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Abstract: Ultrasound imaging is a vital imaging tool in musculoskeletal medicine, with the number
of publications on ultrasound-guided surgery increasing in recent years. However, ultrasound
imaging has drawbacks, such as operator dependency and image obscurity. Artificial Intelligence
(AI) and Deep Learning (DL), a subset of Al, can address these issues. DL methods, including
segmentation, detection, and localization of target tissues and medical instruments, potentially
allow physicians and surgeons to perform ultrasound-guided procedures more accurately and
efficiently. This review summarizes recent advances in ultrasound-guided procedures for
musculoskeletal diseases and provides a comprehensive overview of the utilization of AI/DL in
ultrasound for musculoskeletal medicine, particularly focusing on ultrasound-guided surgery.

Keywords: musculoskeletal ultrasound; ultrasound-guided surgery; artificial intelligence; deep
learning; radiomics

1. Introduction

Musculoskeletal (MSK) ultrasound is an indispensable imaging modality, first developed in
diagnostics [1-3] and now in the management of various MSK disorders [4,5]. Its ability to provide
real-time, dynamic assessment of musculoskeletal structures makes it particularly valuable in clinical
practice. MSK ultrasound offers numerous advantages, including high spatial resolution, absence of
ionizing radiation, and the ability to perform bedside examinations, thus facilitating prompt clinical
decision-making. Additionally, its cost-effectiveness compared to other imaging modalities, such as
MRI, has further cemented its role in the routine evaluation of MSK conditions. The versatility of
MSK ultrasound enables clinicians to visualize soft tissue structures, such as muscles, tendons,
ligaments, and nerves, as well as to guide therapeutic procedures with precision and safety [6].

However, despite these advantages, MSK ultrasound is not without its limitations. The modality
is highly operator-dependent, requiring significant expertise to acquire and interpret images
accurately. This dependency can lead to variability in diagnostic accuracy and procedural outcomes.
Furthermore, the quality of the images can be compromised by factors such as patient body habitus,
presence of soft tissue artifacts, and the inherent limitations of the ultrasound technology itself [7].
These challenges underscore the need for advanced techniques and tools to enhance the reliability
and utility of MSK ultrasound in clinical practice.

Artificial intelligence (AI) encompasses several branches of data science that specialize in
various domains. Deep learning (DL), a subset of machine learning which itself is a subset of Al,
consists of frameworks of neural networks that accomplish data processing and are designed to
mimic human cognitive abilities [8]. It depends on the availability of large amounts of data and
algorithms to be efficient. Specifically, 2-dimensional and 3-dimensional convoluted neural networks
(CNNSs) along with other architectures can detect and analyze visual features with a high degree of
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accuracy that is often faster and more efficient than traditional methods. Furthermore, other forms of
Al and semi-supervised learning can provide proofreading capabilities for image analyses performed
by DL [6].

Ultrasound imaging is not viewed from standardized planes like other medical imaging
technology, making it vulnerable to unclear graphics that are difficult and time-consuming to
interpret manually [6]. As DL has gained traction in the past two decades as a useful tool, its
application in clinical settings and MSK medicine has become important to remedy the disadvantages
of ultrasound imaging mentioned previously. It has proven to be helpful for anatomical
segmentation, localization and removal, release and cutting, and the repair of targeted afflictions [5].
The integration of AI/DL into MSK ultrasound represents a significant advancement in medical
imaging. This review aims to provide a comprehensive overview of recent advances in ultrasound-
guided procedures for MSK diseases, the utilization of AI/DL in ultrasound for MSK medicine, and
the potential of AI/DL to enhance these ultrasound-guided techniques in the future.

2. Ultrasound-Guided Surgery for Musculoskeletal Diseases
2.1. Literature Search

In the present review of ultrasound-guided surgery, we used the PubMed database to conduct
a comprehensive literature search covering studies published from inception to June 2024. The search
algorithm included combinations of the following keywords: “ultrasound-guided,”
“sonographically-guided,” “ultrasonography-guided,” “ultrasound-assisted,” “sonographically-
assisted,” “ultrasonography-assisted,” or “intraoperative ultrasound.” These terms were paired with

i "o

tendon,” or “nerve.” We excluded studies related to
pain,” “electromyography,
“dry needling,” “radiofrequency ablation,” “electrolysis,” or “hydrodistension,” as well as those
focused on preoperative evaluation by ultrasound, to maintain a focus on intraoperative applications.
Boolean operators (AND, OR) were used to combine search terms appropriately. Additionally, to
ensure comprehensive coverage, a snowball approach was also conducted, manually searching
references from relevant articles.

