
Article Not peer-reviewed version

Generalized core-EP inverse for

triangular operator matrices

Huanyin Chen *

Posted Date: 4 August 2024

doi: 10.20944/preprints202408.0216.v1

Keywords: core inverse; core-EP inverse; generalized core-EP inverse; triangular matrix; Block operator

matrix; Banach algebra.

Preprints.org is a free multidiscipline platform providing preprint service that

is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any

medium, provided the original work is properly cited.

https://sciprofiles.com/profile/3188547


Article

Generalized Core-EP Inverse for Triangular
Operator Matrices

Huanyin Chen
School of Big Data, Fuzhou University of International Studies and Trade, Fuzhou 350202, China; huanyinchenfz@163.com

Abstract: We investigate the existence and representation of the generalized core-EP inverse of some triangular

matrices over a Banach algebra. Further, the general representations of the generalized core-EP inverse of a

triangular matrix over a C∗-algebra are presented. As applications, the generalized core-EP inverses of some block

operator matrices over Hilbert spaces are given.

Keywords: core inverse; core-EP inverse; generalized core-EP inverse; triangular matrix; Block operator matrix;

Banach algebra

MSC: 15A09; 16U90; 16W10

1. Introduction

Let A be a Banach *-algebra. An element a ∈ A has Drazin inverse provided that there exists
x ∈ A such that

ax2 = x, ax = xa, xak+1 = ak,

where k is the index of a (denoted by ind(a)), i.e., the smallest k such that the previous equations are
satisfied. Such x is unique if exists, denoted by aD, and called the Drazin inverse of a. We say that
a ∈ A has group inverse x if ind(a) = 1, i.e., there exists a unique x ∈ A such that

ax2 = x, ax = xa, xa2 = a.

We denote the group inverse x by a#. Evidently, a square complex matrix A has group inverse if and
only if rank(A) = rank(A2).

An element a ∈ A has core-EP inverse (i.e., pseudo core inverse) if there exist x ∈ A and k ∈ N
such that

ax2 = x, (ax)∗ = ax, xak+1 = ak,

where the smallest k is the index of a (denoted by i(a)). If such x exists, it is unique, and denote it by
a D⃝. We say that a ∈ A has core inverse x if i(a) = 1, i.e., there exists a unique x ∈ A such that

ax2 = x, (ax)∗ = ax, xa2 = a.

We denote the core inverse x by a #⃝. As is well known, an element a ∈ A has core inverse x if and only
if

a = axa, xA = aA,Ax = Aa∗.

As a natural generalization of core-EP invertibility, the authors introduced the generalized core-EP
inverse in a Banach algebra A with an involution ∗. An element a ∈ A has generalized core-EP inverse
if there exists x ∈ A such that

ax2 = x, (ax)∗ = ax, lim
n→∞

||an − xan+1||
1
n = 0.

If such x exists, it is unique, and denote it by a d⃝.
The generalized inverses mentioned above are powerful tools in linear algebra and operator

algebra for dealing with matrices and operators that do not have a traditional inverse. They are used
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in various applications and provide a means to find solutions to linear systems and has applications
across various scientific and engineering disciplines. Recently, many authors have studied them from
many different views, e.g., [2,4,5,7–11,13,17,20,21,24,25].

Recall that a ∈ A has generalized Drazin inverse if there exists x ∈ A such that

ax2 = x, ax = xa, a − a2x ∈ Aqnil .

Here, Aqnil = {a ∈ A | 1 + λa ∈ A−1}. Such x is unique, if exists, and denote it by ad. We use
Ad,A #⃝ and A d⃝ to denote the sets of all generalized Drazin inverse, core and generalized core-EP
invertible elements in A, respectively. If a and x satisfy the equations a = axa and (ax)∗ = ax, then x is
called (1, 3)-inverse of a and is denoted by a(1,3). We use A(1,3) to stand for sets of all (1, 3)-invertible
elements in A. We list several characterizations of generalized core-EP inverse.

Theorem 1.1. (see [3,6])Let A be a Banach *-algebra, and let a ∈ A. Then the following are equivalent:

(1) a ∈ A d⃝.
(2) There exist x, y ∈ A such that

a = x + y, x∗y = yx = 0, x ∈ A #⃝, y ∈ Aqnil .

(3) There exists a projection p ∈ A such that

a + p ∈ A−1, pa = pap ∈ Aqnil .

(4) xax = x, im(x) = im(x∗) = im(ad).
(5) a ∈ Ad and ad ∈ A #⃝. In this case, a d⃝ = (ad)2(ad) #⃝.
(6) a ∈ Ad and ad ∈ A(1,3). In this case, a d⃝ = (ad)2(ad)(1,3).
(7) a ∈ Ad and there exists a projection q ∈ A such that adA = qA. In this case, a d⃝ = adq.

The motivation of this paper is to investigate the generalized core-EP inverse for the triangular
matrices over a Banach *-algebra.

In Section 2, we establish necessary and sufficient conditions under which the block operator

triangular matrix

(
a b
0 d

)
over a Banach algebra has the generalized core-EP inverse with upper

triangular form.
A C∗-algebra is a Banach algebra equipped with an involution operation ∗ that satisfies satisfies

the C∗-identity: ||x∗x|| = ||x||2 for all x ∈ A. In Section 3, we particularly investigate the generalized
core-EP inverse of a triangular block operator matrices over a C∗-algebra. We prove that every

triangular operator matrix

(
a b
0 d

)
over a C∗-algebra with generalized core-EP invertible diagonal

entries has the generalized core-EP inverse and its representation of generalized core-EP inverse is
presented.

The set of all bounded linear operators on a Hilbert space H, denoted B(H), forms a C∗-algebra
with the operator norm and the adjoint operation. Lex X and Y be Hilbert spaces. We use B(X, Y)
to stand for the set of all bounded linear operators from X to Y. Finally, in Section 4, we apply our

results and study the generalized core-EP inverse for the block operator matrix M =

(
A B
C D

)
,

where A ∈ B(X) d⃝, B ∈ B(X, Y), C ∈ B(Y, X), D ∈ B(Y) d⃝. Here, M is a linear operator on Hilbert
space X ⊕ Y.

