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Simple Summary: Gastric cancer is a major worldwide health concern, underscoring the importance of early 
detection to enhance patient outcomes. Traditional histological analysis, while considered the gold standard, 
is labor-intensive and manual. Deep learning (DL) is a potential approach, but existing models fail to extract 
all visual data required for successful categorization. This work overcomes these constraints by using ensemble 
models that mix different deep learning architectures to improve classification performance for stomach cancer 
diagnosis. Using the Gastric Histopathology Sub-size Images Database, the ensemble models obtained an 
average accuracy of more than 99% at various resolutions. ResNet50, VGGNet, and ResNet34 beat EfficientNet 
and VitNet, with the ensemble model continuously delivering higher accuracy. These findings show that 
ensemble models may accurately detect important characteristics from smaller picture patches, allowing 
pathologists to diagnose stomach cancer early and increasing patient survival rates. 

Abstract: Gastric cancer has become a serious worldwide health concern, emphasizing the crucial importance 
of early diagnosis measures to improve patient outcomes. While traditional histological image analysis is 
regarded as the clinical gold standard, it is labor-intensive and manual. Recognizing this problem, there has 
been a rise in interest in using computer-aided diagnostics tools to help pathologists with their diagnostic 
efforts. In particular, deep learning (DL) has emerged as a promising solution in this sector. However, current 
DL models are still restricted in their ability to extract extensive visual characteristics for correct categorization. 
To tackle this limitation, this study proposes the use of ensemble models, which incorporate the capabilities of 
several deep learning architectures and use aggregate knowledge of many models to improve classification 
performance, allowing for more accurate and efficient gastric cancer detection. To see how well these proposed 
models performed, this study compared them to other works, all of which were based on the Gastric 
Histopathology Sub-size Images Database, a publicly available dataset for gastric cancer. This research 
demonstrated that the ensemble models achieved high detection accuracy across all sub-databases, with an 
average accuracy exceeding 99%. Specifically, ResNet50, VGGNet, and ResNet34 performed better than 
EfficientNet and VitNet. For the 80 × 80 pixel sub-database, ResNet34 exhibited an accuracy of approximately 
93%, VGGNet achieved 94%, and the ensemble model excelled with 99%. In the 120 × 120 pixel sub-database, 
the ensemble model showed 99% accuracy, VGGNet 97%, and ResNet50 approximately 97%. For the 160 × 160 
pixel sub-database, the ensemble model again achieved 99% accuracy, VGGNet 98%, ResNet50 98%, and 
EfficientNet 92%, highlighting the ensemble model's superior performance across all resolutions. Overall, the 
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ensemble model consistently provided an accuracy of 99% across the three sub-pixel categories. These findings 
showed that ensemble models may successfully detect critical characteristics from smaller patches and achieve 
high performance. The findings will help pathologists diagnose gastric cancer using histopathological images, 
leading to earlier identification and higher patient survival rates.  

Keywords: cancer detection; machine learning; gastrointestinal cancer; deep learning; histopathology 
 

1. Introduction 

The GI tract, spanning 25 feet from the oral cavity to the anus, transports ingested substances. 
The digestive process begins with the oesophagus and continues through the stomach and small 
intestines, extracting important nutrients. Waste is then eliminated through the colon and rectum. 
[1,2] Tumors in these organs often result from aberrant cell growth caused by DNA changes.[4] 
Mutations can be caused by a variety of reasons, including health conditions, genetics, lifestyle. The 
uncontrolled proliferation of malignant cells in the gastrointestinal system is caused by genetic, 
environmental, and lifestyle factors that interact. Common gastrointestinal (GI) cancers include 
Esophageal Cancer, Colorectal Cancer, Gastric Cancer, Bile Duct Cancer, Anal Cancer, Colon Cancer, 
Gallbladder Cancer, Pancreatic Cancer, Gastrointestinal Stromal Tumours, Liver Cancer, Rectal 
Cancer, Gastric Cancer, and Small Intestine Cancer. In 2020, gastric cancer was one of the top three 
most common cancers in 19 nations, with around 1.1 million cases reported (720,000 men, 370,000 
females). Early identification of GI cancer aids in cancer treatment and reduces health-related 
complications.  

Traditional approaches for identifying cancer include estimating body fat percentage and 
thereafter correlating it to cancer. Other methods include identifying common microbes associated 
with cancer in food. Another way is the use of Indocyanine Green (ICG) in gastrointestinal surgery, 
which is gaining popularity, particularly for lymph node diagnosis and operative field imaging 
[13,14]. 