“orthopedic,” “musculoskeletal,” “ligament,

a "o a s "o

“biopsy,” “block,” “injection,” “anesthesia, catheter,” “aspiration,”

”ou ”ou

2.2. Classification of Studies

After removing duplicates, retracted papers and narrative reviews, two independent reviewers
screened titles and abstracts, followed by full-text review of potentially eligible studies.
Disagreements were resolved through discussion or by consulting a third reviewer.

A total of 133 studies met the inclusion criteria for the literature search. Data extracted from
these studies included study design (e.g., cadaveric studies, case report/technical note, case series,
comparative studies, randomized control trial, and meta-analysis/systematic review), procedure type
performed (e.g., localization, release, and repair etc.), pathology (e.g., carpal tunnel syndrome,
Achilles tendon rupture, and plantar fasciitis etc.), targeted tissues (e.g., nerve, tendon, and fascia
etc.), sample size, and key findings of each study.

2.3. Definition of Ultrasound-Guided Surgery

It is important to note the difference between ultrasound-guided and ultrasound-aided/assisted
surgery. Ultrasound-guided surgeries included those where the entire surgical procedure was
performed with ultrasound guidance. Examples included ultrasound-guided carpal tunnel release
and trigger finger release. Ultrasound-assisted surgeries included those where ultrasound was used
for specific parts of a surgical procedure, for instance, using ultrasound to assist in identifying portal
entry sites for arthroscopic surgery. In Achilles tendon repair, the procedure was classified as
ultrasound-assisted surgery when intraoperative ultrasound was used solely to identify the course
of the sural nerve [9]. It was considered ultrasound-guided surgery when ultrasound was utilized to
detect the sural nerve as well as the sutures and/or needle within the Achilles tendon during the
repair [10].
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2.4. Ultrasound-Assisted Surgery

Ultrasound-assisted surgery composed 38 out of the 133 studies reviewed. The ultrasound
capacity to accurately detect targeted anatomical/pathological structures was utilized for a portion of
the surgical procedures. During arthroscopic/endoscopic and even trauma surgery, ultrasound was
used to accurately identify a joint space or critical landmarks and/or nerves and arteries for accuracy
and safety [11-17]. Tumors, small ossicles and calcifications, which were not possible to detect with
conventional C-arm X-ray, could be localized with intraoperative ultrasound to facilitate open or
arthroscopic removal [18-20]. Of note, ultrasound was used to localize and/or confirm
decompression during spine surgery with a systematic review that validated its efficacy [21].

2.5. Classification of Ultrasound-Guided Surgery

The procedure types of ultrasound-guided surgery can be classified into 3 categories: 1.
localization and removal/debridement, 2 release or cutting (partial or complete), 3. Repair.
Ultrasound allows for accurately localizing and removing (completely or partially) pathological
tissues, and these procedures are referred to as the “first generation” ultrasound-guided surgery [5].
Release or cutting of targeted structures including tendon, fascia, retinaculum etc. is known as the
“second generation” while ultrasound-guided repairs are called the “third generation” [22-25].

The review of 95 studies on ultrasound guided surgery revealed that five “first generation”
surgeries involved removing/debriding foreign bodies [26,27], hematoma [28,29], and excessive bone
and bursa in Haglund deformity [30-32].

The second generation procedures were most common and involved release/cutting of soft
tissues, including transverse carpal ligament release for carpal tunnel syndrome [1,33-46], flexor
retinaculum release and septum for tarsal tunnel syndrome [47-50], shoulder capsule/coracohumeral
ligament for adhesive capsulitis [51-54], cutting of gastrocnemius aponeurosis to lengthen Achilles
tendon [55-57], tendon sheath release for trigger fingers and DeQuervain tenosynovitis [58-65],
fasciotomy (complete cutting) for chronic exertional compartment syndrome [66-68], fasciotomy
(partial cutting) for Dupuytren contracture [69-71], tenotomy (complete cutting) of long head biceps
and plantaris tendon for shoulder pain and Achilles tendinopathy respectively [72-86], partial
tenotomy/fasciotomy including Tenex® for tendinopathy/fasciopathy [87-95].

