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Abstract: This paper deals with the design and kinematic analysis of a novel mechanism for the
elbow joint of an upper-limb exoskeleton, with the aim of helping operators, in terms of effort and
physical resistance, in carrying out heavy operations. In particular, the proposed eight-bar elbow
joint exoskeleton mechanism consists of a motorized Watt I six-bar linkage and a suitable RP dyad,
which connects mechanically the external parts of the human arm with the corresponding forearm
by hook and loop velcro and thus, helping their closing relative motion for lifting objects during
repetitive and heavy operations. This relative motion is not a pure rotation and thus, the upper part
of the exoskeleton is fastened to the arm, while the lower part is not rigidly connected to the forearm,
but through a prismatic pair which allows both rotation and sliding along the forearm axis. Instead,
the human arm is sketched by means of a crossed four-bar linkage, which coupler link is considered
as attached to the glyph of the prismatic pair, that is fastened to the forearm. Therefore, the
kinematic analysis of the whole ten-bar mechanism, which is obtained by joining the Watt I six-bar
linkage and the RP dyad to the crossed four-bar linkage, is formulated to investigate the main
kinematic performance and for design purposes. The proposed algorithm has given several
numerical and graphical results. Finally, a double-parallelogram linkage, as particular case of the
Watt I six-bar linkage, was considered in combination with the RP dyad and the crossed four-bar
linkage, by giving a first mechanical design and a 3D printed prototype.

Keywords: upper-limb exoskeleton; elbow joint; multi-loop mechanisms; kinematic analysis;
mechanical design

1. Introduction

Exoskeletons design, in particular for devices like upper limb exoskeletons, is aimed to carefully
replicate the human joint movements. Achieving this accuracy involves understanding the
kinematics of the human body and translating it into appropriate mathematical models. This,
together with an adequate fit, size and weight, determine the goodness of the designed device itself.
In order to be able to design these devices, it is therefore necessary to first understand what the real
movements are and make an appropriate schematization. In particular, the human arm is composed
of three joints: the shoulder, the elbow and the wrist. From a kinematic point of view, the human arm
can be schematized with an open kinematic chain with 7 degrees of freedom (DOF), as reported in
[1,2]. Specifically, there are 3 DOF in the shoulder (ball and socket joint), 1 DOF in the elbow (revolute
joint) and 3 DOF in the wrist (spherical joint). Among the upper limb exoskeletons there are many
examples of 7 DOF kinematic chains, which try to reproduce the real kinematic scheme of the human
arm [3,4], but there are also examples of kinematic chains with a lower number of degrees of freedom,
such as those at 3 DOF [5,6] or 6 DOF [7,8]. Over the years, exoskeletons have undergone considerable
variations not only in terms of choice of kinematic chain, but also in terms of fields of application. In
fact, historically they are born in the military field with the aim of increasing the performance of
soldiers in terms of resistance and strength, but are widely used both in the rehabilitation and in the
industrial fields. In particular, in the rehabilitation sector, upper limb exoskeletons have undergone
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considerable development in the last decade [9-14]. Exoskeletons for upper limb also differ in relation
to the actuation system. Considering that they can also be totally passive or underactuated, most of
them have electric actuation [15], even if there are also examples of exoskeletons that have a
pneumatic actuation [16]. In the design of upper limb exoskeletons, different types of mechanisms
are used. They typically present serial kinematic chains, but there are also examples of exoskeletons
that have parallel architectures [17], rather than the presence of gears [18] or tendon-driven systems
[19,20].

In recent years, it is also possible to find an effort in the design of systems that are as
anthropomorphic, as possible, as proposed by Bai in [21] regarding the shoulder joint which
approximates a spherical motion. The synthesis of a spherical rigid body guidance for five-poses can
be found in [22]. Furthermore, soft robotics has been gaining traction in the field of exoskeletons. Soft
robotic exosuits provide a comfortable and portable alternative to rigid exoskeletons for upper limb
support, enhancing user comfort and freedom of movement, as reported in [23].

Also, with regard to the elbow, there are several solutions that try to consider the fact that it
cannot strictly be represented with a simple revolute joint [24-29]. It is clear that in order to design a
mechanism that is able to approximate as faithfully as possible the real movement of the human
elbow, it is necessary to perform an accurate analysis of the movement. For this purpose, centrodes
which represent the exact law of motion that the designer wants to approximate, are useful.