Throughout the paper, all Banach *-algebras are complex with an identity. An element p ∈ A
is a projection if p2 = p = p∗. AD,A d⃝ and Anil denote the sets of all Drazin, generalized core-EP
invertible and nilpotent elements in A respectively. Let a ∈ Ad. We use aπ to stand for the spectral
idempotent aπ = 1 − aad.
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2. Triangular Operator Matrices over Banach *-Algebras

Let A be a Banach *-algebra. Then M2(A) is a Banach *-algebra with *-transpose as the involution.
We come now to generalized EP-inverse of a triangular matrix over A. To prove the main results, some
lemmas are needed. We begin with

Lemma 2.1. Let a ∈ A d⃝ and b ∈ A. Then the following are equivalent:

(1) (1 − a d⃝a)b = 0.
(2) (1 − aa d⃝)b = 0.
(3) aπb = 0.

Proof. (1) ⇒ (3) Since (1 − a d⃝a)b = 0, we have b = a d⃝ab. In view of ????, a d⃝ = (ad)2(ad) #⃝. Thus,
(1 − aad)b = (1 − aad)(ad)2(ad) #⃝ab = 0.

(3) ⇒ (2) Since ad = (ad)2a = ad[ad(ad) #⃝ad]a = [(ad)2(ad) #⃝]aad = a d⃝aad. Then b = aadb =

a d⃝a2adb; and so (1 − aa d⃝)b = (1 − aa d⃝)a d⃝a2adb = 0, as required.
(2) ⇒ (1) Since (1 − aa d⃝)b = 0, we get b = aa d⃝b. Therefore (1 − a d⃝a)b = (1 − a d⃝)aa d⃝b =

(a − a d⃝a2)a d⃝b = 0, as asserted.

Let A be a Banach *-algebra. Then M2(A) is a Banach *-algebra with *-transpose as the involution.
We come now to generalized EP-inverse of a triangular matrix over A.

Lemma 2.2. Let x =

(
a b
0 d

)
.

(1) If a, d ∈ Ad, then x ∈ M2(A)d and xd =

(
ad z
0 dd

)
, where

z =
∞

∑
i=0

(ad)i+2bdidπ +
∞

∑
i=0

aiaπb(dd)i+2 − adbdd.

(2) If a, d ∈ A #⃝ and aπb = 0, then x ∈ M2(A) #⃝ and

x #⃝ =

(
a #⃝ −a #⃝bd #⃝

0 d #⃝

)
.

Proof. See [26][Lemma 2.1] and [23][Theorem 2.5].

We are ready to prove:

Theorem 2.3. Let x =

(
a b
0 d

)
∈ M2(A) with a, d ∈ Ad. Then the following are equivalent:

(1) x ∈ M2(A) has upper triangular generalized core-EP inverse.
(2) a, d ∈ A d⃝ and

∞

∑
i=0

aiaπb(dd)i+2 = 0.

In this case,

x d⃝ =

(
a d⃝ z
0 d d⃝

)
,

where z = −adbd d⃝.
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Proof. By virtue of Lemma 2.2, we have

xd =

(
ad s
0 dd

)
,

where

s =
∞

∑
i=0

(ad)i+2bdidπ +
∞

∑
i=0

aiaπb(dd)i+2 − adbdd.

(1) ⇒ (2) By virtue of Theorem 1.1, xd has core inverse and that x d⃝ = (xd)2(xd) #⃝. Hence,

(xd) #⃝ = x2[(xd)2(xd) #⃝],

and so (xd) #⃝ is a upper triangular matrix. Write

(xd) #⃝ =

(
α δ

0 β

)
.

Then
xd((xd) #⃝)2 = (xd) #⃝, (xd) #⃝(xd)2 = xd,

(
xd(xd) #⃝

)∗
= xd(xd) #⃝.

This implies that
adα2 = α, α(ad)2 = ad, (adα)∗ = adα.

Hence, ad ∈ A #⃝. By using Theorem 1.1 again, a ∈ A d⃝. Likewise, d ∈ A d⃝. In view of Lemma 2.2,
(ad)πs = 0. This implies that

(ad)πs = aπs

=
∞
∑

i=0
aiaπb(dd)i+2

= 0.

Therefore
∞

∑
i=0

aiaπb(dd)i+2 = 0,

as asserted.
(2) ⇒ (1) By hypothesis, we get

(ad)πs = (1 − ada2ad)s = aπs = aπ [
∞

∑
i=0

(ad)i+2bdidπ − adbdd] = 0.

Then it follows by Lemma 2.2 that

(xd) #⃝ =

(
(ad) #⃝ t

0 (dd) #⃝

)
,

where t = −(ad) #⃝s(dd) #⃝. Hence, t = −(ad) #⃝[
∞
∑

i=0
(ad)i+2bdidπ − adbdd](dd) #⃝ = (ad) #⃝adbdd(dd) #⃝.

Then we have

(xd)2 =

(
(ad)2 w

0 (dd)2

)
,
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where w =
∞
∑

i=0
(ad)i+3bdidπ − (ad)2bdd − adb(dd)2. Therefore

x d⃝ = (xd)2(xd) #⃝

=

(
(ad)2 w

0 (dd)2

)(
(ad) #⃝ t

0 (dd) #⃝

)

=

(
a d⃝ z
0 d d⃝

)
,

where
z = (ad)2t + w(dd) #⃝

= (ad)2[(ad) #⃝adbdd(dd) #⃝]− [(ad)2bdd + adb(dd)2](dd) #⃝

= (ad)2bdd(dd) #⃝ − ad(adb + bdd)dd(dd) #⃝

= (ad)2bdd(dd) #⃝ − (ad)2bdd(dd) #⃝ − ad[b(dd)2(dd) #⃝]

= −adbd d⃝

This completes the proof.