Ultrasound-guided repairs are the “third generation” due to its novelty of techniques. They
comprised ultrasound-guided anterior talofibular ligament of the ankle [22,96,97], Achilles tendon
[10,23-25,98,99] medial collateral ligament and medial patellofemoral ligament of the knee [100,101].

2.6. Cadaveric Studies, Case Reports/Technical Notes and Case-Series

Among ultrasound-guided surgery, 19 cadaveric studies, 16 case reports/technical notes, and 44
case-series were included. There were overlaps between the procedures in cadaveric studies and case
series, indicating the advent and evolution of these techniques. Researchers initially conducted
cadaveric studies to verify accuracy and feasibility, then progressed to a case series of their
ultrasound-guided procedures on patients.

The second-generation ultrasound-guided surgery, release or cutting of targeted structures,
composed of 86% of the 44 case series (the specific procedures are not clear in one case-series),
followed by localization and removal/debridement (the first generation) 7% and repair (the third
generation) 7%.

2.7. Clinical Studies above Evidence Level 3

In 16 studies with an evidence level higher than 3 [102], targeted tissues of ultrasound-guided
surgery included nerves, tendons, bursae, bone and ligaments (Table 1). All of them were not
evaluated or hard to identify with intraoperative C-arm X-ray.

Tendinopathy surgery was most common (N = 6) [84,93,103-106], followed by foot and ankle
surgery (N = 5) [10,31,92,97,99], and hand surgery (N = 4) [44—46,64] among studies with higher
evidence.
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Table 1. Clinical Studies of ultrasound-guided surgery above Evidence Level 3.

Primary
Author

Target

Year Sample Design Pathology tissue

Key Findings

Ultrasound-guided

Wahezi 26 vs Adhesive Shoulder PCHLR significantly
2023 RCT improved post-

[54] 13 capsulitis capsule procedure ROM

compared to control.

US-guided release
resulted in shortened
days off work, better
Nllfgi?ou 2017 161gs RCT Trigger finger Tendon izsrrgz;(l)i results, and
complications
compared to open

surgery.

Hand functionality
dela 47 vs ;rﬁlr);)(:::df (;’rroup'
Fuente 2021 RCT CTS Nerve . !
[46] 42 p.am. c'lecreased
significantly at 3-
month follow-up.

US-guidance resulted
. in earlier functional
Rojo- 46 vs recovery and
Manaute 2016 RCT CTS Nerve ooty
[45] 46 significantly better
pain scores without

complications.

Pain scores in the
PNT group were
significantly lower
Kirschner 19 vs Chronic than those in the PNT
2 ! RCT tendinopathy "% L [R-PRP group at 6
weeks, but no
significant outcome

differences.

Percutaneous
Altahawi 2020 23 vs RCT .CET Tendon tenotomy had similar
[103] 10 Tendinopathy outcomes to

traditional surgery.

US guided scraping
shows good results
with minimal
Alfredson 2011 19 vs RCT A.chilles Tendon Cf)m.pycatior?s, no
[106] 18 tendinopathy significant difference
between
percutaneous and
mini-open scraping.
PUNT (including dry
Tendon needling) alleviated
pain, improved

Shomal 2023 35 Meta. Tendl.nopathy
[105] analysis Fasciopathy
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function, and has low
rate of complications

and failures.

Both Tenex® and PRP
were successful in

Boden 30 vs Lateral and improving pain,
(93] 2019 0 Comparative Medial Tendon  function, and quality
epicondylitis of life, but no
significant difference
between treatments.
US-guided tendon
fenestration and PRP
injection are effective
Jacobson 2016 15 vs Comparative G.luteal Tendon for treatmen.t of .
[104] 15 tendinopathy gluteal tendinosis
with no significant
difference between

treatments.
PUT and PRP
significantly
Tl[g;]er 2024 11 ; s Comparative  Plantar fascia ~ Tendon  decreased pain levels
compared to only
PUT.
Ultra-MIS resulted in
better recovery of
Capa- 20 vs functionality and

Grasa [44] 2014 20 Comparative CTS Nerve

symptoms in less
post-operative time
than mini-OCTR.
US-guided anchor
Hattori 11 vs Chronic ankle placement is accurate

202 ti Li t
[97] 020 15 Comparative instability igamen

and anatomic for
ATFL repair.
US-guided group had
less pain and better
function at 2 months
compared to open
surgery group.