However, pathologists must physically assess tissue samples, which is a tough, time-consuming, 
and subjective procedure. Moreover, different pathologists may provide different results, making the 
analysis susceptible to errors. The accuracy of histopathological analysis is heavily dependent on the 
pathologists' experience and knowledge, making the manual process susceptible to mistakes such as 
incorrect detection and diagnosis. Furthermore, a scarcity of pathologists creates significant delays in 
examining patient cases, potentially leading to late cancer discovery [15,16]. 

Various computer-aided detection (CAD) strategies have been investigated for the diagnosis of 
gastric cancer utilizing histopathological imaging. For more than 30 years, researchers have studied 
computer-aided diagnosis in gastroenterology, creating datasets from endoscopic images using 
various methodologies. The most widely researched issue is the identification of aberrant 
pathological signs in a specific location of the GI tract, notably polyps. There has also been research 
on detecting and categorizing disorders throughout the GI system, such as clinical findings, 
anatomical markers, and therapeutic therapies [3]. 

2. Materials and Methods 

2.1. Literature Reviews 

Various computer-aided detection (CAD) strategies have been investigated for the diagnosis of 
gastric cancer utilizing histopathological imaging. For more than 30 years, researchers have studied 
computer-aided diagnosis in gastroenterology, creating datasets from endoscopic images using 
various methodologies. The most widely researched issue is the identification of aberrant 
pathological signs in a specific location of the GI tract, notably polyps. There has also been research 
on detecting and categorizing disorders throughout the GI system, such as clinical findings, 
anatomical markers, and therapeutic therapies [3]. During the first 20 years of development, image 
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processing required extracting features using various approaches and then categorizing them using 
statistical methods [19]. These characteristics were divided into three categories: spatial, frequency, 
and high-level descriptors. Spatial characteristics were retrieved using pixel-based and histogram 
techniques, whilst frequency information was collected using Fourier and wavelet transform 
algorithms. High-level characteristics were retrieved with edge and region-based methods. Statistical 
machine-learning approaches were frequently employed to categorize these characteristics. 

Later, machine learning (ML) is commonly used in CAD to diagnose gastric cancer by extracting 
handmade elements such as color, texture, and form. For this purpose, support vector machines 
(SVM), random forests, and Adaboost are among the most frequently employed machine learning 
classifiers. In recent research, deep learning has been utilized to automate the feature selection 
process. Several studies have shown that deep convolutional neural networks (CNN) excel at tasks 
such as recognizing and segmenting histopathological images related to cancer, metastasis, and 
genetic mutation analysis. Some investigations have indicated that these networks perform similarly 
to human pathologists [7,8].  

Deep learning techniques have advanced significantly over the past decade, notably with the 
CNN architecture. This design allows for the extraction and categorization of spatial as well as high-
level features, making it a major area of study for academia. Several solutions have been proposed, 
including hybrid approaches based on CNN attributes, transfer learning, the development of novel 
CNN models, and research into other deep learning networks [20].  

Gastroenterology CAD research has a long history and covers a wide range of topics. For studies 
involving the classification of the KvasirV2 and HayperKvasir datasets, which were employed in the 
studies conducted [19,20], Melaku et al. (2019) utilized VGGNet and InceptionV3 to classify the 
Hyper KVASIR dataset with 98% accuracy using SVM. M Hmoud et al. (2020) evaluated GoogLeNet, 
ResNet-50, and AlexNet on the KVASIR dataset, with AlexNet outperforming the others and 
achieving 97% accuracy. Yogapriya et al. (2021) used VGG16, ResNet-18, and GoogLeNet on the 
KVASIR v2 dataset, with VGG16 leading the way with an accuracy of about 96.33%. Furthermore, 
Zenebe et al. (2022) proposed a unique deep convolutional neural network (CNN) with a spatial 
attention mechanism for categorizing gastrointestinal (GI) illnesses. [17,18]. When evaluated on a 
dataset of 12,147 GI images, the model scored an astounding 92.84% accuracy. This study emphasizes 
the importance of using pre-trained models in the correct diagnosis of gastrointestinal disorders, 
showcasing numerous methodologies and achieving significant advances in this sector. 

To assess how well the proposed models worked, this research evaluated them using the 
recently available Gastric Histopathology Sub-size Image Database (GasHisSDB) [6].  The main 
contributions of this study are: 1. The development of effective deep ensemble learning models for 
detecting gastric cancer that outperform current research on the GasHisSDB dataset. 2. Deep 
ensemble learning's ability to successfully identify gastric histology images with lower resolution, 
perhaps resulting in fewer digital scanners, data storage, and computer servers needed for 
histopathology activities. This may increase the chance of early detection of gastric cancer and 
enhance rates of patient survival [9,10]. 

