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1. Introduction

Let A be a Banach *-algebra. An element a € A has Drazin inverse provided that there exists
x € A such that

ax? = x,ax = xa, xa"*! = ak,

where k is the index of a (denoted by ind(a)), i.e., the smallest k such that the previous equations are
satisfied. Such x is unique if exists, denoted by a”, and called the Drazin inverse of 2. We say that
a € Ahas group inverse x if ind(a) = 1, i.e., there exists a unique x € A such that

ax? = x,ax = xa, xa> = a.
We denote the group inverse x by a*. Evidently, a square complex matrix A has group inverse if and
only if rank(A) = rank(A?).
An element a € A has core-EP inverse (i.e., pseudo core inverse) if there exist x € A and k € N
such that

ax? = x, (ax)* = ax, xa"*' = o,

where the smallest k is the index of a (denoted by i(a)). If such x exists, it is unique, and denote it by
a®. We say that a € A has core inverse x if i(a) = 1, i.e., there exists a unique x € A such that

ax? = x, (ax)* = ax, xa® = a.

We denote the core inverse x by a®. As is well known, an element a € A has core inverse x if and only
if
a=axa,xA=aA Ax = Aa".
As a natural generalization of core-EP invertibility, the authors introduced the generalized core-EP

inverse in a Banach algebra A with an involution *. An element a € A has generalized core-EP inverse
if there exists x € A such that

. 1
ax®> = x, (ax)* = ax, lim ||a" — xa" |7 = 0.
n—oo
If such x exists, it is unique, and denote it by a©.

The generalized inverses mentioned above are powerful tools in linear algebra and operator
algebra for dealing with matrices and operators that do not have a traditional inverse. They are used
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in various applications and provide a means to find solutions to linear systems and has applications
across various scientific and engineering disciplines. Recently, many authors have studied them from
many different views, e.g., [2,4,5,7-11,13,17,20,21,24,25].

Recall that a2 € A has generalized Drazin inverse if there exists x € A such that

ax? = x,ax = xa,a —a*x € A

qnil .

Here, A7 = {a € A | 1+ Aa € A~1}. Such x is unique, if exists, and denote it by a?. We use
A1, A® and A® to denote the sets of all generalized Drazin inverse, core and generalized core-EP
invertible elements in A, respectively. If 2 and x satisfy the equations a = axa and (ax)* = ax, then x is
called (1, 3)-inverse of a and is denoted by a(13), We use A1) to stand for sets of all (1,3)-invertible
elements in 4. We list several characterizations of generalized core-EP inverse.

Theorem 1.1. (see [3,6])Let A be a Banach *-algebra, and let a € A. Then the following are equivalent:

(1) a € A9,
(2) There exist x,y € A such that

a=x+yxy=yx=0xc A®yc A
(3) There exists a projection p € A such that
a+pe A7, pa=pap € AT,

(4) xax =x, 1m(9{c) = im(x*) = im(a?).

(5) a € A%and a? € A®. In this case, a® = (a%)%(a?)®.

6) a € A% and a? € A3, In this case, a® = (a?)2(a?)(13),

(7) a € A and there exists a projection g € A such that 2% A = g.A. In this case, a® = a’q.

The motivation of this paper is to investigate the generalized core-EP inverse for the triangular
matrices over a Banach *-algebra.
In Section 2, we establish necessary and sufficient conditions under which the block operator

b
triangular matrix ( ?) i > over a Banach algebra has the generalized core-EP inverse with upper

triangular form.

A C*-algebra is a Banach algebra equipped with an involution operation * that satisfies satisfies
the C*-identity: ||x*x|| = [|x||? for all x € A. In Section 3, we particularly investigate the generalized
core-EP inverse of a triangular block operator matrices over a C*-algebra. We prove that every

triangular operator matrix over a C*-algebra with generalized core-EP invertible diagonal

a b
0 d
entries has the generalized core-EP inverse and its representation of generalized core-EP inverse is
presented.

The set of all bounded linear operators on a Hilbert space H, denoted B(H), forms a C*-algebra
with the operator norm and the adjoint operation. Lex X and Y be Hilbert spaces. We use B(X,Y)
to stand for the set of all bounded linear operators from X to Y. Finally, in Section 4, we apply our

results and study the generalized core-EP inverse for the block operator matrix M = Ié g ,
where A € B(X)®,B € B(X,Y),C € B(Y,X),D € B(Y)®. Here, M is a linear operator on Hilbert

space X @Y.

