ramanujan’s Inequality to hold without any further assumptions.

3. Numerical Estimates for G(x)

We can indeed verify our claim using programming tools such as MATHEMATICA for example.
The numerical data1 from the Table 1 and the plot Figure 1 representing log(−G(x)) against log x
for x ∈ [exp(59), exp(3159)] clearly establishes that, G is indeed monotone decreasing in the said
interval, and also is strictly negative. It only suffices to check until exp(3159), as the result has been
unconditionally proven for x ≥ exp(3158.442) by Axler [6].

Figure 1

1 Codes are available at: https://github.com/subhamde1/Paper-15.git
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Table 1. Values of G(x) at x = exp(59 + 100k) for 0 ≤ k ≤ 31

x G(x)

e59 −5.3863026 × 1040

e159 −8.6366147 × 10124

e259 −3.2250049 × 10210

e359 −3.2357043 × 10296

e459 −5.3064365 × 10382

e559 −1.1686993 × 10469

e659 −3.1339236 × 10555

e759 −9.6742945 × 10641

e859 −3.3194561 × 10728

e959 −1.2367077 × 10815

e1059 −4.9214899 × 10901

e1159 −2.0671392 × 10988

e1259 −9.0822473 × 101074

e1359 −4.1454353 × 101161

e1459 −1.9549848 × 101248

e1559 −9.4847597 × 101334

x G(x)

e1659 −4.7172079 × 101421

e1759 −2.3980349 × 101508

e1859 −1.2430367 × 101595

e1959 −6.5566576 × 101681

e2059 −3.5131458 × 101768

e2159 −1.9093149 × 101855

e2259 −1.0511565 × 101942

e2359 −5.8557034 × 102028

e2459 −3.2975152 × 102115

e2559 −1.8754944 × 102202

e2659 −1.0765501 × 102289

e2759 −6.2322859 × 102375

e2859 −3.6365683 × 102462

e2959 −2.1376236 × 102549

e3059 −1.2651826 × 102636

e3159 −7.5364298 × 102722

4. Future Research Prospects

In summary, we’ve utilized specific order estimates for the Prime Counting Function π(x) in
addition to several explicit bounds involving Chebyshev’s ϑ-function, ϑ(x), a priori with the help of the
Prime Number Theorem in order to conjure up an improved bound for the famous Ramanujan’s Inequality.
Although, it’ll surely be interesting to observe whether it’s at all feasible to apply any other techniques
for this purpose.

On the other hand, one can surely work on some modifications of Ramanujan’s Inequality For
instance, Hassani studied (1) extensively for different cases [3], and eventually claimed that, the
inequality does in fact reverses if one can replace e by some α satifying, 0 < α < e, although it retains
the same sign for every α ≥ e.

In addition to above, it is very much possible to come up with certain generalizations of Theorem
(1). In this context, we can study Hassani’s stellar effort in this area where, he apparently increased
the power of π(x) from 2 upto 2n and provided us with this wonderful inequality stating that for
sufficiently large values of x [16],

(π(x))2n
<

en

n
∏

k=1

(
1 − k−1

log x

)2n−k

(
x

log x

)2n−1
π
( x

en

)

Finally, and most importantly, we can choose to broaden our horizon, and proceed towards studying
the prime counting function in much more detail in order to establish other results analogous to Theorem
(1), or even study some specific polynomial functions in π(x) and also their powers if possible. One
such example which can be found in [17] eventually proves that, for sufficiently large values of x,

3ex
log x

(
π
( x

e

))3n−1
< (π(x))3n

+
3e2x

(log x)2

(
π
( x

e2

))3n−2
, n > 1

Whereas, significantly the inequality reverses for the specific case when, n = 1 (Cubic Polynomial
Inequality) (cf. Theorem 3.1.1 [17]).

Hopefully, further research in this context might lead the future researchers to resolve some
of the unsolved mysteries involving prime numbers, or even solve some of the unsolved problems
surrounding the iconic field of Number Theory.
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