Corollary 2.4. Let α =

(
a b
0 d

)
∈ M2(A) with a, d ∈ A d⃝. If aπbd d⃝ = 0, then α ∈ M2(A) d⃝ and

α d⃝ =

(
a d⃝ −a d⃝bd d⃝

0 d d⃝

)
.

Proof. Since aπbd d⃝ = 0, it follows by Theorem 1.1 that aπb(dd)2(dd) #⃝ = 0; hence,

aπbdd = [aπb(dd)2(dd) #⃝]bdb = 0.

By using Lemma 2.1, we have (1 − aa d⃝)bd d⃝ = 0, and so bd d⃝ = aa d⃝bd d⃝. Then

adbd d⃝ = ad(aa d⃝)bd d⃝ = a d⃝bd d⃝.

In light of Theorem 2.3,

α d⃝ =

(
a d⃝ −a d⃝bd d⃝

0 d d⃝

)
,

as asserted.

It is very hard to determine the core-EP inverse of a triangular complex matrix (see [10]). As a
consequence of Theorem 2.3, we now derive the following.

Corollary 2.5. Let M =

(
A B
0 D

)
, A, B, D ∈ Cn×n. If

i(A)

∑
i=0

Ai Aπ B(DD)i+2 = 0,

then

M D⃝ =

(
A D⃝ Z
0 D D⃝

)
,

where Z = −ADBD D⃝.
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Proof. Since the generalized core-EP inverse and generalized core-EP inverse coincide with each other
for a complex matrix, we obtain the result by Theorem 2.3.

Corollary 2.6. Let M =

(
A B
0 D

)
, A, B, D ∈ Cn×n. If A is invertible, then

M D⃝ =

(
A−1 −A−1BD D⃝

0 D D⃝

)
.

Proof. Straightforward.

The condition "x d⃝ ∈ M2(A) is upper triangular" in Theorem 2.3 is necessary as the following
shows.

Example 2.7. Let σ and τ be linear operators, acting on separable Hilbert space l2(N) with the conjugate
adjoint as an involution, defined as follows respectively:

σ(x1, x2, x3, x4, · · · ) = (0, x1, x2, x3, · · · ),
τ(x1, x2, x3, x4, · · · ) = (x2, x3, x4, x5, · · · ).

Then τσ = 1. Take M =

(
σ 1 − στ

0 τ

)
. Then

M d⃝ = M−1 =

(
τ 0

1 − στ σ

)
.

In this case, M is upper triangular matrix, but its generalized core-EP inverse is lower triangular.

3. Triangular Matrices with C∗-Algebra Entries

The aim of this section is to investigate the generalized core-EP inverse of triangular matrices
over a C∗-algebra. Throughout this section, A is always a C∗-algebra. We start by

Lemma 3.1. Let A be a C∗-algebra and let a ∈ A #⃝ ⋂A†. Then a†aa #⃝ = a†.

Proof. Since (1 − aad)ad = 0, by virtue of [23][Lemma 2.4], we have (1 − aa #⃝)ad = 0. This implies
that a†[(1 − aa #⃝)ad(a2a†)]∗ = 0, and so a†[(1 − aa #⃝)(aa†)]∗ = 0. Hence, a†(aa†)∗(1 − aa #⃝)∗ = 0.
Therefore a†(1 − aa #⃝) = 0, as required.

Set ea = 1 − aa† and fd = 1 − d†d. Then we derive

Lemma 3.2. Let A be a C∗-algebra and let a, d ∈ A #⃝ ⋂A†. Then

dd #⃝[1 + (eabd†)∗(eabd†)] = [1 + (eabd†)∗(eabd†)]dd #⃝.

Proof. It is easy to check that

(eabd†dd #⃝)∗eabd† = (eabd†)∗(eabd†) = (eabd†)∗(eabd†dd #⃝).

Then
dd #⃝(eabd†)∗eabd† = (eabd†)∗eabd†dd #⃝.

Therefore
dd #⃝[1 + (eabd†)∗(eabd†)] = [1 + (eabd†)∗(eabd†)]dd #⃝,
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as asserted.

In [15], Li and Du investigate the core inverse of a triangular block complex matrix. We now
extend Li and Du’s result to block operator matrices over a C∗-algebra by a new route.

Lemma 3.3. Let A be a C∗-algebra and let x =

(
a b
0 d

)
. If a, d ∈ A #⃝, aπbdπ = 0 and eab fd = 0, then

x ∈ A #⃝. In this case, x #⃝ =

(
α β

γ δ

)
, where

α = a #⃝ + [aπbd† − a #⃝b]d #⃝[1 + (eabd†)∗(eabd†)]−1(eabd†)∗,
β = (aπbd† − a #⃝b)d #⃝[1 + (eabd†)∗(eabd†)]−1,
γ = d #⃝[1 + (eabd†)∗(eabd†)]−1(eabd†)∗,
δ = d #⃝[1 + (eabd†)∗(eabd†)]−1.

Proof. Since a ∈ A #⃝, by virtue of [23][Lemma 2.1], it has group inverse, and so a is regular. As A is a
C∗-algebra, it follows by [14][Theorem 2.8] that a ∈ A†. Likewise, d ∈ A†. Since every C∗-algebra has
the symmetry property, we have 1 + (eabd†)∗(eabd†) ∈ A−1.

Let z =

(
α β

γ δ

)
, where α, β, γ and δ as defined above.

Claim 1. (xz)∗ = xz.
Since eab fd = 0, by virtue of Lemma 3.1, we have

(1 − aa #⃝)bd #⃝ = (1 − aa†aa #⃝)bd #⃝

= (1 − aa†)bd #⃝

= (1 − aa†)bd†dd #⃝

= eabd†.

Hence,
[(1 − aa #⃝)bd #⃝(1 + (eabd†)∗(eabd†))−1(eabd†)∗]∗

= [eabd†](1 + (eabd†)∗(eabd†))−1[(1 − aa #⃝)bd #⃝]∗

= (1 − aa #⃝)bd #⃝(1 + (eabd†)∗(eabd†))−1(eabd†)∗.