In literature, Beadle and O'Brien conducted the first experiments on the experimental detection
of the human elbow centrodes [30], taking inspiration from Freudenstein, who years earlier had
pioneered the usefulness of centrodes in the analysis of human knee movement [31]. The use of
centrodes as a kinematic analysis tool can be found in different fields of engineering. As proposed by
the authors in [32], centrodes can be used as an analysis tool to validate a knee joint exoskeleton
mechanism accuracy. They can also be used to investigate the kinematic characteristics of classical
mechanisms, such as the slider-crank mechanism [33], but their field of application is transversal and
also related to other sectors, such as machine tools [34]. This analysis tool, combined with that of the
Bresse circles [35-37] can be very useful for the designer when designing new devices.

The subject of this paper is the design and the kinematic analysis of a novel eight-bar elbow joint
exoskeleton mechanism that is composed by a motorized Watt I six-bar linkage and a suitable RP
dyad, which connects mechanically the external parts of the human arm with the corresponding
forearm by hook and loop velcro. Moreover, the human arm is sketched by means of a crossed four-
bar linkage, which coupler link is considered as attached to the glyph of the prismatic pair, that is
fastened to the forearm.

Therefore, the kinematic analysis of the whole ten-bar mechanism, is formulated to investigate
the main kinematic performance and for design purposes. The proposed algorithm has given several
numerical and graphical results and finally, a double-parallelogram linkage was considered in
combination with the RP dyad and the crossed four-bar linkage, by giving a first mechanical design
and a 3D printed prototype.

The main benefits of the proposed eight-bar elbow joint exoskeleton mechanism are:

- Anatural coupling with the human arm;

- Wearable by workers of different arm sizes;

- One motor only;

- A comfortable motor installation under the human arm.

2. Ten-Bar Exoskeleton Elbow Joint Mechanism

The whole one DOF upper-limb exoskeleton mechanism that includes the kinematic sketch of
the human arm is represented by the ten-bar mechanism of Figure 1, which consists of the proposed
eight-bar elbow joint exoskeleton mechanism and the crossed four-bar linkage. In particular, the first
is composed by the Watt I six-bar linkage, which links are numbered by 1 to 6, and the RP dyad of
members 6 (coupler), 7 (piston) and 8 (glyph). When the eight-bar elbow joint exoskeleton mechanism
is worn, links 1 and 8 are fastened by hook and loop velcro to the arm and forearm, respectively.
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The human elbow joint is made up of three bones: the upper arm bone (humerus) and two
forearm bones (ulna and radius), which can be sketched by a crossed four-bar linkage of links 1 (arm)
and 8 (forearm), along with the crossed links 9 and 10. In fact, the relative motion is not a pure rotation
and thus, the upper part of the exoskeleton is fastened to the arm, while the lower part is not rigidly
connected to the forearm.

Figure 1. Ten-bar exoskeleton elbow joint mechanism.

The macroscopic movement of the elbow is actually the result of the interaction between the
ends of the bony segments of the arm and forearm in contact. They can be thought of as conjugate
surfaces: the relative movement between these two represents the effective motion law of the elbow.
If one approaches the movement of the elbow as a plane movement, the projections of these surfaces
on it are two curves, which represent the centrodes, whose point of contact is the instantaneous center
of rotation. The use of a crossed-four-bar linkage allows to have the position of the instantaneous
center of rotation of the coupler link 8 (glyph) close to that of the forearm with respect to the arm.

Applying Grubler's formula, one has

N =3 (n-1)-2/=27-13-2=1DOF (1)

where N, n and [ are the numbers of the degrees of freedom, of the rigid links and of the lower
kinematic pairs, respectively.

In the following the kinematic analysis of the human elbow-joint and its exoskeleton is
formulated.

3. Kinematic Analysis

The kinematic analysis of the one DOF ten-bar mechanism of Figure 2 is developed by first
considering separately the Watt I six-bar linkage AOABBo-BCDE and the crossed four-bar linkage
MoMNNj, respectively, and then, joining them at H point to analyze the whole ten-bar mechanism.
This chapter is organized in the following three sub-sections:

e 3.1 - Wattlsix-bar linkage
e 3.2 -Crossed four-bar linkage
e 3.3 —Ten-bar mechanism
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Figure 2. Ten-bar mechanism.