2.2. Dataset Description 

  
Figure 1. Process of extraction of the Histopathology Image. 
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The stomach Histopathology Sub-size Image Database (GasHisSDB) comprises 600 pictures of 
stomach cancer pathology obtained from a patient's pathological slides from a specific section of the 
Gastrointestinal tract, each measuring 2048x2048 pixels. The images were obtained by scanning with 
a NewUsbCamera at a magnification of 20. Four pathologist from Longhua Hospital at the Shanghai 
University of Traditional Chinese Medicine then provided tissue-specific labeling. In conjunction 
with five Northeastern University biomedical experts, the photos were cropped into 245,196 sub-
sized gastric cancer pathology images. Two qualified pathologist from Liaoning Cancer Hospital and 
Institute calibrated these pictures. The dataset was then classed as aberrant or normal, with 
photographs reduced to three different sizes (160x160, 120x120, and 80x80) for each group. The 
dataset of gastrointestinal images is separated into three sizes: 80x80, 120x120, and 160x160. Each size 
category is further classified into two groups: Abnormal and Normal. The 80x80 size category has 
81,390 photos, with 34,350 classed as Abnormal and 47,040 labeled as Normal. Moving on to the 
120x120 size category, there are 65,260 photos altogether, with 24,800 rated as Abnormal and 40,460 
as Normal. Finally, in the 160x160 size group, there are 33,272 photos, with 13,117 classified as 
Abnormal and 20155 as Normal. 

      

Figure 2. Examples of histopathological Gastric images. (a) Normal tissue and (b) Abnormal tissue. 

 

Table 1. Summarises the total number of images for every subclass in an experiment setup. 
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2.3. Methodology Overview 

In this work, CNN architectures utilizing transfer learning and ensemble approaches were 
demonstrated to detect gastric cancer patches. The process is divided into four major steps: (1) 
creating the dataset through eliminating empty patches and augmenting, (2) tailoring pre-trained 
networks or base models, (3) choosing the most effective base models to form ensemble models, and 
(4) assessing and presenting the models using different metrics and the class activation map. 

To enhance the model performance, data preprocessing was conducted to create a more 
balanced dataset by removing non-informative empty patches as the presence of these empty patches 
would bias the training process and therefore jeopardize the model performance. After empty 
patches removal, data augmentation was employed to increase the dataset size for training.  

2.4. Empty Patch Removal Process 

Empty patches are defined as those where more than half of the pixels have an RGB intensity 
value greater than 230 across all channels. The following is an overview of the empty patch removal 
procedure, including the proportion of empty patches deleted. In the 120x120 resolution dataset, 
15.92% of patches were removed from the abnormal subclass, while 45.01% were removed from the 
normal subclass. For the 160x160 resolution dataset, 14.77% of patches were removed from the 
abnormal subclass, and 44.23% were removed from the normal subclass. In the 80x80 resolution 
dataset, 17.45% of patches were removed from the abnormal subclass, and 45.54% were removed 
from the normal subclass. After removing these empty patches, the remaining patches were subjected 
to data training of the model 

 

Table 2. Summarises the total number of the Empty and Non-Empty Patch Images in the Dataset. 
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Figure 3. The pictures above exhibit examples of histopathology: non-empty and empty patch images 
on the left and right, respectively. 

2.5. Pretrained networks as Base Models 

Convolutional Neural Networks (CNNs) have played an important role in numerous 
applications since deep learning's inception, due to continual advances in strength, efficiency, and 
adaptability. CNNs are an excellent illustration of this breakthrough, as they are particularly built for 
computer vision problems and use convolutional layers inspired by natural visual processes. 
Multiple CNN structures have evolved throughout time, each improving accuracy, speed, and 
overall performance, and are usually compared to the ImageNet project, a massive visual database 
that promotes advancements in computer vision. 

Historically, training CNNs from scratch required significant computer resources and time. 
Transfer learning (TL) provides a practical shortcut by exploiting prior information from trained 
models to accelerate optimization and perhaps improve classification accuracy. TL entails 
transferring weights from pre-trained models, using insights acquired from varied datasets, and 
speeding training processes to improve model accuracy, particularly in complicated architectures 
[11,12]. 

ResNet34 Architecture: 

ResNet34 is a member of the Residual Networks (ResNet) family, which was introduced by He 
et al. in 2015. ResNet34 use residual learning to address the issue of vanishing gradients, which is 
common in deep neural networks. This design is made up of 34 layers, with shortcut connections that 
allow gradients to flow straight across the network. These residual connections enable the training of 
very deep networks by overcoming the degradation issue. ResNet34 strikes a balance between depth 
and computational efficiency, beating shallower networks while maintaining manageable 
computational costs. 