Throughout the paper, all Banach *-algebras are complex with an identity. An element p € A
is a projection if p?> = p = p*. AP, A® and A"! denote the sets of all Drazin, generalized core-EP
invertible and nilpotent elements in A respectively. Let a € A9. We use a” to stand for the spectral

idempotent a™ = 1 — aa.
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2. Triangular Operator Matrices over Banach *-Algebras

Let A be a Banach *-algebra. Then M;(.A) is a Banach *-algebra with *-transpose as the involution.
We come now to generalized EP-inverse of a triangular matrix over .A. To prove the main results, some
lemmas are needed. We begin with

Lemma 2.1. Let a € A® and b € A. Then the following are equivalent:

(1) (1—4a®a)b=0.
2 (1—aa®)b=0
(3) a™b =0.

Proof. (1) = (3) Since (1 —a®a)b = 0, we have b = a®ab. In view of 2222, a® = (a?)2(a?)®. Thus,
(1 —aa®)b = (1 — aa?)(a?)?(a%)®ab = 0.

(3) = (2) Since a? = (a%)%a = a%[a?(a®)®a)a = [(a?)?(a?)®]aa’ = a®aa®. Then b = aa’b =
a®a2a%b; and so (1 — aa®)b = (1 — aa®)a®a?a’b = 0, as required.

(2) = (1) Since (1 —aa®)b = 0, we get b = aa®b. Therefore (1 —a®a)b = (1 — a®)aa®b =
(a—a®a?)a®b = 0, as asserted. [J

Let A be a Banach *-algebra. Then M;(.A) is a Banach *-algebra with *-transpose as the involution.
We come now to generalized EP-inverse of a triangular matrix over A.

a b
L 2.2, Letx = .
emma et x ( 0 d )

d
(1) Ifa,d € A%, then x € My(A)? and x¥ = ( % ;d ),where

= (ad)i+2bdid7'[ + Zaianb(dd)i-‘rZ . ﬂdbdd.
i=0 i=0

(2) Ifa,d € A® and ab = 0, then x € M(A)® and
@ — a® —a®bd® .
0 a®
Proof. See [26][Lemma 2.1] and [23][Theorem 2.5]. [

We are ready to prove:

a b

Th 2.3. Let x =
eorem et x ( 0 d

) € My(A) with a,d € A%. Then the following are equivalent:

(1) x € My (.A) has upper triangular generalized core-EP inverse.
(2) a,d € A® and

Zaianb(dd)i+2 = 0.
i=0

a®  z
x@:< 0 d@>'

In this case,

where z = —a9bd®.
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Proof. By virtue of Lemma 2.2, we have
d
d_ a S

s = Z(ad)iJrzbdidT( =+ Zuiaﬂb(dd)i+2 _ adbdd.
i=0 i=0

where

(1) = (2) By virtue of Theorem 1.1, x? has core inverse and that x® = (x?)2(x4)®. Hence,
(xH)® = [(x")*(x))®],

and so (x%)® is a upper triangular matrix. Write

Then
(62 = (x)2, ()2 ()2 = o, (37 (x1)®) " = ().

This implies that
a'a? = w,a(a?)? = a%, (a%)* = a'u.

Hence, a? € A®. By using Theorem 1.1 again, a € A®. Likewise, d € A®. In view of Lemma 2.2,
(a%)™s = 0. This implies that

(@)s = a"s
_ )o:o: aianb(dd)i-i-z
i=0
= 0.
Therefore -
Z aiaﬂb(dd)i+2 _ 0,
i=0
as asserted.
(2) = (1) By hypothesis, we get
(a')"s = (1 —aa?a%)s = a”s = a™[)_(a%) T 2bd'd™ — a?bd"] = 0.
i=0

Then it follows by Lemma 2.2 that

where t = —(a?)®s(d4)®. Hence, t = —(ad)®['§ (a®)+2bdid™ — a%bd?)(d)® = (a?)®avbd?(d?)®.

_ (@) w
(xd)z - < 0 (dd)z )’

Then we have


https://doi.org/10.20944/preprints202408.0216.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 August 2024 d0i:10.20944/preprints202408.0216.v1

50f19

where w = E (a)+3bdid™ — (a?)2bd? — a?b(d?)?. Therefore
i=0

@ = (x)?(x)®
_ @)?  w (a)e ot
B 0 (a9)? 0 (dhHe
- a®  z
0 do )
where
z = (a®)t+w(d)®

= (a%)*[(a )®adbdd(dd) ] = [(a®)?bd + a%b(d?)?] (d)®

= (ad)zbdd(dd) a?(a?b 4 bd?)d? (d*)®

= (a)2bd?(d")® — (”’)Zbdd(dd)@—ad[b(d”’)z(d”’)®]
—a?pd®

This completes the proof. [

a b
llary 2.4. Let o« =
Corollary et o < 0 4

) € My(A) witha,d € A®. If a™bd® = 0, then « € Mp(A)® and

4 — ( a® —a®pd® )
0 de
Proof. Since a'bd® = 0, it follows by Theorem 1.1 that a™b(d%)?(d?)® = 0; hence,
a™bd? = [a"b(d")?(d")®]p?b = 0.
By using Lemma 2.1, we have (1 —4a®)bd® = 0, and so bd® = aa®bd®. Then
a*bd® = a%(aa®)bd® = a®bd®.