10 vs . Haglund Bone
Wang [31] 2019y, Comparative ¢ imity bursa

US performed intra-
operatively can
Paczesny 20 vs minimize risk of sural

[10] 2021 15 Comparative AT rupture Tendon nerve injury during
percutaneous AT

repair.

Percutaneous repair
provides similar
12 vs clinical outcomes,
Lee[99] 2020 18 Comparative AT rupture Tendon  greater overall and
aesthetic satisfaction
levels, and minimal

complications
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compared to open
repair surgeries.
RCT, Randomized Controlled Trial; CTS, Carpal Tunnel Syndrome; CHL, Coracohumeral Ligament; PCHLR,
Percutaneous Coracohumeral ligament release; ROM, range of motion; CET, Common Extensor Tendons; US,

ultrasound; PNT, percutaneous needle tenotomy; LR-PRP, Leukocyte-rich Platelet-rich plasma; PUNT,
Percutaneous ultrasound-guided needle tenotomy; PUT, Percutaneous ultrasonic tenotomy; Ultra-MIS, Ultra-
minimally invasive surgery; mini-OCTR, mini-Open Carpal Tunnel Release; ATFL, Anterior Talofibular
Ligament; AT, Achilles Tendon.

2.8. Randomized Control Trials and Meta-Analysis

The randomized controlled trials (RCTs) and meta-analysis on tendinopathy and fasciopathy
suggested that US-guided procedures resulted in minimal complications. Across the studies, pain
scores typically decreased significantly in the ultrasound-guided groups. Functional improvements
were noted for ultrasound-guided procedures. General well-being, sleep quality, and function all
showed positive trends. However, most of these results were not significant between ultrasound-
guided and control groups.

The RCTs on carpal tunnel syndrome and trigger finger release collectively indicate that
ultrasound-guided procedures exhibit favorable safety with no significant complications compared
to control groups. Pain levels were significantly lower in the ultrasound-guided group [45].
Functional improvement was noted in every study, although the functional improvements were not
significant between the ultrasound-guided and control groups in some studies [46,64]. Notably,
ultrasound-guidance led to earlier functional recovery in one study [45] and demonstrated quicker
return to normal activities and better cosmetic outcomes in the other study [64].

Another RCT on shoulder capsule/coracohumeral ligament release for adhesive capsulitis found
that ultrasound-guided coracohumeral ligament release with Tenex® improved shoulder range of
motion, pain, and function compared with local anesthetic injection group [54].

2.9. Strength of Ultrasound-Guided Surgery for Musculoskeletal Pathologies

As shown in the studies above, ultrasound-guided procedures demonstrated a strong safety
profile and efficacy comparable to traditional methods, offering benefits in pain reduction and
expeditious functional improvements. Intraoperative ultrasound can assist physicians and surgeons,
particularly those specializing in sports, foot and ankle, and hand surgery, in performing minimally
invasive surgeries for soft tissue pathologies accurately and effectively.

3. Artificial Intelligence and Musculoskeletal Ultrasound
3.1. Literature Search

We searched the PubMed database from inception to June 2024 using a search strategy including
combinations of the following keywords: “ultrasound-guided,” “ultrasonography-guided”,
“ultrasound-assisted”, “sonography-assisted”, “ultrasonography-assisted”. These terms were paired
with “orthopedic” and “musculoskeletal”, in combination with “deep learning”, “artificial
intelligence”, “convolutional neural networks” and “machine learning”. To focus on studies with
diagnostic or screening potential, “diagnosis” and “screening” were added where relevant. The
asterisk (*) symbol was used to include all variations of the above words. Boolean operators (AND,

OR) were used to combine search terms appropriately.
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3.2. Classification of Studies

After removing duplicates, retracted papers and narrative reviews, two independent reviewers
screened titles and abstracts, followed by full-text review of potentially eligible studies.
Disagreements were resolved through discussion or by consulting a third reviewer.

A total of 59 studies were included for the investigation of how Al and DL are used with
ultrasound in MSK medicine and orthopedics. From these studies the following data was extracted:
type of imaging used (e.g., ultrasound, MRI, X-Ray), the role of Al in the study (e.g., detection,
segmentation, classification etc.), the state of the images or subjects used (e.g., abnormal, healthy),
investigated anatomy or pathology (e.g., tendinopathy, hip dysplasia, carpal tunnel syndrome),
reference standard (if any), type of study (e.g., narrative review, diagnostic, cadaveric), level of
evidence (if any) and key findings of each study.