3.1 Watt I Six-Bar Linkage

The main part of the proposed elbow joint exoskeleton mechanism is the Watt I six-bar linkage
of Figure 3a, which includes the vector loops of both four-bar linkages AcABBo and BCDE by giving
the following vector equations:

r,+r, -r-r, =0

2
r,+r,—r,-r, =0 @)

where vectors ri are expressed by r, =(r,cos6, )i+ (r;sin6,)j fori=1, ..., 6, where i and j are the unit

vectors of the X and Y-axes. The same is for the vectors 131, 132, 141 and r«2 which second subscript
number refers to loops 1 and 2, respectively.

The ICs (instantaneous centers of rotation) Ps, Ps and Ps of the coupler links 3, 5 and 6,
respectively, have been determined by applying the Aronhold-Kennedy theorem, according to the
graphical constructions of Figure 3b.

Thus, the first of Egs. (2) gives

Asing, +Bcosd, +C =0 (3)

which can be solved as follows

~A+0A*-C*+B*?
6’3=2tan’1 g h 4)

P,
(a) (b)
Figure 3. Watt I six-bar linkage: (a) vector loops; (b) ICs.
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5
where o is equal to +1 according to the assembly mode.
The coefficients A, B and C are obtained as function of the driving angle 62 by
A=2r,r,sind,
fB=2r31(r2 COSHZ—I’l) (5)
C=ri+ri+ri—ri—-2rr,coso,
Moreover, solving the first of Eq. (2) with respect to 64, one has
r, sind, +r, siné
94 =tan -1 31 3 2 2 (6)

r, cos@, +1, cost, —r,
From the first of Egs. (2), the angular velocities @s and @4 can be obtained as follows
r, sin(H2 - 03)
r,, sin (6’4 -0, ) ;
B rzsin(6’2—94) @)

0w, =———————"®
3 . 2
Ty sm(H4 —6’3)

where the angles 83 and 64 are given by Egs. (4) and (6), respectively.
Similarly, from the second of Egs. (2), one has

Do D F4E?
0, =2tan"! i 7 8)

F-T

which the coefficients D, F and F are given by

D=2r,rsing,-2r,r, sind,
E=2r,r,cos6, -2r,1, cosb, )

.2 2 2 2 . .
F=rptry+r—ri=2r,r,cosd,cosb, —2r,r, sind, sinb,

Thus, solving with respect to s, one has

0. —tan"! 1, sin@, +r. sind, —r,, sin6, (10)
° 1y, C0s O, +1, cost, —r,, cos b,
From the second of Egs. (2), the angular velocities ws and @ are obtained as follows
o, sin(@6 —63)—a)4r42 sin(H6 —494) 1
° r,sin(6, -6, ) (b
w, 1, sin(6, -0, )-w,r, sin(6, -0
o, = 3732 ( 5 3) 442 ( 5 4) (12)

r, sir1(t96 -6, )

The velocity vectors va, vs, vc, vb and ve of points A, B, C, D and E, respectively, are obtained by
assuming the following in vector forms:
v,=w,[-rsing,, rcos6, ]’
v, =o,[-rsing,, rcosb, ]|
V.= [VBX —1y, @,8in6,, v, +71,, ©,COS 6’3] " (13)
v, = |:VCX —r,w,sinb,, v. +1, o, cosﬁe} r
v, = [vBX ~r,®,sin0,, v, +r,o, COSH4:| T

where T indicates the transpose matrix.
Finally, the velocity vector vus of the point H, as belonging to the coupler link 6, is given by
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v, = [VCX + o, (af1 + ds)sin 0, -w,d,cosl,, v. —ao, (a’1 + ds)cos 0, —w,d, sin HJT (14)

3.2 Crossed Four-Bar Linkage

The crossed four-bar linkage of Figure 4a, which includes the corresponding vector loop of the
linkage MoMNNo, sketches the human elbow joint, while Figure 4b shows the graphical construction
for determining the ICs of each link.

Therefore, the following vector-loop equation is obtained

Ly +r—r—r, = 0 (15)

where r, =(r,cos6,)i+(r;sin6,)j fori=8, ..., 11.

Thus, one has
Gsing, + H cosf, +I =0 (16)

which can be solved by giving

_ [c2_ 72 2
6, =2tan™" GroyG I +3H (17)

I-H

where ¢ is equal to £1 according to the assembly mode.
The coefficients G, H and I are given as function of the driving crank angle 610 by

G=2r,1,sinf,
3-[ =2 I (rlO COSHlo _rll) (18)

I=rl+ri+ri-ri-2r,r,cosb,
Moreover, Eq. (15) can be solved with respect to #9 by giving

0. — tan ' 150 0, +1r,8in0, —r, sinf; 19
- 0. + 6, - (19)
rll Cos 1 rS cos 8 7"1

0, COsd,,

From the Eq. (15), the angular velocities ws and a» are obtained as follows

r sm(é? 6’9)
* " sin(6,-0,) ! o0
. sm(HlO )

Sll’l( )

P,=N
(b)

Figure 4. Crossed four-bar linkage: (a) vector loop; (b) ICs.