In light of Theorem 2.3,

as asserted. [

It is very hard to determine the core-EP inverse of a triangular complex matrix (see [10]). As a
consequence of Theorem 2.3, we now derive the following.

A B

Corollary 2.5. Let M =
orollary e (0 D

>,A,B,D6<C”X”.If

i4) ,
Z AIAHB(DD)H-Z =0,
i=0

Ao 7
@ g

then

where Z = —APBD®.
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Proof. Since the generalized core-EP inverse and generalized core-EP inverse coincide with each other
for a complex matrix, we obtain the result by Theorem 2.3. [

A B

llary 2.6. L =
Corollary 2.6. Let M (0 D

>, A,B,D e C"*" If A is invertible, then
A-l —A-1BD®
@ =
N )

Proof. Straightforward. [

The condition "x® € M, (.A) is upper triangular" in Theorem 2.3 is necessary as the following
shows.

Example 2.7. Let o and T be linear operators, acting on separable Hilbert space 1(N) with the conjugate
adjoint as an involution, defined as follows respectively:

U(x1/x2/ X3,X4," " ) = (O/ X1,X2,X3," - )/
T(x1,X2,%3,%X4,--+) = (X2,X3,X4, X5, ).

Then to = 1. Take M = ( o 1 —TUT ) Then

0
mMe=ml=( T O
1—07 o0 )

In this case, M is upper triangular matrix, but its generalized core-EP inverse is lower triangular.

3. Triangular Matrices with C*-Algebra Entries

The aim of this section is to investigate the generalized core-EP inverse of triangular matrices
over a C*-algebra. Throughout this section, A is always a C*-algebra. We start by

Lemma 3.1. Let A bea C*-algebra and let a € A® N AY. Then ataa® = a'.

Proof. Since (1 — aa?)a? = 0, by virtue of [23][Lemma 2.4], we have (1 — aa®)a? = 0. This implies
that a*[(1 — aa®)a’(a2a*)]* = 0, and so a*[(1 — aa®)(aa")]* = 0. Hence, a*(aat)*(1 — aa®)* = 0.
Therefore at(1 — aa®) = 0, as required. [

Sete, =1 —aa' and f; = 1 — d'd. Then we derive
Lemma 3.2. Let A be a C*-algebra and let a,d € A® A, Then
dd® (1 + (eabd™)* (eabd™)] = [1 + (eabd™)* (e,bd")]dd®.
Proof. Itis easy to check that
(eabdtdd®)*e,bd" = (eabd™)* (eabd™) = (e,bd")* (e,bd dd®).

Then
dd® (e,bd")*e,bd" = (e,bd")*e,bd dd®.

Therefore
dd®[1 4+ (eabd")* (esbd")] = [1 + (eabd")* (eabd")])dd®,
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as asserted. [

In [15], Li and Du investigate the core inverse of a triangular block complex matrix. We now
extend Li and Du’s result to block operator matrices over a C*-algebra by a new route.

a b

0 d ) Ifa,d € A®,a™bd™ = 0and e;bf; = 0, then

Lemma 3.3. Let A be a C*-algebra and let x = <

x € A®. In this case, x® = ( « p ), where
)
= a®+ [a"bd" — a®b)d®[1 + (e,bd™)* (e,bd")]| "1 (eabdt)*,
(a™bdt — a®b)d®[1 + (e,bd")* (esbd")] 1,
= d®[1+ (e,bd")* (e,bdt)] 7 (e bdt)*,
= d®[1+ (esbd")*(esbd™)] 1.

=R ™ R
Il

Proof. Since a € A®, by virtue of [23][Lemma 2.1], it has group inverse, and so a is regular. As Aisa
C*-algebra, it follows by [14][Theorem 2.8] that a € A'. Likewise, d € A*. Since every C*-algebra has
the symmetry property, we have 1 + (e,bd")*(e,bd") € A~ 1.

p
)
Claim 1. (xz)* = xz.

Since e;bf; = 0, by virtue of Lemma 3.1, we have

Letz = , where «, B,y and ¢ as defined above.

(1—aa®)bd® = (1—aa*aa®)bd®
= (1—aa")bd®
= (1—aa")bdtda®
- eabd+.
Hence,

[(1—aa®)bd® (1 + (e;bd")* (e bdt)) 1 (e,bd")*]*
= [eabd™](1 + (eabd®)* (e,bd™)) 71 [(1 — aa®)bd®]*
= (1—aa®)bd® (1 + (e bd")*(e,bd")) 1 (esbd")*.