ResNet34 is a variation of ResNet, a CNN architecture created by Microsoft Research. ResNet34 
includes 34 layers and uses residual connections to overcome the vanishing gradient problem, 
making training more efficient. ResNet models are popular due to their efficacy in a variety of 
applications. 

 
Figure 4. ResNet34 Model Architecture. 
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ResNet50 Architecture: 

ResNet50 is a 50-layer version of the ResNet architecture, deeper than ResNet34. This enhanced 
depth can improve performance on certain tasks, but it also necessitates more computational 
resources for training. 

 

Figure 5. ResNet50 Model Architecture. 

VGGNet16 Architecture: 

The Visual Geometry Group (VGG) at the University of Oxford developed VGGNet16, a deep 
CNN architecture. It is well-known for being both simple and successful in picture classification 
applications. VGGNet16 is made up of 16 layers, the first 13 of which are convolutional, followed by 
three fully connected layers. Each convolutional layer has a 3x3 kernel, and max-pooling layers are 
used after a sequence of convolutional layers to minimize spatial dimensions. Although VGGNet16 
has a huge number of parameters, which makes it computationally costly, it achieves good accuracy 
on benchmark datasets thanks to its deep architecture and consistent layer design. 

VGGNet, created by the Visual Geometry Group at the University of Oxford, is renowned for its 
simplicity. It is mostly composed of layered convolutional layers with 3x3 kernels and max-pooling 
layers. VGGNet includes several variations, including VGG16 and VGG19, which differ in the 
number of layers. 

 

Figure 6. VGGNet16 Model Architecture. 

Efficientnet Architecture: 

EfficientNet is a class of CNN models developed by Google AI that outperforms earlier models 
using fewer parameters and FLOPs. They employ a novel scaling technique to improve network 
depth, breadth, and resolution for improved resource management. 

 

Figure 7. EfficientNet Model Architecture. 
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VitNet Architecture: 

The Vision Transformer is a novel CNN architecture created by Google Research that employs 
self-attention techniques seen in transformer topologies. Rather than employing convolutional layers 
like typical CNNs, ViT employs a transformer encoder, which allows it to recognize relationships 
across large distances in pictures. This method has shown outstanding results in several computer 
vision tasks, particularly when trained on large datasets. 

 

Figure 8. VITNet Model Architecture. 

Ensemble Architecture: 

Convolutional neural networks (CNNs) and transfer learning have significantly increased 
neural network performance, but there is still potential for improvement. This article proposes the 
use of ensemble methods to improve the effectiveness of the three models that have been pre-trained. 
Ensemble learning, a machine learning and statistics-based approach combines the skills of many 
algorithms to extract relevant insights from data[10]. 

During this analysis, stacking was determined to be the most appropriate method. This requires 
training various ML algorithms on the info before merging them to create a composite algorithm 
capable of successfully combining their input. 

 

Figure 9. Ensemble Model Architecture. 

In this research, ensemble model architecture was used using ResNet34 and VGGNet16 as basis 
models. Initially, each model was trained independently to determine its unique performance. Then 
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selected the best-performing epochs for each model based on validation accuracy. The best-
performing epochs were then used to build the ensemble model. 

To improve the robustness and generalizability of the ensemble techniques,  cross-validation is 
used. During each fold of the cross-validation approach, the research utilized the best weights from 
the previous folds to train the ensemble. For example, if cross-validation was done on fold 1, the best 
epochs from folds 2, 3, 4, and 5 of ResNet34 and VGGNet16 were used to establish the ensemble 
model. 

The ensemble model architecture was created to leverage on the complementary characteristics 
of ResNet34 and VGGNet16. ResNet34, with its residual connections, successfully mitigates the 
vanishing gradient problem, allowing for deeper network training. In contrast, VGGNet16, noted for 
its simplicity and constant layer architecture, excels in capturing fine-grained characteristics. By 
integrating both models, the ensemble takes use of VGGNet16's comprehensive feature extraction 
and ResNet34's depth-wise learning capabilities. 

Training the ensemble model entailed freezing the early layers of both base models to preserve 
their pre-trained feature extraction capabilities while fine-tuning the subsequent layers to fit to the 
unique dataset. This hybrid strategy enabled the ensemble model to outperform individual models, 
as indicated by improved accuracy and resilience across many validation criteria.In summary, the 
proposed ensemble model, which included ResNet34 and VGGNet16, showed considerable 
performance increases. The strategic use of cross-validation and the incorporation of complementary 
model architectures demonstrate the effectiveness of ensemble techniques in deep learning 
applications. 