The velocity vectors of points M and N are given by
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7
. T
Vu =@y [_”10 sindy,, Cosﬁm] 1)
_ ol T
A\ —wg[ 7,8in0,, rgcosﬁg]

3.3 Ten-Bar Mechanism

The formulation that has been developed in the previous two sub-sections is now combined in
order to obtain a general algorithm for the kinematic analysis of the whole ten-bar mechanism.
Additional kinematic considerations are applied by using the Aronhold-Kennedy theorem, as shown
in Figure 5. In particular, the ICs P, Ps and Pes are of interest in order to express the velocity vectors
vis and vas of point H, as belonging to the coupler links 6 and 8, respectively, along with their relative
velocity vector ves.

Thus, one has

=V T Ve (22)

H6 H8
where each velocity vector is given by

Ve =0 XP H

Vs =0 X P H (23)
Ve = @ X Pg H

Therefore, in scalar form, one has
@ PPg=wy PP, (24)

where P.P,, and P.,P,, are the distances of the ICs Ps and Ps with respect to Pes.
The angular velocity @, of the coupler link 8 of the four-bar linkage is now related to that of the
coupler link 6 of the Watt I six-bar linkage by means of the ICs Ps, Ps and Pes.

46

PM;O - e

Figure 5. Ten-bar mechanism: ICs.

4. Graphical and Numerical Results

The proposed formulation for the kinematic analysis of the ten-bar mechanism, which includes
both the eight-bar elbow joint exoskeleton mechanism and the human elbow joint mechanism, has
been implemented in Matlab for validation purposes.
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In fact, Figures 6 and 7 show the results for the crank angles @2 =255° and 62 =290° by giving
the angular velocities of all moving links and the linear velocities of points A, B, C, D, E, H, M and N.
The geometric input data are reported in Table 1, where the link lengths of the Watt I six-bar linkage,
have been chosen in such a way to be compatible with the application as elbow-joint exoskeleton
mechanism and with the aim to validate in general the proposed kinematic analysis algorithm.

The results of the proposed algorithm for the input data of Table 1 and the driving angular
velocity @2=1 rad/s, are reported in Tables 2 and 3.

100

501

¥ [mm]

[
Lh

=100

-150}
o 46

2200 - - - : -
100 -50 0 50 100 150 200 250 300

X [mm]

Figure 6. Ten-bar mechanism: result for a crank angle 6: = 255° of AcA.
100
50 -
0/

-50

Y [mm]

-100

-150
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2250 i I 1 | 1 : 1 | i
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X[mm]

Figure 7. Ten-bar mechanism: result for a crank angle 6:=290° of AcA.
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Table 1. The geometric input data in the case of Figures 6 and 7.

71 [mm] r2 =16 [mm] 731 [mm] 32 [mm] r41 [mm] r42 [mm]
70 30 45 50 65 40

8 [mm] 79 [mm] r10 [mm] r11 [mm] d1=ds [mm] d> [mm)]
25 65 60 18 30 117.50

Table 2. Output linear velocities of all significant points for the case of Figures 6 and 7.

02 va [mm/s] vs [mm/s] ve [mm/s] vp [mm/s] VE [mm/s]
[deg]
255 [28.978, -7.765]T | [23.220,-17.463]" | [16.82,-28.239]" | [34.78, —35.324]T | [37.509,—28.21]T
290 [28.191,10.261]7 | [12.906, —5.905]" | [-4.077,-23.86]" | [13.328,—23.80]" | [20.848, —9.538]"
vHe [mm/s] vhs [mm/s] VHes [mm/s] vm [mm/s] vN [mm/s]
255 [8.648, 56.278]T [34.933, 39.356]T [-26.38, 16.937]T [8.853, 8.549]" [17.782,2.818]T
290 [-39.128, 44.18]T [16.092, 24.658]T [-54.675, 20.00]T [5.443, 6.483]" [12.502, 3.904]"
Table 3. Output angular velocities of all moving links for the case of Figures 6 and 7.
02 w3 w4 s W6 ws[rad/s] w9 @ 10 w11
[deg] [rad/s] [rad/s] [rad/s] [rad/s] [rad/s] [rad/s] [rad/s]
255 —-0.251 0.447 -0.127 0.644 0.424 0.277 0.205 0.219
290 —-0.4944 | 0.2183 | —-0.2688 | 0.5802 0.3007 0.2015 0.1411 0.2795