Therefore
an + by
= aa® + (1 —aa®)bd® (1 + (e,bd")* (e,bd ™)) 71 (e bdt)*
= aa® +ebd (1 + (eabdt)* (e,bd™)) 1 (eabdt)*.
Hence,

(a4 by)* = an + by.

By virtue of Lemma 3.1, we have

dd®(eabd+)*(eabd+) = (eabd+dd®)*(eabd+)
= (eabd+)*(eabd+)dd®.
Hence,
dd®[1 + (eader)*(eubd*)] = dd® +dd® (eubd*)*(eubd*)

= dd® + (e,bd?)* (esbd")dd®
= [1+ (eqbdt)* (esbdt)]dd®.
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Thus, we derive that
dd®[1 + (eabd")* (eabd®)] ™1 = [1 + (eqbd")* (eabd )] ~1dd®.

Since dé6 = dd®[1 + (e;bd")* (e,bd™)] ™!, we have (dé)* = dé.
In view of Lemma 3.2, we verify that

ap + bé

—aa®bd®[1 + (esbd")* (e,bd")] ™1 + bd®[1 + (e,bd")* (esbd™)] !
[1— aa®]bd®[1 + (e,bd")* (e,bdt)] 1

[1— aa®]b(d®dd®)[1 + (esbd")* (eabd")] !

[1—aa®]bd®[1 + (e,bd")* (e,bd")] " 1dd®

eabd 1+ (e,bd")* (e,bdt) | 1dd®

eabd® (dd®)[1 + (eabd")* (eabd")] 1

eqbd 1+ (e,bd®)*(esbd™)] 1

Therefore

(af + b3)"

[(1—aa®)bd® (1 + (e,bdt)* (e bd"))~1dd®]*
dd® (1 + (e,bd")* (e,bd"))~1[(1 — aa®)bd®]*
dd®[1 + (eabd")* (eabd )]~ (e bd")*

= [1+ (esbd™)*(esbd™)] ' (e,bdt)*

= dr.

- a b xa B
== (50)(55)

ax+by aB+bé
dy do

We compute that

Therefore (xz)* = xz.
Claim 2. xz° = z.
We compute that

(1—xz)z
B 1—(ax+by) —(aB+0bd) a B
N —dy 1—ds v 6
_ (1= (aa+by)la— (aB+b8)y [1— (aa+by)]B— (aP+bo)o )
—dya+ (1—dé)y —dyB+ (1—ds)s '

Obviously, we have
an + by = aa® + (aB + bd) (ebs")*.
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Then we compute that

[1— (aa + by)]a
= [1—aa® — (aB + bd)(e,bd")*|[a® + (abd" — a®b)y]
= [1—aa® — (aB + bd)(e,bs")*][(abdt — a®b)q]
= [1—aa® — (aB + bd)(e,bd")*|[(a™bd ]y
= [1—aa® — (aB + bd)(eqbs")*] (eabd")y

eabd — (aB + b6)(eabd™)* (eabdt)y

eqbdt — e bdt[1 + (e bdt)* (eabd*)]’ (eabd™)* (eabd™)y

eabd [1+ (e,bd®)* (eabd®)] 711 + (eqbd™) *esbd™ — (e,b6T)*esbd ]y
eabd [1 4 (e,bdt)* (e,bdt)] 1y

(aB +bo)7;

hence,
[1— (aw+by)|a — (ap+bd)y =

Analogously, we derive that

[1— (aa+Db7)Ip
[1—aa® — (aB + bd)(e,bst)*][(a™bdt — a®b)d®[1 + (e bd")* (eabd")] !
[1—aa® — (aB + bd)(e,bst)*][(a™bdt — a®b)o

= (aB+bd)s;
hence,
[1— (ax+by)]B— (ap +bd)s =
Also we check that

—dya+ (1 —do)y
= —dd®[1+ (e,bd")*(e,bd")] 1 (e,bdT)*[a® + [abdt — a®b)

d®[1+ (e,bd")* (eabd™)] 1 (eq bd*)*]
+ [1—dd®[1+ (esbd")* (e,zbd’L)] Hd®[1 + (e,bdt)* (eabd®)]) 1 (esbd™)*
= —[1+ (esbd")*(esbdh)]~ (eabd*) [a7bd" — a®b]d®[1 4 (e,bdt)* (e,bdt)] 1 (esbd "))
+  [1—dd®[1+ (eabd™)* (eabd™)]11d®[1 + (e,bd™)* (eabd™)] 1 (eabd™)*
= —[1+ (ebd")* (egbd®)]~ 1(eabd+)* ThdTd® (1 + (e,bd")* (e,bdt)] 1 (e,bd")*]
+ [1+ (ebd™)* (eader)] Hd®[1 + (eabd®)* (eabd")] 1 (esbd™)*

[1-

11+ (eabd?)* (eabd )]~ [ (eabd®)*abd* + (eqbd")* eabd"]

A1 + (eabd")* (eabd")] ! (eabd" )]