Therefore
aα + bγ

= aa #⃝ + (1 − aa #⃝)bd #⃝(1 + (eabd†)∗(eabd†))−1(eabd†)∗

= aa #⃝ + eabd†(1 + (eabd†)∗(eabd†))−1(eabd†)∗.

Hence,
(aα + bγ)∗ = aα + bγ.

By virtue of Lemma 3.1, we have

dd #⃝(eabd†)∗(eabd†) = (eabd†dd #⃝)∗(eabd†)

= (eabd†)∗(eabd†)

= (eabd†)∗(eabd†)dd #⃝.

Hence,
dd #⃝[1 + (eabd†)∗(eabd†)] = dd #⃝ + dd #⃝(eabd†)∗(eabd†)

= dd #⃝ + (eabd†)∗(eabd†)dd #⃝

= [1 + (eabd†)∗(eabd†)]dd #⃝.
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Thus, we derive that

dd #⃝[1 + (eabd†)∗(eabd†)]−1 = [1 + (eabd†)∗(eabd†)]−1dd #⃝.

Since dδ = dd #⃝[1 + (eabd†)∗(eabd†)]−1, we have (dδ)∗ = dδ.
In view of Lemma 3.2, we verify that

aβ + bδ

= −aa #⃝bd #⃝[1 + (eabd†)∗(eabd†)]−1 + bd #⃝[1 + (eabd†)∗(eabd†)]−1

= [1 − aa #⃝]bd #⃝[1 + (eabd†)∗(eabd†)]−1

= [1 − aa #⃝]b(d #⃝dd #⃝)[1 + (eabd†)∗(eabd†)]−1

= [1 − aa #⃝]bd #⃝[1 + (eabd†)∗(eabd†)]−1dd #⃝

= eabd†[1 + (eabd†)∗(eabd†)]−1dd #⃝

= eabd†(dd #⃝)[1 + (eabd†)∗(eabd†)]−1

= eabd†[1 + (eabd†)∗(eabd†)]−1

Therefore
(aβ + bδ)∗

= [(1 − aa #⃝)bd #⃝(1 + (eabd†)∗(eabd†))−1dd #⃝]∗

= dd #⃝(1 + (eabd†)∗(eabd†))−1[(1 − aa #⃝)bd #⃝]∗

= dd #⃝[1 + (eabd†)∗(eabd†)]−1(eabd†)∗

= [1 + (eabd†)∗(eabd†)]−1(eabd†)∗

= dγ.

We compute that

xz =

(
a b
0 d

)(
α β

γ δ

)

=

(
aα + bγ aβ + bδ

dγ dδ

)
Therefore (xz)∗ = xz.

Claim 2. xz2 = z.
We compute that

(1 − xz)z

=

(
1 − (aα + bγ) −(aβ + bδ)

−dγ 1 − dδ

)(
α β

γ δ

)

=

(
[1 − (aα + bγ)]α − (aβ + bδ)γ [1 − (aα + bγ)]β − (aβ + bδ)δ

−dγα + (1 − dδ)γ −dγβ + (1 − dδ)δ

)
.

Obviously, we have
aα + bγ = aa #⃝ + (aβ + bδ)(eabδ†)∗.
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Then we compute that

[1 − (aα + bγ)]α

= [1 − aa #⃝ − (aβ + bδ)(eabδ†)∗][a #⃝ + (aπbd† − a #⃝b)γ]
= [1 − aa #⃝ − (aβ + bδ)(eabδ†)∗][(aπbd† − a #⃝b)γ]
= [1 − aa #⃝ − (aβ + bδ)(eabδ†)∗][(aπbd†]γ

= [1 − aa #⃝ − (aβ + bδ)(eabδ†)∗](eabd†)γ

= eabd† − (aβ + bδ)(eabδ†)∗(eabd†)γ

= eabd† − eabd†[1 + (eabd†)∗(eabd†)]−1(eabδ†)∗(eabd†)γ

= eabd†[1 + (eabd†)∗(eabd†)]−1[1 + (eabd†)∗eabd† − (eabδ†)∗eabd†]γ

= eabd†[1 + (eabd†)∗(eabd†)]−1γ

= (aβ + bδ)γ;

hence,
[1 − (aα + bγ)]α − (aβ + bδ)γ = 0.

Analogously, we derive that

[1 − (aα + bγ)]β

= [1 − aa #⃝ − (aβ + bδ)(eabδ†)∗][(aπbd† − a #⃝b)d #⃝[1 + (eabd†)∗(eabd†)]−1

= [1 − aa #⃝ − (aβ + bδ)(eabδ†)∗][(aπbd† − a #⃝b)δ
= (aβ + bδ)δ;

hence,
[1 − (aα + bγ)]β − (aβ + bδ)δ = 0.

Also we check that

−dγα + (1 − dδ)γ

= −dd #⃝[1 + (eabd†)∗(eabd†)]−1(eabd†)∗[a #⃝ + [aπbd† − a #⃝b]
d #⃝[1 + (eabd†)∗(eabd†)]−1(eabd†)∗]

+ [1 − dd #⃝[1 + (eabd†)∗(eabd†)]−1]d #⃝[1 + (eabd†)∗(eabd†)]−1(eabd†)∗

= −[1 + (eabd†)∗(eabd†)]−1(eabd†)∗[aπbd† − a #⃝b]d #⃝[1 + (eabd†)∗(eabd†)]−1(eabd†)∗]

+ [1 − dd #⃝[1 + (eabd†)∗(eabd†)]−1]d #⃝[1 + (eabd†)∗(eabd†)]−1(eabd†)∗

= −[1 + (eabd†)∗(eabd†)]−1(eabd†)∗aπbd†d #⃝[1 + (eabd†)∗(eabd†)]−1(eabd†)∗]

+ [1 − [1 + (eabd†)∗(eabd†)]−1]d #⃝[1 + (eabd†)∗(eabd†)]−1(eabd†)∗

= [1 + (eabd†)∗(eabd†)]−1[−(eabd†)∗aπbd† + (eabd†)∗eabd†]

d #⃝[1 + (eabd†)∗(eabd†)]−1(eabd†)∗]