3.3. Inclusion Criteria and Definitions of Artificial Intelligence, Deep Learning and Convolutional Neural
Network

The inclusion criteria for these studies necessitated that the computer model conformed to the
established definitions of artificial intelligence (AI), deep learning (DL), or convolutional neural
networks (CNN). Al was defined as machines that are programmed to think and learn in a simulation
of human intelligence. It encompasses a variety of technologies and applications, including machine
learning, natural language processing, and robotics. DL was defined as a subset of machine learning
that involves neural networks with many layers that are capable of automatically extracting and
learning features from data. CNNs were defined as a type of DL algorithm specifically designed for
processing structured grid data, like images that consist of multiple layers that apply convolutional
operations to learn features from input images.

Other inclusion criteria were developed based on these definitions and required the role of
computer in the study to detect an anatomical area or pathology from ultrasound, classify and/or
diagnose a detected anatomical area or pathology from ultrasound, enhance ultrasound images for
interpretation, or segment ultrasound images.

3.4. Types of Studies

Between 2017 and 2020, no diagnostic studies were done, and most studies focused on
developing algorithms and utilizing AI/DL/CNN for segmenting and tracking ultrasound images.
The subjects of these studies were mostly healthy and/or cadaver models. Of the 59 studies included,
2 were categorized as cadaveric, 2 as feasibility based, 10 as narrative reviews, and 20 as
miscellaneous case studies, most of which were looking at segmentation and tracking.

From 2021, however, the number of clinical studies increased, and 21 of the 58 studies were
categorized as “diagnostic study” and given an evidence level based on the guideline from Journal
of Bone and Joint Surgery published in 2003 [102]. This categorization was performed by an
experienced orthopedic surgeon.

3.5”Non” Diagnostic Studies

Studies that were not classified as diagnostic looked at the use of computers in US imaging for
tracking, segmentation, and measurement of cross section area and echo texture. The two tracking
studies looking at tendon and cartilage found excellent tracking results with AI[107,108]. One study
even reported knee cartilage tracking results comparable to those of experienced surgeons [108]. Bone
was primarily researched regarding segmenting as seen in three studies which reported automatic
bone segmentation was accurate and comparable to existing techniques [109-111]. Seven studies
investigated muscle for the purposes of measurement and segmentation [112-118]. Two studies
looked at the gastrocnemius and reported they were able to automatically label ultrasound images
and estimate neural output, length, and tension [115,116]. One study found it was possible to segment
and track muscle on ultrasound images in real time suggesting a potential usage for diagnosis [112].
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3.6. Diagnostic Studies

Twenty-two “diagnostic studies” could be further divided into screening, diagnosis, and
prediction of prognosis, depending upon the role of AI/DL/CNN based ultrasound in a clinical
setting (Table 2).

3.6.1. Screening

Ultrasound is inherently an ideal imaging modality for screening due to its portability, cost-
effectiveness, safety, and accessibility. Al can enhance the value of ultrasound as a screening tool by
improving its diagnostic accuracy.

Screening infants” hips for hip dysplasia was the most studied pathology, with five diagnostic
studies focusing on it. The results of these studies demonstrated that computer algorithms could
successfully differentiate between diseased and healthy hips at a rate comparable to that of medical
experts and the conventional Graf method. [119-123].

Osteochondritis dissecans (OCD) of the humeral capitellum was another well-studied
pathology, featuring in three diagnostic studies [124-126]. These studies indicated that DL-assisted
ultrasound has a high accuracy for identifying and classifying OCD lesions. These studies’ results
highlighted the potential use of DL-based ultrasound in screening baseball players for OCD.

Another screening based diagnostic study focused on osteoporosis and found a multichannel
CNN based ultrasound may be more accurate than a conventional quantitative ultrasound [127].

3.6.2. Diagnosis

Carpal Tunnel Syndrome (CTS) was a frequent subject of investigation, with three studies,
including one systematic review [128-132]. Two of these studies showed that the diagnosis of CTS
could be performed with greater accuracy than that of radiologists [128,132].

Similarly, three studies investigating tendinopathy diagnosis with computer-guided ultrasound
found that Al was able to detect Achilles, lateral elbow, and supraspinatus calcific tendinopathy with
high diagnostic accuracy [133-135].