— 1+ (eabd")* (eabd")] V[(eabd") ea(1 — a™)bd]d® 1 + (eabd")* (eabd")] 1 (eabd")*]
0.
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Furthermore, we verify that

—dyB+ (1 — do)s
—dd®[1+ (eqbd®)* (eabd )] (eabdt)*[(a7bd" — a®b)d®[1 + (eabd")* (esbdt)] 1]

+ [1—dd® (1 + (ebd")* (eebd")) "' 1d®[1 + (ebd")* (ebd")] 1

= [1+(eﬂbd*)*(eabd*)]*l(eabd*) (a ”bd*—a®b)d®(1+(eubd*)*(eﬂbd*))*l

+ [1— (1+ (eabd*)*(eabd") ) 1d®[1 4 (eabd")* (eabd®)]

= —[1+4 (eabd")*(esbd®)]~ (eu d*)* TbdTd® (1 + (ebd®)* (eabd)) 1

+ 1= (14 (ebd*)* eabd+) 1d®[1 4 (eabd*)* (eabd®)] 1

= [1+4 (eabd")*(esbd?)]~ [ (eabd?)*a™bd" + (e bd")* (e,bd")]d®
(14 (eabd™)*(esbdt)) 1

= [1+ (esbd™)*(esbd™)]~ [ (eabd™)*a™bd" + (e,bd")* (e,bd")]d®
(14 (eabd)*(egbdt))~1

= [1+ (esbd")*(eabd®)]~ (eabdf)*eaa—aﬂ)baﬁ+(eabd+)*(eabd+)]d®
(1+ (eabd™)* (eqbd™)) "

= 0.

Therefore xz2

Claim 3. xzx = x.

= Z.

(1—xz)x
B 1— (ax+by) —(aB+bd) a b
- —dy 1-dé 0 d
[ = (ax+by)]a [1— (ax+by)]b— (ap+ bd)d )
N —dyay —dyb+ (1—4dé)d '

Obviously, we have (¢;)*a = (1 —aat)a = 0. Then

1 —aa® — ebd™ (1 + (e,bd")*(eabd®)) 1 (e,bd")*]a
(1 —aa®)a — e,bd" (14 (e,bd")* (e,bd")) 1 (e,bd")* (e,)*a)]
0.

[1— (ac+by)la
[
[

Similarly, we have

—dd® |1+ (eabd")* (e,bd™)] 1 (eabd")*a
—dd® (1 + (eabd")* (e,bd™)] 1 (eabdt)* (e4)*a
= 0.

—dya

Clearly, (1 — aa®)b = (1 — aa*aa®)b = e,b = e,b(f; + d*d) = e,bd™8d. Then we have

[1— (aax+ by)]b

[1—aa® — e,bd™ (1 + (eabd")*(eabd®)) 1 (e,bd")*]b

eab — eabdt (1 + (eabd)* (e,bd™))~1(eabdt)* (eqb)

eabd™d — e,bd" (1 + (eabd*)*(eabd*))* (eabd*)* (e,bd??8)d

eabdt[1 — (1+ (eabd’f)*(eabd*)) L(eqbd")* (e;bd?8))d

eabdt (1 + (eabd*)* (eabd®)) "1 4 (esbdt)* (esbd?) — (eabd")* (e,bd™8)]d
eabd®[1 + (eabd")* (e,bd")]~1d

(aBp+bd)d.
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Finally, we verify that
dyb = dd®[1+ (esbd")*(e,bd")] 1 (eqbd")*b
= dd®[1+ (esbd")*(eabd®)] 1 (eabd")* (eq)*b
= dd®[1+ (eabd")*(esbdt)]~ (eabd*)*e b(fs+dtd)
= dd®[1 — (1+ (eabd")*(esbd")) H(eabd*) (eabd™))d

dd®[1 — (1+ (ebd")* (eabd?)) ™ }d
dd®d — dd®[1 + (eabd")* (eabd")]~1d
d — dd®[1 + (eabd?)* (eabd")]~1d
d(1— od)

(1— do)d.

Therefore xzx = x. In light of [24][Theorem 3.3], x € A® and x® = z, as asserted. [J

We come now to the demonstration for which this section has been developed.

a b

Theorem 3.4. Let A be a C*-algebra and x = ( 0 d

). Ifa,d € A®, then x € A® and

4O — ( (a)a +wy (a®)?B+ws >,

(d)%y (d*)%s
where

w = OZO: (a)*3pdid™ + E alab(d4)+3 — (a)2bd? — a7 (d9)?,

i=0 i=0
s = ¥ (a®)+2pdid™ + > a'a™b(d4)*2 — a9pad,

i=0 i=0
o @2a® + [7s[d]" — a2a®s]d?d® (1 + (e as[d’]1)* (eas[d?]T)) ™ (epas[d?]),
B o= (@S] — 2a®)dd® 1+ (eyas (] (epasld] )],
v o= d2d®[1+ (eus[d)* (e asd]) )] (e us]d?]T)*,
) dzd@ [1 + (euds[dd]‘r)*(eads[dd]-r)]—l