2.6. Experimental Setting 

The data was divided into training and validation sets. Each network was trained for 20 epochs 
using 5-fold cross-validation to create the model. The weights from the epoch with the best validation 
accuracy were chosen as the final representations for each model. Various metrics were then 
employed to assess accuracy, followed by many objective assessment factors to determine overall 
performance. 

3. Results 

The performance evaluation criteria used include accuracy, sensitivity, specificity, Jaccard index, 
and area under the curve (AUC). Positive samples are those that include abnormal or malignant 
patches, whereas negative samples contain normal or healthy patches. The phrases true positive (TP), 
false positive (FP), true negative (TN), and false negative (FN) are used to describe the various 
prediction results. 

1. Accuracy: Accuracy is the ratio of properly identified samples to the total number of samples. 
It's computed as: 

Accuracy = ( )( )                                          (1) 

2. Sensitivity (Recall): Sensitivity, also known as recall, is the proportion of real positive samples 
that the model properly identifies. It’s provided by: 

Sensitivity = ( )( )                   (2) 

3. Specificity refers to the fraction of real negative samples properly detected by the model. It's 
computed as: 

Specificity = ( )( )                                                (3) 

4. The Jaccard index, commonly known as the Intersection over Union (IoU), assesses the 
similarity between expected and observed positive samples. It's provided by: 

Jaccard index, = ( )( )                                        (4) 
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5. Area Under the Curve (AUC): The area under the receiver operating characteristic (ROC) 
curve, or AUC, relates the true positive rate (sensitivity) to the false positive rate (1 - specificity). A 
higher AUC implies improved model performance. 

By examining these measures, a thorough picture of the model's performance can be acquired, 
particularly in discriminating between aberrant (positive) and normal (negative) data. 

When analyzing the success of machine learning models, performance measures must be 
considered. These metrics provide numerical numbers that indicate the overall performance of a 
statistical or machine-learning technique. In classification tasks, performance measures evaluate the 
model's capacity to accurately categorize data points as well as its consistency in producing the right 
classifications. Classification accuracy and F1-score are both measures of classification task accuracy, 
whereas AUC reflects the model's overall ability to forecast accurately. The study's findings, which 
were obtained by examining these performance metrics, are shown in the table below. 

Table 3. The effectiveness of the several deep learning models was assessed using an 80-pixel sub-
database, displayed above. The most stunning results are shown in bold. 

Model Fold Train 
Accuracy 

Train Loss Val 
Accuracy 

Val Loss Jaccard 
Index 

AUC Specificity Sensitivity 

Resnet34 1 98.7508 0.0331 93.6131 0.2175 0.7447 0.9719 0.9604 0.8494 
  2 97.8192 0.0604 93.7206 0.2092 0.7472 0.9717 0.9638 0.8427 
  3 98.8546 0.0329 93.8111 0.2210 0.7384 0.9760 0.9699 0.8204 
  4 97.7773 0.0596 93.8226 0.1724 0.7466 0.9777 0.9625 0.8491 
  5 98.1767 0.0487 93.7910 0.2399 0.7640 0.9754 0.9518 0.8900 

ResNet50 1 98.4818 0.0409 93.7408 0.1936 0.8763 0.8979 0.9682 0.8277 
  2 96.2419 0.0958 94.2439 0.1880 0.8860 0.9069 0.9703 0.8435 
  3 98.4410 0.0413 93.4971 0.2024 0.8742 0.9042 0.9577 0.8508 
  4 97.0654 0.0769 92.7688 0.2016 0.8601 0.9071 0.9431 0.8711 
  5 93.5411 0.1673 93.8459 0.1869 0.8772 0.9064 0.9648 0.8480 

VitNet 1 83.6243 0.3631 83.7591 0.3555 0.6945 0.7132 0.9347 0.4916 
  2 82.9835 0.3816 84.2836 0.3490 0.6969 0.7076 0.9493 0.4660 
  3 78.4974 0.4755 78.8656 0.4560 0.5946 0.5054 0.9988 0.0121 
  4 82.5612 0.3898 84.2841 0.3505 0.6986 0.7015 0.9488 0.4542 
  5 78.3217 0.5231 77.4105 0.5353 0.5674 0.5 1 0 

VggNet 1 98.7371 0.0366 93.7591 0.2579 0.8763 0.9746 0.9747 0.8053 
  2 96.2693 0.0969 94.3341 0.1785 0.8868 0.9757 0.9738 0.8353 
  3 98.5683 0.0417 93.9220 0.2120 0.8763 0.9751 0.9720 0.8178 
  4 94.3224 0.1519 93.7681 0.1621 0.8756 0.9733 0.9685 0.8245 
  5 98.3636 0.0487 93.7910 0.2329 0.8768 0.9724 0.9693 0.8302 