= [1 + (eabd†)∗(eabd†)]−1[(eabd†)∗ea(1 − aπ)bd†]d #⃝[1 + (eabd†)∗(eabd†)]−1(eabd†)∗]

= 0.
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Furthermore, we verify that

−dγβ + (1 − dδ)δ

= −dd #⃝[1 + (eabd†)∗(eabd†)]−1(eabd†)∗[(aπbd† − a #⃝b)d #⃝[1 + (eabd†)∗(eabd†)]−1]

+ [1 − dd #⃝
(
1 + (eabd†)∗(eabd†)

)−1
]d #⃝[1 + (eabd†)∗(eabd†)]−1

= −[1 + (eabd†)∗(eabd†)]−1(eabd†)∗(aπbd† − a #⃝b)d #⃝(1 + (eabd†)∗(eabd†))−1

+ [1 −
(
1 + (eabd†)∗(eabd†)

)−1
]d #⃝[1 + (eabd†)∗(eabd†)]−1

= −[1 + (eabd†)∗(eabd†)]−1(eabd†)∗aπbd†d #⃝(1 + (eabd†)∗(eabd†))−1

+ [1 −
(
1 + (eabd†)∗(eabd†)

)−1
]d #⃝[1 + (eabd†)∗(eabd†)]−1

= [1 + (eabd†)∗(eabd†)]−1[−(eabd†)∗aπbd† + (eabd†)∗(eabd†)]d #⃝

(1 + (eabd†)∗(eabd†))−1

= [1 + (eabd†)∗(eabd†)]−1[−(eabd†)∗aπbd† + (eabd†)∗(eabd†)]d #⃝

(1 + (eabd†)∗(eabd†))−1

= [1 + (eabd†)∗(eabd†)]−1(eabd†)∗ea(1 − aπ)bd† + (eabd†)∗(eabd†)]d #⃝

(1 + (eabd†)∗(eabd†))−1

= 0.

Therefore xz2 = z.
Claim 3. xzx = x.

(1 − xz)x

=

(
1 − (aα + bγ) −(aβ + bδ)

−dγ 1 − dδ

)(
a b
0 d

)

=

(
[1 − (aα + bγ)]a [1 − (aα + bγ)]b − (aβ + bδ)d

−dγaγ −dγb + (1 − dδ)d

)
.

Obviously, we have (ea)∗a = (1 − aa†)a = 0. Then

[1 − (aα + bγ)]a
= [1 − aa #⃝ − eabd†(1 + (eabd†)∗(eabd†))−1(eabd†)∗]a
= [(1 − aa #⃝)a − eabd†(1 + (eabd†)∗(eabd†))−1(eabd†)∗(ea)∗a)]
= 0.

Similarly, we have

−dγa = −dd #⃝[1 + (eabd†)∗(eabd†)]−1(eabd†)∗a
= −dd #⃝[1 + (eabd†)∗(eabd†)]−1(eabd†)∗(ea)∗a
= 0.

Clearly, (1 − aa #⃝)b = (1 − aa#aa†)b = eab = eab( fd + d†d) = eabddagd. Then we have

[1 − (aα + bγ)]b
= [1 − aa #⃝ − eabd†(1 + (eabd†)∗(eabd†))−1(eabd†)∗]b
= eab − eabd†(1 + (eabd†)∗(eabd†))−1(eabd†)∗(eab)
= eabd†d − eabd†(1 + (eabd†)∗(eabd†))−1(eabd†)∗(eabddag)d
= eabd†[1 − (1 + (eabd†)∗(eabd†))−1(eabd†)∗(eabddag)]d
= eabd†(1 + (eabd†)∗(eabd†))−1[1 + (eabd†)∗(eabd†)− (eabd†)∗(eabddag)]d
= eabd†[1 + (eabd†)∗(eabd†)]−1d
= (aβ + bδ)d.
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Finally, we verify that

dγb = dd #⃝[1 + (eabd†)∗(eabd†)]−1(eabd†)∗b
= dd #⃝[1 + (eabd†)∗(eabd†)]−1(eabd†)∗(ea)∗b
= dd #⃝[1 + (eabd†)∗(eabd†)]−1(eabd†)∗eab( fd + d†d)
= dd #⃝[1 −

(
1 + (eabd†)∗(eabd†)

)−1
][(eabd†)∗(eabd†)]d

= dd #⃝[1 −
(
1 + (eabd†)∗(eabd†)

)−1
]d

= dd #⃝d − dd #⃝[1 + (eabd†)∗(eabd†)]−1d
= d − dd #⃝[1 + (eabd†)∗(eabd†)]−1d
= d(1 − δd)
= (1 − dδ)d.

Therefore xzx = x. In light of [24][Theorem 3.3], x ∈ A #⃝ and x #⃝ = z, as asserted.

We come now to the demonstration for which this section has been developed.

Theorem 3.4. Let A be a C∗-algebra and x =

(
a b
0 d

)
. If a, d ∈ A d⃝, then x ∈ A d⃝ and

x d⃝ =

(
(ad)2α + wγ (ad)2β + wδ

(dd)2γ (dd)2δ

)
,

where

w =
∞
∑

i=0
(ad)i+3bdidπ +

∞
∑

i=0
aiaπb(dd)i+3 − (ad)2bdd − adb(dd)2,

s =
∞
∑

i=0
(ad)i+2bdidπ +

∞
∑

i=0
aiaπb(dd)i+2 − adbdd,

α = a2a d⃝ + [aπs[dd]† − a2a d⃝s]d2d d⃝
(
1 + (ead s[dd]†)∗(ead s[dd]†)

)−1
(ead s[dd]†)∗,

β = (aπs[dd]† − a2a d⃝s)d2d d⃝[1 + (ead s[dd]†)∗(ead s[dd]†)]−1,
γ = d2d d⃝[1 + (ead s[dd]†)∗(ead s[dd]†)]−1(ead s[dd]†)∗,
δ = d2d d⃝[1 + (ead s[dd]†)∗(ead s[dd]†)]−1.