Proof. In view of Theorem 1.1, a,d € A% and a%,d? € A®. By virtue of Lemma 2.2, we have

d
d a S

where s = Y (a?)+2bdid™ + Z a'a™b(d?)+2 — a9pd.
i=0
Since a? = a9aa?, i.e., a% is regular As Ais a C*-algebra, it follows by [14][Theorem 2.8], at e AF.
Likewise, d? € At Lete, =1 —a?(a®)" and f = 1 — [d9]*d%. Then we check that

(ad)i+2bdidn+ io; aianb(dd)i-i-Z *adbdd]dﬂ
i=0

aianb(dd)i—i—Z]dn

(@)@t = a7

= a”[

Ltrelie

=0
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and

a5 f 40 [1—a<d>ﬂ[§< i+ 2pdign 4 Y

i=0

~ b1 — i)

= [ a! (@)L dab(d!) |1
i=0

= 0.

It follows by Lemma 3.3 that

12 of 19

a aﬂb(dd)z—l-z

_ [dd]‘rdd]

o_ [« B
wr=(24)
where
o = [a"® + [a"s[d]" — [a?]®s][d"]) O [1 + (e,as[d’]") " (epus[d’]")] ~ (epas[d]T)",
B = (as[d’]t — [ﬂd]®s)[dd]®[1+( a8[d]")* (eqas[ad’] )] 71,
v o= [P0+ (euas[d]")* (eqas[d’])] " (eqas[d’]h),
6 [@]®[1 + (e ads[dd] )*(eqasld?] )]~
Set
w = a%s+sd?
_ %o;(ad)i+3bdid7r+ § alamb[d4) 3 — (a?)2pd? — a?b(dd)2,
i=0 i=0
Accordingly,
xo = (vl
_ (a)?  w )( x B
0 (d%)? v 6
B (a)2a +wy (a%)2B+ ws
N (A7) COR I

In view of Theorem 1.1, a® = (a%)?[a%)®

(d7)® = d?d®. Therefore we verify the formulas of a, 8, ¥ and 6 mentioned before.

a b
0 d

@ sdd'y
T < (d)%y )
Z azb(dd>l+2
[dd]*dzd@ (1+ (s[a]")*(s[a"]")) ™
(s[d4]")d?d® 1 + (s[a4]t)* (s[d
T\ * +

d2d® (1 + (s[a/]*)* (s[a]")
d2d®[1 + (s[d9]*)* (s[a9]h)

Corollary 3.5. Let A be a C*-algebra and x = (

sds
(d*)%s

where

1)
|

2u

=R ™R

(
I”
]

Proof. Since a € AT, we see that a¢ = 0, and therefore we obtain the result by Theorem 3.4.

). Ifa € Adnil

1]~
1(S[dd]+
1

. Hence, (a?)® = a2[(a%)?[a%]®] = 4%a®. Similarly, we have

O

dc A9, then x € A® and
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a b
0 d

a® 0
@:
N (OO).

Proof. Since (a9)%a%a® = aa?a® = a?a® nd d = 0, we complete the proof by Theorem 3.4. [J

Corollary 3.6. Let A be a C*-algebra and x = ( ) Ifa € A®,d € AT then x € A® and

Since the algebra C"*" of all n x n complex matrices is a C*-algebra, the following result gives a
simpler formula to compute the core-EP inverse of a block triangular complex matrices (see [10]).

a b

0 d ).Ifa,deA@,theanA@and

Corollary 3.7. Let A be a C*-algebra and x = (

L0 ( (aP)a+wy (aP)?B+ws )
( ,

dD)z’)/ (dD)2§
where " .

w = Z(aD)i+3bdidn+ Z aianb(dD)i—l—?a _ (HD)ZbdD —an(dD)z,
= i=0

s = %(a’))i“bdid”%— g aianb(dD)i-‘rZ —ﬂdbdD,
i— i=0

« = a*a®+ [as[dP]t — a2a©5]d2d® (1 + (e,05[dP]H)* (e,os[dP]H)) "
(e,os[dP]h)*,

B (a7s[dP]" — a?a®s)d?d® 1 + (e,0s[d"]")* (e,ns[dP]N)] 1,

v = d*d®[1+ (eos[dP]")* (e,os[d"]")] (e os[dP]T)*,

6 = d*d®[1+ (eosld”]")*(e DS[dD]“)] !

m max{ind(a),ind(d)}.