EfficientNe
t 1 74.9474 0.5035 75.4057 0.5142 0.6094 0.7478 0.7172 0.7784 

  2 82.4435 0.3866 83.0474 0.3685 0.6829 0.6726 0.9421 0.4030 
  3 81.0359 0.4139 82.3709 0.3855 0.6704 0.6346 0.9463 0.3229 
  4 82.3379 0.3879 84.2231 0.3531 0.6975 0.6725 0.9419 0.4030 
  5 82.6571 0.3805 83.5210 0.3651 0.6944 0.6816 0.9401 0.4232 

Ensemble 1 98.3587 0.0436 99.3430 0.0252 0.9867 0.9904 0.9957 0.9850 
  2 98.5187 0.0410 99.2421 0.0211 0.9839 0.9875 0.9962 0.9787 
  3 98.6001 0.0384 99.2056 0.0237 0.9836 0.9898 0.9936 0.9861 
  4 97.9234 0.0627 97.8197 0.0651 0.9562 0.9642 0.9886 0.9398 
  5 98.5642 0.0390 99.0869 0.0221 0.9823 0.9866 0.9943 0.9789 
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Table 4. The effectiveness of the several deep learning models was assessed using a 120-pixel sub-
database, displayed above. The most stunning results are shown in bold. 

Model Fold Train 
Accuracy 

Train Loss Val 
Accuracy 

Val Loss Jaccard 
Index 

AUC Specificity Sensitivity 

Resnet34 1 98.8627 0.0327 96.8167 0.1097 0.8347 0.9879 0.9812 0.9075 
  2 99.2847 0.0187 97.0297 0.1327 0.8444 0.9815 0.9884 0.8884 
  3 98.9145 0.0336 96.9364 0.1025 0.8392 0.9907 0.9901 0.8762 
  4 99.1640 0.0234 96.4475 0.1208 0.8175 0.9879 0.9836 0.8778 
  5 99.2957 0.0214 96.6893 0.1074 0.8149 0.9897 0.9877 0.8642 

ResNet50 1 99.5552 0.0125 96.7257 0.1120 0.9316 0.9518 0.9756 0.9281 
  2 99.2449 0.0213 96.9856 0.1156 0.9372 0.9254 0.9951 0.8557 
  3 99.7229 0.0089 97.0930 0.1198 0.9388 0.9493 0.9833 0.9154 
  4 99.5007 0.0142 96.8166 0.1253 0.9339 0.9379 0.9853 0.8905 
  5 99.5042 0.0147 97.0748 0.0995 0.9379 0.9406 0.9860 0.8951 

VitNet 1 86.6963 0.3109 87.4715 0.2875 0.7518 0.7395 0.9488 0.5301 
  2 84.6948 0.3495 86.1826 0.3185 0.7254 0.7123 0.9470 0.4775 
  3 82.2817 0.4486 81.7531 0.4287 0.6310 0.5 1 0 
  4 85.7447 0.3298 87.9123 0.2929 0.7581 0.7607 0.9464 0.5750 
  5 84.2084 0.3465 86.3265 0.3085 0.7231 0.6767 0.9582 0.3951 

VggNet 1 76.6185 0.4764 75.6162 0.5053 0.6152 0.7657 0.7776 0.7538 
  2 88.3740 0.2758 89.1768 0.2611 0.7889 0.7476 0.9592 0.5361 
  3 88.1351 0.2822 88.3388 0.2732 0.7756 0.7372 0.9605 0.5139 
  4 86.6576 0.3140 88.2826 0.2813 0.7673 0.6979 0.9591 0.4368 
  5 88.3702 0.2745 88.4198 0.2781 0.7779 0.7460 0.9594 0.5325 

EfficientNe
t 

1 99.1949 0.0265 96.8167 0.1372 0.9340 0.9878 0.9867 0.8818 

  2 99.8978 0.0054 96.9416 0.1716 0.9363 0.9886 0.9873 0.8884 
  3 98.4339 0.0464 97.1824 0.1130 0.9403 0.9883 0.9901 0.8897 
  4 96.4544 0.1011 96.0322 0.1098 0.9176 0.9860 0.9757 0.8905 
  5 99.8366 0.0061 96.9614 0.1410 0.9338 0.9902 0.98363 0.9005 

Ensemble 1 97.2581 0.0728 97.6125 0.0646 0.9501 0.9593 0.9853 0.9332 
  2 97.7973 0.0622 98.1738 0.0533 0.9627 0.9647 0.9913 0.9381 
  3 97.7894 0.0603 97.8756 0.0618 0.9531 0.9636 0.9874 0.9399 
  4 97.8457 0.0625 97.5778 0.0685 0.9486 0.9549 0.9876 0.9223 
  5 98.9735 0.0316 99.4250 0.0226 0.9872 0.9895 0.9965 0.9826 

Table 5. The effectiveness of the several deep learning models was assessed using a 160-pixel sub-
database, displayed above. The most stunning results are shown in bold. 