Proof. In view of Theorem 1.1, a, d ∈ Ad and ad, dd ∈ A #⃝. By virtue of Lemma 2.2, we have

xd =

(
ad s
0 dd

)
,

where s =
∞
∑

i=0
(ad)i+2bdidπ +

∞
∑

i=0
aiaπb(dd)i+2 − adbdd.

Since ad = adaad, i.e., ad is regular. As A is a C∗-algebra, it follows by [14][Theorem 2.8], ad ∈ A†.
Likewise, dd ∈ A†. Let ead = 1 − ad(ad)† and fdd = 1 − [dd]†dd. Then we check that

(ad)πs(dd)π = aπ [
∞
∑

i=0
(ad)i+2bdidπ +

∞
∑

i=0
aiaπb(dd)i+2 − adbdd]dπ

= aπ [
∞
∑

i=0
aiaπb(dd)i+2]dπ

= 0
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and
ead s fdd = [1 − ad(ad)†][

∞
∑

i=0
(ad)i+2bdidπ +

∞
∑

i=0
aiaπb(dd)i+2

− adbdd][1 − [dd]†dd]

= [1 − ad(ad)†][
∞
∑

i=0
aiaπb(dd)i+2][1 − [dd]†dd]

= 0.

It follows by Lemma 3.3 that

(xd) #⃝ =

(
α β

γ δ

)
,

where

α = [ad] #⃝ + [aπs[dd]† − [ad] #⃝s][dd] #⃝[1 + (ead s[dd]†)∗(ead s[dd]†)]−1(ead s[dd]†)∗,
β = (aπs[dd]† − [ad] #⃝s)[dd] #⃝[1 + (ead s[dd]†)∗(ead s[dd]†)]−1,
γ = [dd] #⃝[1 + (ead s[dd]†)∗(ead s[dd]†)]−1(ead s[dd]†)∗,
δ = [dd] #⃝[1 + (ead s[dd]†)∗(ead s[dd]†)]−1.

Set
w := ads + sdd

=
∞
∑

i=0
(ad)i+3bdidπ +

∞
∑

i=0
aiaπb[dd]i+3 − (ad)2bdd − adb(dd)2.

Accordingly,
x d⃝ = (xd)2(xd) #⃝

=

(
(ad)2 w

0 (dd)2

)(
α β

γ δ

)

=

(
(ad)2α + wγ (ad)2β + wδ

(dd)2γ (dd)2δ

)
.

In view of Theorem 1.1, a d⃝ = (ad)2[ad] #⃝. Hence, (ad) #⃝ = a2[(ad)2[ad] #⃝] = a2a d⃝. Similarly, we have
(dd) #⃝ = d2d d⃝. Therefore we verify the formulas of α, β, γ and δ mentioned before.

Corollary 3.5. Let A be a C∗-algebra and x =

(
a b
0 d

)
. If a ∈ Aqnil , d ∈ A d⃝, then x ∈ A d⃝ and

x d⃝ =

(
sddγ sddδ

(dd)2γ (dd)2δ

)
,

where
s =

∞
∑

i=0
aib(dd)i+2,

α = s[dd]†d2d d⃝
(
1 + (s[dd]†)∗(s[dd]†)

)−1
(s[dd]†)∗,

β = (s[dd]†)d2d d⃝[1 + (s[dd]†)∗(s[dd]†)]−1,
γ = d2d d⃝[1 + (s[dd]†)∗(s[dd]†)]−1(s[dd]†)∗,
δ = d2d d⃝[1 + (s[dd]†)∗(s[dd]†)]−1.

Proof. Since a ∈ Aqnil , we see that ad = 0, and therefore we obtain the result by Theorem 3.4.
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Corollary 3.6. Let A be a C∗-algebra and x =

(
a b
0 d

)
. If a ∈ A d⃝, d ∈ Aqnil , then x ∈ A d⃝ and

x d⃝ =

(
a d⃝ 0
0 0

)
.

Proof. Since (ad)2a2a d⃝ = aada d⃝ = a2a d⃝ nd dd = 0, we complete the proof by Theorem 3.4.

Since the algebra Cn×n of all n × n complex matrices is a C∗-algebra, the following result gives a
simpler formula to compute the core-EP inverse of a block triangular complex matrices (see [10]).

Corollary 3.7. Let A be a C∗-algebra and x =

(
a b
0 d

)
. If a, d ∈ A D⃝, then x ∈ A D⃝ and

x D⃝ =

(
(aD)2α + wγ (aD)2β + wδ

(dD)2γ (dD)2δ

)
,

where
w =

m
∑

i=0
(aD)i+3bdidπ +

m
∑

i=0
aiaπb(dD)i+3 − (aD)2bdD − aDb(dD)2,

s =
m
∑

i=0
(aD)i+2bdidπ +

m
∑

i=0
aiaπb(dD)i+2 − adbdD,

α = a2a D⃝ + [aπs[dD]† − a2a D⃝s]d2d D⃝
(
1 + (eaD s[dD]†)∗(eaD s[dD]†)

)−1

(eaD s[dD]†)∗,
β = (aπs[dD]† − a2a D⃝s)d2d D⃝[1 + (eaD s[dD]†)∗(eaD s[dD]†)]−1,
γ = d2d D⃝[1 + (eaD s[dD]†)∗(eaD s[dD]†)]−1(eaD s[dD]†)∗,
δ = d2d D⃝[1 + (eaD s[dD]†)∗(eaD s[dD]†)]−1,

m = max{ind(a), ind(d)}.

Proof. Since a, d ∈ A D⃝, it follows by [3][Corollary 3.4] that a, d ∈ A d⃝ ⋂AD. By virtue of Theorem 3.4,
x ∈ A d⃝. Clearly, x ∈ AD. By using [3][Corollary 3.4] again, x ∈ A D⃝ and x D⃝ = x d⃝, as required.