3.6.3. Prediction

Two studies focused on the prediction of prognosis. In prognosis studies the machine learning
software is trained on data (including clinical data, ultrasound images, laboratory data, etc.) to
identify patterns and risk factors that may indicate the risk of developing disease.

One study found that DL was effective at predicting total knee replacement in patients with knee
osteoarthritis [136]. Another study showed that machine learning was effective at predicting
rheumatoid arthritis relapse [137].

Table 2. Diagnostic studies utilizing AI/DL in musculoskeletal ultrasound imaging.

Primary Year Evidence  Reference

Pathol Key Findi
Author athology Level Standard ey Findings
Faeghi Nerve Computer system performed better than
2021 CTS . . .
[128] conduction test two radiologists.

DL model tested performed similarly to
medical experts at dysplasia detection.
DL algorithm was accurate for the

Lee [123] 2021 Hip dysplasia 4 Medical experts

R Lcifi
Chiu [132] 2022 ¢ .(Ca crie 2 Two experts  diagnosis of supraspinatus calcific
tendinopathy) .
tendinopathy.
. . Al (specifically random forest model)
Droppelm 0y LET 4 Diagnosis by - 4orected LET with high diagnostic
ann [133] specialists

accuracy.
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Al and 3D US-based automatic evaluation

He [122] 2022 Hip dysplasia 4 Graf method technology showed good agreement with
the Graf method.
Multichannel CNN could be more
Luo [127] 2022 Osteoporosis 2 DEXA accurate than the conventional speed of
sound model using the quantitative US.
Matsuo Excellent performance of ML at predicting
2022 RA 2 Rel
136 2 CAPSC RA relapse.
Shinohara 2022 CTS 5 EDPS DI.A COI..lld detec.t .carpal tunnel syndrome
[129] with high precision and accuracy.
. Cubital . -
Shinohara Electromyograp DL provided accurate prediction of
2022 Tunnel 4 !
[137] hy cubital tunnel syndrome.
Syndrome
MRI, CT
Shinohara 2029 TFCC iniur 4 arthro rla(r:n and DL detected TFCC with high accuracy
[138] Jury & comparable to MRI and CT arthrogram.
arthroscopy
Tiulpin DL guided US was effective at predicting
[135] 2022  Knee OA 2 TKR TKR,
Atalar . . Successful differentiation of diseased and
[119] 2023 Hip dysplasia 4 Graf method healthy hips
Jaremko . . Orthopedic All infants identified by AI—suPported .
2023 Hip dysplasia 2 portable US were treated for hip dysplasia
[120] surgeons . e
with 100% specificity.
Kinugasa 2023 Hip dysplasia 4 Graf method U.S w1th DL could assess hip dysplasia
[121] with high accuracy.
It was possible to re-train deep CNN to
Lin [138] 2023 Gout (tophi) 4 Rheumatologist identify the patterns of tophi in US images
with accuracy.
Lyu[130] 2023  CTS 4 Notspecified “1odelperformed bestwhen median
nerve epineurium was included in ROL
Not applicable In contrast to assessments by radiologists,
Wu [131] 2023 CTS 3 (Systematic  US radiomics exhibited superior
Review) diagnostic performance in detecting CTS.
Shinohara 20230CD of elbow 2 Radiographs andDL on US images identified OCD with
[139] MRI high accuracy.
Wang Achilles 5 Clinical US image-based radiomics achieved high
[134] Tendinopathy diagnosis  diagnostic performance.
Scapulohume . . US combined with Al algorithm for
Diagnostic . e .
Yu [140] 2023 ral 4 o scapulohumeral periarthritis is a simple
. . criteria 11 . e
periarthritis method with high diagnostic efficiency.
Sasaki Radiographs and Using DL with ROI focused on the
2024 OCD of elbow 4 Orthopedic  humeral capitellum was effective at
[124] P
surgeon classification of OCD
Takatsuii Radiographs and Computer assisted diagnosis system with
[125] " 2024 OCD of elbow 2 Orthopedic DL achieved high accuracy using US
surgeon images.