Model Fold Train 
Accuracy 

Train Loss Val 
Accuracy 

Val Loss Jaccard 
Index 

AUC Specificity Sensitivity 

Resnet34 1 99.6311 0.0132 97.9807 0.0648 0.8949 0.9961 0.9887 0.9398 
  2 99.5496 0.0148 98.1776 0.0656 0.9022 0.9913 0.9922 0.9341 
  3 99.7337 0.0083 98.1038 0.0535 0.8928 0.9976 0.9912 0.9308 
  4 97.1184 0.0896 97.2005 0.0821 0.8665 0.9931 0.9806 0.9361 
  5 99.5437 0.0213 98.4187 0.0738 0.9105 0.9929 0.9862 0.9739 

ResNet50 1 99.3660 0.0288 98.4396 0.0579 0.9678 0.9739 0.9904 0.9573 
  2 99.5842 0.0170 98.3143 0.0592 0.9628 0.9719 0.9894 0.9544 
  3 99.8263 0.0066 98.1038 0.0776 0.9599 0.9684 0.9874 0.9494 
  4 99.9538 0.0018 97.9348 0.0743 0.9574 0.9620 0.9903 0.9338 
  5 99.7718 0.0112 98.3708 0.0625 0.9648 0.9832 0.9839 0.9826 

VitNet 1 82.2614 0.4526 81.6888 0.4532 0.6295 0.5 1 0 
  2 84.4919 0.3426 86.2870 0.3141 0.7307 0.6980 0.9555 0.4405 
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  3 81.9212 0.4638 83.0248 0.4527 0.6543 0.5 1 0 
  4 84.3706 0.3502 84.6718 0.3393 0.6977 0.6841 0.9498 0.4184 
  5 82.0483 0.3951 86.3919 0.3069 0.7274 0.6337 0.9776 0.2898 

VggNet 1 77.3246 0.4784 76.5826 0.4820 0.6291 0.7732 0.7643 0.7822 
  2 90.0875 0.2296 93.0702 0.1838 0.8607 0.7924 0.9604 0.6244 
  3 91.0623 0.2155 92.8018 0.1911 0.8572 0.8139 0.9641 0.6636 
  4 91.0069 0.2178 93.0925 0.1655 0.8589 0.8168 0.9628 0.6709 
  5 91.4476 0.2077 92.0146 0.1945 0.8444 0.8186 0.9659 0.6712 

EfficientNe
t 1 99.9769 0.0014 98.2101 0.1121 0.9623 0.9946 0.9915 0.9398 

  2 99.6882 0.0098 97.9498 0.0795 0.9584 0.9944 0.9952 0.9088 
  3 98.8773 0.0347 97.9683 0.0896 0.9579 0.9921 0.9934 0.9122 
  4 99.2738 0.0244 97.2005 0.0940 0.9464 0.9912 0.9834 0.9243 
  5 99.6692 0.0091 98.1312 0.0814 0.9586 0.9948 0.9896 0.9391 

Ensemble 1 98.4785 0.0412 98.8067 0.0313 0.9751 0.9829 0.9910 0.9749 
  2 99.0877 0.0268 98.9066 0.0325 0.9753 0.9775 0.9955 0.9594 
  3 99.1203 0.0298 99.1873 0.0260 0.9830 0.9866 0.9945 0.9787 
  4 99.4813 0.0150 99.7246 0.0079 0.9942 0.9964 0.9977 0.9952 
  5 98.9165 0.0319 99.3291 0.0245 0.9836 0.9901 0.9948 0.9855 

4. Discussion 

In this work, the proposed model was trained on datasets with varied picture sizes, such as 80x80 
and 120x120 and 160X160. Findings highlights the critical significance of ongoing innovation and 
exploration in increasing medical machine learning and hence improving healthcare practices. 
Notably, the findings shows that the top five ensemble models had high detection accuracy across all 
sub-databases. The overall ensemble model demonstrated the highest accuracy, surpassing the 
performance of VGGNet, ResNet34, and ResNet50, which also outperformed VitNet and 
EfficientNet. The only exception was in the 160 × 160 sub-database, where EfficientNet achieved an 
accuracy of 92%. By combining multidisciplinary techniques and technology breakthroughs, can 
pave the way towards a future in which early and precise identification of gastrointestinal disorders 
is not only achievable but also common practice in protecting human health and well-being. 