5. Application and Prototype

The proposed general formulation for the kinematic analysis of the ten-bar mechanism of Figure
2 can be used to analyze and design a suitable eight-bar elbow joint exoskeleton mechanism of
different shapes and sizes. In particular, the case of when the Watt I six-bar linkage becomes a double-
parallelogram linkage and the crossed four-bar linkage becomes an anti-parallelogram linkage, is
now considered and the whole mechanism takes the shape of Figure 8a, according to the application
that is sketched in Figure 8b.

Thus, by running the same Matlab program, the results of Figures 9 and 10 have been obtained
for the crank angles 2= 300° and 2= 252°, respectively. The geometric input data are reported in
Table 4, along with the input angular velocity @z =1 rad/s. The obtained results are reported in Tables

5 and 6.
AU
2
A

Figure 8. Ten-bar elbow joint exoskeleton mechanism: (a) kinematic sketch; (b) application.
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Figure 9. Ten-bar linkage for the upper-limb exoskeleton: result for a crank angle 62 = 300° of AoA.
250 - T - . . 1 . . -

68 o
200 -

100
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Figure 10. Result for a crank angle §2=252° of AoA for ten-bar linkage.
The mechanical design of the proposed ten-bar mechanism has been developed in order to build
and test under a kinematic point of view, the first 3D printed planar prototype of Figure 11, which

shows a step by step sequence of the closing motion, in comparison with the corresponding Matlab
graphical results. Similarly, the whole sequence is shown in Figure 12.

Table 4. The geometric input data in the case of Figures 9 and 10.

71=131=r32 =715 [Mm] 72 =141 =12 =16 [Mm] rs=r11 [mm] ro=r1w0 [mm] | di=ds[mm] d> [mm]
70 60 18 57.90 30 117.50
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Table 5. Output linear velocities of all significant points for the case of Figures 9 and 10.
02 vA = VB =vc [mm/s] vD = Ve [mm/s]
[deg]
300 [51.962, 30.000]" [112.583,65.000]"
252 [57.063, — 18.5410]" [13.328,-23.804]"
vHe [mm/s] vhs [mm/s] vHes [mm/s] vm [mm/s] vN [mm/s]
300 | [-58.750,101.758]" | [-45.816, 103.288]" | [-13.556, —11.892]" | [9.158, 29.955]" | [29.650, 47.93]"
252 [36.309, 111.749]T | [58.722,103.305]" [-22.609, 8.507]" | [16.74,19.605]" | [35.108,12.69]"
Table 6. Output angular velocities of all moving links for the case of Figures 9 and 10.
02[deg] | ws=ws[rad/s] | 4= ws[rad/s] | ws[rad/s] | wo[rad/s] | ww[rad/s] | @wu [rad/s]
300 0 1 1.514 0.973 0.541 -0.514
252 —0.4944 0.2183 1.0901 0.6448 0.4453 —-0.0901

100
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Y [mm]
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100

w
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-150

-50
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50
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100 150 200 300

X [mm]

(d) 270°

Figure 11. Ten-bar mechanism and 3D printed prototype for different co:
62: (a) 225°; (b) 240°; (c) 252°; (d) 270°; (e) 300°; (f) 315°.
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Figure 12. Whole sequence of the ten-bar mechanism closing motion.

6. Conclusions

A novel eight-bar elbow joint exoskeleton mechanism, which consists of a motorized Watt I six-
bar linkage and a suitable RP dyad, has been proposed and a suitable algorithm for the kinematic
analysis of the whole one DOF ten-bar mechanism that includes the human elbow joint mechanism,
has been formulated for designing elbow joint exoskeleton mechanisms of different shapes and sizes.
A first planar prototype has been designed and built by means of a 3D printer.

The dynamic analysis in load conditions of the proposed exoskeleton closing motion, along with
the actuation and control, will be a part of the next developments.

Funding: This research activity of title EXOSKELETON (Development of an elbow/knee joint kinematic) was
funded by the IIT (Italian Institute of Technology) of Genoa, within a Research Contract, which was stipulated
with DICEM (Dept. of Civil & Mechanical Engineering) of the University of Cassino & Southern Lazio (Italy) in
the years 2018/19.
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