Proof. Sincea,d € A®, it follows by [3][Corollary 3.4] thata,d € A® AP, By virtue of Theorem 3.4,
x € A®. Clearly, x € AP. By using [3][Corollary 3.4] again, x € A® and x® = x©, as required. [

4. Applications

A B

c D ,where A € B(X)®,B € B(X,Y),C €

Lex X and Y be Hilbert spaces, and let M = <

Ix 0

B(Y,X),D € B(Y)®. Choose p = < 0
Y

>. Then M can be regarded as the Pierce matrix

T

< pnMp pnMp . > . Here, every subblock matrices can be seen as the bounded linear operators
p"Mp p*Mp

on Hilbert space X @ Y. Throughout this section, without loss the generality, we consider M as the

block operator matrix in a specifical case X = Y. In this case, B(X & X) is indeed a C*-algebra. The
following lemma is crucial.

Lemma4.1. Leta € A® and b € A, Ifa*b = 0and ba =0, then a+b € A®. In this case,
(a+b)® =a®.

Proof. Since a € A®, by virtue of Theorem 1.1, there exist x € A® and y € A9 such that a =
x+y,x*y = 0,yx = 0. As in the proof of [3, Theorem 2.1], x = 4a®aq and y = a — aa®a. Then
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a=x+(y+b). Since by = b(a —aa®a) = 0, it follows by [26][Lemma 2.10] that y + b € Al We
directly verify that

*(y+b) = x*y+x*b=(a®a)*(a*b) =0,
(y+b)x = yx+ (ba)a®a =0.

In light of Theorem 1.1, a + b € A®. In this case,
(a+b)® =x® =49,
as asserted. [

Theorem 4.2. IfCA =0,CB = 0and D*C = 0, then M has generalized core-EP inverse. In this case,

MO < (AT2ZA + WT  (A%)2S + WA )

(Dd)Zl" (Dd)ZA
where

W = OZOZ(Ad)iJrBBDiDn—i— §AiA”B(Dd)iJFB’—(Ad)zBDd—AdB(Dd)z,
i=0 i=0

S = E(Ad)i+2BDiD”+ OZO; AiAnB(Dd)iJrZ_AdBDd,
i=0 =0

A = A2A® 4 [A7S[DA]t AZA@S]DZD@(I+(eAdS[Dd]+)*(eAdS[Dd]+))_1
(esS[DU1),

Z = (ATSIDY = A2ASS)DDE(1 (e S[D]") (egsSID)

I = D?D®[I+ (eqaS[D")*(e4aS[D]")] (e aaS[DU]T),

A = DZD@[1+(€Ad5[Dd]+)*(€ dS[Dd]+)] L

Proof. Write M = P 4+ Q, where

We easily check that

. A* 0 0 0 0 0

Q= B* D*)(C o) <DC 0) 0
0 0

QP = co)( ) (CA CB>_O

Since A and D have generalized core-EP inverses, it follows by Theorem 3.4 that P has generalized
core-EP inverse, and that

po _ (AD2A +WT  (AD)2Z + WA
- (Dd)Zl" (Dd)ZA 4

where W, S, A, %, T, A as defined before. Obviously, Q is nilpotent, and so it is quasinilpotent. Accord-
ing to Lemma 4.1, M® = P®, required. [

Corollary 4.3. If BD = 0, BC = 0and A*B = 0, then M has generalized core-EP inverse. In this case,

MO — (Ad)ZA (Ad)ZI"
L (DY2Z+ WA (DY2A+WT )
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where

W = § (Dd)i+3CAiA7r 4 § DiDnc(Ad)i+3 _ (Dd)ZCAd _ DdC(Ad)Z,
i=0 =0

S = OZO: (Dd)i+2CAiA7T 4 OXO: DiDﬂc(Ad)i-‘rZ _ DdCAd,
i=0 =0

A = D2D® + [D7S[AYt — D2D@S|A2A® (I + (e S[AY])* (epaS[AYH))
(epaS[AY]")",

Y = (D7S[AYt — D?D®S)A2A®[I + (epaS[A]T)* (epaS[AY]F)]

o= AZAS (T4 (epuSIAY) (epuSIAYT)] epuSTAYT)",

A = A2A®[I+ (epaS[AY") (epaS[ATH)] L.

Proof. Obviously, ( (; (I) )M( (I) (I) ) = ( l; f} ) Applying Theorem 4.2 to the matrix

B A B A
alized core-EP inverse. Additionally,

(325 (00)

Therefore we complete the proof by Theorem ???. [

D D
< ¢ , we see that ¢ has generalized core-EP inverse. This implies that M has gener-

Lemma 4.4. Leta € A7 b € A®. Ifab = ba,a*b = ba* and b*(ab) = (ba)b*, then a +b € A®. In this
case,
(a+b)® = (1+ab")"1p°.