4. Applications

Lex X and Y be Hilbert spaces, and let M =

(
A B
C D

)
, where A ∈ B(X) d⃝, B ∈ B(X, Y), C ∈

B(Y, X), D ∈ B(Y) d⃝. Choose p =

(
IX 0
0 IY

)
. Then M can be regarded as the Pierce matrix(

pMp pMpπ

pπ Mp pπ Mpπ

)
p

. Here, every subblock matrices can be seen as the bounded linear operators

on Hilbert space X ⊕ Y. Throughout this section, without loss the generality, we consider M as the
block operator matrix in a specifical case X = Y. In this case, B(X ⊕ X) is indeed a C∗-algebra. The
following lemma is crucial.

Lemma 4.1. Let a ∈ A d⃝ and b ∈ Aqnil . If a∗b = 0 and ba = 0, then a + b ∈ A d⃝. In this case,

(a + b) d⃝ = a d⃝.

Proof. Since a ∈ A d⃝, by virtue of Theorem 1.1, there exist x ∈ A #⃝ and y ∈ Aqnil such that a =

x + y, x∗y = 0, yx = 0. As in the proof of [3, Theorem 2.1], x = aa d⃝a and y = a − aa d⃝a. Then
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a = x + (y + b). Since by = b(a − aa d⃝a) = 0, it follows by [26][Lemma 2.10] that y + b ∈ Aqnil . We
directly verify that

x∗(y + b) = x∗y + x∗b = (a d⃝a)∗(a∗b) = 0,
(y + b)x = yx + (ba)a d⃝a = 0.

In light of Theorem 1.1, a + b ∈ A d⃝. In this case,

(a + b) d⃝ = x #⃝ = a d⃝,

as asserted.

Theorem 4.2. If CA = 0, CB = 0 and D∗C = 0, then M has generalized core-EP inverse. In this case,

M d⃝ =

(
(Ad)2Λ + WΓ (Ad)2Σ + W∆

(Dd)2Γ (Dd)2∆

)
,

where

W =
∞
∑

i=0
(Ad)i+3BDiDπ +

∞
∑

i=0
Ai Aπ B(Dd)i+3 − (Ad)2BDd − AdB(Dd)2,

S =
∞
∑

i=0
(Ad)i+2BDiDπ +

∞
∑

i=0
Ai Aπ B(Dd)i+2 − AdBDd,

Λ = A2 A d⃝ + [AπS[Dd]† − A2 A d⃝S]D2D d⃝
(

I + (eAd S[Dd]†)∗(eAd S[Dd]†)
)−1

(eAd S[Dd]†)∗,
Σ = (AπS[Dd]† − A2 A d⃝S)D2D d⃝[I + (eAd S[Dd]†)∗(eAd S[Dd]†)]−1,
Γ = D2D d⃝[I + (eAd S[Dd]†)∗(eAd S[Dd]†)]−1(eAd S[Dd]†)∗,
∆ = D2D d⃝[I + (eAd S[Dd]†)∗(eAd S[Dd]†)]−1.

Proof. Write M = P + Q, where

P =

(
A B
0 D

)
, Q =

(
0 0
C 0

)
.

We easily check that

P∗Q =

(
A∗ 0
B∗ D∗

)(
0 0
C 0

)
=

(
0 0

D∗C 0

)
= 0,

QP =

(
0 0
C 0

)(
A B
0 D

)
=

(
0 0

CA CB

)
= 0

Since A and D have generalized core-EP inverses, it follows by Theorem 3.4 that P has generalized
core-EP inverse, and that

P d⃝ =

(
(Ad)2Λ + WΓ (Ad)2Σ + W∆

(Dd)2Γ (Dd)2∆

)
,

where W, S, Λ, Σ, Γ, ∆ as defined before. Obviously, Q is nilpotent, and so it is quasinilpotent. Accord-
ing to Lemma 4.1, M d⃝ = P d⃝, required.

Corollary 4.3. If BD = 0, BC = 0 and A∗B = 0, then M has generalized core-EP inverse. In this case,

M d⃝ =

(
(Ad)2∆ (Ad)2Γ

(Dd)2Σ + W∆ (Dd)2Λ + WΓ

)
,
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where

W =
∞
∑

i=0
(Dd)i+3CAi Aπ +

∞
∑

i=0
DiDπC(Ad)i+3 − (Dd)2CAd − DdC(Ad)2,

S =
∞
∑

i=0
(Dd)i+2CAi Aπ +

∞
∑

i=0
DiDπC(Ad)i+2 − DdCAd,

Λ = D2D d⃝ + [DπS[Ad]† − D2D d⃝S]A2 A d⃝
(

I + (eDd S[Ad]†)∗(eDd S[Ad]†)
)−1

(eDd S[Ad]†)∗,
Σ = (DπS[Ad]† − D2D d⃝S)A2 A d⃝[I + (eDd S[Ad]†)∗(eDd S[Ad]†)]−1,
Γ = A2 A d⃝[I + (eDd S[Ad]†)∗(eDd S[Ad]†)]−1(eDd S[Ad]†)∗,
∆ = A2 A d⃝[I + (eDd S[Ad]†)∗(eDd S[Ad]†)]−1.

Proof. Obviously,

(
0 I
I 0

)
M

(
0 I
I 0

)
=

(
D C
B A

)
. Applying Theorem 4.2 to the matrix(

D C
B A

)
, we see that

(
D C
B A

)
has generalized core-EP inverse. This implies that M has gener-

alized core-EP inverse. Additionally,

M d⃝ =

(
0 I
I 0

)(
D C
B A

) d⃝(
0 I
I 0

)
.

Therefore we complete the proof by Theorem ???.

Lemma 4.4. Let a ∈ Aqnil , b ∈ A d⃝. If ab = ba, a∗b = ba∗ and b∗(ab) = (ba)b∗, then a + b ∈ A d⃝. In this
case,

(a + b) d⃝ = (1 + abd)−1b d⃝.