This deliberate method was used to assist the model build a solid knowledge of multiple picture 
dimensions, making it more flexible to a variety of real-world scenarios. Nonetheless, it is worth 
noting that proposed model's knowledge may have been expanded much more with greater 
computing resources. Greater computational capability might have enabled a more in-depth 
examination of the dataset's intricacies, as well as the discovery of insights beyond existing 
capabilities. 

These advanced methodologies offer various structures and improvement tactics that may 
increase the efficacy of the model. Time restrictions precluded the incorporation of these algorithms 
into the current system; nonetheless, their use holds great promise for improving cancer detection 
techniques. 

This research prioritizes in innovation and placing people at the heart of the research. The 
objective is to make research applications as user-friendly as possible while also emphasizing how 
they might benefit medical practitioners. This research strive to integrate the most recent research 
work with practical applications, avoiding plagiarism and crafting a research story that is honest and 
true to research’s commitment to expanding scientific understanding. 

4.1. Future Directions 

In the future, focus will be on two major goals: developing an easy-to-use web app for cancer 
detection and expanding current algorithms to include new forms of cancer. The primary goal of this 
research is to develop a model that will work for all forms of cancer, not just specific ones. This will 
be accomplished by utilizing many data sources and innovative algorithms to obtain a thorough 
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understanding of cancer, hence assisting healthcare professionals with diagnosis. 
By integrating multidisciplinary methodologies and capitalizing on technological developments, 
probably will work towards that in future in which early and precise identification of GI problems is 
not only possible, but also the standard for protecting human health and well-being. 

5. Conclusion 

Detecting and diagnosing gastrointestinal (GI) illnesses is critical for human health, yet it can be 
challenging owing to limited medical competence and expensive expenses. Using machine learning, 
particularly deep learning techniques, has the potential to increase the speed and accuracy of GI 
illness identification. This research study investigated the efficiency of ensemble approaches using 
five pre-trained models on the Gastric Histopathology Sub-size Image Database (GasHisSDB), which 
comprises a diverse set of pictures in various pixel sizes and categories. Considerable boost in 
prediction accuracy can be seen when utilizing ensemble learning, which combines the predictive 
skills of several models, as opposed to using individual models and previous studies that used 
comparable datasets. This demonstrates the potential of ensemble approaches to improve the 
capabilities of medical machine learning systems, resulting in more effective and precise diagnoses. 

Current approach is based on transfer learning, a technique that improves model learning by 
leveraging knowledge from previously trained models. Moreover employed an ensemble strategy to 
improve performance by merging various classifiers. Following a rigorous review, current approach 
revealed a great accuracy on the test dataset, exceeding current evaluation techniques. This 
demonstrates how deep learning may help alleviate the pressure on healthcare systems while also 
improving human health outcomes. [21,22] 

In this study, advanced deep ensemble learning models were created that used transfer learning 
from multiple pre-trained networks, including VitNet, EfficientNet, VGGNet, ResNet34, and 
ResNet50, to improve stomach cancer diagnosis. The study found that using base models in ensemble 
learning resulted in high identification accuracy (97.57% to 99.72%) for histopathology pictures with 
resolutions ranging from 80 × 80 pixels to 160 × 160 pixels.  

The experimental results demonstrated that ensemble models may extract key information even 
from smaller picture patches while retaining good performance. This improvement implies the 
possibility of adopting digital scanners with lower specifications, as well as reduced data storage and 
computing needs for histopathology operations. This, in turn, might speed up stomach cancer 
identification and perhaps increase survival rates. Continued work in these areas is intended to push 
the boundaries of medical image processing and enhance clinical results. 
However, it is critical to recognize the limits of the current research. The usage of a restricted dataset 
emphasizes the need to have access to larger, higher-quality datasets to enhance and confirm the 
approaches. Furthermore, computational restrictions may have influenced the scope of the results. 
Future studies might look at introducing new preprocessing methods and optimizing algorithms to 
boost performance. Furthermore, the field of medical image retrieval offers several chances for 
continuous research, including the ability to use multiple deep-learning approaches and models for 
complete examination.  

Supplementary Materials: The following supporting information can be downloaded at the website of this 
paper posted on Preprints.org. The GasHisSDB dataset is openly available at this Link: 
https://paperswithcode.com/dataset/gashissdb. 
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