Proof. Since ab = ba, it follows by [26][Theorem 2.3] that ab? = b?a. Likewise, we have a(bd)* =
a(b*)? = (b*)%a = (b%)*a. Since (ab*)b = (b*a)b = b*(ab) = (ba)b* = b(ab*), by using [26][Theorem
2.3] again, (ab*)b? = b?(ab*). Then b*(ab?) = (b*a)b? = (ab*)b? = b¥(ab*) = (ab?)b*. Hence,
(bH)*(ab?) = (ab?)(b?)*. In view of Theorem 1.1 and [7, Corollary 3.4], b®(ab?) = (ab?)b®. We
directly verify that

(a+b)b*(1+ab?)"1 = (ab? +bb?)(1 + ab?) !

= bb?(1+ab?)(14ab?)"1 = bb?
(1+ab?)~1(1 + ab?)b*
(1+ab?) v (a +b)
b (14 ab?) " a+b),
(bbb (1 4 ab®) =1 = b?(1 + ab?) 1
(a+Db) —bb¥(a+Db)
= (b—b?)+ (1 —bb%)a
c Aqnil.

(a+b)[p%(1 + ab)~1]?
(a+b)— [b%(1+ab’) 1] (a +b)?

This implies that (a + b)? = b%(1 4 ab?) 1. We easily verify that
(1 +ab®) = (14 ab®)b?, (b%)* (1 + ab®) = (14 ab?) (b%)*.
Then we derive that

(1 +ab®) 7t = (14 ab®) 7%, (0 (14 ab®) ™! = (1 +ab®) 71 (19)".
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According to [7][Theorem 3.5], (a + b)¢ € A® and

[(a+D)T)® = (b")®[(1 +ab") 1]

(a+0)® (a+b)][(a+b)]

(a+b)"(6)® (1 + ab?)

(a+ )70 (b7)*(04)® (1 + ab?)

b (14 ab®) =16 (1 + ab®) 1 b?b® (1 + ab*)
(1+ ab?)~2b® (1 + ab?)

(14 ab®)~1p®,

[
[
[
[

O

Theorem 4.5. If BC = 0,CB = 0,CA = DC,CA* = D*C and D*CA = DCA¥, then M has generalized

core-EP inverse. In this case,
Mo — [ % p )

(A7)2A + WT,
(A7)2Z + WA,
—CA[(A?)2A + WT] + (I — CS)(D?)?T,
= —CA9(A")?Z + WA] + (I — CS)(D9)%A

and W, S, A\, %, T and A constructed as in Theorem 4.2.

where

=R ™ R
Il

Proof. Write M = P 4+ Q, where

Then
A1 S
d _

[eS) . . e} . .
where S = ¥ (A%)*2BDID™ + Y. A'A7B(D?)*2 — AYBD?. Hence, we have
i=0 i=0

0 0 Al g
_opd — 7_
I=-Qp ! (C 0)(0 Dd>
_ 1 0
o —CA? [1—-CS |-
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We easily check that
o (1 a)(ee)-(5 )
(& &) (890 n)-en
\
Q= 2* £*><gg>_<D2c8
L) (s )
PrQp) = 2: g*)(c(lx COB>_<D*(Z?A D*OCB>

BCA* 0 BC 0 A* 0 .
B DCA*0>_(DC 0)(3* D*)_(PQ)P'
Since A and D have generalized core-EP inverses, it follows by Theorem 3.4 that P has generalized
core-EP inverse, and that

po _ (AD2A +WT (AD)2Z + WA
- (Dd)Zr (Dd)ZA ’

where W, S, A, 2, T, A as defined before. Obviously, Q2 = 0, and so it is quasinilpotent. According to

Lemma 4.4,
M® = (I+QP¥)~1pe
= (I-QpPYpe
B I 0 (AY)2A+WT (A2 + WA
- —CA* 1-Cs (D)2 (D4)2A
_ a B
- (55 )
where
bt (AD2A + WT,
B = (A2 4+ WA,
v = —CAY(A%)2A +WT]+ (I - CS)(DY)T,
) —CA?[(A")2Z + WA] + (I — CS)(D?)?A.

as required. O

Corollary 4.6. If BC = 0,CB = 0,AB = BD, A*B = BD* and A*BD = ABD¥, then M has generalized

core-EP inverse. In this case,
mo=|( %P
v 6 )

= —BD?[(D?)2Z 4+ WA] + (I — BS)(A%)2A,
—BD?[(D?)2A + WT] + (I — BS)(A%)7T,
(DY)2Z + WA,
= (DY)2A+WT

and W, S, A, Z, T and A constructed as in Corollary 4.3.

where

S, =R ™ R
Il
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Proof. Applying Theorem 4.5 to the matrix ( l; Z ) , we see that it has generalized core-EP inverse.

Analogously to Corollary 4.3, we have

)
MO — 0 I D C 0 I .
I 0 B A I 0
Therefore we obtain the result by Theorem 4.5. [
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