CTS, Carpal Tunnel Syndrome; OA, Osteoarthritis; OCD, Osteochondritis dissecans; RA, Rheumatoid Arthritis;
RC, Rotator Cuff; TFCC, Triangular Fibrocartilage Complex; LET, Lateral Elbow Tendinopathy; TKR, Total Knee
Replacement; Al, Artificial Intelligence; CNN, Convolutional Neural Network; DL, Deep Learning; ML, Machine

Learning: DEXA, Dual-energy X-ray Absorptiometry; EPS, Electrophysiological Study; CT, Computed

Tomography; MRI, Magnetic resonance imaging; US, Ultrasound; ROI, Region of Interest.

d0i:10.20944/preprints202408.0132.v1
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3.7. Benefits of Utilizing Al/DL in Ultrasound Evaluation

Ultrasound is inherently operator-dependent, which can lead to variability in diagnostic
accuracy. However, as demonstrated in recent diagnostic studies above, the integration of AI/DL into
ultrasound evaluation significantly enhances the screening, diagnosis, and prediction of various MSK
pathologies. These advancements underscore Al's potential to transform ultrasound imaging into a
more precise, reliable and predictive modality in medical practice.

3.8. Challenges of Al/DL-Assisted Ultrasound
3.8.1. Image Quality Dependency

Al algorithms are highly sensitive to image quality. As observed in the hip dysplasia studies,
low-quality images could significantly impact the accuracy of Al interpretations [119,121]. The
variability in ultrasound image acquisition techniques and equipment across different clinical
settings posed a challenge for developing robust Al models. Ensuring consistent, high-quality
ultrasound images across different operators and machines remains a hurdle that needs to be
overcome.

3.8.2. Region of Interest (ROI) Sensitivity

The accuracy of Al algorithms can be affected by variations in the selected region of interest. For
instance, in osteochondritis dissecans of the humeral capitellum and carpal tunnel syndrome,
adjusting the ROI improved consistency [124,130]. Standardizing ROI selection across different
pathologies and anatomical structures is crucial for reliable results.

3.8.3. Uncommon Pathologies

Al models can struggle with rare conditions due to limited training data. This challenge is
particularly relevant in musculoskeletal medicine where some pathologies are uncommon.
Therefore, multi-center collaborations would be extremely helpful in organizing a large dataset that
could be used for training more accurate and reliable machine learning models.

4. Utility of Artificial Intelligence in Ultrasound-Guided Surgery
4.1. Literature Search

Given the relatively novel and specialized nature of this section, initial structured database
searches yielded limited relevant results. Therefore, we employed a snowball sampling approach to
identify literature. This method involved identifying key papers in the field and systematically
exploring their references (backward snowballing) and citations (forward snowballing). This
approach allowed for the discovery of highly specific and relevant studies that might have been
missed through conventional search strategies. While this method uncovered valuable research, it is
important to note that it may not capture the entire breadth of available literature.

4.2. Current State of Al in Ultrasound-Guided Surgery

Our comprehensive literature review revealed no studies meeting the criteria for fully Al-
integrated ultrasound-guided surgery as defined in our methodology. Currently, the field appears to
be taking a staged approach, focusing on Al-enhanced assistive technologies rather than fully
autonomous systems.

4.3. Applications in Spine Surgery

In spine surgery Al-augmented ultrasound guidance has shown remarkable potential. Baka et
al. developed an Al-based method to identify vertebral levels using ultrasound imaging. The method
achieved 92-95% accuracy in correctly identifying vertebral levels in a test set of 19 patients,
significantly outperforming traditional manual palpation techniques. [141]. By combining pre-
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operative X-rays with intraoperative ultrasound, their method could offer a promising alternative to
C-arm imaging, potentially reducing radiation exposure and improving workflow in operating
rooms.

4.4. Future Direction

Real-time incorporation of Al while performing ultrasound-guided surgery is currently limited,
mostly due to the nascency of both components. However, this does not preclude the use of Al
techniques with ultrasound for the improvement of the peri-operative experience. As the history of
ultrasound evolved from diagnostic applications to interventional uses, the integration of Al in
ultrasound technology is expected to transition from its current use in diagnosis to broader utilization
in intervention and surgery.

5. Conclusions

Recent studies on ultrasound-guided surgery have shown a strong safety profile and efficacy
comparable to traditional methods, with additional benefits such as pain reduction and quicker
functional recovery. Although ultrasound is inherently operator-dependent, leading to variability in
diagnostic and therapeutic accuracy, our review demonstrated that the integration of AI/DL into
ultrasound imaging significantly improved the screening, diagnosis, and prediction of various MSK
pathologies. These advancements underscore AI/DL’s potential to transform ultrasound, especially
in ultrasound-guided procedures, into a more precise and reliable tool in MSK medicine.
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