Proof. Since ab = ba, it follows by [26][Theorem 2.3] that abd = bda. Likewise, we have a(bd)∗ =

a(b∗)d = (b∗)da = (bd)∗a. Since (ab∗)b = (b∗a)b = b∗(ab) = (ba)b∗ = b(ab∗), by using [26][Theorem
2.3] again, (ab∗)bd = bd(ab∗). Then b∗(abd) = (b∗a)bd = (ab∗)bd = bd(ab∗) = (abd)b∗. Hence,
(bd)∗(abd) = (abd)(bd)∗. In view of Theorem 1.1 and [7, Corollary 3.4], b d⃝(abd) = (abd)b d⃝. We
directly verify that

(a + b)bd(1 + abd)−1 = (abd + bbd)(1 + abd)−1

= bbd(1 + abd)(1 + abd)−1 = bbd

= (1 + abd)−1(1 + abd)bbd

= (1 + abd)−1bd(a + b)
= bd(1 + abd)−1(a + b),

(a + b)[bd(1 + abd)−1]2 = (bbd)bd(1 + abd)−1 = bd(1 + abd)−1,
(a + b)− [bd(1 + abd)−1](a + b)2 = (a + b)− bbd(a + b)

= (b − bdb2) + (1 − bbd)a
∈ Aqnil .

This implies that (a + b)d = bd(1 + abd)−1. We easily verify that

bd(1 + abd) = (1 + abd)bd, (bd)∗(1 + abd) = (1 + abd)(bd)∗.

Then we derive that

bd(1 + abd)−1 = (1 + abd)−1bd, (bd)∗(1 + abd)−1 = (1 + abd)−1(bd)∗.
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According to [7][Theorem 3.5], (a + b)d ∈ A #⃝ and

[(a + b)d] #⃝ = (bd) #⃝[(1 + abd)−1] #⃝.

(a + b) d⃝ = [(a + b)d]2[(a + b)d] #⃝

= [(a + b)d]2(bd) #⃝(1 + abd)

= [(a + b)d]2b2(bd)2(bd) #⃝(1 + abd)

= [bd(1 + abd)−1bd(1 + abd)−1]b2b d⃝(1 + abd)

= (1 + abd)−2b d⃝(1 + abd)

= (1 + abd)−1b d⃝.

Theorem 4.5. If BC = 0, CB = 0, CA = DC, CA∗ = D∗C and D∗CA = DCA∗, then M has generalized
core-EP inverse. In this case,

M d⃝ =

(
α β

γ δ

)
,

where
α = (Ad)2Λ + WΓ,
β = (Ad)2Σ + W∆,
γ = −CAd[(Ad)2Λ + WΓ] + (I − CS)(Dd)2Γ,
δ = −CAd[(Ad)2Σ + W∆] + (I − CS)(Dd)2∆

and W, S, Λ, Σ, Γ and ∆ constructed as in Theorem 4.2.

Proof. Write M = P + Q, where

P =

(
A B
0 D

)
, Q =

(
0 0
C 0

)
.

Then

Pd =

(
Ad S
0 Dd

)
,

where S =
∞
∑

i=0
(Ad)i+2BDiDπ +

∞
∑

i=0
Ai Aπ B(Dd)i+2 − AdBDd. Hence, we have

I − QPd = I −
(

0 0
C 0

)(
Ad S
0 Dd

)

=

(
I 0

−CAd I − CS

)
.
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We easily check that

PQ =

(
A B
0 D

)(
0 0
C 0

)
=

(
BC 0
DC 0

)

=

(
0 0

CA CB

)
=

(
0 0
C 0

)(
A B
0 D

)
= QP,

P∗Q =

(
A∗ 0
B∗ D∗

)(
0 0
C 0

)
=

(
0 0

D∗C 0

)

=

(
0 0

CA∗ 0

)
=

(
0 0
C 0

)(
A∗ 0
B∗ D∗

)
= QP,

P∗(QP) =

(
A∗ 0
B∗ D∗

)(
0 0

CA CB

)
=

(
0 0

D∗CA D∗CB

)

=

(
BCA∗ 0
DCA∗ 0

)
=

(
BC 0
DC 0

)(
A∗ 0
B∗ D∗

)
= (PQ)P∗.

Since A and D have generalized core-EP inverses, it follows by Theorem 3.4 that P has generalized
core-EP inverse, and that

P d⃝ =

(
(Ad)2Λ + WΓ (Ad)2Σ + W∆

(Dd)2Γ (Dd)2∆

)
,

where W, S, Λ, Σ, Γ, ∆ as defined before. Obviously, Q2 = 0, and so it is quasinilpotent. According to
Lemma 4.4,

M d⃝ = (I + QPd)−1P d⃝

= (I − QPd)P d⃝

=

(
I 0

−CAd I − CS

)(
(Ad)2Λ + WΓ (Ad)2Σ + W∆

(Dd)2Γ (Dd)2∆

)

=

(
α β

γ δ

)
,

where
α = (Ad)2Λ + WΓ,
β = (Ad)2Σ + W∆,
γ = −CAd[(Ad)2Λ + WΓ] + (I − CS)(Dd)2Γ,
δ = −CAd[(Ad)2Σ + W∆] + (I − CS)(Dd)2∆.

as required.

Corollary 4.6. If BC = 0, CB = 0, AB = BD, A∗B = BD∗ and A∗BD = ABD∗, then M has generalized
core-EP inverse. In this case,

M d⃝ =

(
α β

γ δ

)
,

where
α = −BDd[(Dd)2Σ + W∆] + (I − BS)(Ad)2∆,
β = −BDd[(Dd)2Λ + WΓ] + (I − BS)(Ad)2Γ,
γ = (Dd)2Σ + W∆,
δ = (Dd)2Λ + WΓ

and W, S, Λ, Σ, Γ and ∆ constructed as in Corollary 4.3.
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Proof. Applying Theorem 4.5 to the matrix

(
D C
B A

)
, we see that it has generalized core-EP inverse.

Analogously to Corollary 4.3, we have

M d⃝ =

(
0 I
I 0

)(
D C
B A

) d⃝(
0 I
I 0

)
.

Therefore we obtain the result by Theorem 4.5.
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